DANTULARI NARAYANA RAJU COLLEGE (ATONOMUS)

ADIKAVI NANNAYA UNIVERSITY

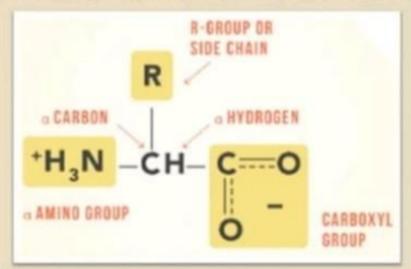
SEASON – 2022 DEPARTMENT OF BIOCHEMISTRY

GUIDANCE BY SIR.RAMESH (HOD) M.SC M.PHIL

Introduction

Amino acids

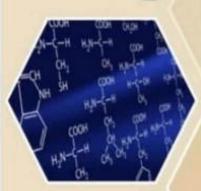
Amino acids are organic molecules that, when linked together with other amino acids, form a protein.


Amino acids are essential to life because the proteins they form are involved in virtually all cell functions. (make up 75% of the body)

Although there are hundreds of amino acids found in nature, proteins are constructed from a set of 20 amino acids.

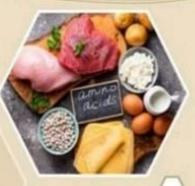
2

Amino acids general struct 🛴

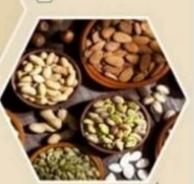


A general representation of a non-ionized amino acid showing

- the carboxylic acid group,
- · the α-amino group,
- the hydrogen bonded to the α-carbon, and
- · the R group (side chain)


that gives the amino acid its unique properties.

Amino acids in our daily l'fa



These are essential for our daily wellbeing as it has high nutritive value

Obtained from various sources & is considered to be the building blocks of life

Involved in body functions like growth, development healing and other metabolic activities

Nutritionists divide amino acids i

Essential

(must be in the diet because cells can't synthesize them)

Histidine,

Isoleucine,

Leucin,

Lysine,

Methionine,

Phenylalanine,

Threonine,

Tryptophan,

Valine.

Non-Essential

(can be made by cells)

Alanine,

Arginine,

Asparagine,

Aspartic acid,

Cysteine,

Glutamic acid,

Glutamine,

Glycine,

Proline.

Selenocysteine,

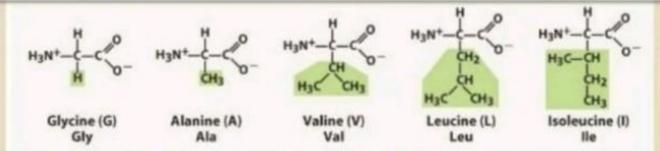
Serine,

Tyrosine.

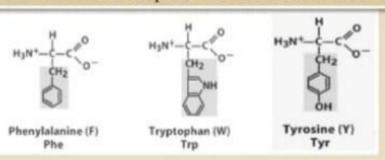
Amino acid groups

CB

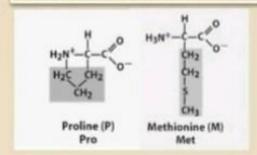
Group	Characteristics	Names	Example (-Rx)
non-polar	hydrophobic	Ala, Val, Leu, Ile, Pro, Phe Trp, Met	CH-CH ₂ -
polar	hydrophilic (non-charged)	Gly , Ser, Thr, Cys, Tyr, Asn Gln	CH-CH ₃ Thr
acidic	negatively charged	Asp, Glu	O C - CH ₂ — Asp
basic	positively charged	Lys, Arg, His NH3+-CH	2-CH ₂ -CH ₂ -CH ₂ - Lys


6

Structures



Non Polar side chains


Amino acids with Nonpolar Aliphatic Side Chains

Amino acids with Nonpolar Aromatic Side Chains

Other Nonpolar Amino acids

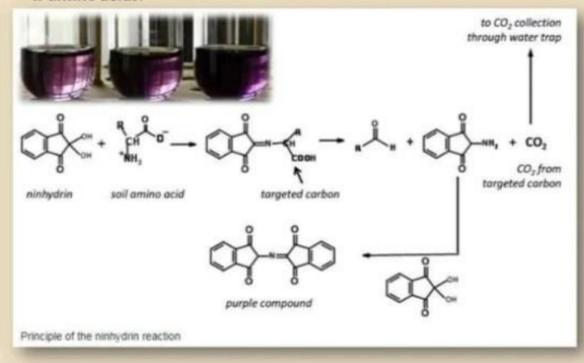
8

Polar Side chains

Properties

- Amino acids constitute a group of neutral products clearly distinguished from other natural compounds chemically, mainly because of their properties and biochemically; mainly because of their role as protein constituents.
- An amino acid is a carboxylic acid-containing an aliphatic primary amino group in the α position to the carboxyl group and with a characteristic stereochemistry.
- Proteins are biosynthesized from 20 amino acids in a system involving strict genetic control. Thus, amino acids are the basic unit of proteins.

Physical Properties C



- Amino acids are colourless, crystalline solid.
- All have a high melting point greater than 200°C
- 3. Solubility: They are soluble in water, slightly soluble in alcohol and dissolve with difficulty in methanol, ethanol, and propanol.
 - R-group of amino acids and pH of the solvent play important role in solubility.
- On heating to high temperatures, they decompose.
- All amino acids (except glycine) are optically active.
- 6. Peptide bond formation: Amino acids can connect with a peptide bond involving their amino and carboxylate groups. A covalent bond formed between the alphaamino group of one amino acid and an alpha-carboxyl group of other forming -CO-NH-linkage. Peptide bonds are planar and partially ionic.

Ninhydrin test

When 1 ml of Ninhydrin solution is added to a 1 ml protein solution and heated, the formation of a violet color indicates the presence of α -amino acids.

Xanthoproteic test

The xanthoproteic test is performed for the detection of aromatic amino acids (tyrosine, tryptophan, and phenylalanine) in a protein solution. The nitration of benzoid radicals present in the amino acid chain occurs due to reaction with nitric acid, giving the solution yellow coloration.

17

Functions of Amino aci

- In particular, 20 very important amino acids are crucial for life as they
 contain peptides and proteins and are known to be the building blocks for
 all living things.
- The linear sequence of amino acid residues in a polypeptide chain determines the three-dimensional configuration of a protein, and the structure of a protein determines its function.
- 3. Amino acids are imperative for sustaining the health of the human body.

They largely promote the:

- · Production of hormones
- · Structure of muscles
- · Human nervous system's healthy functioning
- · The health of vital organs
- · Normal cellular structure

26

- The amino acids are used by various tissues to synthesize proteins and to produce nitrogen-containing compounds
- e.g., purines, heme, creatine, epinephrine), or they are oxidized to produce energy.
- The breakdown of both dietary and tissue proteins yields nitrogen-containing substrates and carbon skeletons.
- The nitrogen-containing substrates are used in the biosynthesis of purines, pyrimidines, neurotransmitters, hormones, porphyrins, and nonessential amino acids.
- 7. The carbon skeletons are used as a fuel source in the citric acid cycle, used for gluconeogenesis, or used in fatty acid synthesis.

