
D.N.R. COLLEGE (A) 

BHIMAVARAM 

 

 

 

 

PROBLEM SOLVING USING C 

STUDY MATERIAL 

DEPARTMENT OF COMPUTER SCIENCE 

 

 



UNIT-I 

INTRODUCTION TO COMPUTER AND PROGRAMMING 

Computer: Computer is an electronic device which can process data transformed into 

information. That is useful to people. 

Block Diagram of a Computer: The computer has mainly three parts. 

1. Input Unit 

2. C.P.U(Central Processing Unit) 

3. Output Unit 

 

 
 

 

1. Input Unit : The standard input device is keyboard some of the input devices are 

mouse, scanner, touch screen, OMR(Optical Mark Recognition), OBR(Optical Barcode 

Recognition). 

2. Central Processing Unit : It has three types 

I. Memory Unit 

II. Arithmetic and Logical Unit(A. L. U) 

III. Control Unit 

 

Memory Unit: It is known has internal memory or primary memory. It has two types 

 



RAM (Random Access Memory):It stores programs and  instructions and data 

temporarily. Until the computer switch is turned off. Ram is volatile memory. 

ROM (Read Only Memory): Rom is an non-volatile memory .The data that is stored in 

Rom is permanent. 

Arithmetic and Logical Unit (A. L. U): It performs the actual arithmetic and logical unit 

processing. The result can be stored in the memory or it can be retained in arithmetic 

logical unit for further calculations. 

Control Unit :It controls  all  other units in the system its main functions are 

 To control transfer of information between various units in the system. 

 To initiate appropriate functions by arithmetic logical unit. 

3. Output Unit : It communicates the  results of processing to the users in various forms. 

The standard output unit is monitor, V. D. U (Visual Display Unit). 

 

CONCEPT OF HARDWARE AND SOFTWARE 

Hardware – Any physical device or equipment used in or with a computer system 

(anything you can see and touch). 

External hardware 

 External hardware devices (peripherals) – any hardware device that is located outside 

the computer. 

 Input device – a piece of hardware device which is used to enter information to a 

computer for processing. 

Examples: keyboard, mouse, track pad (or touchpad), touch screen, joystick, microphone, 

light pen, webcam, speech input, etc. 

 

 

 



  Output device – a piece of hardware  device  that receives information from a       

computer. 

Examples: monitor, printer, scanner, speaker, display screen (tablet, smart phone …), 

projector, head phone, etc. 

 

     

 

Internal hardware 

  Internal hardware devices (or internal hardware components) – any piece of 

hardware device that is located inside the computer. 

  Examples: CPU, hard disk drive, ROM, RAM, etc. 

Software – a set of instructions or programs that tells a computer what to do or how to 

perform a specific task (computer software runs on hardware). 

Types of Software’s : 

1. System Software 

2. Application Software 

3. Commercial Software 

4. Open Source Software 

5. Public Domain Software 

6. Freeware Software 

1. System Software: This is a collection of programs to control and operate the 

operations of computer hardware. This software’s are written in low level language. 

System software interface between user and system hardware. 

E g:-Operating System (OS),Compilers. 

 



Features:- 

1. Close to system 

2. Difficult to design and to understand 

3. Fast in speed. 

4. Written in low level language. 

5. Less interactive. 

 

2. Application Software: Application software protects are designed to satisfy a 

particular need of particular environment. Application software is to perform various 

applications on the computer app. 

 

Features:- 

1. Close to user 

2. Slow in speed 

3. Easy to understand 

4. Written in high level language 

5. Easy to design 

6. More interactive 

 

3. Commercial Software: Commercial software is any software or program that is 

designed and developed for licensing or sale to end users. 

 Commercial software is easy to use and easier information into existing system. 

These are mainly used in business because update services are available. 

E.g.:-ATM, Customer services. 

Features:- 

1. Easy to use  

2. Easy to implement. 

4. Open Source Software: Open source software is computer software. The source 

code is available with a license. The copy right holder provides the rights to study change 

and distribute the software to any one for any purpose 

E.g.:-Firefox, Open office. 

5. Domain Software: Public domain software that has been placed in public domain. 

There is ownership such as copy right patent. 



E.g.:-Flash, Video game player. 

6. Freeware Software: Freeware software is domain downloadable and free of charge. 

It is a free for personal use. It is freeware does not contain any license. 

E.g.:-Adobe reader, Skype. 

COMPILER AND INTERPRETER 

Compiler: A compiler translates code from a high-level programming language (like 

Python, JavaScript or Go) into machine code before the program runs. 

 The Compiler is a translator which takes input i.e., High-Level Language, and 

produces an output of low-level language i.e. machine or assembly language. The work 

of a Compiler is to transform the codes written in the programming language into 

machine code (format of 0s and 1s) so that computers can understand. 

 A compiler is more intelligent than an assembler it checks all kinds of limits, ranges, 

errors, etc. 

 But its program run time is more and occupies a larger part of memory. It has a slow 

speed because a compiler goes through the entire program and then translates the entire 

program into machine codes. 

 

 

Advantages of Compiler 

 Compiled code runs faster in comparison to Interpreted code. 

 Compilers help in improving the security of Applications. 

 As Compilers give Debugging tools, which help in fixing errors easily. 

 

Disadvantages of Compiler 

 The compiler can catch only syntax errors and some semantic errors. 

 Compilation can take more time in the case of bulky code. 

 

https://www.geeksforgeeks.org/introduction-to-compilers/
https://www.geeksforgeeks.org/introduction-of-assembler/


Interpreter: An interpreter translates code written in a high-level programming 

language into machine code line-by-line as the code runs.  

 It translates only one statement of the program at a time. 

 Interpreters, more often than not are smaller than compilers.  

 The simple role of an interpreter is to translate the material into a target language. 

An Interpreter works line by line on a code. It also converts high-level language to 

machine language. 

 

 

Advantages of Interpreter 

 Programs written in an Interpreted language are easier to debug. 

 Interpreters allow the management of memory automatically, which reduces memory 

error risks. 

 Interpreted Language is more flexible than a Compiled language. 

Disadvantages of Interpreter 

 The interpreter can run only the corresponding Interpreted program. 

 Interpreted code runs slower in comparison to Compiled code. 

 

 

Compiler Interpreter 

The compiler displays all issues after 

compilation. 

The interpreter displays issues for 

specific lines. 

 The compiler is based on the translation 

  linking-loading paradigm 

The Interpreter is based on the 

Interpretation Method. 

 The compiler requires the entire programme The interpreter only needs one line of 

code. 

A compiler transforms high-level 

programming language code into machine 

code before a program’s execution 

In contrast, an interpreter transforms 

each high-level programme statement 

into machine code separately. 

 Computed code runs faster  Interpreted code runs slower than       

computed. 

https://www.geeksforgeeks.org/difference-between-high-level-and-low-level-languages/
https://www.geeksforgeeks.org/difference-between-high-level-and-low-level-languages/


Algorithm 

               Algorithm is a step-by-step procedure, which defines a set of instructions to be 

executed in a certain order to get the desired output.  

(OR) 

                Algorithm is a step by step process to solve a particular problem. 

Properties of Algorithm:-  

The properties of algorithm as follows  

1. The algorithm have steps are precisely stated (defined).  

2. The algorithm must have unambiguous instructions(clear instructions).  

3. The algorithm should not have any uncertainty about execution of next instruction.  

4. It must be finite and cannot been open ended.  

5. The algorithms must be terminating after finite number of steps.  

6. The algorithm should be universal leads to a unique solution of the problem.  

** Write An Algorithm for Addition of Two Numbers.  

Step-1: Start  

Step-2: Read a, b values.  

Step-3: Add a, b and store result in sum(sum=a + b). Step-4: Display sum.  

Step-5: Stop  

** Find The Biggest of Three Numbers.  

Step-1: Start  

Step-2: Read the three numbers to be compared, as A, B and C. 

 Step-3: Check if A is greater than B.  

Step-4: If true, then check if A is greater than C. 

 Step-5: If true, print 'A' as the biggest number.  

Step-6: If false, print 'C' as the biggest number.  

Step-7: If false, then check if B is greater than C.  



Step-8: If true, print 'B' as the biggest number.  

Step-9: If false, print 'C' as the biggest number.  

Step-10: End 

Flow chart  

   “A flowchart is a graphical representation of algorithm”.  

                         The program in which different types of instructions are drawn in the form 

of different shapes of boxes and the logical flow is indicated by interconnecting arrows. 

The main objective of creating flowchart is to help the programmer in understanding the 

logic of programmer and to trap any kind of logical errors present in algorithm. 

Flow Chart Symbols:-  

                      Flow chart use different symbols to represent different operations to the 

program. A flow chart is drawn according to define rules using standard flowchart 

symbols prescribed by “ANSI”-(American National Standard Institute). The standard 

symbols that are frequently used in flow chart are 

 



Flow Chart Symbols:-  

Flow lines are represented by arrow lines. That are used to connect symbols these lines 

indicate the sequence of steps and the flow of operations.  

Terminator:-Terminator is used to represent by rectangle with rounded ends. These 

symbol is used to indicate the beginning (start), the termination (end/stop) in the program 

logic.  

Input (or) Output:-Input/output is represented by the parallelogram these symbol is 

represents an input taken from the user (or) the output that is displayed to user.  

Processing:- The processing is represented by rectangle this symbol is used for 

representing arithmetic and data movement instructions. It denotes the logical process of 

moving data from one memory location to another location.  

Decision:-This symbol is represented by diamond. It denotes a decision to be made. This 

symbol has one entry and exist paths. The path chosen depends on whether the answer to a 

question is yes (or) no.  

Connector:-This symbol is represented by circle. It is used to join different flow lines.  

Advantages of Flow Charts: 

The following are the advantages of flow chart  

Makes Logic Clear: It is easy follow a graphical representation of the task. The symbols 

are connected in such a way. That they make the system visible.  

Communication: Since the flow chart is a graphical representation of a problem solving 

logic. It is enhanced meaning of communicating the logic of a system.  

Effective Analysis: A flow chart helps the problem analysis in an effective way.  

Proper Testing and Debugging: Flow chart helps to identify and correct the errors in the 

program. It also helps in testing process.  

Appropriate Document: Flow chart acts as a high quality program documentation tool.  

Disadvantages of Flowchart: 

The following are the disadvantages of a flow chart  

Complex: For very large programming consisting of thousands of statements. The flow 

chart consists of many papers (or) pages making them different to flow.  



Costly: Flow charts are feasible for sort and straight forward problem solving logic flow 

chart because a costly flow chart, in huge application.  

Difficult to Modify: Any modification to flow chart needs to redraw the flowchart. 

Considering the entire logic again due to its symbolic nature redrawing complex flow 

chart is a difficult task.  

No Update: Programs are generally updated regularly but the corresponding flow charts 

are not updated regularly. 

Examples:-  

Draw a flow chart to find sum of two numbers 

 

 

Program: Program is a set of instructions to solve a particular problem.  

Programming:-  

 Process of creating programs.  

 A programming language is a computer language used to write instructions for 

computer in the well- defined format.  

 The set of instructions is called is called a program and the process of creating 

programs is called programming.  

 



Types of Programming Language: Programming languages are classified into 

major languages.  

1. Machine Language (Or) Binary Language(First Generation Language)  

2. Assembly Language(Second Generation Language)  

3. High Level Language(Third Generation Language)  

4. Very High Level Language(Fourth Generation Language)  

1. Machine Language (or) Binary Language:-  

 Machine level language is the lowest level programming understand by computers  

 To perform various input and output operations  

 The set of instructions which are directly understood by the C.P.U of computer is 

called machine language.  

 The programming language which contains machine code is called machine 

language.  

 All the information in the computer is handling using integrated circuits, 

semiconductors.  

 The machine language uses two binary digits 0 and 1 to handle input and outputs. So 

it is also known as binary language.  

 Machine language different from machine to machine because the internal structure 

of every computer different from one computer to another.  

 Machine language can be easily used by the computer, but it is difficult to read and 

understand by the user.  

 The machine language program runs fastly because no translations are require for the 

C.P.U.  

2. Assembly Language(Second Generation Language):-  

 Assembly language was the next high level programming language which is 

categorized as the second generation language  

 Assembly language is easy to understand compare to machine language. It uses 

English words it performs specific operations for example “add” is used for addition, 

“sub” is used for subtraction etc.  

 Assembly language is machine depended language  

 Assembler is used to translate assembly language instructions in to machine language 

and reverse also  

 Assembly language statements are return in one per line where each statements 

contains operations  



 Programming in assembly language requires extensive knowledge of computer 

design.  

3. High Level Language (or) Third Generation Language:-  

 High level programming languages includes: FORTRAN, COBOL, PASCAL, 

BASIC, C, C++, JAVA which enables the programs to develop the software 

applications.  

 The high level language use syntax which is very easy to understand.  

 Programs written in high level language (or) shorter in length.  

 Translates like compilers & interpreters are used to translate programs written in high 

level languages into machine languages and reverse also  

 High level languages are machine independent  

 High level languages are easy to learn because they use common English words as, 

they (or) their keyword  

 It is easy to modify and maintain the programs certain in high level language.  

4. Very High Level Language:-  

 Fourth generation languages are the easiest programming languages available today. 

They are very easy to learn because these syntax and grammar is very easy to learn.  

 Programming in this languages does not require any programming experience in 

other language.  

 Fourth generation languages are machine independent.  

 Fourth generation languages are also known as very high level languages.  

 Most fourth generation languages are used to occur data bases  

 Sql(structured query language) is the best example fourth generation language. It is 

used to create and modify information in dbms (database management system).  

History of C:  
 

              ‘C’ is a general purpose programming language. It is a procedure – oriented, 

Structured programming language.  

 

               The structured programming language allows you divided into small modules by 

using functions. It is a middle level language that means it has good high-level language 

programming skills and it also has low level programming features.  

 

               Dennis Ritchie developed C language in the year 1972 at AT&T Bell laboratories 

in U.S.A. The C-language was developed from the language B.C.P.L (Basic combined 



programming language). The C-language is well suited for developing system software 

and application software  

 

Features of C-Language: 
 

            C-Language is very powerful and popular because of its features. The Main 

features are:  

 

Portability: C-Language programs are highly portable. Portability means a c-program 

written in one environment can be executed in another environment. For example you 

write a program in DOS environment you can run in windows environment.  

Structured Programming Language: C-language is a structured programming language 

the structured programming basically consists of writing a list of instructions for the 

computer to follow, and organizing these instructions into groups known as functions.  

Extendibility: C-language has an important facility called extendibility. It means you can 

write your own file or functions and include in another programs in other words a user can 

write No. of functions, sub- programs according to the requirement.  

Reliability: A ‘C’ compiler gives and accurate results it has a facility of warning which 

guides for better and efficient programming.  

Middle Level Language: ‘C’ language is also called middle level language. Because it 

has both types of features i.e. high-level languages as well as low-level languages.  

Powerful: C is provides variety of data types, functions, conditional statements and 

looping statements. 

 

Uses of C Language:  

 

 ‘C’ is very simple language i.e., used by software professionals  

 The uses of ‘c’ language are:-  

 C-language is mainly used for system programming.  

 It is widely accepted by professionals  

 For portability and convenience is sometimes used as an intermediate language for 

implementing other languages.  

 ‘C’ language is widely used to implement user applications.  

 For creating compiles of different languages. Compiler is converts into source code to 

machine code.  

 Unix kernel is completely developed in C- language.  



Keywords:  

                   C-languages have some reserved words which cannot be used as variables the 

reserved words are called keywords.  

                   There are mainly 40keywords among which 32 keywords are used by many 

‘C’ compilers these keywords are called standard keywords whereas the remaining 

keywords are called optional keywords. 

                 

auto  break  Case  char  const  continue 

default  do  double  else  enum  extern 

float  for  Goto  if  int  long 

register  return  short  signed  sizeof  static 

struct  switch  typedef  union  unsigned  void 

volatile      while      

 

 Optional Keywords : 

ado   Fortran   sum   huge  

entry   Near   far   pascal  

   

Identifiers: Identifier is a name that is given to variables, functions and arrays.  

 Rules for constructing Identifiers:  

 Identifiers must be from the character set.  

 The first character of an identifier should be an alphabet. It should not be a digit or 

special character.  

 Identifiers should not be a keyword.  

 Special characters are not accepted in the identifiers except ‘-‘ (under score)  

 The length of an identifier should not be exceeding eight characters.  

 

Character Set: Character set means that the characters and symbols that a C-Program 

can understand and accept these are grouped to form the commands, expressions, words, 

statements and other tokens for C- language. There are mainly four categories.  

1. Letters (or) Alphabet: In the character set, character or alphabet are represented by 

(A-Z) or (a-z).  

E.g : A B C…. (or) a b c……  



2. Digits : In the character set digit are represented by (0-9)  

E.g : 0 1 2 3 4 5 6 7 8 9  

 

3. Special Characters :There are total 30 special characters used in the C-programming. 

Special characters are used for C- statements like to create an arithmetic statement.  

 

4. Empty Space Character : White spaces has blank space ,new line return, horizontal 

tab spaces etc., 

 

Variables : Variable is an identifier .It is used for storing value .The variable can be 

changed during the execution of the program .Variable refers to an address of memory 

where the data is stored. 

 

   For example 

1. int a; 

2. int a, b, c; 

 

Types of Variables: There are 5 types of variables which are as follows: 

 

1. Local variables 

2. Global variables 

3. Static variables 

4. Automatic variables 

5. External variables 

1. Local Variables 

Variables that are declared inside the functions are called local variable. Local variables 

must be declared before use. Only local functions can change the value of variables. 

 

Characters Meaning Characters Meaning Characters Meaning 

, Comma { Left brace + Plus symbol 

. Period } Right brace - Hypen sign 

:  Colon < Left angle * Asterisk sign 

? Question mark > Right angle # Hash symbol 

‘ Single quote = Equal to sign % Percentage sign 

“ Double quote ! Exclamation mask  ̂ Caret symbol 

( Left parenthesis | Pipe symbol & Ampersand sign 

) Right parenthesis / Forward slash @ At the rate 

[ Left bracket \ Backward slash _ Underscore 

] Right bracket ~ Tide symbol ; Semicolon 



Example 

int main( ) 

{ 

int m =10; //local variable 

} 

2. Global Variables 

Variables that are declared outside the functions are called global variables. Any functions 

can change the value of variables. 

Example 

int n = 6; //global variable 

int main() 

{ 

int m =10; //local variable 

} 

3. Static Variables 

variables that are declared with the static keyword are called static variables. 

int main() 

{ 

int m =10; //local variable 

static n = 6; //static variable 

} 

4. Automatic Variables 

all the variables that are declared inside the functions are default considered as automatic 

variables. Automatic variables can be declared using the auto keyword. 

int main() 

{ 

int m =10; //local variable (Automatic variable) 

auto n = 6; //automatic variable 

} 

 

 



5. External Variables 

External variables are declared using the extern keyword. The variables with the extern 

keyword can be used in multiple C source files. 

extern m =10; //external variable 

Rules for Naming a Variable in C 

We give a variable a meaningful name when we create it. Here are the rules that we must 

follow when naming it: 

1. A variable name must only contain alphabets, digits, and underscore. 

2. A variable name must start with an alphabet or an underscore only. It cannot start 

with a digit. 

3. No whitespace is allowed within the variable name. 

4. A variable name must not be any reserved word or keyword. 

5. The C language treats lowercase and uppercase very differently, as it is case 

sensitive. Usually, we keep the name of the variable in the lower case. 

 

Constants: The value was not changed during the execution of the program is called 

constants. Mainly they are two types of constants. They are  

1. Numeric constants. 

2. Character constants.  

  

 



1) Numeric Constants: These have numeric data with or without decimal points having 

positive or negative sign. These are further sub divided into two categories. There are  

 Integer Constant  

 Real or Float Constant  

Integer Constant: Integer constant has integer data without any decimal points are with 

any positive or negative sign. These are further sub divided into three types. Those are  

i.Decimal Integer Constant  

ii.Octal-Integer Constant  

iii.Hexa - Decimal Integer Constant  

i) Decimal Integer Constant: These have no decimal points it is a combination of 0 to 9 

digits. These have either positive or negative sign.  

E.g.: 8, 7, 6, 5, 4…etc.,  

ii) Octal - Integer Constant: These consist of combination of numbers from 0to7 with 

positive or negative sign. It has leading with ‘O’ (Upper case or lower case). ‘O’ means 

octal  

E.g.: O37, O-35.  

iii) Hexa- Decimal Integer Constant: These have Hexa decimal data leading with OX or 

X or H (capital or small). These have combination of  0 to 9 and A to F (capital or small). 

These letters represents the numbers 10 to15.  

E.g.:23A,OXB2.  

2) Real or Float Constant: Some constants which have decimal point value with in it is 

having any positive or negative sign.  

Eg: 22.34, 2.4 E 38 that means 2.4 X 1038.  

Real constants are further divided into two categories.  

I.) With Exponent Part  

II.) Without Exponent Part.  

i.) Without Exponent Part: Without exponent ‘E’ and having a decimal part mantissa.  

E.g.: 30.6, -30.6  

ii.)With Exponent Part: It is also called a scientific representation. Here ‘C’ has base 

value of 10 It computes the power.  

E.g.: 3.5 X 105 = 3.5 e5.  



3) Character Constants: Character constants have either a single character or a group of 

characters or a character with back slash (\) used for special purpose. These are further 

divided into three types.  

a. Single Character Constant.  

b. String Character Constant.  

c. Back Slash Character Constant.  

a) Single Character Constant: These have a single character with in single quotes. So, 

These are called single character constant.  

E.g.: ‘a’, ’G’, ‘A’,etc.  

b) String Character Constant: A string is a combination of character or group of 

Characters, a string constant or a string is enclosed with in double. So it is called String 

constant.  

E.g. : “DNRCOLLEGE”,”JOHN”,…etc.,  

c) Back Slash: These are used for special purpose in ‘C’ language. These are used in 

output statement like print (). Puts (), another name of Back slash character constant is 

escaping sequences. 

The Escape Sequences are: 

 

Constant Meaning 

\b Backspace 

\n Newline 

\t Tab space 

\v Vertical tab 

\f Move one page to next 

\o Null character 

\r returns 

 

 

 

Basic Data Types in “C”: 

 

                   A Datatype  is a set of values along with a set of rules for allowed operations. 

‘C’ supports several data types of data each of which is stored differently in the 

computer’s memory mainly data types are divided into three types. 

 

 



 

1. Primary Data Type: ‘C’ supports mainly four primary data types.  

 Character Data Type  

 Integer Data Type  

 Float Data Type  

 Double Data Type.  

Character Data Type:  

 The character data type accepts single character only. 

 Characters are either signed or unsigned. But mostly characters are used an 

unsigned type.  

 The size of the character data type is 1 byte in the memory. 

 The range of unsigned character is 0to 255.  

 The range of signed are character is –128 to +127. 

 char is the keyword of the character data type.  

 

Syntax: char list of variables;  

E.g. char ch1, ch2, ch3;  

Integer Data Type:  

 An integer type accepts integer values only.  

 It does not contains any real or float values.  

 The range of an integer variable is -32, 768 to +327,67.  

 int is the keyword for integer data type.  

 In generally 2 bytes of memory is required to store an integer value.  

 



Syntax: int list of variables;  

E. g: int a, b, c;  

Float Data Type:  

 The float data type accepts real values it can contains any floating point values.  

 The range of the floating variable is 3.4E – 38 to 3.4E + 38.  

 float is the keyword. 

 In generally 4 bytes of memory is required to store an float value with 6 digits of 

precision.  

 

Syntax: float list of variable; 

 Eg: float f1, f2, f3;  

 

Double Data Type : 

 The double data type accepts large floating value. 

 The range of the double variable is 1.7E –308 to 1.7E + 308.  

 Double is the key word for double data type.  

 In generally 8 bytes of memory is required to store double value.  

Syntax: double list of variables;  

E.g. double d, e, f; [22]  

Void Datatype : void is an empty data type that has no value. The void keyword specifies 

that the function does not return a value.  

2. Derived Data Types: Derived data types are derived from the primary data types. The 

derived data types may be used for representing a single or multiple values. These are 

called secondary data type. The derived data types are arrays, pointers, functions, etc.  

3. User Defined Data Types: The data types are defined by the user is called user defined 

data types. The user defined data types are structures, unions etc.  

Enumerated Data Types :It allows the user to define a variable or an identifier, which is 

used for representation of existing data types. In other words, it provides us a way to 

define our own data type and also can define the value for a variable or an identifier stores 

into the main memory.  

Syntax : enum identifier { v1,v2,v3…….,vn};  

Here  enum is the reserve word and v1,v2,v3…,vn all are the values which is also called 

enumeration constants.  

Eg : enum month{jan,feb,mar,….,dec};  



Typedef :This is used to represent the existing data type .i.e. by using this the new type 

can be used in place of the old type anywhere in a C program. Also we can create the 

typedef variables for improving the readability of the program.  

Syntax : typedef data-type identifier;  

Here data-type may be int, float ,double and char. Identifier gives us the information of 

new name given to the data type.  

Note that typedef cannot create a new type.  

Eg: typedef int pay;   

 

Operators: Operators are used for compute a formula or compare two variable values or 

create logical relationship between two operands or low-level programming we can say 

operators are used for processing. Operators are divided into:  

1. Arithmetic Operators.  

2. Relational Operators.  

3. Logical Operators.  

4. Assignment Operators.  

5. Conditional Operators.  

6. Bit Wise Operators.  

7. Increment / Decrement Operators.  

8. Comma Operator.  

9. Equality Operators.  

10. Size of Operators.  

1. Arithmetic Operators: ‘C’ provides all the basic Arithmetic operators in an 

Arithmetic expression like x + y x and y are the operands. ‘+’ is the operator. ‘C’ used 

the precedence rules to decide which operator is used first these are listed in the 

following table. 

Operator Descriptions Example 

+ Addition A + B 

- Subtraction A - B 

* Multiplication A * B 

/ Division A / B 

% Modulus A % B 
 

 



2. Relational Operators: The comparison can be done with the help of relational 

operators. An expression such as containing a relational operator is termed as a relational 

expression. The value of relational expression is either 1 or 0.It is‘1’ if the specified 

relation is true. And ‘0’ if the relation is false. 

 

Operator Description Example 

< Less than A < B 

<= Less than or equal to A< = B  

> Greater than A > B 

>= Greater than or equal to A > = B 

== Equal to A = = B 

!= Not equal to A ! = B 

 

3. Logical Operators: A statement contains more than one relational operators they 

must be separated by a logical operator an expression which combines two or more 

relational expressions is termed as a logical expression compound relational expression. 

 

Operator Description Example 

&&(Logical AND) 
If both conditions are true. 

The result will be true. Otherwise false 
(A>B)&&(A<C) 

||(Logical OR) 
If atleast one condition is true. 

The result will be true. Otherwise false. 
(A>B)||(A<C) 

!(Logical NOT) 
If condition is true the result will be false. 

Ifcondition is false the result will be true. 
!(A>B) 

 

4. Assignment Operators: Assignment operators are used for assign the result of an  

expression to a variable the equal to sign (‘=’) is the assignment operator. 

 

Operator Description Example 

= 
Assign the value to Operate to the left 

A=B 

+= 
Adds the operant and assigns The result to left operant. 

A+=B 

 

-= 

Subtract the right operant From the left operant and 

stores The result in the left operant. 

 

A-+B 



5. Conditional Operators: In ‘c’ Conditional operator ‘? :’ Constructs conditional 

expression of the form  

Syntax: Exp 1 ? Exp 2 : Exp 3 ;  

Example : (A>B)?(A+B):(A-B);  

Where Exp1, Exp2, Exp3 are expression. The operator ‘?:’ works as follows Exp1 is 

evaluated first. If it is true then the expression Exp2 is evaluated. If the Exp1, is false Exp3 

is evaluated.  

6. Bitwise Operators :A special type of operators known as bitwise operators for 

manipulation of data in Bit level. These operators are used for testing the Bits are 

shifting them right or left.  

 

Operator Description Example 

&(and) Bitwise and A&B 

!(or) Bitwise or A|B 

^(Exclusive or) Bitwise exclusive A^B 

~ Bitwise not ~A 

<< Bitwise left shift A<<1 

>> Bit wise right shift A>>2 

7. Increment / Decrement Operators :In some cases it is necessary to modify the 

value of the variable by adding one to the variable or –1 to the variable until the loop 

terminates the ‘c’ provides the mechanism increment or decrement operators to 

accomplish this. 

 

 



Increment Operators : In ‘C’ the operator ‘+ +’ is used as Increment operator it adds 1 

to the variable we can add 1 to the variable in one of the two types. 

1. Pre Incrementing. 

2. Post Incrementing. 

1)Pre-Incrementing :This operator first increments the value of the variable and then 

execution proceeding. 

Syntax:‘++’variable name; 

E.g.:‘++’a;‘++’a is equivalent to a=1+a; 

2)Post-Incrementing: This operator continuous with the execution before adding 1 to 

the   variable  and then increments the variable by 1 

Syntax : variable name‘++”; 

Ex : a’++’;a‘++’ is equivalent to a=a+1. 

Decrement Operator : In ‘C’ the operator‘--‘is used as decrement operator. It subtracts 

one from the variable we can subtract one from the variable in one of two ways. 

 

1. Pre– Decrementing 

2. Post–Decrementing 

 

1)Pre-Decrementing : This operator first decreases the value of the variable and then 

execution proceeds. 

Syntax:‘--‘variable name; 

Ex: ‘--‘a;‘--‘a is equivalent to a= -1+a. 

2)Post–Decrementing : This operator continuous with the execution before subtracting 

one from the variable and then decrements the variable by 1. 

Syntax: Variable name‘- -‘; 

Ex:  a’--‘;a‘--‘ is equivalent to a=a-1. 

8. Comma Operator: The comma operator is used to separate more than one variable 

invariable declaration. The comma operator is also used to separate two or more 

expressions. 

Ex : int a,b,c;  

Ex : int x=2,y=5; 

9. Equality Operators: C language supports two kinds of equality operators to compare 

their operands for equality or inequality. They are ‘==’equal to x==y, ‘!=’ not equal 

x!=y. 



10. Size of Operators: The size of operator is a unary operator used to calculate the size 

of data type this operator can be applied to all data types this operator is used to 

determine the amount of memory space that the variable/expression/data type will take. 

Ex: int a =10;  

unsigned int result;  

result = size of (a);  

result = 2 

Which is the space required to store the variable ‘a ’in memory. 

 

Structure of the ‘C’ Program. 

The ‘C’ Program structure contains the following sections. 

  

Documentation Section. 

Header File Section 

Definition Section 

Global Declaration Section 

main( ) Function 

{ 

Local Declaration Part 

Execution Part 

} 

User Defined Section 

 

Documentation Section: In the documentation section we can give the comments. Here 

comment statements are non-executable statements. Comment can be divided into two 

types there are 

1. Single line comments are represented by“//”. 

2. Multi line comments are represented by“/*…………. 

…………...*/. 

Header File Section: This section provides instructions to the compiler to link functions 

from the Library each header file by default contains with the extension of ‘h’ the file 

should be included by using # include. 

E.g : #include<stdio.h> 

The<stdio.h>is a file it is included all the definitions of input, output functions. 



Definition Section: We can define a variable with its value in the definition section. 

Syntax: # define variable name value; 

E.g.  

1. # define a=10; 

2. # define name“  “; 

Global Declaration Section : Some variables are used in more than one function such 

variables are called global variables and that variables are declared in the global 

declaration section that is outside of the main() function. 

Main( ) Function : Every ‘C’ program must contain main ( ) with empty parenthesis 

after main is necessary. The function main is the starting point of every ‘C’ program. The 

program execution starts with the opening braces ( { ) and ends with the closing braces ( 

} ) between these braces the programmer should give the program statements. The main 

has two parts. They are 

Declaration Part : The declaration part declared the entire variables that are used in 

executable part the initialization of variables are also done in this part. 

Execution Part :This part has reading, writing and processing statements having input or 

output functions, formulas, conditional statements, looping statement and function calling 

statements. 

User Defined Section :In this section function definitions are defined by the user. These 

functions are generally defined after the main function or before the main function. This 

section is optional. 

E.g.:-Write the First ‘ C ’ Program 

#include<stdio.h> 

void main( ) 

{ 

clrscr( ); 

printf(“My First Program in C”);  

 return 0; 

getch( ); 

} 

Output:-My First Program in C 

#include<stdio.h> 

 It is the first statement in our code. All pre-process commands starts with # 

symbol(hash). 



 The #include statements tells the compiler to include the standard library 

(input/output) or header file <stdio.h>in the program. 

main()function 

 The main ( ) function after all the statements in the program have been written. The 

last statements in the program have been written. The last statements in the program 

return will an integral value to the operating system. 

 The two{ }curlybracesareusedtogroupofalltherelatedstatementsofmain()function. 

  

printf(“My First Program in C”); 

The printf( ) function is defined in stdio.h  file and is used to print text on the screen. 

The message to be displayed on the screen to the enclosed with in double quotes (“ “) 

and put inside brackets (or) parenthesis. The backslash is an escape sequence and 

represents a new line character. 

Example:- 

Sequence Meaning 

\n New Line 

\t Tab Space 

\b Back Space 

\v Vertical Tab 

// Back Slash 

return 0: 

This is are turn command that is used to write the value “0” to the operating system 

give an indication. That  there  are  no  errors  during  the execution of program. 

 

Input/Output Functions 

                      The Input/ Output functions are used for reading the data from the 

keyboard and displaying the result on the screen are the two main tasks of any program 

to perform these tasks ‘C’ has no. of Inputs & Output functions. When a program is 

needs data it takes data through the input functions and send the result through the 

output function. 



Input Functions : Input functions are 

1. scanf( ) function 

2. getch( )function 

3. getchar( )function 

4. getche( )function 

5. gets( )function 

1)scanf( ):The scanf function is used to read the data from the keyboard. You can store 

the given value into the variable through the scanf ( ); 

Syntax : scanf(“Controlstring”,&v1,&v2,&v3, ------------ &vn”); 

Here v1, v2,---- vn are the variables and “&” is used to store the given value into the 

variables. The control string has some format strings. 

Some Format Strings are: 

 

Format string Meaning 

%c To print a single character 

%d To print the integer value 

%ld To print the long integer 
value 

%f To print the floating value. 

2)getchar( ):This function is used for reading a single character from the keyboard. The 

getchar ( )can be assigned a character into the character type variable. 

Syntax: ch=getchar(); 

Where ‘ch’ is the variable of character type. 

3)getch( ) :The getch( ) is used to get a single character from the keyboard it will not 

display the character on the screen and it will store the given character on the buffer it is 

used at the end of the program to terminate the output screen. 

Syntax: getch(); 

4)getche( ):The getche( ) is used to get a single character from the keyboard it will 

display the character on the screen and the character will be stored on buffer it is used at 

the end of the program to terminate the output screen. 

Syntax: getche(); 



5)gets ( ):The purpose of the gets function is to read the string it can read a string until 

you press enter key from the keyboard it will mark null character (‘\0’) at the end of the 

string. 

Syntax: gets(ch); 

Where ‘ch’ is the string variable. 

Output Functions: Output functions are 

1. printf( ) 

2. putchar( ) 

3. puts( ) 

 

printf():The  printf( ) is used to display a text message or a value stored in the variable. It 

requires conversion symbol and the variable name to print the data. 

 

Syntax:printf(“controlstrings”,v1,v2, -------------------------- vn”); 

(OR) 

printf (“Message line or text line”); Where v1,v2,vn are the variable. 

The Control Strings Uses Some printf()  

Format Strings Some Format Strings are: 

 

Format string Meaning 

%c To print a single character 

%d To print the integer value 

%ld To print the long integer value 

%f To print the floating value. 

putchar ( ):The putchar ( ) is a single character output function. It can display a single 

character on the screen at a time. 

Syntax: putchar(ch); 

Where‘ch’is the variable of character datatype in which a single character data is stored. 

puts():The purpose of puts( ) is to print or display a string inputed by the gets(). 

Syntax: puts(s);    (OR) 

puts(“Text line”); 

Where‘s’ is the string variable it will display the string stored in ‘s’. 



UNIT-II 

CONTROL STATEMENTS 

 

DECISION MAKING STATEMENTS: Decision-Making Statements and are used to 

evaluate one or more conditions and make the decision whether to execute a set of 

statements or not. These decision-making statements in programming languages decide the 

direction of the flow of program execution.  

                            They provide conditions using boolean expressions that are evaluated to 

a true or false boolean value, they are sometimes referred to as conditional statements. A 

particular piece of code will run if the condition is true; if the state is false, the block will 

not run.The statement includes  

 

a) if statement  

b) if- else statement  

c) nested if-else statement  

d) if-else-if statement  

e) switch case statement  

 

a) if statement: Only one statement occurs in “if”. It is having only one block.  

 

 

Syntax:- if (condition)     

{  

True Statement                   

}  

Statement x; 

 

 

 

 

 

                       First the condition will be checked. If the condition is true than the true 

statement block will be executed and after execution of this block, statement x will be 

executed. If the condition is false then only statement X will be executed. 

 

b) if-else statement: This statements also has a single condition with two different blocks 

(i) is true block and other one is false block.  

 

 



Syntax:- if (condition)  

{  

True statement;  

}  

else  

{  

False statement;  

}  

Statement x; 

 

 

 

 

                        First the condition will be checked. If the condition is true then true 

statement block will be executed. Then control goes to statement x. If the condition is false 

then the false statement block will be executed then control goes to statement x. 

 

c) nested if-else statement: When an if statement occurs within another if statement is 

called nested if else statement.  

Syntax:-if(condition)  

{  

if(condition 2)  

{  

Statement 1;  

}  

else  

{  

Statement 2;  

}  

}  

else  

{  

Statement 3;  

}  

Statement x; 

 

 

 

 

 

 



                           Condition one will be checked if it is true condition two will be checked. 

If condition 2 is true then the statement one will be executed. If condition 2 is false the 

statement two will be executed. 

 

d) else-if ladder statement: No. of conditions arise in a sequence, then we can use ladder 

if statement to solve the problem in the simple manner.  

Syntax:- if(condition)  

{  

Statement 1;  

}  

elseif(condition 2)  

{  

Statement 2;  

}  

elseif(condition 3)  

{  

Statement 3;  

}  

elseif(condition)  

{  

Statement n;  

}  

else  

{  

default statement;  

}  

Statement x; 

 

 

 

                      In this statement 1st condition will be checked, if it is true the statement 1 

will be executed, if the condition 1 is false the condition 2 will be checked. If it is true 

statement 2 will be executed. Otherwise further next condition will be checked and this 

process will be continue till the end of the condition.  

 

e) switch case statement: The switch case statement is a multi way branch statement. The 

tests whether expression matches one of the constant values. This switch case statement 

requires only one arguments which is checked with numbers of cases options.  

 

 

 



 

 

 

Syntax:- 

 

switch (expression)  

{  

case value 1: Statement 1;  

break;  

case value 2: Statement 2;  

break;  

case value n: Statement n;  

break;  

default: statement;  

} 

 

 

 

Write a program to find a day of week. 

#include<stdio.h> 

 #include<conio.h> 

void main( ) 

{ 

int day; 

 clrscr( ); 

printf(“\n Enter day number:”);  

scanf(“%d”,&day); 

switch(day) 

{ 

case 1: 

printf(“\n sunday”);  

break; 

 



case 2:  

printf(“\n monday”); 

 break; 

case 3: 

printf(“\n tuesday”); 

 break; 

case 4: 

printf(“\n wednesday”); 

break; 

case 5: 

printf(“\n thursday”);  

break; 

case 6: 

printf(“\n friday”); 

 break; 

case 7: 

printf(“\n saturday”);  

break; 

default: 

printf(“Invalid day number”); 

} 

getch( ); 

} 

Output:1 

Enter day number:  1 

Sunday 

Output:2 

Enter day number:  8 

Invalid day number 

 

 



Iterative Statements (Looping Statements): Iterative statements are used to repeat 

their execution of list of statements depends on the value of integer expression.  

(or) 

                       A single statement (or) group of statements will be executed again and again 

in a program such type of processing is called loop. 

 

 

 

                        “C” supports three types of iterative statements also known as looping 

statements. They are  

 while-loop  

 do-while loop  

 for loop  

while loop: In while loop one (or) more statements are repeatedly executed. Until a 

particular condition is true. while loop is an entry control loop.  

 

Syntax:-while (condition)  

{  

Block of statements;  

} 

 

 

 

 

 

 



                         In the while loop first the condition is tested. If the condition is true. Then 

only the body of statement will be executed. It will be executed again and again till 

condition becomes false. Otherwise if the condition is false. The control will be jump to 

false statement. 

do-while loop: The do-while loop is similar to while loop. The only one difference in a 

do-while loop .The test condition is tested at the end of the loop. That means it is clear the 

body of loop gets executed atleast once. do-while loop is an exit control loop.  

 

Syntax:-do  

{  

Block of statements;  

}  

while(condition); 

 

 

 

 

for - loop: It is a looping statement which repeat again and again till it satisfy the defined 

condition.  

It is on e step loop which initialize (or) initialization, check the condition and increment 

(or) decrement Step in the loop in a single statement.  

 

Syntax: 

 for (initialization; test condition; increment/decrement)  

{  

Body of loop;  

}  

Statement – x; 

 

 



       

The execution for the “for loop” is as follows 

1) Initialization of variable is done first 

2) The value of variable is tested is tested is using test condition. If the condition is true 

the body of the loop is executed if the condition is false the loop is terminated. 

3) When the body of loop is executed the control transfers back to the 1st statement for 

the last expression. That is increment/decrement. 

4) After increment/decrement the value of the control again goes to the test condition. If 

the condition is true, the body of the loop is again executed. The process continuous 

until the test condition is false. 

E.g: Write a C program to print 1 to N number using for loop. 

  

#include<stdio.h>  

#include<conio.h>  

void main ( )  

{  

int i, n;  

clrscr( );  

printf (“Enter n value”);  

scanf (“%d”, &n);  

printf (“\n 1 to n numbers are:”);  

for (i=1; i<=n; i++)  



{  

printf (“\n%d”, i);  

}  

getch( );  

} 

Output: 

Enter n value: 5 

1 to n numbers are:1 2 3 4 5 

Write A ‘C’ Program to Find the Fibonacci Series of A Given Number by using for-

loop. 

#include<stdio.h> 

#include<conio.h> 

void main( ) 

{ 

int a=0,b=1,c=1,n; 

clrscr( ); 

printf("enter n value:"); 

scanf("%d",&n); 

printf("\n The required fabnocci series is:"); 

printf("%d %d",a,b); 

for(; c<=n;) 

{ 

b=a; 

a=c; 

c=a+b; 

printf("%d",c); 

} 

printf("\n"); 

getch( ); 

} 

Output: 

Enter n value: 5 

The required fabnocci series is : 0 1 1 2 3 5 8 

 

 

 



Example program for while – loop  

#include<stdio.h> 

 #include<conio.h>  

void main( )  

{  

int i=1,n;  

clrscr();  

printf(“Enter n value:”);  

scanf(“%d”,&b);  

while(i<=n)  

{  

printf(“\n Computer Science Department”);  

i++;  

}  

getch();  

}  

Output: Enter n value: 5  

Computer Science Department  

Computer Science Department  

Computer Science Department  

Computer Science Department  

Computer Science Department 

 

Write A ‘C’ Program to Find The Sum of Individual Digits of A Positive Integer. 

 

#include<stdio.h> 

#include<conio.h> 

void main( ) 

{ 

int n,sum=0; 

printf(“\n Enter a Positive integer:”); 

scanf(“%d”,&n); 

while(n>0) 

{ 

sum=sum+n%10; 

n=n/10; 

} 

printf(“\n Sum of Individual Digits of A Positive Integer is %d”, sum); 

getch( ); 



} 

 

Output :  

Enter a Positive integer : 123  

Sum of Individual Digits of A Positive Integer is :6 

 

Write A ‘C’ Program to Check Whether A Number is Armstrong or Not. 

 

#include<stdio.h> 

#include<conio.h> 

void main( ) 

{ 

intm,n,x,sum=0; 

clrscr( ); 

printf("Enter n value:"); 

scanf("%d",&n); 

m=n; 

while(n>0) 

{ 

x=n%10; 

sum=sum+x*x*x; 

n=n/10; 

} 

if(m==sum) 

printf("\n Given number is armstrong",m); 

else 

printf("\n Given number is not armstrong",m); 

getch( ); 

} 

 

Output: 1 

Enter n value: 153 

Given number is Armstrong 

Output: 2 

Enter n value:123 

Given number is not Armstrong 

 

 

 



Example program for  do while – loop  

#include <stdio.h> 

int main ( )  

{ 

 int a = 1; 

 do 

 { 

  printf("do while loop\n"); 

  a++; 

   } 

 while( a <=5 ); 

 printf("End of loop");  

 return 0; 

} 

 

Output : 

do while loop 

do while loop 

do while loop 

do while loop 

do while loop 

End of loop 

 

JUMP CONTROL STATEMENTS 

In C, jump statements are used to jump from one part of the code to another altering the 

normal flow of the program. They are used to transfer the program control to somewhere 

else in the program. 

Types of Jump Statements in C 

There are 4 types of jump statements in C: 

1. break 

2. continue 

3. goto 

4. return 

 

1. break in C 

              The break statement exits or terminates the loop or switch statement based on a 

certain condition, without executing the remaining code. 

https://www.geeksforgeeks.org/c-break-statement/


              break is a keyword in “c” statement is used to terminate the loop i.e., the control 

comes out from the current loop. When over the break keyword is encountered. It is also 

called as loop terminator.  

The break statement is widely used with for loop, while loop & do-while loop. 

Syntax : break; 

Uses of break in C 

The break statement is used in C for the following purposes: 

1. To come out of the loop. 

2. To come out from the nested loops. 

3. To come out of the switch case. 

 

                     The statements inside the loop are executed sequentially. When the break 

statement is encountered within the loop and the condition for the break statement 

becomes true, the program flow breaks out of the loop, regardless of any remaining 

iterations. 

2. Continue in C 

                     The continue statement in C is used to skip the remaining code after the 

continue statement within a loop and jump to the next iteration of the loop. When the 

continue statement is encountered, the loop control immediately jumps to the next 

iteration, by skipping the lines of code written after it within the loop body. 

                  The continuous statement is opposite to break statement. It appears in the body 

of the loop. Whenever a continuous statement appears the rest of the statements in the loop 

are skipped. And it continuous with the next iteration of current loop. 

Syntax : continue; 

3. Goto Statement in C 

                    The goto statement is used to jump to a specific point from anywhere in a 

function. It is used to transfer the program control to a labeled statement within the same 

function. 

                     It doesn’t require any condition goto is a keyword in ‘c’ this statement 

process control any where in the program. i.e., control is transferred to another part of 

program without testing any condition. The user has to define goto statement as follows.  



Syntax: goto label; 

4. Return Statement in C 

                     The return statement in C is used to terminate the execution of a function and 

return a value to the caller. It is commonly used to provide a result back to the calling 

code. 

Syntax: return expression; 

Example program on jump statements 

#include <stdio.h> 

int main( )  

{ 

 int choice; 

 printf("Select an option:\n"); 

 printf("1. Print 'Hello'\n"); 

 printf("2. Print 'World'\n"); 

 printf("3. Exit\n"); 

 choice=3; 

 switch (choice)  

{ 

 case 1: 

 printf("Hello\n"); 

 break; 

 case 2: 

 printf("World\n"); 

 break; 

 case 3: 

 printf("Exiting...\n"); 

 goto end; // Jump to the 'end' label to exit 

 default: 

 printf("Invalid choice\n"); 

 break; 

 } 

 // This is where the 'end' label is defined 

 end: 

 printf("Program ends here.\n"); 

 return 0; 

} 

  



Output: 

Select an option: 

1. Print 'Hello' 

2. Print 'World' 

3. Exit 

3 

Exiting... 

Program ends here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT-III 

DERIVED DATATYPES IN C 

ARRAY 

Definition: Array is a collection of collection of similar data items (or) elements. These 

data elements have same data type. The elements of array are stored in sequence memory 

location and referred by index.  

 

 
 

                        Arrays are used to reduce confused and length of the program. Each 

element of an array can be accessed with the array name followed by a subscript which 

includes in square brackets .The subscript provided from zero(0) for the first element 

,increased by one to the next element.  

 

Declaration of an Array: An array must be declared before its use. Declaring an array 

means we need to specify.  

Syntax:- Data type Array name [size] ;  

Example: 

 int a[5];  

float c[10];  

Datatype : What kind of data value it can store .E.g.: integer, float, char, double….etc.,  

Array Name : To identify an array name.  

Size: Minimum number of values that an array can store.  

 

Initialization of Arrays: An elements of array can be initialized at the time of declaration. 

When an array is initialized we need to provide a value for every element in the array.  

Syntax: Data type Array-name [size]={list of values};  

Example: int a[5]={1,2,3,4,5};  

 

Types of Arrays: There are three types of arrays.  

1. One – Dimensional Array  

2. Two – Dimensional Array  



3. Multi – Dimensional Array  

1) One – Dimensional Array: A list of items can be given one variable name using only 

one subscript and such variable is called a single subscripted variable (or) one dimensional 

array .  

 

Declaration of One Dimensional Array: Like any other variable, array must be declared 

before they are used .  

Syntax: Data type array name [size];  

Example:  

int a[5];  

float c[10];  

 

Initialization of One Dimensional Array: The array can be initialized at the time of 

declaration .  

Syntax: Data type array name [size] = {list of values};  

Example: int a[5]={1,2,4,8,16};  

 

In above diagram, array name is “a”, array size is 5,  

Array index (or) address represented by a[0],a[1],a[2],a[3],a[4].  

Array values are (1,2,4,8,16). 

E.g.: 1 

#include<stdio.h> 

int main ( ) 

{ 

   int a[5] = {10,20,30,40,50}; 

   int i; 

   printf ("elements of the array are"); 

   for ( i=0; i<5; i++) 

   printf ("%d", a[i]); 

} 

 



Output 

Elements of the array are 

10 20 30 40 50 

 

E.g.:2 

 

#include<stdio.h> 

main ( ) 

{ 

   int a[5],i; 

   printf ("enter 5 elements"); 

   for ( i=0; i<5; i++) 

   scanf("%d", &a[i]); 

   printf("elements of the array are"); 

   for (i=0; i<5; i++) 

   printf("%d", a[i]); 

} 

 

Output 

The output is as follows − 

enter 5 elements 10 20 30 40 50 

elements of the array are : 10 20 30 40 50 

 

E.g.:3 Write A ‘C’ Program to Find Both The Largest and Smallest Number in A 

List of Integer Values. 

 

#include<stdio.h> 

int main() 

{ 

int a[20],i,n,large,small; 

printf(“\n Enter the Array Size:”); 

scanf(“%d”,&n); 

printf(“\n Enter the Array Elements:”); 

for(i=0;i<n;i++) 

scanf(“%d”,&a[i]); 

large = small =a[0]; 

for(i=1;i<n;i++) 

{ 

if(a[i]>large) 

{ 



large=a[i]; 

} 

if(a[i]<small) 

{ 

small =a[i]; 

} 

} 

printf(“\n The Smallest Element is %d”,small); 

printf(“\n The Largest Element is %d”,large); 

return 0; 

} 

 

Output: 

Enter the Array Size :7 

Enter the Array Elements : 6 8 2 4 3 9 1 

The Smallest Element is : 1 

The Largest Element is : 9 

 

2)Two-Dimensional :A two dimensional array is specified using two subscripts. Where 

one subscript is denotes rows and other subscript is denotes column. It is also known as 

double dimensional array (or) two dimensional array.  

 

Declaration of Two-Dimensional Array:  

Syntax: Data type array name [rows][column];  

E.g.: int arr[2][3];  

 

 
 

Initialization of Two-Dimensional Array: The two dimensional array can be initialized 

at the time of declaration.  

Syntax: Data type array name[row size][column size] = {list of values};  

Example: int arr[2][3]={5,7,10,2,1,3}; 



 Here the value assigned to the array is as follows.  

arr[0][0]=5 arr[1][0]=2  

arr[0][1]=7 arr[1][1]=1  

arr[0][2]=10 arr[1][2]=3 

 

Write A ‘C’ Program on Addition of Two Matrices. 

 

#include<stdio.h>  

#include<conio.h>  

void main( ) 

{ 

int A[20][20],B[20][20],C[20][20],i,j,m,n; 

clrscr( ); 

printf("Enter range:"); 

 scanf("%d%d"&m,&n);  

printf("Enter A matrix values:");  

for(i=0;i<m;i++) 

{ 

for(j=0;j<n;j++) 

{ 

scanf("%d",&A[i][j]); 

} 

} 

printf("Enter B matrix values:"); 

 for(i=0;i<m;i++) 

{ 

for(j=0;j<n;j++) 

{ 

scanf("%d",&B[i][j]); 

} 

} 

for(i=0;i<m;i++) 

{ 

for(j=0;j<n;j++) 

{  

C[i][j]=A[i][j]+B[i][j]; 

} 

} 

printf("addition of two matrices:");  

for(i=0;i<m;i++) 



{ 

for(j=0;j<n;j++) 

{ 

printf("%3d",C[i][j]); 

} 

printf("\n");  

}  

getch();  

} 

  

Out put:  

 

Enter range: 2 2  

Enter A matrix values :1 1 1 1  

Enter B matrix values :4 4 4 4  

Addition of two matrices:5 5 5 5  

 

 

STRING 

 

 

Definition: A string is a group of characters. A string in ‘C’ defined as any group of 

characters enclosed between double quotes(“ “) marks. 

                             The string can be of any length, the end of the string is marked with the 

single character(‘\0’) the null character.  

                           The strings are actually one dimensional array of characters terminated by 

null character. The character arrays are declared in c in a similar manner of numeric array.  

 

Declaration:  

  Syntax: char string name[size];  

                           Strings can be initialized at the time of declaration at the same time 

initializations at the time of declaration the string can be initialized in any one of the 

following manner.  

E.g: char name[10] = “Krishna”;  

char name[10] = {‘k’,’r’,’i’,’s’,’h’,’n’,’a,};  

                           “C” library supports a large number of string handling functions. 

Following are the most commonly used String Handling Functions.  

 

 



String Handling Functions: 

                            The ‘C’ library supports a large number of string handling functions that 

can be used to manipulate the string in many ways you must include the string header file 

in your program  

String handling functions are:  

1. strcat ( )  concatenation  

2. strcpy( )  copy  

3. strlen( )  length  

4. strcmp( ) compare  

5. strrev( )  reverse  

6. strupr( )  upper case  

7. strlwr( )  lower case  

 

1) strcat( ) : The strcat( ) function is used to joins two strings.  

Syntax: strcat(str1,str2);  

                               str1 and str2 are two strings. When the function strcat() is executed str2 

is appended to str1.  

2) strcpy( ) : This function is used to copy one string into another string it accepts two 

strings as arguments.  

Syntax: strcpy(target,source);  

                                 If first argument is generally an identifier, that represents the strings. 

The second argument can be a string constant. The function copies the string of source to 

target.  

3) strlen( ) : This function counts and returns the number of characters in a string.  

Syntax: variable= strlen(string);  

                               Where variable is an integer variable, which receives the value of the 

length of the string the argument is a string constant. [51]  

4) strcmp( ) : This function compares two strings and returns a integer value.  

Syntax: strcmp(str1,str2);  

                                 It returns zero if the strings are equal, greater than zero if string 1 is 

bigger than string 2 and less than zero if string1 is less than string2.  

5) Strrev(): The purpose of this function is two reverse a string this function takes string 

variable as a single argument here the first character becomes last and the last character 

becomes first in the string.  

Syntax: strrev(string);  

E.g: char str1[10]=”degree”;  

Printf(“reverse string of str1=%s”,strrev(s1));  

O/P:- reverse string of str1=eerged  



6) Strupr():The purpose of this function is to convert into upper case this function 

converts all the character of a string from lower case to upper case.  

Syntax:-strupr(string);  

E.g: char str1[10]=”degree”;  

Printf(“str1 is converted into upper case :%s”,strupr(str1));  

O/P:- str1 is converted into upper case :DEGREE  

7) Strlwr(): The purpose of this function is to convert string into lower case this function 

converts all the character of a string from upper case to lower case.  

Syntax:-strlwr(string);  

E.g: char str1[10]=”DEGREE”;  

Printf(“str1 is converted into lower case :%s”,strupr(str1)); 

 O/P:- str1 is converted into lower case :degree 

 

E.g: Write a ‘C’ Program to perform various String Operations.  

#include<stdio.h>   

#include<conio.h> 

 #include<string.h> 

 void main( )  

{  

char s1[20]="govt"; char s2[20]="college";  

char s3[20]="ORGANIZATION";  

clrscr( );  

printf("\n Length of string s1 is:%d",strlen(s1));  

strcat(s1,s2);  

printf("\n Join two strings s1 and s2:%s",s1);  

printf("\n String s2 convert to uppercase:%s",strupr(s2)); 

 printf("\n String s3 convert to lowercase:%s",strlwr(s3)); 

 strrev(s1);  

printf("/n Reverse of string s1 is:%s",s1);  

strcpy(s1,s2);  

printf("\n Copy of string is:%s",s1);  

getch( );  



}  

Out put:  

Length of string s1 is:4  

Join two strings s1 and s2:govtcollege 

 String s2 convert to uppercase: COLLEGE  

String s3 convert to lowercase: organization  

Reverse of string s1 is : tvog 

Copy of string is : college 

 

2. Example program for string reverse function in ‘C’ 

 

#include <stdio.h> 

#include <string.h> 

int main( ) 

{ 

   char str[ ] = "Hello world";  

   printf("The string is : %s\n", str);  

   strrev(str);  

   printf("The string after using function strrev( ) is : %s\n", str); 

   return 0; 

} 

Output: 

The string is : Hello world 

The string after using function strrev( ) is : dlrow olleH 

 

 

 

 

 

 



UNIT – IV 

 FUNCTIONS 

Function: A function is a group of statements that together perform specific tasks. A large 

program can be split into smaller segments. So that it can be efficiently solved.  

The function are categorized into two types  

 Pre-defined functions (or) Library functions.  

 User-defined functions  

 

 
 

                                      The major difference between the user defined functions and pre-

defined functions are not required to be written by user. While writing a program. Many 

program required to a particular group of unstructured accessed repeatedly. From the 

different place with in the program. This repeated instructions can be placed in a single 

function and can be accessed whenever necessary.  

                                     Function is a group of statements that carries out to specific task. 

Every c program starts with atleast one function. Which is main( ). The main( ) calls 

another to share the work.  

                                     Library functions are pre-defined se of functions they task is 

limited. Eg:-printf(), scanf(), sqrt()….etc.  

                                    These functions cannot modify. User defined functions are define 

by user. According to our requirement are called user defined functions. 

Advantages of function:  

1. It provides reusability. Because function calls many times.  

2. Generally large programs can be divided into smaller programs.  

3. It is too easy to modify.  

4. It is easy to debug and find out the errors.  



Function declaration:  

                                     Function declaration consists of three components such as return 

type, function name and arguments being passed. The function declaration must be ends 

with a semi column (;).  

Syntax:-  

return type function name (arg1, arg2 ……arg n);  

int sum(int, int); float multi();  

Function definition: The function definition consists of two components. The first line 

and the body of the function. The function definition is same as function declaration 

except that is does not end with a semi column(;)  

Syntax:-  

return type function name (arg 1,arg 2…..arg n)  

{  

function body; return(expression);  

}  

The body of the function may contain local variables, statements, expressions and also a 

return type.  

Function call (or) Calling function: The function call statement invokes the 

function. When a function is invoked the compiler jumps to the called function to execute 

the statements that are a part of function. Once the called function is executed, the 

program control passes back to the calling function.  

Syntax:  

function name(variable 1, variable 2….);  

Example:  

main()  

{  

…..  

…..  

abc (x,y,z); // Call Function;  

……  

……  

}  

abc(i,j,k) // Called Function;  

{  



……  

……  

return();  

}  

 

Function Prototype in C 

 

                                    The C function prototype is a statement that tells the compiler about 

the function’s name, its return type, numbers and data types of its parameters. By using 

this information, the compiler cross-checks function parameters and their data type with 

function definition and function call. 

                                      Function prototype works like a function declaration where it is 

necessary where the function reference or call is present before the function definition but 

optional if the function definition is present before the function call in the program. 

Syntax 

return _ type function _ name(parameter_list); 

where, 

 return_type: It is the data type of the value that the function returns. It can be any data 

type int, float, void, etc. If the function does not return anything, void is used as the 

return type. 

 function_name: It is the identifier of the function. Use appropriate names for the 

functions that specify the purpose of the function. 

 parameter_list: It is the list of parameters that a function expects in parentheses. A 

parameter consists of its data type and name. If we don’t want to pass any parameter, we 

can leave the parentheses empty. 

 

Types of Functions:  

 
                      Depending upon the arguments return value sends back to the calling 

functions based on this the functions are divided into four types.  

 

1. A function without arguments and without return a value.  

2. A function with arguments and with return value.  

3. A function with arguments and without return value.  

4. A function without arguments and with return value.  

 

1. A function without arguments and without return value:  

 

 In this function neither the data is passed through the calling function not the data 

sent back from the called function.  



 There is no data transfer between calling & the called function. The function is only 

executed & nothing is return (or) obtain.  

 These functions are independent. They read data values& print results in the same 

block.  

 Such functions may be useful to print same messages, draw a line or split the lines 

etc.  

Syntax:- 

 

Calling function Analysis Called function 

Void fname();   No arguments are passed void fname() 

statements; 
 { 

{  Statements; 

fname();  } 

statements(); Novaluesare passed  

}   

 

Example:-  

 

#include<stdio.h> 

 void main( )  

{  

void msg( ); /* calling function*/  

msg();  

}  

void msg( ) /* called function */  

{  

Printf(“welcome”);  

}  

 

Output: welcome 

 

2. function with arguments and with return value:  

 

 In such functions the copy of actual arguments is passed to formal arguments.  

 The return value is sent back to the called function.  

 In such functions the data is transferred between calling and the called function i.e., 

communication between is made.  

 

Syntax:- 



 

Calling function Analysis Calledfunction 

Void main( ) 

{ 

int fname(actual arguments 

list);  

f name(actual arguments 

list); 

} 

Arguments are passed. 

 

 

 

  

Values are sent back 

 

 

int fname(formal arguments 

list) 

{ 

Statements; 

return value; 

} 

 

Example:- 

/*addition of two numbers*/ 

 

 #include<stdio.h> 

#include<conio.h> 

void main( ) 

{ 

int add(int,int); 

 int a,b,c; 

clrscr( ); 

printf(“Enter two values”); 

scanf(“%d%d”, &a,&b);  

c=add(a,b);  

printf(“sum=%d”,c);  

getch( ); 

} 

int add(int x,int y) 

{ 

int z; 

 z=x+y;  

return z; 



} 

Output: 

Enter two values : 1 3 

Sum = 4 

 

Function with arguments and without return value: 

 

 In such functions the arguments are passed through the calling function. 

 The calling function operates the values but no result is sent back. 

 Such functions are dependent on the calling function there is no gain to the main( ) 

function. 

 

Syntax:- 

 

Example:- 

/*write a program to given number is even or odd*/  

#include<stdio.h> 

#include<conio.h> 

void main() 

{ 

void evenodd(int); 

 int a; 

clrscr( ); 

printf(“Enter one value:”); 

scanf(“%d”,&a);   

evenodd(a); 

 getch(); 

Calling function Analysis Called function 

void main() 

{ 

Void fname(actual arg datatype 

list1); 

 statements; 

fname(actual arg 

list1); 

 statements; 

} 

Arguments are passed 

 

 

 

 

 

No values are sent 

back 

Void fname(formal 
arglist) 

{ 

Statements; 

} 



} 

Void evenodd(intn) 

{  

if(n%2==0) 

printf(“Given number is even:”);  

else 

printf(“Given number is odd”); 

} 

 

Output: 

Enter one value:-4  

Given number is even 

 

Function without arguments and with return value: 

 

 In such type of function no arguments are passed through the main function but the 

called function returns the value 

 The called function is independent. It reads the value input from the keyboard or 

generates from the initialization and returns the value 

 Here both the calling & called function are communicated with each other. 

 

Syntax:- 

 

Example program: 

/*Sum of three numbers*/ 

 #include<stdio.h.> 

#include<conio.h.> 

Calling function Analysis Called function 

 No arguments are passed int fname() 

Void main( )  { 

{  Statements; 

int fname();  return value; 

statements;  } 

fname;   

statements;   

} Values are sent back  



void main( ) 

{ 

int sum();  

int s;  

clrscr( ); 

s=sum( ); 

printf(“Sum=:%d”,s); 

} 

sum( ) 

{ 

intx,y,z; 

printf(“Enter three values :”);  

scanf(“%d%d%d”,&x,&y,&z); 

 return(x+y+z); 

} 

Output: 

Enter three values : 123  

Sum=6 

 

Nested Function:  A nested function is a function defined inside the definition of 

another function. In the C programming language, nesting occurs when one or more 

functions are used within another function. In the C programming language, we cannot 

define a function within another function (nested function is not supported by C language). 

Example : 

#include<stdio.h> 

 int my_fun( )  

{ 

        printf("check_fun function"); 

        printf("\n"); 

 } 

int main( )  

{ 

        my_fun( );  

        printf("Main Function\n");  

        printf("Done");  

} 

Output :   check_fun function 

Main Function 

Done 



Return Statement  
 

                           return statement ends the execution of a function and returns the control 

to the function from where it was called. The return statement may or may not return a 

value depending upon the return type of the function. For example, int returns an integer 

value, void returns nothing, etc. 

we can only return a single value from the function using the return statement and we have 

to declare the data_type of the return value in the function definition/declaration. 

Syntax: 

return return_value; 

There are various ways to use return statements. A few are mentioned below: 

1. Methods not returning a value 

              one cannot skip the return statement when the return type of the function is non-

void type. The return statement can be skipped only for void types. 

a) Not using a return statement in void return type function:  

             While using the void function, it is not necessary to use return as the void itself 

means nothing (an empty value). 

Syntax: 

void  func() 

{ 

   ---- 

   ---- 

   ---- 

} 

 

Example:  

 

#include <stdio.h>  

void Print( )  

{  

    printf("Welcome to C language");  

}  

int main()  

{  



    Print( );  

    return 0;  

}  

 

Output: Welcome to C language 

 

b) Using the return statement in the void return type function: 

 

               As void means empty, we don’t need to return anything, but we can use the 

return statement inside void functions as shown below. Although, we still cannot return 

any value. 

 

Syntax: 

void func() 

{ 

    return; 

} 

 

Example:  

#include <stdio.h>  

  void Print( )  

{  

    printf("Welcome to C language ");  

    return;  

}  

int main( )  

{  

    Print( );  

    return 0;  

}  

Output: Welcome to C language 

 

2. Methods returning a value 

For functions that define a non-void return type in the definition and declaration, the return 

statement must be immediately followed by the return value of that specified return type. 

 Syntax: 

return-type func() 

{ 

    return value; 

} 



Recursion:  

 

 ‘C’ language supports recursive features i.e., function is called repeatedly by itself. The 

recursion can be directly (or) indirectly.  

 The direct recursion function called itself. In indirect recursion function call another 

function. Then the called function calls calling function.  

 

Example:-  

 

Write A ‘C’ Program to Find Out Factorial of Given Number Using Recursion.  

 

#include<stdio.h> 

 #include<conio.h> 

 void main( )  

{ 

int fact(int);  

clrscr( );  

printf(“Enter n value”);  

scanf(“%d”, &n);  

f=fact(n);  

printf(“\n The factorial of %d is %d”, n, f);  

getch( );  

}  

int fact(int n)  

{  

int f; 

 if(n==0)  

{  

return n;  

else  

f=n*fact(n-1);  

return f; 

}  

Output:-  
Enter n value: 2  

The factorial of 5 is 120 

 

 

 



Parameters passing methods with an example programs  

 

There are two ways to pass arguments or parameters of functions  

1) Call by value  

2) Call by reference  

1) Call by value :  

               Call by value in which values of variables are passed by the calling function to 

the called function.  

Example program ;  

/* Swapping of two numbers in Call by value*/  

 

#include<stdio.h>  

#include<conio.h>  

void swap(int,int);  

void main( )  

{  

int a,b;  

clrscr( );  

printf(“Enter a,b values :”);  

scanf(“%d%d”,&a,&b);  

printf(“\n Before swapping in main a=%d \t b=%d \t”,a,b);  

swap(a,b);  

printf(“\n After swapping in main a=%d \t b=%d \t”,a,b);  

getch( );  

}  

void swap(int p,int q)  

{  

int temp;  

temp=p;  

p=q;  

q=temp;  

printf(“\n After swapping in function p=%d \t,q=%d \t”,p,q);  

}  

Output :  

Enter a,b values : 2 3  

Before swapping in main a=2 b=3  

After swapping in function p=3,q=2  

After swapping in main a=2,b=3  



2) Call by reference :  

Call by reference in which address of variable passed by the calling function to called 

function.  

Example:-  

/* Swapping of two numbers in Call by reference*/ 

 

 #include<stdio.h>  

#include<conio.h>  

void swap(int *,int*); 

 void main( )  

{  

int a,b;  

clrscr( );  

printf(“Enter a,b values :”);  

scanf(“%d%d”,&a,&b);  

printf(“\n Before swapping in main a=%d \t b=%d \t”,a,b);  

swap(&a,&b);  

printf(“\n After swapping in main a=%d \t b=%d \t”,a,b);  

getch( );  

}  

void swap(int *p,int *q)  

{  

int *temp;  

*temp=*p;  

*p=*q;  

*q=*temp;  

printf(“\n After swapping in function p=%d \t, q=%d \t”,*p,*q);  

}  

Output :  

Enter a,b values : 2 3  

Before swapping in main a=2 b=3 

 After swapping in function p=3,q=2 

 After swapping in main a=3,b=2 

 

Storage Classes 

 The storage class determine the part of memory when the variable would be 

stored. 

 Each variable has a storage class which decides scope, visibility and life time of 

that variable. 



 A variable declared inside of the main function is called “local variables”. 

 A variable declared outside of any function is called “global variable”. 

There are 4 types of storage classes in ‘c’ 

1. Automatic storage class  

2. External storage class  

3. Static storage class 

4. Register storage class 

1. Automatic storage class: Automatic variables are defined inside a function. A variable 

declared inside the function without use storage class, name by default is an automatic 

variable. Automatic variables is also called as local variable. It is declared to use “auto 

“keyword. 

Syntax:  

void main( ) 

{ 

auto int num; 

} 

2. External storage class: The variable are declared outside of the function the external 

variable is also called as “global variables” this variables are used any function in the 

program. In case external and auto variables are declared with the same name in the 

program. The first priority is given to the auto variables. It is declared to use “extern” 

keyword. 

Syntax:  

void main( ) 

{ 

extern int a=7; 

} 

3. Static storage class: The static variable may be any internal or external type. It is 

depending upon where it is depending upon where it is declared. If it is declared outside of 

the function. It will be static variable (or) global variable. In case it will be declared inside 

of the function. It will be auto variable or local variable. Optional (when variable is 

declared as static its garbage value is removed and initialize to null value). It is declared to 

use “static” keyword. 

Syntax: 

void main( ) 

{ 

int x; 



static int y; 

printf(“x=%d and y=%d”,x,y); 

} 

Output: 

X=1239 y=0 

↓ 

Garbagevalue 
and ↓ 

nullvalue 

 

4. Register storage class: A variable is declared to use “register” keyword is called 

register storage class variable. When a variable is declared using register keyword. Then 

the value of that variable is directly stored the C.P.U register. 

Syntax:  

void main( ) 

{ 

register int; 

 clrscr( );  

for(i=0;i<10;i++)  

printf(“%d”, i);  

getch( ); 

} 

 

 
 

 

Pointers: A pointer is a variable, which contains the address of another variable. A 

pointer provides an indirect way of accessing the value of a data item. 

 

Declaring a pointer variable: A pointer is a variable should be declared before they are 

used.  



               In pointer declaration, we only declare the pointer but do not initialize it. To 

declare a pointer, we use the ( * ) dereference operator before its name. 

The general syntax used for the declaration of pointer is as. 

Syntax: Data-type *pointer-variable; 

Example: int *ptr; 

                  Where data type may be integer (int), real(float),character(char) or double. 

Also here (asteric sign) means it is pointer operator and pointer variable is any variable 

linked with’*’ sign. 

 

Pointer Initialization: Pointer initialization is the process where we assign some initial 

value to the pointer variable. We generally use the ( & ) address of operator to get the 

memory address of a variable and then store it in the pointer variable. 

 

Example: 

int var = 10; 

int * ptr; 

ptr = &var; 

 

Advantages and Disadvantages of Pointers: 

 

Advantages: 

1. Pointers increase the execution speed of the C-Program and are more efficient. 

2. Pointer accesses the memory elements very easily. 

3. Pointer reduces the length and complexity of the program. 

4. By using pointer, we can declare lesser number of variables in memory. 

5. Pointers access the memory elements very easily. 

6. We can pass arguments to functions by reference. 

Disadvantages: 

1. Pointers are slower than normal variables. 

2. If used incorrectly pointer leads to bugs (errors). 

3. An erroneous input leads to erroneous output. 

 

Pointer Arithmetic 

                    The Pointer Arithmetic refers to the legal or valid arithmetic operations that 

can be performed on a pointer. It is slightly different from the ones that we generally use 



for mathematical calculations as only a limited set of operations can be performed on 

pointers. These operations include: 

 Increment in a Pointer 

 Decrement in a Pointer 

 Addition of integer to a pointer 

 Subtraction of integer to a pointer 

 Subtracting two pointers of the same type 

 Comparison of pointers of the same type. 

 Assignment of pointers of the same type. 

 

Pointers and Arrays: pointers and arrays are closely related. An array name acts like a 

pointer constant. The value of this pointer constant is the address of the first element. 

Difference between ARRAY and POINTERS: 

 

Function pointers: Every function has an address function pointers are pointer 

variables that point to the address of a point function pointers can be declare assign values 

and used to access the functions. 

                    In order to declare a pointer to a function the name of function must be 

enclosed between parenthesis and an asteric (*) symbol is inserted before the name. 

Syntax:- the syntax of declaring a function pointer is 

retune type(*function pointer name)(arg list); 

Ex:-int (*func)(int a,float b); 

ARRAYS POINTERS 

1. An array is a collection of similar 
datatypes. 

2. Syntax: Datatype arrayname[size]; 

3. Example:-int a[10]; 

4. Array can be initialized at definition. 

5. They are static in nature. Once 

memory is allocated, it can be resized. 

6. The assemble code of array is different 

than pointer. 

1. A pointer is a variable which contains the 

address of another variable. 

2. Syntax: Datatype *pointer variable; 

3. Example: int*x; 

4. Pointer can be initialized at definition. 

5. Pointer is dynamic in nature the memory 

allocation can be resized. 

6. The assemble code of pointer is different 

than array 



UNIT-V 

Dynamic Memory Manegement 

 

 The process of allocating memory at runtime is known as dynamic memory 

allocation. 

 With the static memory allocation some amount of memory is unused. This unused 

memory is actually empty. But it filled with garbage values 

 To avoid this problem DMA technique was introduced 

 DMA allows allocating memory at run time. Hence there will be no wastage of 

memory 

 We can achieve DMA with following functions and which are defined as<alloch.h> 

or <stdio.h>header files 

 

1. malloc( ) 

2. calloc( ) 

3. Realloc( ) 

4. free( ) 

 

1.malloc( ): 

 Malloc allocates requested size of bytes and return void pointer to the first byte of the 

allocated space. 

 Malloc( ) allocates single block of requested memory. 

 Syntax:- declare a pointer 

 Pointer name=(cast type*)malloc(byte size); 

 

2. calloc( ): 

 Calloc ( ) allocates multiple blocks of requested memory. Each of the same size and 

returns starting address of the memory to the pointer variable. This is widely used in 

array. 

 Syntax:-declare a pointer 

 Ptr=(int*)calloc(n,2); 

 

3. realloc( ): 

 This Realloc( ) is used to make changes in the memory location(i.e.)increase or 

decrease is already allocated by malloc( )or calloc( ). 

 This realloc reallocates the memory. 

 Syntax:-declare a pointer 

 Pointer variable=(cast type*)realloc(pointer name, new size); 



4. free(): 

 It is essential to clean up memory at the end of the program. 

 In the memory location filled with the garbage values so it is very much required to 

clean up. 

 Syntax:-void tree(void*back); 

 

STRUCTURE:  

Definition: A Structure is a collection of one or more variables of different data types 

grouped together under a single name.  

                   A Structure is similar to a record it stores related information about variable. 

Structure is a basically user defined data type that can store related information.  

                   The major difference between a structure and array is that an array contains 

related information of some data type, but structure is a collection of variables with 

different data types. 

Syntax:  

struct  structure_name  

{  

data type var-name1;  

data type var-name2;  

};  

 

For example: To declare a structure for a student with related information roll no, name, 

fee section --,is declared as exactly in the example.  

Ex:- struct student  

{  

int  rollno;  

char name[20]; 

 float fees;  

}; 

Eg:- struct student  

{  

int  rollno;  

char name[20];  

char course[20]; 

 float fees;  



};  

struct student stud1={01,”ravi”,”bsc”,4500}; 

 

Accessing the members of a structure: Each  member of a structure can be used just like 

a normal variable. A structure member variable is generally accessed to using a “.” dot 

operator. 

Syntax:- struct-var.member-name 

the dot(.)operator is used to select a particular member of the structure. 

Eg:- std1.rno=01; 

std1.name=”rahul”; 

std1.course=”bsc”; 

std1.fees=4500; 

 

Nested structure: A structure can be placed with in another structure. A structure that 

contains another structure as its member is called nested structure 

The easier and clear way is to declare a nested structure separately and then group them in 

a high level 

structure (from lower level to higher level) the nesting must be done from inside out. 

 

Eg:-Write a c program to read and display student information using structure with 

in a structure 

 

#include<stdio.h> 

#include<conio.h> 

int main( ) 

{ 

struct dob 

{ 

int day; 

int month; 

int year; 

}; 

struct student 

{ 

int roll-no; 

char name[30]; 



float fees; 

struct dob date; 

}; 

struct student std1; 

clrscr( ); 

printf(“\n enter roll-no:”); 

scanf(“%d”,&std1.roll-no);  

printf(“\n enter name:”); 

scanf(“%d”,&std1.name); 

printf(“\n enter fees:”); 

scanf(“%f”,&std1.fees); 

printf(“\n enter date of birth:”); 

scanf(“%d%d%d”,&std1.date.day,&std1.date.month,&stud1.date.year); 

printf(“\n*********student details*********”); 

printf(“\n rollno=%d”,std1.rollno); 

printf(“\n name=%s”,std1.name); 

printf(“\n fees=%f,std1.fees); 

printf(“\n dob=%d-%d-%d”, std1.date.day,std1.date.month,stud1.date.year); 

getch(); 

return 0; 

} 

Output: 

enter roll-no:2 

enter name:”Victor” 

[67] 

enter fees:5000 

enter dob:1-12-1998 

******student details********* 

roll-no=2 

name=Victor 

fees=5000 

dob=1-12-1998 

 



UNIONS 

                       

                                A union is a special data type available in C that allows to store 

different data types in the same memory location. You can define a union with many 

members, but only one member can contain a value at any given time. Unions provide an 

efficient way of using the same memory location for multiple purpose. 

 

Declaring a union: The syntax for declaring a union is same as that of declaring a 

structure using the keyboard 

struct and the union is used union keyword 

Syntax:  

union union-name 

{ 

data type var-name; 

data type var-name; 

}; 

 

Ex:-write a c program to read and display student information using unions 

#include<stdio.h> 

#include<conio.h> 

int main() 

{ 

union student 

{ 

int roll-no; 

char name[30]; 

float fees; 

char dob[30]; 

}; 

union student std1; 

clrscr( ); 

printf(“\n enter roll-no:”); 

scanf(“%d”,&std1.roll-no); 

printf (“\n enter name:”); 

scanf (“%d”,&std1.name); 

printf (“\n enter fees:”); 

scanf (“%f”,&std1.fees); 

printf (“\n enter date of birth :”); 



scanf (“%d”,&std1.dob); 

printf(“\n*********student details*********”); 

printf(“\n rollno=%d”,std1.rollno); 

printf(“\n name=%s”,std1.name); 

printf(“\n fees=%f,std1.fees); 

printf(“\n dob=%d,std1.dob); 

getch(); 

return 0; 

} 

Output: 

enter roll-no:1 

enter name: raju 

enter fees:4500 

enter dob: 17-11-1998 

******student details********* 

roll-no=1 

name=raju 

fees=4500 

dob=17-11-1998 

 

Difference between STRUCTURE and UNION. 

 

 

 

STRUCTURE UNION 

1. Every member has its own memory space 

2. Keyword struct is used 

3. All members maybe initialized 

4. Different Interpretations of the same 

memory location are not possible. 

5. Consume memory space compare to union 

6. A structure allocates the total size of 

all elements in it 

1. All member use the same memory space 

2. Keyword union is used. 

3. Only its first member location is possible. 

4. Different Interpretations of the same 

memory Locations are possible. 

5. Conservation of memory is possible 

6. A union only allocate as much memory as its 

largest element requires 


	Advantages of Interpreter
	Disadvantages of Interpreter
	1. Local Variables
	Some Format Strings are:
	The Control Strings Uses Some printf()
	Format Strings Some Format Strings are:


	Return Statement

