
[1]

 Problem Solving in C
 Study Material

 COMPUTER SCIENCE DEPARTMENT

 D.N.R COLLEGE (A)

 BHIMAVARAM

[2]

UNIT-I

GENERAL FUNDAMENTALS

Introduction to Computer: Computer is an electronic device which can process data transformed into

information. That is useful to people.

Block Diagram of a Computer: The computer has mainly three parts.

1. Input Unit

2. C.P.U (Central Processing Unit)

3. Output Unit

1. Input Unit : The standard input device is keyboard some of the input devices are mouse, scanner,

touch screen, OMR(Optical Mark Recognition), OBR(Optical Barcode Recognition).

2. Central Processing Unit: It has three types

I. Memory Unit

II. Arithmetic and Logical Unit(A. L. U)

III. Control Unit

I. Memory Unit: It is known has internal memory or primary memory

It has two types

RAM(Random Access Memory)

ROM(Read Only Memory)

RAM:- It stores programs and instructions and data temporarily. Until the computer switch is turned off.

Ram is volatile memory.

ROM:- Rom is an non-volatile memory. The data that is stored in Rom is permanent.

II. Arithmetic and Logical Unit (A. L. U): It performs the actual arithmetic and logical unit processing.

The result can be stored in the memory or it can be retained in arithmetic logical unit for further calculations.

III. Control Unit: It controls all other units in the system its main functions are

 To control transfer of information between various units in the system.

 To initiate appropriate functions by arithmetic logical unit.

3.Output Unit: It communicates the results of processing to the users in various forms. The standard output

unit is monitor, V. D. U (Visual Display Unit).

[3]

Characteristics of a Computer: A computer is equipped with number of Characteristics that helps it to

handle the different problems more efficiently

 Accuracy

 Speed

 Large Storage Capacity

 Versatility(Multi-Tasking)

 Reliability

 Diligence

 Automatic

 Source of Entertainment

Accuracy: The Computer system always performs accurate result with valid data and instructions.

Speed: A computer performs operation with very high speed millions of instructions in fraction of seconds

Large Storage Capacity: A computer has storage capacity it can store large volume of data. We can store

any kind of data in computer storage system. This data can Text, images, sounds, videos etc.

Versatility: A computer is a versatile machine. It can perform a number of jobs depending upon the

instructions.

 Like a computer can be used to write a letter to a friend in a word processor and at the same

time listen to various songs through a media player.

 This property of computer is called versatility.

Reliability: Computer storage on data is called much more reliable that the manual storage we can store the

data in computer storage for a long period of time, accept until and the any kind of system failure occurs.

Diligence: Unlike human beings the computer can work continuously without getting tired.

Automatic: A machine that works itself without any human involvement is said to be an automatic machine.

Source of Entertainment: Today computer has become a great source of entertainment .We can play video

games, enjoy music and watching movies or various satellite channels through computer.

Limitations of Computers:-

 Computer cannot correct the wrong instructions.

 The computer cannot think on its own.

 The computer does not learn by experience (or) mistakes.

 It has no limits.

 The efficiency of computer does not decrease (or) increase with age.

 It has no feelings and emotions.

[4]

Types of Software’s:

1. System Software

2. Application Software

3. Commercial Software

4. Open Source Software

5. Public Domain Software

6. Freeware Software

1. System Software: This is a collection of programs to control and operate the operations of computer

hardware. This software’s are written in low level language. System software interface between user and

system hardware.

E g: - Opening System (OS), Compilers.

 Features:-

1. Close to system

2. Difficult to design and to understand

3. Fast in speed.

4. Written in low level language.

5. Less interactive.

2. Application Software: Application software protects are designed to satisfy a particular need of particular

environment. Application software is to perform various applications on the computer app.

Features:-

1. Close to user

2. Slow in speed

3. Easy to understand

4. Written in high level language

5. Easy to design

6. More interactive

3. Commercial Software: Commercial software is any software or program that is designed and developed

for licensing or sale to end users.

 Commercial software is easy to use and easier information into existing system. These are mainly

used in business because update services are available.

E.g.:- ATM, Customer services.

Features:-

1. Easy to use and easy to implement.

4. Open Source Software: Open source software is computer software. The source code is available with a

license. The copy right holder provides the rights to study change and distribute the software to any one for

any purpose

E.g.:- Firefox. Open office.

5. Domain Software: Public domain software that has been placed in public domain. There is ownership

such as copy right patent.

E.g.:-Flash, Video game player.

6. Freeware Software: Freeware software is domain downloadable and free of charge. It is a free for

personal use. It is freeware does not contain any license.

E.g.:-Adobe reader, Skype.

[5]

Types of Computers: The computer can classified into four types

1. Main Frame Computers

2. Mini Computers

3. Super Computers

4. Micro Computers

1. Main Frame Computers: The main frame computers are used in large organizations were many peoples

are frequently used same data. Main frame computers are large storage capacity and high processing speed

are known as main frame computers.

It is very expensive. It occupies large room and need A.C.

E.g.: IBM z Series, System z9 and System z10 servers.

2. Mini Computers: Mini computers first released in 1960.mini computers are also known as mid-range

computers because it is small size. And compare to pc it is very expensive. it is quality used in business

education, hospitals etc.

It is a multi-user system; it supports hundreds of users at a time. Mini computers storage capacity is

also high.

E.g.: Personal Laptop, PC etc.

3. Super Computers: Super computers are fastest, most powerful and more expensive computers. It is used

to process large amount of data and to solve complex scientific problems.

It can support thousands of users at the same time. Super computers are mainly used for weather

forecasting, online banking and research centers.

They have great speed and large storage capacity. It is filled up in entire room because these computers

are large size

4. Micro Computers: Micro computers are small size and it’s based on microprocessor technology. It is

specially designed for individual users. So it is known as personal computers. It includes a microprocessor,

memory, and minimal I/O circuitry mounted on a single printed circuit board. They actually formed the

foundation for present day microcomputers and smart gadgets that we use in day to day life.

E.g.: Tablets, Smart watches.

Generations of Computer:-

Generations in computer task are a step in technology. It provides a frame work. The growth of the computer

industry.

 First Generation(1942-1955)

 Second Generation(1955-1964)

 Third Generation(1964-1975)

 Fourth Generation(1975-1989)

 Fifth Generation(1989-Present)

First Generation:-The first generation computers are made of “vacuum tubes” and hence the first

generation computers was extremely large in size and required more space. To enter data into computers

punched cards were used. Punched card was sheet of thick paper, in which holes were punched according to

a coding scheme.

[6]

Characteristics of First Generation Computers:-

1. They occupy very large space.

2. They processing speed is very slow.

3. These computers used only machine language.

4. Restricted computing capacity.

Second Generation:-With invention of “junction transistors” the vacuum tubes were replaced by transistors.

Transistors were more tubes reliable, small size and require low power when compared with the vacuum

tubes.

Characteristics of Second Generation Computers:-

1. Use of high level programming like Cobol, Fortran and Algal(Algorithmic language).

2. Use of transistors instead of vacuum tubes.

3. Increase in magnetic storage capacity.

4. Input or output operations made fast.

Third Generation:- In third generation computer were made up of I.C’S (Integrated Circuits).In an I.C.

hundreds of transistors were in corporate on a single silicon chip.

Characteristics of Third Generation Computers:-

1. High storage capacity which extended up to 3MB.

2. Use of I.C’S and hence small in size.

3. Simple input or output operations.

4. Ability to handle with scientific and commercial applications.

Fourth Generation:- Fourth generation computers are used in microprocessors as thousands of integrated

circuits are placed on a single silicon chips. It is based on LSIC and VLSIC technologies

 LSIC (Large Scale Integrated Circuits),

 VLSIC (Very Large Scale Integrated Circuits).

These occupy less space and required no air conditioning. these are user friendly and very easy to operator

Characteristics of Fourth Generation Computers:-

1. These computers are used the large scale and very large scale integrated circuit.

2. These have increased high storage capacity and high speed.

3. Mini computers, micro computers are extremely used microprocessors.

4. These can be used for different applications.

Fifth Generation:- Super computers are fifth generation computers. It is also called expert system it works

with artificial intelligent

They are used to develop powerful machines and designing the computers. Fifth generation computers are

think like human being. It includes Robotics, networking and playing games.

[7]

Uses of Computers (or) Applications of Computers: Computers are used in various technical fields.

1. Education

2. Business

3. Banking

4. Engineering

5. Insurance

6. Hospitals

7. Government Organizations

8. Advertisements

9. Communication Technology

10. Security

Education:- A computer provides list of facilities for the education.

E.g.: e-tutorials-learning, Video lessons.

Business:-Computers are used in different business organizations.

E.g.: Maintenance of employed details, sales analysis, preparing budgets.

Banking:- Now a day’s banking is fully depend on computers.

E.g.: Online transactions, Account details, Mobile banking, internet.

Engineering:-Computers can also use in engineering applications ,following software’s are used in

engineering.

E.g.: CAD(Computer Aided Design), CAL (Computer Aided Learning).

Insurance:- Insurance companies are used to store information of all clients(or)customers.

E.g.: Date of joining, Policies, Bonuses.

Hospitals:- Computer are used to store the information of all clients (or) customers and medicines it is also

performing surgeries of operations

E.g.: CT-Scan, ECG (Electrocardiography).

Government Organizations:-Computers play an important role in government organizations.

E.g.: Income tax department, Computerization of ration cards.

Advertisements:- Computers are used in advertisements purpose only.

Communication Technology:-A communication means message can be transform one to another

E.g.: e-mail, Facebook, What’s app,,etc.

Security:-Computers are mainly used in security purpose.

E.g.: Army, Navy, Air force.

[8]

Introduction to Algorithms and Programming Language

Algorithm:-

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a certain

order to get the desired output.

(OR)

Algorithm is a step by step process to solve a particular problem.

Properties of Algorithm:-

The properties of algorithm as follows

1. The algorithm have steps are precisely stated (defined).

2. The algorithm must have unambiguous instructions(clear instructions).

3. The algorithm should not have any uncertainty about execution of next instruction.

4. It must be finite and cannot been open ended.

5. The algorithms must be terminating after finite number of steps.

6. The algorithm should be universal leads to a unique solution of the problem.

** Write An Algorithm for Addition of Two Numbers.

Step-1: Start

Step-2: Read a,b values.

Step-3: Add a,b and store result in sum(sum=a+b).

Step-4: Display sum.

Step-5: Stop

** Find The Biggest of Three Numbers.

Step-1: Start

Step-2: Read the three numbers to be compared, as A, B and C.

Step-3: Check if A is greater than B.

Step-4: If true, then check if A is greater than C.

Step-5: If true, print 'A' as the biggest number.

Step-6: If false, print 'C' as the biggest number.

Step-7: If false, then check if B is greater than C.

Step-8: If true, print 'B' as the biggest number.

Step-9: If false, print 'C' as the biggest number.

Step-10: End

[9]

Benefits of Algorithm:-

The major benefits of implementing algorithm.

1. It makes the algorithm may be understandable and ambiguous.

2. It makes the program efficient, effective and easy

3. It references the program is easy step by step direction

4. It makes easy to modify and update the existing program.

5. It promotes effective testing of program at developing stage

6. It helps to determine the designed output by just giving input

7. It helps to solve complex programming.

Flow chart:-

“A flowchart is a graphical representation of algorithm”.

The program in which different types of instructions are drawn in the form of different shapes of boxes

and the logical flow is indicated by interconnecting arrows. The main objective of creating flowchart is to

help the programmer in understanding the logic of programmer and to trap any kind of logical errors present

in algorithm.

Flow Chart Symbols:-

Flow chart use different symbols to represent different operations to the program. A flow chart is

drawn according to define rules using standard flowchart symbols prescribed by “ANSI”-(American

National Standard Institute). The standard symbols that are frequently used in flow chart are

[10]

Flow Chart Symbols:-

Flow lines are represented by arrow lines. That are used to connect symbols these lines indicate the

sequence of steps and the flow of operations.

Terminator:-Terminator is used to represent by rectangle with rounded ends. These symbol is used to

indicate the beginning (start), the termination (end/stop) in the program logic.

Input (or) Output:-Input/output is represented by the parallelogram these symbol is represents an input

taken from the user (or) the output that is displayed to user.

Processing:-The processing is represented by rectangle this symbol is used for representing arithmetic and

data movement instructions. It denotes the logical process of moving data from one memory location to

another location.

Decision:-This symbol is represented by diamond. It denotes a decision to be made. This symbol has one

entry and exist paths. The path chosen depends on whether the answer to a question is yes (or) no.

Connector:-This symbol is represented by circle. It is used to join different flow lines.

Basic Structure of A Flow Chart:-

[11]

Guidelines for Creating A Flow Chart:-

The following guide line should be used for creating a flow chart

 The flow chart should be clear, neat and easy to flow.

 The flow chart should use common words and statements.

 Each flow chart must had a logical start and logical stop.

 Intersection of flow lines should be avoided.

 All necessary requirements should be listed in logical order.

 Only one flow line should be come out from a process symbol.

 Only one flow line should enter a decision symbol.

 Statements should be return briefly within standard symbols

 Connector symbol should be used in case of complex flow charts, they reduce number of flow lines.

Advantages of Flow Charts:-

The following are the advantages of flow chart

Makes Logic Clear: It is easy follow a graphical representation of the task. The symbols are connected in

such a way. That they make the system visible.

Communication: Since the flow chart is a graphical representation of a problem solving logic. It is

enhanced meaning of communicating the logic of a system.

Effective Analysis: A flow chart helps the problem analysis in an effective way.

Proper Testing and Debugging: Flow chart helps to identify and correct the errors in the program. It also

helps in testing process.

Appropriate Document: Flow chart acts as a high quality program documentation tool.

Disadvantages of Flowchart:-

The following are the disadvantages of a flow chart

Complex: For very large programming consisting of thousands of statements. The flow chart consists of

many papers (or) pages making them different to flow.

Costly: Flow charts are feasible for sort and straight forward problem solving logic flow chart because a

costly flow chart, in huge application.

Difficult to Modify: Any modification to flow chart needs to redraw the flowchart. Considering the entire

logic again due to its symbolic nature redrawing complex flow chart is a difficult task.

No Update: Programs are generally updated regularly but the corresponding flow charts are not updated

regularly.

[12]

Examples:-

Draw a flow chart to find sum of two numbers

2. Draw a flow chart to find the largest of three numbers

[13]

Generations of Programming Language:-

Program: Program is a set of instructions to solve a particular problem.

Programming:-

 Process of creating programs.

 A programming language is a computer language used to write instructions for computer in the well-

defined format.

 The set of instructions is called is called a program and the process of creating programs is called

programming.

Types of Programming Language: Programming languages are classified into major languages.

1. Machine Language (Or) Binary Language(First Generation Language)

2. Assembly Language(Second Generation Language)

3. High Level Language(Third Generation Language)

4. Very High Level Language(Fourth Generation Language)

5. Fifth Generation Language

1. MachineLanguage (or) Binary Language:-

 Machine level language is the lowest level programming understand by computers

 To perform various input and output operations

 The set of instructions which are directly understood by the C.P.U of computer is called machine

language.

 The programming language which contains machine code is called machine language.

 All the information in the computer is handling using integrated circuits, semiconductors.

 The machine language uses two binary digits 0 and 1 to handle input and outputs. So it is also known

as binary language.

 Machine language different from machine to machine because the internal structure of every

computer different from one computer to another.

 Machine language can be easily used by the computer, but it is difficult to read and understand by the

user.

 The machine language program runs fastly because no translations are require for the C.P.U.

2. AssemblyLanguage(Second Generation Language):-

 Assembly language was the next high level programming language which is categorized as the

second generation language

 Assembly language is easy to understand compare to machine language. It uses English words it

performs specific operations for example “add” is used for addition, “sub” is used for subtraction etc.

 Assembly language is machine depended language

 Assembler is used to translate assembly language instructions in to machine language and reverse

also

 Assembly language statements are return in one per line where each statements contains operations

 Programming in assembly language requires extensive knowledge of computer design.

3. HighLevel Language (or) Third Generation Language:-

 High level programming languages includes: FORTRAN, COBOL, PASCAL, BASIC, C, C++,

JAVA which enables the programs to develop the software applications.

 The high level language use syntax which is very easy to understand.

 Programs written in high level language (or) shorter in length.

[14]

 Translates like compilers & interpreters are used to translate programs written in high level

languages into machine languages and reverse also

 High level languages are machine independent

 High level languages are easy to learn because they use common English words as, they (or) their

keyword

 It is easy to modify and maintain the programs certain in high level language.

4. Very High Level Language:-

 Fourth generation languages are the easiest programming languages available today. They are very

easy to learn because these syntax and grammar is very easy to learn.

 Programming in this languages does not require any programming experience in other language.

 Fourth generation languages are machine independent.

 Fourth generation languages are also known as very high level languages.

 Most fourth generation languages are used to occur data bases

 Sql(structured query language) is the best example fourth generation language. It is used to create

and modify information in dbms(database management system).

5. Fifth Generation Language:-

 Fifth generation programming language design a make a computer solve a given problem without

the programmer(user).

 The fifth generation programming language is also known as natural language.

 Fifth generation programming is based on solving problems using constraints given to the program.

 Prolog &mercury are the best known fifth generation language.

Pseudo Code:-

 Pseudo code is a form of structured English that describes algorithms.

 An ideal pseudo code must be complete, describing the entire logic of the algorithm. So, that it can

be translated straight away in to a programming language.

 It is basically meant for human reading rather than machine reading.

 Pseudo codes are an outline of a program that can be easily converted into programming statements.

 Purpose of pseudo code is to enhance human understanding of the solution. They are commonly used

in textbooks & scientific publications for documenting algorithms

 Flow charts can be considered as graphical alternatives to pseudo codes.

Parts of Pseudo Code:-

Consider the following the parts of pseudo code

 if condition then

 Sequence 1

 else

 Sequence 2

 end if

Here, the else keywords & sequence 2 are optional if, the condition is true sequence 1 is performed

otherwise sequence 2 is performed.

[15]

Example:-if age>=18 then

display eligible to vote

else

display not eligible

end if

Structured Programming Language:-

1. Structured programming also referred as modular programming

2. It is basically a subset of procedural programming which enforces a logical structure on the program

to make it. More efficient an easier to understand & modify.

3. Structured programming is a top down approach in which the overall program structure is breakdown

into separate modules.

4. This allows code to be loaded in to memory more efficiently and also be refused in other programs.

5. Structured programming is based on modulations.

6. A module procedural language supports the concepts of structured programming.

7. In structured programming the program flow follows a simple sequence & usually avoids the use of

goto statements.

8. Structured programming also supports selection of repetitions.

Advantages of Structured Programming Language:-

1. The goal of structured programs is to write correct programs that are easy to understand & modify.

2. Structured programs takes less time to write then other programs

3. A structured program is easy to debug because each procedure in its specialized to perform just one

task.

4. Individual procedures are easy to change as well as to understand.

Example of Structured Programming:-

1. To create a program to manage the names & addresses of a list of students for these you would need to

breakdown the program in the following modules.

 Enter new name and address

 Modify existing entries

 Sort entries

 Print the list

2. Now, each of the proceeding modules can be fatherly breakdown into small modules. For example, the

first module can be

 Prompt the user to enter new data

 Read the existing list from the disk

 Add the name & address to the existing list

 Save the updated list to the disk.

3. Simply modify existing entries can be further divided into modules such as

 Read the existing list from the disk

 Modify one or more entries

 Save the updated list to the disk.

[16]

History of C:

UNIT-II

INTRODUCTION

‘C’ is a general purpose programming language. It is a procedure – oriented, Structured programming

language.

The structured programming language allows you divided into small modules by using functions. It is

a middle level language that means it has good high-level language programming skills and it also has low

level programming features.

Dennis Ritchie developed C language in the year 1972 at AT&T Bell laboratories in U.S.A.

The C-language was developed from the language B.C.P.L (Basic combined programming language).

The C-language is well suited for developing system software and application software

Features of C-Language: C-Language is very powerful and popular because of its features.

The Main features are:

Portability: C-Language programs are highly portable. Portability means a c-program written in one

environment can be executed in another environment. For example you write a program in DOS

environment you can run in windows environment.

Structured Programming Language: C-language is a structured programming language the structured

programming basically consists of writing a list of instructions for the computer to follow, and organizing

these instructions into groups known as functions.

Extendibility: C-language has an important facility called extendibility. It means you can write your own

file or functions and include in another programs in other words a user can write No. of functions, sub-

programs according to the requirement.

Reliability: A ‘C’ compiler gives and accurate results it has a facility of warning which guides for better and

efficient programming.

Middle Level Language: ‘C’ language is also called middle level language. Because it has both types of

features i.e. high-level languages as well as low-level languages.

Powerful : C is provides variety of data types, functions, conditional statements and looping statements.

Uses of C Language:

 ‘C’ is very simple language i.e., used by software professionals

 The uses of ‘c’ language are:-

 C-language is mainly used for system programming.

 It is widely accepted by professionals

 For portability and convenience is sometimes used as an intermediate language for implementing

other languages.

 ‘C’ language is widely used to implement user applications.

 For creating compiles of different languages. Compiler is converts into source code to machine code.

 Unix kernel is completely developed in C- language.

[17]

Structure of the ‘C’ Program.

The ‘C’ Program structure contains the following sections.

Documentation Section.

Header File Section

Definition Section

Global Declaration Section

main () Function

{

Local Declaration Part

Execution Part

}

User Defined Section

Documentation Section: In the documentation section we can give the comments. here comment statements

are non-executable statements. Comment can be divided into two types there are

1. Single line comments are represented by “//”.

2. Multi line comments are represented by “/*………….

…………...*/.

Header File Section: This section provides instructions to the compiler to link functions from the Library

each header file by default contains with the extension of ‘h’ the file should be included by using # include.

E.g.: # include <stdio.h>

The <stdio.h> is a file it is included all the definitions of input, output functions.

Definition Section: We can define a variable with its value in the definition section.

Syntax: #define variable name value;

E.g. 1. #define a 10;

2. # define name “ “;

Global Declaration Section: Some variables are used in more than one function such variables are called

global variables and that variables are declared in the global declaration section that is outside of the main ()

function.

Main()Function: Every ‘C’ program must contain main () with empty parenthesis after main is necessary.

The function main is the starting point of every ‘C’ program. The program execution starts with the opening

braces ({) and ends with the closing braces (}) between these braces the programmer should give the

program statements. The main has two parts. They are

Declaration Part: The declaration part declared the entire variables that are used in executable part the

initialization of variables are also done in this part.

Execution Part: This part has reading, writing and processing statements having input or output functions,

formulas, conditional statements, looping statement and function calling statements.

User Defined Section: In this section function definitions are defined by the user. These functions are

generally defined after the main function or before the main function. This section is optional.

[18]

E.g.:- Write the First ‘C’ Program

#include<stdio.h>

void main()

{

clrscr();

printf(“My First Program in C”);

return 0;

getch();

}

Output:- My First Program in C

#include<stdio.h>

 It is the first statement in our code. All pre-process commands starts with #symbol(hash).

 The # include statements tells the compiler to include the standard library (input/output) or header

file <stdio.h>in the program.

main() function

 The main() function after all the statements in the program have been written. The last statements in

the program have been written. The last statements in the program return will an integral value to the

operating system.

 The two {} curly braces are used to group of all the related statements of main() function.

printf(“My First Program in C”);

The printf() function is defined in stdio.h file and is used to print text on the screen. The message to be

displayed on the screen to the enclosed with in double quotes (“ “) and put inside brackets (or) parenthesis.

The backslash is an escape sequence and represents a new line character.

Example:-

Sequence Meaning

\n New Line

\t Tab Space

\b Back Space

\v Vertical Tab

// Back Slash

return 0:

This is a return command that is used to write the value “0” to the operating system give an indication.

That there are no errors during the execution of program.

Files Used in C Program:

Files used in ‘c’ program is divided into 4 types

1. Source File (.c files)

2. Header File (.h files)

3. Object File (.obj files)

4. Executive File (.exe files)

[19]

Source File: The source code file contains a source of the programs. The file extension of any c source code

that defines the main functions’ and other functions. The main function is the starting point of execution

when you successfully compile and run the program in the files of c program the source file is always file

extension is”.c”.

Header File: Header files provide instructions to the compiler to link functions from the library. Each

header file by default contains ‘.h’extension and its name can use only leters,digits,dashes and underscores

some standard header files are automatically available to ‘c’ programmers

Examples of Standard Header Files Includes :

 <string.h>: for string handling function.

 <stdio.h>: for standard input/output functions.

 <math.h>: for mathematical functions.

 <alloc.h>: for dynamic memory allocation.

 <conio.h>: for clearing the screen.

Object File:Object files are generated by the compiler as a result of processing the source code file.thy

contain binary code of the function definitions (.obj).

Binary Executable File:The binary executable file is generated by linker the linker links various object files

to produce a binary file that can be directly executed (.exe).

Compiling and Executing C-Program: C is a compiler language every c program must be run through a

‘C’ compiler that’s creates an executable file to be run by the computer.

The programming process starts with creating a source file. That consists of a program written in

‘C’ langauge.

Source File:The source file usually contains ASCII characters and can be produced with a text editor the

source file is produced by a special program called compiler.

Compiler: The compiler translates the source code into a object code the object code contains machine

instructions for the CPU.

Object file: The object file is processed with another special program called linker.

Linker: The output of the linker is an executable file.

In C language program, there are two kinds of source file, .c source file,.h source file

Every C program uses standard headers files.

[20]

Keywords: C-languages have some reserved words which cannot be used as variables the reserved words

are called keywords. There are mainly 40keywords among which32 keywords are used by many ‘C’

compilers these keywords are called standard keywords whereas the remaining keywords are called optional

keywords.

auto break Case char const continue

default do double else enum extern

float for Goto if int long

register return short signed sizeof static

struct switch typedef union unsigned void

volatile while

Optional Keywords :

ado Fortran sum huge

entry Near far pascal

Identifiers: Identifier is a name that is given to variables, functions and arrays.

 Rules for constructing Identifiers:

 Identifiers must be from the character set.

 The first character of an identifier should be an alphabet. It should not be a digit or special character.

 Identifiers should not be a keyword.

 Special characters are not accepted in the identifiers except ‘-‘ (under score)

 The length of an identifier should not be exceeding eight characters.

Character Set: Character set means that the characters and symbols that a C-Program can understand and

accept these are grouped to form the commands, expressions, words, statements and other tokens for C-

language. There are mainly four categories.

1. Letters (or) Alphabet: In the character set, character or alphabet are represented by (A-Z) or (a-z).

E.g. : A B C…. (or) a b c……

2. Digits :In the character set digit are represented by (0-9)

E.g : 0 1 2 3 4 5 6 7 8 9

3. Special Characters :There are total 30 special characters used in the C-programming. Special characters

are used for C- statements like to create an arithmetic statement.

Characters Meaning Characters Meaning Characters Meaning

, Comma { Left brace + Plus symbol

. Period } Right brace - Hypen sign

: Colon < Left angle * Asterisk sign

? Question mark > Right angle # Hash symbol

‘ Single quote = Equal to sign % Percentage sign

“ Double quote ! Exclamation mask ^ Caret symbol

(Left parenthesis | Pipe symbol & Ampersand sign

) Right parenthesis / Forward slash @ At the rate

[Left bracket \ Backward slash _ Underscore

] Right bracket ~ Tide symbol ; Semicolon

4. Empty Space Character : White spaces has blank space, new line return, horizontal tab spaces..etc.,

[21]

Basic Data Types in “C” :A Data type is a set of values along with a set of rules for allowed operations. ‘C’

supports several data types of data each of which is stored differently in the computer’s memory mainly data

types are divided into three types.

1. Primary Data Type: ‘C’ supports mainly four primary data types.

 Character Data Type

 Integer Data Type

 Float Data Type

 Double Data Type.

Character Data Type: The character data type accepts single character only. Characters are either signed

or unsigned. But mostly characters are used an unsigned type. The size of the character data type is 1 byte

in the memory. The range of unsigned character is 0to 255. The range of signed are character is –128 to

+127. char is the keyword of the character data type.

Syntax: char list of variables;

E.g. char ch1, ch2, ch3;

Integer Data Type: An integer type accepts integer values only. It does not contains any real or float

values. The range of an integer variable is -32, 768 to +327,67. int is the keyword for integer data type.

In generally 2 bytes of memory is required to store an integer value.

Syntax: int list of variables;

E. g: int a, b, c;

Float Data Type: The float data type accepts real values it can contains any floating point values. The

range of the floating variable is 3.4E – 38 to 3.4E + 38. float is the keyword for

In generally 4 bytes of memory is required to store an float value with 6 digits of precision.

Syntax: float list of variable;

Eg: float f1, f2, f3;

Double Data Type :The double data type accepts large floating value. The range of the double variable is

1.7E –308 to 1.7E + 308. Double is the key word for double data type. In generally 8 bytes of memory is

required to store double value.

Syntax: double list of variables;

E.g. double d, e, f;

[22]

Void Datatype: void is an empty data type that has no value. . The void keyword specifies that the function

does not return a value.

2. Derived Data Types: Derived data types are derived from the primary data types. The derived data types

may be used for representing a single or multiple values. These are called secondary data type. The derived

data types are arrays, pointers, functions, etc.

3. User Defined Data Types: The data types are defined by the user is called user defined data types. The

user defined data types are structures ,unions etc.

 Enumerated Data Types :It allows the user to define a variable or an identifier, which is used for

representation of existing data types. In other words, it provides us a way to define our own data

type and also can define the value for a variable or an identifier stores into the main memory.

Syntax : enum identifier { v1,v2,v3…….,vn};

Here enum is the reserve word and v1,v2,v3…,vn all are the values which is also called enumeration

constants.

Eg : enum month{jan,feb,mar,….,dec};

 Typedef :This is used to represent the existing data type .i.e. by using this the new type can be used

in place of the old type anywhere in a C program. Also we can create the typedef variables for

improving the readability of the program.

Syntax : typedef data-type identifier;

Here data-type may be int, float ,double and char. Identifier gives us the information of new

name given to the data type. Note that typedef cannot create a new type.

Eg: typedef intpay;

C – Language Data Type Table Form:

[23]

Variables :Variable is an identifier .It is used for storing value .The variable can be changed during

the execution of the program .Variable refers to an address of memory where the data is stored..’C’

supports two basic kinds of variables

 Numeric Variables.

 Character Variables.

Numeric Variables:

1. Numeric variables can be used to store either integer values (or) floating point values.

2. Numeric variables may be also associated with modifier such as short, long, signed and unsigned.

3. The difference between signed and unsigned variables is can only be positive.

Character Variable :

1. Character variables can include any letter from the alphabet or from the ASCII code.

2. Char and numbers 0 to 9that are given with in single quotes.

Declaring Variables :

1. Each variable used in the program must be declared. To declare a variable specify the data type of

The variable followed by its name type of the variable followed by its name.

2. The data type indicates the kind of data that the variable will store.

3. Variable names should always be meaningful and must reflect the purpose of they are used in the

Program

4. The n-variable declaration always ends with a semi column(;).

For Examples:

Syntax: datatype variable1,variable2,variable3……variable-n;

 int a;

 int a,b,c,d;

 int emp-num,regno;

 char grade;

 double balance-amount;

 float salary,fee;

In ‘C’ Variables are Declared at Three Basic as Follows :

1. When a variable is declared inside a function it is known as local variables.

2. When a variable is declared in the definition of function parameter then it is known as formal.

3. When the variable is declared outside of all functions it is known as global variable.

Initializing Variables:

While declaring the variables we can also initialize them with some values.

Examples: int a=10;

int temp-num=7;

char grade=’A’;

double balance-amount=100000;

float salary=5000;

[24]

Constants: The value was not changed during the execution of the program is called constants. Mainly they

are two types of constants.

They are

1. Numeric constants

2. Character constants.

1) Numeric Constants: These have numeric data with or without decimal points having positive or negative

sign. These are further sub divided into two categories. There are

 Integer Constant

 Real or Float Constant

Integer Constant: Integer constant has integer data without any decimal points are with any positive or

negative sign. These are further sub divided into three types. Those are

i. Decimal Integer Constant

ii. Octal-Integer Constant

iii. Hexa-Decimal Integer Constant

i) Decimal Integer Constant: These have no decimal points it is a combination of 0 to9 digits. These have

either positive or negative sign.

E.g.: 8, 7, 6, 5, 4…etc.,

ii) Octal - Integer Constant: These consist of combination of numbers from 0to7 with positive or negative

sign. It has leading with ‘O’ (Upper case or lower case). ‘O’ means octal

E.g.: O37, O-35.

iii) Hexa- Decimal Integer Constant: These have Hexa decimal data leading with OX or X or H (capital or

small). These have combination of 0to9 and AtoF (capital or small). These letters represents the numbers 10

to15.

E.g.:23A,OXB2.

[25]

2) Real or Float Constant: Some constants which have decimal point value with in it is having any

positive or negative sign.

Eg: 22.34, 2.4 E 38 that means 2.4 X 1038.

Real constants are further divided into two categories.

I.) With Exponent Part

Ii.) Without Exponent Part.

i.) Without Exponent Part: Without exponent ‘E’ and having a decimal part mantissa.

E.g.: 30.6, -30.6

ii.)With Exponent Part: It is also called a scientific representation. Here ‘C’ has base value of 10 It

computes the power.

E.g.: 3.5 X 105 = 3.5 e5.

3) Character Constants: Character constants have either a single character or a group of characters or a

character with back slash (\) used for special purpose. These are further divided into three types.

a. Single Character Constant.

b. String Character Constant.

c. Back Slash Character Constant.

a) Single Character Constant: These have a single character with in single quotes. So, These are called

single character constant.

E.g.: ‘a’, ’G’, ‘A’..etc.

b) String Character Constant: A string is a combination of character or group of Characters, a string

constant or a string is enclosed with in double. So it is called String constant.

E.g. : “DNRCOLLEGE”,”JOHN”,…etc.,

c) Back Slash: These are used for special purpose in ‘C’ language. These are used in output statement like

print (). Puts (), another name of Back slash character constant is escaping sequences.

The Escape Sequences are:

Constant Meaning

\b Back space

\n Newline

\t Tab space

\v Vertical tab

\f Move one page to next

\o Null character

\r returns

[26]

Operators: Operators are used for compute a formula or compare two variable values or create logical

relationship between two operands or low-level programming we can say operators are used for processing.

Operators are divided into:

1. Arithmetic Operators.

2. Relational Operators.

3. Logical Operators.

4. Assignment Operators.

5. Conditional Operators.

6. Bit Wise Operators.

7. Increment / Decrement Operators.

8. Comma Operator.

9. Equality Operators.

10. Size Of Operators.

1. Arithmetic Operators: ‘C’ provides all the basic Arithmetic operators in an Arithmetic expression like

x + y x and y are the operands. ‘+’ is the operator. ‘C’ used the precedence rules to decide which operator

is used first these are listed in the following table.

Operator Descriptions Example

+ Addition A+B

- Subtraction A-B

* Multiplication A*B

/ Division A/B

% Modulus A%B

2. Relational Operators: The comparison can be done with the help of relational operators. An expression

such as containing a relational operator is termed as a relational expression. The value of relational

expression is either 1 or 0. It is ‘1’ if the specified relation is true. And ‘0’ if the relation is false.

Operator Description Example

< Less than A<B

<= Less than or equal to A<=b

> Greater than A>B

>= Greater than or equal to A>=B

= = Equal to A==B

!= Not equal to A!=B

3. Logical Operators : A statement contains more than one relational operators they must be separated by a

logical operator an expression which combines two or more relational expressions is termed as a logical

expression compound relational expression.

Operator Description Example

&& (Logical AND)
If both conditions are true.

The result will be true. Otherwise false
(A>B)&&(A<C)

|| (Logical OR)
If at least one condition is true.

The result will be true. Otherwise false.
(A>B)||(A<C)

! (Logical NOT)
If condition is true the result will be false.

If condition is false the result will be true.
!(A>B)

[27]

4. Assignment Operators: Assignment operators are used for assign the result of an expression to a variable

the equal to sign (‘=’) is the assignment operator.

Operator Description Example

=
Assign the value to

Operate to the left
A=B

+=
Adds the operant and assigns

The result to left operant.
A+=B

-=

Subtract the right operant

From the left operant and stores

The result in the left operant.

A-+B

5. Conditional Operators: In ‘c’ Conditional operator ‘? :’ Constructs conditional expression of the form

Syntax: Exp 1 ? Exp 2 : Exp 3 ;

Example : (A>B)?(A+B):(A-B);

Where Exp1, Exp2, Exp3 are expression. The operator ‘?:’ works as follows Exp1 is evaluated first. If it is

true then the expression Exp2 is evaluated. If the Exp1, is false Exp3 is evaluated.

6. Bitwise Operators :A special type of operators known as bitwise operators for manipulation of data in Bit

level. These operators are used for testing the Bits are shifting them right or left.

Operator Description Example

& (and) Bit wise and A&B

! (or) Bit wise or A|B

^ (Exclusive or) Bit wise exclusive A^B

~ Bit wise not ~A

<< Bit wise left shift A<<1

>> Bit wise right shift A>>2

7. Increment / Decrement Operators: In some cases it is necessary to modify the value of the variable by

adding one to the variable or –1 to the variable until the loop terminates the ‘c’ provides the mechanism

increment or decrement operators to accomplish this.

[28]

Increment Operators: In ‘C’ the operator ‘+ +’ is used as Increment operator it adds 1 to the variable we

can add 1 to the variable in one of the two types.

1. Pre Incrementing

2. Post Incrementing.

1).Pre-Incrementing: This operator first increments the value of the variable and then execution

proceeding.

Syntax: ‘++’ variable name;

E.g.: ‘++’a;‘++’ a is equivalent to a=1+a;

2).Post-Incrementing : This operator continuous with the execution before adding 1 to the variable and then

increments the variable by 1

Syntax: variable name ‘++”;

Ex: a’++’;a ‘++’ is equivalent to a=a+1.

Decrement Operator: In ‘C’ the operator ‘- -‘ is used as decrement operator. It subtracts one from the

variable we can subtract one from the variable in one of two ways.

1. Pre – Decrementing

2. Post – Decrementing

1).Pre–Decrementing: This operator first decreases the value of the variable and then execution proceeds.

Syntax : ‘- -‘ variable name;

Ex : ‘- -‘ a;‘- -‘ a is equivalent to a= -1+a.

2).Post–Decrementing: This operator continuous with the execution before subtracting one from the

variable and then decrements the variable by 1.

Syntax : Variable name ‘- -‘ ;

Ex : a’- -‘; a ‘- -‘ is equivalent to a=a-1.

8. Comma Operator: The comma operator is used to separate more than one variable in variable

declaration. The comma operator is also used to separate two or more expressions.

Ex.:int a, b, c; Ex.: int x=2,y=5;

9. Equality Operators: C language supports two kinds of equality operators to compare their operands for

equality or inequality. They are ‘==’equal to x==y, ‘!=’ not equal x!=y.

10. Sizeof Operators: The size of operator is a unary operator used to calculate the size of data type this

operator can be applied to all data types this operator is used to determine the amount of memory space that

the variable/expression/data type will take

Ex: int a =10;

unsigned int result;

result = sizeof (a);

result = 2

which is the space required to store the variable ‘a’ in memory.

[29]

Input/ Output Functions: The Input/ Output functions are used for reading the data from the keyboard and

displaying the result on the screen are the two main tasks of any program to perform these tasks ‘C’ has no.

of Inputs & Output functions. When a program is needs data it takes data through the input functions and

send the result through the output function.

Input Functions: Input functions are

1. scanf() function

2. getch() function

3. getchar() function

4. getche() function

5. gets() function

1).scanf () :The scanf function is used to read the data from the keyboard. You can store the given value into

the variable through the scanf ();

Syntax:scanf (“Control string”, &v1,&v2,&v3, ---- &vn”);

Here v1, v2, ---- vn are the variables and “&” is used to store the given value into the variables. The control

string has some format strings.

Some Format Strings are :

Format String Meaning

%c To read a single character

%d To read the integer value

%ld To read the long integer value

%f To read the float value.

2).getchar ():This function is used for reading a single character from the keyboard. The getchar () can be

assigned a character into the character type variable.

Syntax:ch=getchar(); Where ‘ch’ is the variable of character type.

3).getch() :The getch() is used to get a single character from the keyboard it will not display the character

on the screen and it will store the given character on the buffer it is used at the end of the program to

terminate the output screen.

Syntax: getch ();

4).getche():The getche () is used to get a single character from the keyboard it will display the character on

the screen and the character will be stored on buffer it is used at the end of the program to terminate the

output screen.

Syntax: getche ();

5).gets ():The purpose of the gets function is to read the string it can read a string until you press enter key

from the keyboard it will mark null character (‘\0’) at the end of the string.

Syntax: gets (ch);Where ‘ch’ is the string variable.

[30]

Output Functions: Output functions are:

1. printf()

2. putchar ()

3. puts ()
1. printf () : The printf() is used to display a text message or a value stored in the variable. It requires

conversion symbol and the variable name to print the data.

Syntax: Printf (“control strings”, v1,v2, ----- vn”);

(OR)

Printf (“Message line or text line”);

Where v1,v2, ------ vn are the variable.

The Control Strings Uses Some Printf () Format Strings Some Format Strings are:

Format string Meaning

%c To print a single character

%d To print the integer value

%ld To print the long integer value

%f To print the floating value.

2. putchar (): The putchar () is a single character output function. It can display a single character on the

screen at a time.

Syntax: Putchar (ch);

Where ‘ch’ is the variable of character data type in which a single character data is stored.

3. puts () : The purpose of puts () is to print or display a string inputed by the gets ().

Syntax : puts (s);

(OR)

puts (“Text line”);

Where ‘s’ is the string variable it will display the string stored in ‘s’.

Type Conversion and Type Casting: The type conversion is done when the expression has various of

different data types the data type is promoted from lower to higher level. Type conversion is automatically

done when assign an integer value to a floating point variable consider the following code

float x;

int y=3;

x=y;

Now x=3.0 as the integer value is automatically converted into float value.

Type Casting: Type casting is also known as forced conversion it tells the compiler to represent the value of

expression in certain way. it is done when the value of higher data type is converted into the value of lower

data type. Consider the following code

float salary=10000.00,

x=y

int sal;

sal = (int)salary;

When floating point numbers are converted into integers the digits after the decimal are truncated.

[31]

Decision Control and Looping Statements: Supports two types of decision control statements that can

after the flow of sequence of instructions.

They are 1) Conditional Branching Statements.

2) Unconditional Branching Statements.

1) Conditional Branching Statements: The Conditional branching helps to jump one part of the program to

another depending on weather a particular condition is satisfy or not. the control statement includes

a) if statement

b) if- else statement

c) nested if-else statement

d) if-else-if statement

e) switch case statement

a) if statement: Only one statement occurs in “if”. It is having only one block.

Syntax:- if (condition)

{

True Statement

}

Statement x;

First the condition will be checked. If the condition is true than the true statement block will be

executed and after execution of this block, statement x will be executed. If the condition is false then only

statement X will be executed.

[32]

b) if-else statement: This statements also has a single condition with two different blocks (i) is true block

and other one is false block.

Syntax:- if (condition)

{

True statement;

}

else

{

False statement;

}

Statement x;

First the condition will be checked. If the condition is true then true statement block will be executed.

Then control goes to statement x. If the condition is false then the false statement block will be executed

then control goes to statement x.

c) nested if-else statement: When an if statement occurs within another if statement is called nested if else

statement.

Syntax:-if(condition)

{

if(condition 2)

{

Statement 1;

}

else

{

Statement 2;

}

}

else

{

Statement 3;

}

Statement x;

Condition one will be checked if it is true condition two will be checked. If condition 2 is true then the

statement one will be executed. If condition 2 is false the statement two will be executed.

[33]

d) else-if ladder statement: No. of conditions arise in a sequence, then we can use ladder if statement to

solve the problem in the simple manner.

Syntax:- if(condition)

{

Statement 1;

}

elseif(condition 2)

{

Statement 2;

}

elseif(condition 3)

{

Statement 3;

}

elseif(condition)

{

Statement n;

}

else

{

default statement;

}

Statement x;

In this statement 1st condition will be checked, if it is true the statement 1 will be executed, if the condition 1

is false the condition 2 will be checked. If it is true statement 2 will be executed. Otherwise further next

condition will be checked and this process will be continue till the end of the condition.

e) switch case statement: The switch case statement is a multi way branch statement. The tests whether

expression matches one of the constant values. This switch case statement requires only one arguments

which is checked with numbers of cases options.

Syntax:-switch (expression)

{

case value 1: Statement 1;

break;

case value 2: Statement 2;

break;

case value n: Statement n;

break;

default: statement;

}

[34]

Write a program to find a day of week.

#include<stdio.h>

#include<conio.h>

void main()

{

int day;

clrscr();

printf(“\n Enter day number:”);

scanf(“%d”,&day);

switch(day)

{

case 1:printf(“\n sunday”);

break;

case 2:printf(“\n monday”);

break;

case 3:printf(“\n tuesday”);

break;

case 4:printf(“\n wednesday”);

break;

case 5:printf(“\n thursday”);

break;

case 6:printf(“\n friday”);

break;

case 6:printf(“\n friday”);

break;

default:printf(“invalid day number);

}

getch();

}

[35]

Iterative Statements (Looping Statements): Iterative statements are used to repeat their execution of list of

statements depends on the value of integer expression.

(or)

A single statement (or) group of statements will be executed again and again in a program such type of

processing is called loop.

“C” supports three types of iterative statements also known as looping statements. They are

 while-loop

 do-while loop

 for loop

while loop: In while loop one (or) more statements are repeatedly executed. Until a particular condition is

true. while loop is an entry control loop.

Syntax:-while (condition)

{

Block of statements;

}

In the while loop first the condition is tested. If the condition is true. Then only the body of statement

will be executed. It will be executed again and again till condition becomes false. Otherwise if the condition

is false. The control will be jump to false statement.

[36]

do-while loop: The do-while loop is similar to while loop. The only one difference in a do-while loop .The

test condition is tested at the end of the loop. That means it is clear the body of loop gets executed atleast

once. do-while loop is an exit control loop.

Syntax:-do

{

Block of statements;

}

while(condition);

for - loop: It is a looping statement which repeat again and again till it satisfy the defined condition.

It is on e step loop which initialize (or) initialization, check the condition and increment (or) decrement

Step in the loop in a single statement.

Syntax: for (initialization; test condition; increment/decrement)

{

Body of loop;

}

Statement – x;

[37]

The execution for the “for loop” is as follows

1) Initialization of variable is done first

2) The value of variable is tested is tested is using test condition. If the condition is true the body

of the loop is executed if the condition is false the loop is terminated.

3) When the body of loop is executed the control transfers back to the 1st statement for the last

expression. That is increment/decrement.

4) After increment/decrement the value of the control again goes to the test condition. If the

condition is true, the body of the loop is again executed. The process continuous until the test

condition is false.

E.g: Write a C program to print 1 to N number using for loop.

#include<stdio.h>

#include<conio.h>

void main ()

{

int i, n;

clrscr();

printf (“Enter n value”);

scanf (“%d”, &n);

printf (“\n 1 to n numbers are:”);

for (i=1; i<=n; i++)

{

printf (“\n%d”, i);

}

getch();

}

[38]

Nested for- loop: One for statement with in another for statement is called nested for loop.

Syntax:-for (initialization; test condition; increment/decrement)

{

for (initialization; test condition; increment/decrement)

{

Statement 1;

Statement 2;

Statement n;

}

Statement 1;

Statement 2;

Statement n;

}

Unconditional Branching is when the programmer forces the execution of a program to jump to another

part of the program The goto, break, continue, return statements are used for unconditional branching.

break statement: break is a keyword in “c” statement is used to terminate the loop i.e., the control comes

out from the current loop. When over the break keyword is encountered. It is also called as loop terminator.

The break statement is widely used with for loop, while loop & do-while loop.

Syntax: break;

continue statement: The continuous statement is opposite to break statement. It appears in the body of the

loop. Whenever a continuous statement appears the rest of the statements in the loop are skipped. And it

continuous with the next iteration of current loop.

(or)

The continuous statement is exactly opposite to break statement. The continuous statement is used for

continuing next iteration of next statement, when it occurs in the loop it doesn’t terminate, but it skips the

statements after this statement. It is useful when you want to continue the program without executing any

part of the program.

Syntax: continue;

goto statement: It doesn’t require any condition goto is a keyword in ‘c’ this statement process control any

where in the program. i.e., control is transferred to another part of program without testing any condition.

The user has to define goto statement as follows.

Syntax: goto label;

return statement: It is a keyword in ‘c’ it is commonly used in user defined functions (or) sub functions to

return a value, the program control transfers from sub function to main function.

Note:-‘C’ language supports 4 statements to perform unconditional control transfers.

They are

1) return

2) goto

3) break

4) continue

These 4 statements are also called “jumping statements”.

[39]

Example Programs:

1) Example program for Integer data type.

#include<stdio.h>

#include<conio.h>

void main()

{

int a=5;

int b=7;

int c;

clrscr();

c=a+b;

printf(“ Integer Addition value is:%d”,c);

getch();

}

Output: Integer Addition value is: 12

2) Example program for Float data type.

#include<stdio.h>

#include<conio.h>

void main()

{

float a=5.0;

float b=7.0;

clrscr();

float c=a+b;

printf(“Float Addition value is:%f”,c);

getch();

}

Output: Float Addition value is :12.0

3) Display the ASCII Values of characters &using char datatype.

#include<stdio.h>

#include<conio.h>

void main()

{

char ch;

clarscr();

printf(“Enter any character:”);

scanf(“%c”,&ch);

printf(“\n ASCII value of character %c is:%d”,ch,ch);

getch();

}

Output: Enter any character: A

ASCII value of character A is: 65

Enter any character: b

ASCII value of character b is: 98

[40]

4) Example program for enum (Enumerated) data type

#include<stdio.h>

#include<conio.h>

void main()

{

enum week{sun,mon,tues,wed,thu,fri,sat};

clrscr();

printf(“Sun=%d”,sun);

printf(“\n Mon=%d”,mon);

printf(“\n Tues=%d”,tues);

printf(“\n Wed=%d”,wed);

printf(“\n Thu=%d”,thu);

printf(“\n Fri=%d”,fri);

printf(“\n Sat=%d”,sat);

getch();

}

Output: Sun=1

Mon=2

Tues=3

Wed=4

Thu=5

Fri=6

Sat=7

5) Write a program for addition of Three Numbers with using scanf() function.

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b,c,d;

clrscr();

printf(“Enter a,b,c values:”);

scanf(“%d%d%d”,&a,&b,&c);

d=a+b+c;

printf(“ \n Integer Addition value is:%d”,d);

getch();

}

Output: Enter a,b,c values: 10 20 30

Integer Addition value is: 60

[41]

6) Write a program to implement all Arithmetic Operations

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b,c,d,e,f;

clrscr();

printf(“Enter a,b values:”);

scanf(“%d%d”,&a,&b);

c=a+b

printf(“ \n Addition value is:%d”,c);

d=a-b

printf(“\n Subtraction value is:%d”,d);

e=a*b

printf(“\n Multiplication value is:%d”,e);

f=a/b

printf(“\n Division value is:%d”,f);

getch();

}

Output: Enter a,b values: 10 2

Addition value is: 12

Subtraction value is: 8

Multiplication value is: 20

Division value is: 5

7) Write a program to implement Logical Operations.

#include<stdio.h>

#include<conio.h>

void main()

{

int a=5,b=5,c=10,result;

result=(a==b)&&(c>b);

printf(“(a==b)&&(c>b) is %d\n”,result);

result=(a==b)&&(c<b);

printf(“(a==b)&&(c<b) is %d\n”,result);

result=(a==b)||(c>b);

printf(“(a==b)||(c>b) is %d\n”,result);

result=!(a==b);

printf(“!(a==b) is %d\n”,result);

getch();

}

Output:

[42]

8) Write a Swapping program & read the values from keyboard.

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b,temp;

clrscr();

printf(“Enter a values:”);

scanf(“%d”,&a);

printf(“\n Enter b values:”);

scanf(“%d”,&b);

printf(“\n Before Swapping values a=%d,b=%d”,a,b);

temp=a;

a=b;

b=temp;

printf(“\n After Swapping values a=%d,b=%d”,a,b);

}

Output: Enter a values: 10

Enter b values: 20

Before Swapping values a=10,b=20

After Swapping values a=20,b=10

9) Write a program to find the bigger of two numbers without false statement.

(if- statement example program)

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b;

clrscr();

printf(“Enter a,b values:”);

scanf(“%d%d”,&a,&b);

if(a>b)

printf(“ \n a is big”);

getch();

}

Output: Enter a,b values: 20 5

a is big

[43]

10) Write a program to find the biggest of two numbers with false statement.

(if- else statement example program)

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b;

clrscr();

printf(“Enter a,b values:”);

scanf(“%d%d”,&a,&b);

if(a>b)

{

printf(“ \n a is big”);

}

else

{

printf(“ \n b is big”);

}

getch();

}

Output:1 Enter a,b values: 20 5

a is big

Output:2 Enter a,b values: 20 50

b is big

11) Write a program to find biggest of 3 numbers.

(nested if- else statement example program)

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b;

clrscr();

printf(“enter a,b values:”);

scanf(“%d%d”,&a,&b);

if(a>b)

{

if(a>c)

{

printf(“ \n a is big”);

}

else

{

[44]

printf(“ \n c is big”);

}

else

{

if(b>c)

{

printf(“\n b is big”);

}

else

{

printf(“\n c is big”);

}

}

getch();

}

Output:

12) Example program for while – loop

#include<stdio.h>

#include<conio.h>

void main()

{

int i=1,n;

clrscr();

printf(“Enter n value:”);

scanf(“%d”,&b);

while(i<=n)

{

printf(“\n Computer Science Department”);

i++;

}

getch();

}

Output: Enter n value: 5

Computer Science Department

Computer Science Department

Computer Science Department

Computer Science Department

Computer Science Department

[45]

13) Example program for do- while loop

#include<stdio.h>

#include<conio.h>

void main()

{

int sum=0,n,i=1;

float avg;

printf(“\n Enter the value of n”);

scanf(“%d”,&n);

do

{

sum=sum+i;

i=i+1;

}

while(i<=n);

printf(“\n Sum is :%d’, sum);

avg=(float)sum/n;

printf(“\n Average is: %f”,avg);

getch();

}

Output:

14) Write a C program to print 1 to N number using for loop.

#include<stdio.h>

#include<conio.h>

void main ()

{

int i, n;

clrscr();

printf (“Enter n value”);

scanf (“%d”, &n);

printf (“\n 1 to n numbers are:”);

for (i=1; i<=n; i++)

{

printf (“\n%d”, i);

}

getch();

}

Output:

[46]

15) Example program for nested for-loop.

#include<stdio.h>

#include<conio.h>

void main ()

{

int n=2,m=3,i,j;

clrscr();

printf(“\n Nested for-loop output is :”);

for(i=1;i<=n;i++)

{

for(j=1;j<=m;j++)

{

printf(“\n hello!”);

}

printf(“@ok@”);

}

getch();

}

Output:

[47]

UNIT-III

ARRAYS

Definition: Array is a collection of collection of similar data items (or) elements. These data elements have

same data type. The elements of array are stored in sequence memory location and referred by index.

Arrays are used to reduce confused and length of the program. Each element of an array can be

accessed with the array name followed by a subscript which includes in square brackets .The

subscript provided from zero(0) for the first element ,increased by one to the next element.

Declaration of an Array: An array must be declared before its use. Declaring an array means we need to

specify.

Syntax:- Data type Array name [size] ;

Example: int a[5];

float c[10];

Datatype : What kind of data value it can store .E.g.: integer, float, char, double….etc.,

Array Name : To identify an array name.

Size: Minimum number of values that an array can store.

Initialization of Arrays: An elements of array can be initialized at the time of declaration. When an array is

initialized we need to provide a value for every element in the array.

Syntax: Data type Array-name [size]={list of values};

Example: int a[5]={1,2,3,4,5};

Types of Arrays: There are three types of arrays.

1. One – Dimensional Array

2. Two – Dimensional Array

3. Multi – Dimensional Array

1) One – Dimensional Array: A list of items can be given one variable name using only one

subscript and such variable is called a single subscripted variable (or) one dimensional array .

Declaration of One Dimensional Array:

Like any other variable, array must be declared before they are used .

Syntax: Data type array name [size] ;

Example: int a[5];

float c[10];

Initialization of One Dimensional Array:

The array can be initialized at the time of declaration .

Syntax: Data type array name [size] = {list of values};

Example: int a[5]={1,2,4,8,16};

In above diagram, array name is “a”, array size is 5,

Array index (or) address represented by a[0],a[1],a[2],a[3],a[4].

Array values are (1,2,4,8,16).

[48]

E.g.: Write a C-program to store values in array variable reading from keyboard and print on screen.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[10],n,i;

clrscr();

printf(“\n enter the size of an array:”);

scanf(“%d”,&n);

printf(“\n enter the elements in to an array”);

for(i=0;i<n-1;i++)

{

scanf(“%d”&a[i]);

}

printf(“\n the array elements are:”);

for(i=0;i<n-1;i++)

{

printf(“%3d”,a[i]);

}

getch();

}

2)Two-Dimensional Array: A two dimensional array is specified using two subscripts. Where one subscript

is denotes rows and other subscript is denotes column. It is also known as double dimensional array (or) two

dimensional array.

Declaration of Two-Dimensional Array:

Syntax: Data type array name [rows][column];

E.g.: int arr[2][3];

Initialization of Two-Dimensional Array: The two dimensional array can be initialized at the time of

declaration.

Syntax: Data type array name[row size][column size] = {list of values};

Example: int arr[2][3]={5,7,10,2,1,3};

Here the value assigned to the array is as follows.

arr[0][0]=5 arr[1][0]=2

arr[0][1]=7 arr[1][1]=1

arr[0][2]=10 arr[1][2]=3

[49]

E.g. Write a C program to read and print on two dimensional array.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[5][5],i,j,r,c;

clrscr();

printf(“\n Enter the order of matrix:”);

scanf(“%d%d”,&r,&c);

printf(“\n Enter the elements in to the array:”);

for(i=0;i<=r-1;i++)

{

for(j=0;j<=c-1;j++)

{

scanf(“%d”,&a[i][j]);

}

}

printf(“\n The elements of the matrix are \n\n”);

for(i=0;i<r-1;i++)

{

for(j=0;j<=c-1;j++)

{

printf(“%d3d”,a[i][j]);

}

printf(“\n\n”);

}

getch();

}

Output:

Operations on Two-Dimensional Array: The operation on two-dimensional array is

1. Transpose

2. Addition (or) sum

3. Multiplication (or) product

4. Subtraction (or) deference

1. Transpose: Transpose of a m*n matrix of A is given as a n*m matrix of B

Aij=Bij

2. Addition (or)sum: Two matrixes can be added together by storing the result in third matrix two matrixes

are said to be compares when they have same number of rows and columns.

Two elements of matrixes can be added by as follows

Cij=Aij+Bij

3. Multiplication (or) product: Two matrixes can be multiplied with each other. If the number of columns

in first matrix is equal to the number of rows in second matrix m*n matrix of A can be multiplied with p*q

matrix of B ,if n=p elements of matrixes are multiplied by as follows

Cij=Aij*Bij

[50]

4. Substraction (or) deference: Two matrixes can be subtracted from each other by storing the result in

third matrix two matrixes are said to be compared, when they have same number of rows and columns

elements of matrixes can be subtracted as follows

Cij=Aij-Bij

3) Multi – Dimensional Array: A multi-dimensional array is an array of arrays. It is specified to use

N X N indexes a multi-dimensional array.

A particular element is specified in using subscripts as A[I1][I2][I3] ------ [In]

STRING

Definition: A string is a group of characters. A string in ‘C’ defined as any group of characters

enclosed between double quotes(“ “) marks. The string can be of any length, the end of the string is

marked with the single character(‘\0’) the null character.

The strings are actually one dimensional array of characters terminated by null character. The character

arrays are declared in c in a similar manner of numeric array.

Declaration:

Syntax: char string name[size];

Strings can be initialized at the time of declaration at the same time initializations at the time

of declaration the string can be initialized in any one of the following manner.

E.g: char name[10] = “Krishna”;

char name[10] = {‘k’,’r’,’i’,’s’,’h’,’n’,’a,};

“C” library supports a large number of string handling functions. Following are the most commonly

used String Handling Functions.

String Handling Functions: The ‘C’ library supports a large number of string handling functions that can be

used to manipulate the string in many ways you must include the string header file in your program

String handling functions are:

1. strcat() concatenation

2. strcpy() copy

3. strlen() length

4. strcmp()compare

5. strrev() reverse

6. strupr() upper case

7. strlwr() lower case

1) strcat() : The strcat() function is used to joins two strings.

Syntax: strcat(str1,str2);

str1 and str2 are two strings. When the function strcat() is executed str2 is appended to str1.

2) strcpy() : This function is used to copy one string into another string it accepts two strings as

arguments.

Syntax: strcpy(target,source);

If first argument is generally an identifier, that represents the strings. The second argument can be a

string constant. The function copies the string of source to target.

3) strlen() : This function counts and returns the number of characters in a string.

Syntax: variable= strlen(string);

Where variable is an integer variable, which receives the value of the length of the string the

argument is a string constant.

[51]

4) strcmp() : This function compares two strings and returns a integer value.

Syntax: strcmp(str1,str2);

It returns zero if the strings are equal, greater than zero if string 1 is bigger than string 2 and less

than zero if string1 is less than string2.

5) Strrev(): The purpose of this function is two reverse a string this function takes string variable as a single

argument here the first character becomes last and the last character becomes first in the string.

Syntax: strrev(string);

E.g: char str1[10]=”degree”;

Printf(“reverse string of str1=%s”,strrev(s1));

O/P:- reverse string of str1=eerged

6) Strupr():The purpose of this function is to convert into upper case this function converts all the character

of a string from lower case to upper case.

Syntax:-strupr(string);

E.g: char str1[10]=”degree”;

Printf(“str1 is converted into upper case :%s”,strupr(str1));

O/P:- str1 is converted into upper case :DEGREE

7) Strlwr(): The purpose of this function is to convert string into lower case this function converts all the

character of a string from upper case to lower case.

Syntax:-strlwr(string);

E.g: char str1[10]=”DEGREE”;

Printf(“str1 is converted into lower case :%s”,strupr(str1));

O/P:- str1 is converted into lower case :degree

E.g: Write a ‘C’ Program to perform various String Operations.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char s1[20]="govt";

char s2[20]="college";

char s3[20]="ORGANIZATION";

clrscr();

printf("\n Length of string s1 is:%d",strlen(s1));

strcat(s1,s2);

printf("\n Join two strings s1 and s2:%s",s1);

printf("\n String s2 convert to uppercase:%s",strupr(s2));

printf("\n String s3 convert to lowercase:%s",strlwr(s3));

strrev(s1);

printf("/n Reverse of string s1 is:%s",s1);

strcpy(s1,s2);

printf("\n Copy of string is:%s",s1);

getch();

}

Out put: Length of string s1 is:4

Join two strings s1 and s2:govtcollege

String s2 convert to uppercase: COLLEGE

String s3 convert to lowercase: organization

Reverse of string s1 is : tvog

Copy of string is : college

[52]

Operations of String: The different operations that are performed on strings. They are

*String length: The number of characters in the string constitutes the length of the string.

Eg:- strlen(“c programming is fun”);

Will return “c” programme to “20” (including blank spaces)

*Converting characters of a string into uppercase:

The ASCII code for capital ‘A’ to ’Z’ is from ‘65’ to ‘91’ and the ASCII code for ‘a’ to ’z’ ranges from

‘97’ to ‘123’

To convert a lower case character to upper case we need to subtract 32 from the ASCII value of the

character

Eg: hello

Strupr(s1);

O/P: HELLO

*Converting characters of a string into lowercase:

The ASCII code for capital ‘A’ to’Z’ is from ‘65’ to ‘91’ and the ASCII code for ‘a’ to’z’ ranges from ‘97’

to ‘123’.

To convert upper case character to lower case we need to add 32 from the ASCII value of the character

Ex:- The ASCII code for capital ‘A’ to’Z’ is from ‘65’ to ‘91’ and the ASCII code for ‘a’ to’z’ ranges from

‘97’ to ‘123’.

To convert a lower case character to upper case we need to subtract 32 from the ASCII value of the

character.

Eg:-HELLO

Strlwr(s1);

O/P:hello

*Concatenating two strings two form a new string:

It s1 and s2 are two strings then concatenation operation produces a string which contains characters of s1

followed by s1 characters of s2

Eg:- s1-hai,s2-how are you

strcat(s1,s2);

O/P: hai how are you

*Comparing two strings: To compare two strings each and every character is compared from both the

strings if all the character are same then the two strings are equal.

Eg:-S1-hello

S2-hello

strcmp(s1,s2);

strings are equal

*Reverse a string: If s1=”hello” the reverse of s1=”olleh”. To reverse a string we need to swap the first

character with the last, second character with the last second character and so on----.

Eg:-how r u

strrev(s1);

U r who

[53]

Example program for string reverse.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char s1[20]="govt";

clrscr();

strrev(s1);
printf("/n Reverse of string s1 is:%s",s1);

getch();

}

OUTPUT: Reverse of string s1 is : tvog

[54]

UNIT – IV

FUNCTIONS

Function: A function is a group of statements that together perform specific tasks. A large program can be

split into smaller segments. So that it can be efficiently solved.

The function are categorized into two types

 Pre-defined functions (or) Library functions.

 User-defined functions

The major difference between the user defined functions and pre-defined functions are not required to be

written by user. While writing a program. Many program required to a particular group of unstructured

accessed repeatedly. From the different place with in the program. This repeated instructions can be placed in

a single function and can be accessed whenever necessary.

Function is a group of statements that carries out to specific task. Every c program starts with atleast one

function. Which is main(). The main() calls another to share the work.

Library functions are pre-defined se of functions they task is limited.

Eg:-printf(), scanf(), sqrt()….etc.

These functions cannot modify.

User defined functions are define by user. According to our requirement are called user defined functions.

Advantages of function:

1. It provides reusability. Because function calls many times.

2. Generally large programs can be divided into smaller programs.

3. It is too easy to modify.

4. It is easy to debug and find out the errors.

How function work:

 Function can be define and called it takes some data from the calling function. And return a value to

the called function. Whenever function is called control passes to the called function. And working of

the calling function is complete control returns back the calling function and executes the next

statement.

 The value of actual arguments passed by the calling function are received by the formal arguments of

the called function.

 The function operates on formal arguments and sends back the result to the calling function.

 The return function performs the task. Every function consists of three parts.

 Function declaration.

 Function definition.

 Function call (or) Calling function.

Function declaration:

Function declaration consists of three components such as return type, function name and aruguments

being passed. The function declaration must be ends with a semi column (;).

Syntax:-

return type function name (arg1, arg2 ……arg n);

int sum(int, int);

float multi();

Function definition: The function definition consists of two components. The first line and the body of the

function. The function definition is same as function declaration except that is does not end with a semi

column(;)

[55]

Syntax:-

return type function name (arg 1,arg 2…..arg n)

{

function body;

return(expression);

}

The body of the function may contain local variables, statements, expressions and also a return type.

Function cal (or) Calling function: The function call statement invokes the function. When a function is

invoked the compiler jumps to the called function to execute the statements that are a part of function. Once

the called function is executed, the program control passes back to the calling function.

Syntax:

function name(variable 1, variable 2….);

Example:

main()

{

…..

…..

abc (x,y,z); // Call Function;

……
……

}

abc(i,j,k) // Called Function;

{

……

……

return();

}

Example Program: Find addition of two numbers by using functions.

#include<stdio.h>

#include<conio.h>

int add(int,int); //Define function;

void main()

{

int a,b,c;

printf(“Enter a,b values:”);

scanf(“%d%d”,&a,&b);

c=add(a,b); //Call Function;

printf(“The sum value is:%d”, c);

getch();

}

int add(int p,int q) //Called Function;

{

int m;

m=p+q;

return(m);

}

OUTPUT:

[56]

Types of Functions:

Depending upon the arguments return value sends back to the calling functions based on this the

functions are divided into four types.

1. A function without arguments and without return a value.

2. A function with arguments and with return value.

3. A function with arguments and without return value.

4. A function without arguments and with return value.

1. A function without arguments and without return value:

 In this function neither the data is passed through the calling function not the data sent back from

the called function.

 There is no data transfer between calling & the called function. The function is only executed &

nothing is return (or) obtain.

 These functions are independent. They read data values& print results in the same block.

 Such functions may be useful to print same messages, draw a line or split the lines etc.

Syntax:-

Calling function Analysis Called function

void fname(); No arguments are passed void fname()

statements; {

{ Statements;

f name(); }

statements(); No values are passed

}

Example:-

#include<stdio.h>

void main()

{

void msg(); /* calling function*/

msg();

}

void msg() /* called function */

{

Printf(“welcome”);

}

 function with arguments and with return value:

 In such functions the copy of actual arguments is passed to formal arguments.

 The return value is sent back to the called function.

 In such functions the data is transferred between calling and the called function i.e., communication

between is made.

Syntax:-

Calling function Analysis Called function

void main()

{

int f name (actual arguments list);

f name(actual arguments list);

}

Arguments are passed.

Values are sent back

int f name(formal arguments list)

{

Statements;

return value;

}

[57]

Example:- /* addition of two numbers */

#include<stdio.h>

#include<conio.h>

void main()

{

int add(int,int);

int a,b,c;

clrscr();

printf(“Enter two values”);

scanf(“%d%d”, &a,&b);

c=add(a,b);

printf(“sum=%d”,c);

getch();

}

int add(int x,int y)

{

int z;

z=x+y;

return z;

}

 function with arguments and without return value:

 In such functions the arguments are passed through the calling function.

 The calling function operates the values but no result is sent back.

 Such functions are dependent on the calling function there is no gain to the main() function.

Syntax:-

Calling function Analysis Called function

void main()

{

void f name(actual arg datatype list1);

statements;

f nam(actual arg list 1);

statements;

}

Arguments are passed

No values are sent back

void f name(formal arglist)

{

Statements;

}

Example:-
/* write a program to given number is even or odd*/

#include<stdio.h>

#include<conio.h>

void main()

{

void evenodd(int);

int a;

clrscr();

printf(“Enter one value:”);

[58]

Output:-

scanf(“%d”,&a);

evenodd(a);

getch();

}

void evenodd(int n)

{

if(n%2==0)

printf(“Given number is even:”);

else

printf(“Given number is odd”);

}

Enter one value:- 4
 Given number is even

[59]

 function without arguments and with return value:

 In such type of function no arguments are passed through the main function but the called function

returns the value

 The called function is independent. It reads the value input from the keyboard or generates from the

initialization and returns the value

 Here both the calling & called function are communicated with each other.

Syntax:-

Calling function Analysis Called function

 No arguments are passed int f name()

void main() {

{ Statements;

int f name(); return value;

statements; }

f name;

statements;

} Values are sent back

Example program : /* Sum of three numbers*/

#include<stdio.h.>

#include<conio.h.>

void main()

{

int sum();

int s;

clrscr();

s=sum();

printf(“Sum =:%d”,s);

}

sum()

{

int x,y,z;

printf(“Enter three values :”);

scanf(“%d%d%d”,&x,&y,&z);

return(x+y+z);

}

Output:

Enter three values :1 2 3

Sum=6

[60]

** Parameters passing methods with an example programs

There are two ways to pass arguments or parameters of functions

1) Call by value 2) Call by reference

1) Call by value :

Call by value in which values of variables are passed by the calling function to the called function.

Example program ;

/* Swapping of two numbers in Call by value*/

#include<stdio.h>

#include<conio.h>

void swap(int,int);

void main()

{

int a,b;

clrscr();

printf(“Enter a,b values :”);

scanf(“%d%d”,&a,&b);

printf(“\nBefore swapping in main a=%d\t b=%d\t”,a,b);

swap(a,b);

printf(“\nAfter swapping in main a=%d\t b=%d\t”,a,b);

getch();

}

void swap(int p,int q)

{

int temp;

temp=p;

p=q;

q=temp;

printf(“\n After swapping in function p=%d\t,q=%d\t”,p,q);

}

Output :

Enter a,b values : 2 3

Before swapping in main a=2 b=3

After swapping in function p=3,q=2

After swapping in main a=2,b=3

[61]

2) Call by reference :

Call by reference in which address of variable passed by the calling function to called function.

Example:-

/* Swapping of two numbers in Call by reference*/

#include<stdio.h>

#include<conio.h>

void swap(int *,int*);

void main()

{

int a,b;

clrscr();

printf(“Enter a,b values :”);

scanf(“%d%d”,&a,&b);

printf(“\nBefore swapping in main a=%d\t b=%d\t”,a,b);

swap(&a,&b);

printf(“\nAfter swapping in main a=%d\t b=%d\t”,a,b);

getch();

}

void swap(int *p,int *q)

{

int *temp;

*temp=*p;

*p=*q;

*q=*temp;

printf(“\n After swapping in function p=%d\t,q=%d\t”,*p,*q);

}

Output :

Enter a,b values : 2 3

Before swapping in main a=2 b=3

After swapping in function p=3,q=2

After swapping in main a=3,b=2

Recursion:

 ‘C’ language supports recursive features i.e., function is called repeatedly by itself. The recursion can

be directly (or) indirectly.

 The direct recursion function called itself. In indirect recursion function call another function. Then

the called function calls calling function.

Example:-

#include<stdio.h>

#include<conio.h>

void main()

{

[62]

Output:-

int fact(int);

clrscr();

printf(“Enter n value”);

scanf(“%d”, &n);

f=fact(n);

printf(“\n The factorial of %d is %d”, n, f);

getch();

}

int fact(int n)

{

int f;

if(n==0)

{

return n;

else

f=n*fact(n-1);

return f;

}

Enter n value:2

The factorial of 2 is 2

Storage Classes

 The storage class determine the part of memory when the variable would be stored.

 Each variable has a storage class which decides scope, visibility and life time of that variable.

 A variable declared inside of the main function is called “local variables”.

 A variable declared outside of any function is called “global variable”.

 There are 4 types of storage classes in ‘c’

1. Automatic storage class 3. Static storage class

2. External storage class 4. Register storage class

1. Automatic storage class: Automatic variables are defined inside a function. A variable declared inside the

function without use storage class, name by default is an automatic variable. Automatic variables is also called

as local variable. It is declared to use “auto “keyword.

Syntax: void main()

{

auto int num;

}

2. External storage class: The variable are declared outside of the function the external variable is also called

as “global variables” this variables are used any function in the program. Incase external and auto variables are

declared with the same name in the program. The first priority is given to the auto variables. It is declared to

use “extern” keyword.

Syntax: void main()

{

extern int a=7;

}

[63]

3. Static storage class: The static variable may be any internal or external type. It is depending upon where it

is depending upon where it is declared. If it is declared outside of the function. It will be static variable (or)

global variable. In case it will be declared inside of the function. It will be auto variable or local variable.

Optional (when variable is declared as static its garbage value is removed and initialize to null value). It is

declared to use “static” keyword.

Syntax: void main()

{

 int x;

 static int y;

 printf(“x=%d and y=%d”,x,y);

 }

Output:

 X=1 2 3 9 y=0

 ↓

Garbage value

and ↓

null value

4. Register storage class: A variable is declared to use “register” keyword is called register storage class

variable. When a variable is declared using register keyword. Then the value of that variable is directly stored

the C.P.U register.

Syntax: void main()

{

register int;

clrscr();

for(i=0;i<10;i++)

printf(“%d”, i);

getch();

}

[64]

STRUCTURE
Definition: A Structure is a collection of one or more variables of different data types grouped together

under a single name.

A Structure is similar to a record it stores related information about variable. Structure is a basically

user defined data type that can store related information.

The major difference between a structure and array is that an array contains related information of

some data type, but structure is a collection of variables with different data types.

Structure Declaration: A Structure is declared as a “struct” keyword followed by structure name all the

variables of the structure are declared with in the structure.

Syntax:

struct structure_name

{

data type var-name1;

data type var-name2;

};

For example; To declare a structure for a student with related information roll no, name, fee section --,is

declared as exactly in the example.

Ex:- struct student

{

int rollno;

char name[20];

float fees;

};

Initialization of structure: A structure can be initialized in some way as other data types are initialized

initializing a structure means assigning some constants to the member of structure.

The initializes are enclosed in braces {} and are separated by commas(,).

Syntax: struct struct-name

{

data type member-name1;

data type member-name1;

data type member-name1;

};

struct struct-name struct var={constant1,constant2 ------- };

Eg:- struct student

{

int rno;

char name[20];

char course[20];

float fees;

};

struct student stud1={01,”ravi”,”bsc”,4500};

[65]

Accessing the members of a structure: Each member of a structure can be used just like a normal variable.

A structure member variable is generally accessed to using a “.” dot operator.

Syntax:- struct-var.member-name

the dot(.)operator is used to select a particular member of the structure.

Eg:- std1.rno=01;

std1.name=”rahul”;

std1.course=”bsc”;

std1.fees=4500;

Eg:-Write a c program to read and display student information using structures

#include<stdio.h>

#include<conio.h>

int main()

{

struct student

{

int roll-no;

char name[30];

float fees;

char dob[30];

};

struct student std1;

clrscr();

printf(“\n enter roll-no:”);

scanf(“%d”,&std1.roll-no);

printf(“\n enter name:”);

scanf(“%d”,&std1.name);

printf(“\n enter fees:”);

scanf(“%f”,&std1.fees);

printf(“\n enter date of birth:”);

scanf(“%d”,&std1.dob);

printf(“\n*********student details*********”);

printf(“\n rollno=%d”,std1.rollno);

printf(“\n name=%s”,std1.name);

printf(“\n fees=%f,std1.fees);

printf(“\n dob=%d,std1.dob);

getch();

return 0;

}

Output:

enter roll-no:1

enter name: ravi

enter fees:4500

enter dob:17-11-1998

******student details*********

roll-no=1

name=ravi

[66]

fees=4500

dob=17-11-1998

Nested structure: A structure can be placed with in another structure. A structure that contains another

structure as its member is called nested structure

The easier and clear way is to declare a nested structure separately and then group them in a high level

structure (from lower level to higher level) the nesting must be done from inside out.

Eg:-Write a c program to read and display student information using structure with in a structure

#include<stdio.h>

#include<conio.h>

int main()

{

struct dob

{

int day;

int month;

int year;

};

struct student

{

int roll-no;

char name[30];

float fees;

struct dob date;

};

struct student std1;

clrscr();

printf(“\n enter roll-no:”);

scanf(“%d”,&std1.roll-no);

printf(“\n enter name:”);

scanf(“%d”,&std1.name);

printf(“\n enter fees:”);

scanf(“%f”,&std1.fees);

printf(“\n enter date of birth:”);

scanf(“%d%d%d”,&std1.date.day,&std1.date.month,&stud1.date.year);

printf(“\n*********student details*********”);

printf(“\n rollno=%d”,std1.rollno);

printf(“\n name=%s”,std1.name);

printf(“\n fees=%f,std1.fees);

printf(“\n dob=%d-%d-%d”, std1.date.day,std1.date.month,stud1.date.year);

getch();

return 0;

}

Output:

enter roll-no:2

enter name:”Victor”

[67]

enter fees:5000

enter dob:1-12-1998

******student details*********

roll-no=2

name=Victor

fees=5000

dob=1-12-1998

Self referential structure: The self referential structures are includes at least one member as a pointer to the

same structure is known as self referential structure it can be linked together to form useful data structures such

as lists, queues, stacks and trees. It is terminated with a null pointer(0)

Syntax: struct struct-name

{

type member;type2 member2;

struct struct-name*next;

};

E.g.:- struct node

{

int data;

struct node*next;

};

UNIONS
Union: A union is a special data type available in C. It is a collection of variables of different data types in the

same memory location. In structure each member has own storage location. Unions provide an efficient way

of using the same memory location for multiple purposes. a union is declared using” union” keyword.

Declaring a union: The syntax for declaring a union is same as that of declaring a structure using the keyboard

struct and the union is used union keyword

Syntax: union union-name

{

data type var-name;

data type var-name;

};

Ex:-write a c program to read and display student information using unions

#include<stdio.h>

#include<conio.h>

int main()

{

union student

{

int roll-no;

[68]

char name[30];

float fees;

char dob[30];

};

union student std1;

clrscr();

printf(“\n enter roll-no:”);

scanf(“%d”,&std1.roll-no);

printf (“\n enter name:”);

scanf (“%d”,&std1.name);

printf (“\n enter fees:”);

scanf (“%f”,&std1.fees);

printf (“\n enter date of birth :”);

scanf (“%d”,&std1.dob);

printf(“\n*********student details*********”);

printf(“\n rollno=%d”,std1.rollno);

printf(“\n name=%s”,std1.name);

printf(“\n fees=%f,std1.fees);

printf(“\n dob=%d,std1.dob);

getch();

return 0;

}

Output:

enter roll-no:1

enter name: raju

enter fees:4500

enter dob: 17-11-1998

******student details*********

roll-no=1

name=raju

fees=4500

dob=17-11-1998

Difference between STRUCTURE and UNION.

STRUCTURE UNION

1. Every member has its own memory space

2. keyword struct is used

3. All members may be initialized

4. Different Interpretations of the same memory

location are not possible.

5. Consume memory space compare to union

6. A structure allocates the total size of all

elements in it

1. All member use the same memory space

2. Keyword union is used.

3. Only its first member location is possible.

4. Different Interpretations of the same memory

Locations are possible.

5. Conservation of memory is possible

6. A union only allocate as much memory as its largest

element requires

[69]

UNIT-V

POINTER

A pointer is a variable, which contains the address of another variable. A pointer provides an indirect way of

accessing the value of a data item.

Declaring a pointer variable: Declaration of pointer variable is similar to the declaration of a common

variable. A pointer is a variable should be declared before they are used. The general syntax used forthe

declaration of pointer is as.

Syntax: Data-type *pointer-variable;

Where data type may be integer (int), real(float),character(char) or double. Also here (asteric sign) means it is

pointer operator and pointer variable is any variable linked with’*’ sign.

it is pointer operator and pointer variable is any variable linked with '*' sign.

Write a program to print address and value of variable

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr ();

printf(“enter x value:”);

scanf(“%d”,&x);

p=&x;

printf(“\n address of x=%u”,&x);

printf(“\n value of x=%d”,x);

printf(“\n address of x=%d,*p);

getch();

}

Output: enter x value=6

address of x=65500

value of x=6

address of x=65500

Advantages and Disadvantages of Pointers:

Advantages:

1. Pointers increase the execution speed of the C-Program and are more efficient.

2. Pointer access the memory elements very easily.

3. Pointer reduces the length and complexity of the program.

4. By using pointer, we can declare lesser number of variables in memory.

5. Pointers access the memory elements very easily.

6. We can pass arguments to functions by reference.

Disadvantages:

1. Pointers are slower than normal variables

2. If used incorrectly pointer leads to bugs(errors)

[70]

3. An erroneous input leads to erroneous output

Passing arguments to functions using pointers:

Using call-by value method it is impossible to modify the actual parameters in the call when you pass

then to a function

Pointers provide a mechanism to modify data declared in one function using the code written in another

function we must pass the address of variables, we want to change

To use pointers for passing arguments to a function we must do the following.

1. Declare the function variables as pointers

2. Use the de-reference pointer in the function body

3. Pass the address as the actual arguments when the function is called

Ex:- swapping of two numbers by using Call-by reference (Or) Call by pointers.

/* Swapping of two numbers in Call by reference*/
#include<stdio.h>

#include<conio.h>
void swap(int *,int*);
void main()

{

int a,b;
clrscr();

printf(“Enter a,b values :”);
scanf(“%d%d”,&a,&b);

printf(“\nBefore swapping in main a=%d\t b=%d\t”,a,b);
swap(&a,&b);

printf(“\nAfter swapping in main a=%d\t b=%d\t”,a,b);
getch();

}

void swap(int *p,int *q)

{

int *temp;

*temp=*p;

*p=*q;

*q=*temp;

printf(“\n After swapping in function p=%d\t,q=%d\t”,*p,*q);

}

[71]

Output :

Enter a,b values : 2 3

Before swapping in main a=2 b=3

After swapping in function p=3,q=2

After swapping in main a=3,b=2

Array of pointers: An array of pointers can be declared as int*ptr[10];

The above statement can be declared have an array of 10 pointers to an integer variable. for example int

p=1,q=2,r=3,s=4,t=5

ptr[0]=&p;

ptr[1]=&q;

ptr[2]=&r;

ptr[3]=&s;

ptr[4]=&t;

Eg:- #include<stdio.h>

#include<conio.h>

void main()

{

int *p,i=0;

int a[5]={1,2,3,4,5};

clrscr();

p=&a[0];

printf(“pointer of array elements are”);

while(i<5)

{

printf(“%d”,&p);

p++;

i++;

}

getch();

}

Output: pointer of array elements are 1,2,3,4,5;

Function pointers: Every function has an address function pointers are pointer variables that point to the

address of a point function pointers can be declare assign values and used to access the functions.

In order to declare a pointer to a function the name of function must be enclosed between parenthesis and

an asteric (*) symbol is inserted before the name.

Syntax:- the syntax of declaring a function pointer is

retune type(*function pointer name)(arg list);

Ex:-int (*func)(int a,float b);

Address Operator (&): The address of the memory variable can be accused by using address operator (&).

Now suppose q is a variable having value 280 and this variable is stored in the memory address at 6000. Then

to represent address of the memory, we apply a variable p, which is pointer or memory variable. We can store

[72]

address of q variable in p pointer variable as by using & operator.

Eg :write a program to print address and value of variable

include<stdio.h>

#include<conio.h>

void main()

{

int x,*p;

clrscr();

printf(“enter x values:”);

scanf(“%d”,&x);

p=&x;

printf(“\n address of x=%u”,&x);

printf(“\n value of x=%d”,x);

printf(“\n address of x=%d,*p);

getch();

}

Output: enter x value=6

address of x=65500

value of x=6

address of x=65500

void pointer: void pointer (or) generic pointer is a special type of pointer that can be pointed to object to any

data type it is declared like a normal pointer using void keyword.

Null pointer: Null pointer are used in situations where one of the pointer in the program points to different

location at different types.

Wild pointer: A pointer which is not initialized with any address is called wild pointer.

Difference between ARRAY and POINTERS:

ARRAYS POINTERS

1. An array is a collection of similar data types.

2. Syntax:

Data type array name[size];

3.Example:- int a [10];

4. Array can be initialized at definition.

5. They are static in nature.

Once memory is allocated, it can be resized.

6.The assemble code of array is different

than pointer.

1. A pointer is a variable which contains

the address of another variable.

2. Syntax:-

Data type *pointer variable;

3. Example:- int *x;

4. Pointer can be initialized at definition.

5. Pointer is dynamic in nature the memory

allocation can be resized.

6. The assemble code of pointer is different

than array

Dynamic Memory Allocation:

 The process of allocating memory at runtime is known as dynamic memory allocation

 With the static memory allocation some amount of memory is unused. This unused memory is

actually empty. But it filled with garbage values

 To avoid this problem DMA technique was introduced

 DMA allows allocating memory at run time. Hence there will be no wastage of memory

[73]

 We can achieve DMA with following functions and which are defined as<alloch.h> or

<stdio.h>header files

1.malloc():

1. malloc()

2. calloc()

3. Realloc()

4. free()

 Malloc allocates requested size of bytes and return void pointer to the first byte of the allocated space

 Malloc() allocates single block of requested memory

 Syntax:- declare a pointer

 Pointer name=(cast type*)malloc(byte size);

2. calloc():

 Calloc () allocates multiple blocks of requested memory. Each of the same size and returns starting

address of the memory to the pointer variable. This is widely used in array.

 Syntax:-declare a pointer

 Ptr=(int*)calloc(n,2);

3. realloc():

 This Realloc() is used to make changes in the memory location(i.e.)increase or decrease is already

allocated by malloc()or calloc()

 This realloc reallocates the memory

 Syntax:-declare a pointer

 Pointer variable=(cast type*)realloc(pointer name, new size);

4. free():

 It is essential to clean up memory at the end of the program

 In the memory location filled with the garbage values so it is very much required to clean up

 Syntax:-void tree(void*back);

[74]

Definition

Files

A file is a collection of data stored on a secondary storage device such as hard disk.

 Files are mega data structure in information processing.

 By using files, we need to perform some input and output operations i.e., how data is read from a file

or write be a file.

Reading data from files:

C provides the following set of functions to read a data from a file

1. fscanf()

2. fgets()

3. fgetc()

4. fread()

1. fscanf(): The fscanf() is used to read formatted data from a stream.

Syntax:

int fscanf(file *stream, const char *format….);

The fscanf() function is used to read data from the stream and store them. According to the parameter format

into the locations pointed by additional arguments.

2. fgets(): This function stands for ‘file gets strings”. This function used to get a string from a stream.

Syntax:

char *fgets(char *str, int size, file *stream);

This function reads at most the number of characters specified by size from the given stream and stores them

in string(str).

3. fgetc(): This function return the next character from the string and End of the File(EOF). If the end of the

file reached or if there is an error.

Syntax:

int fgetc(file *stream);

fgetc() function reads a single character from the current position of a file.

4. fread(): This function is used to read data from a file.

Syntax:

int fread(void *str,size-t, size, size-t num, file *stream);

This functions reads number of objects are placed them in to the array pointed by the string (str).

Example program for create a file and write operation.

#include<stdio.h>

#include<conio.h>

void main()

{

FILE *fp;

clrscr();

fp=fopen(“e://file.txt”,”w”);

fprintf(fp,”Hello”);

fclose(fp);

getch();

}

Output: Hello

[75]

Writing data to files:

‘C’ provides set of function to write data to a file

1. fprintf()

2. fputs()

3. fputc()

4. fwrite()

1. fprintf(): This function is used to write formatted output to stream.

Syntax:

int fprintf(file *stream, const, char*format….);

This function writes data i.e., formatted as specified by the format argument to the specified stream.

2. fputs(): The fputs () is used to write a single line to a file.

Syntax:

int fputs(const char, file * stream);

This function writes the string pointed to str to the stream pointed by thestream.

3. fputc: The fputc() is the opposite of fget() and used to write a character the stream.

Syntax:

int fput (int c, FILE *stream);

This function will write in byte specified by ‘C’ to the output stream pointed by them.

4. fwrite(): This function is used to write data to a file.

Syntax:

int fwrite(const void * str, size-t-size, size-t, cons, file * stream);

This function will write objects of size specified by size from the array pointed (ptr) to the stream

pointed by the stream.

Write a C program to read operation.

#include<stdio.h>

#include<conio.h>

void main()

{

FILE *fp;

char text[200];

fp=fopen(“e:/file.txt”,”r”);

while(fscanf(fp,”%s”,text)!=EOF)

{

printf(“%s”,text);

}

fclose(fp);

getch();

}

Types of files:

Files are basically classified into three types:

1. Sequential files (Text files)

2. Random files (direct files)

3. Binary files (indirect level files)

1. Sequential File (Text files):

 In this organization, the records will be arranged one after another.

[76]

 It consists of alphabets and digits. So, it is called as text files.

 For example if you want a record from a sequential file then, we will search from beginning to end. It

is the time consuming process. Generally it is used to store small amount of data.

Sequential Operations:

1. Defining and naming a file

2. Opening a file

3. Reading a file

4. Writing a file

5. Closing a file

2. Random Files (Direct Files):

 It consists of fixed length of records. Each record can be identified by a unique number.

 It is an efficient method as compared to sequential files.

 These files are also called as direct files.

Random File Operations:

1. Defining and naming a file

2. Opening a file

3. Reading a file

4. Writing a file

5. Closing a file

3. Binary Files (Indirect Files):

 It may contain graphical (or) image (or) compiled codes(machine language).

 This file can be accessed byte by byte. So, data will be stored under 0’s and 1’s(zero’s and one’s)

 It is the fastest and efficient method for accessing data.

Binary File Operations:

1. Defining and naming a file

2. Opening a file

3. Reading a file

4. Writing a file

5. Closing a file

Basic File Operations :

The following operations perform on files, they are

1. Naming file

2. Defining a file

3. Opening a file

4. Reading a file

5. Writing a file

6. Closing a file

1). Naming a file: A file name consists of two parts namely

a). Primary name

b). Secondary name

Primary name is mandatory or conform. Secondary name is optional.

Example :

Student.txt →Secondary name

↓

Primary name

2). Defining a file: While working with files we must create a file pointer to the file.The file pointer provides

[77]

communication between program and operating system.

Example :

FILE *fp;

Where “FILE” is a new data type,” fp” is file pointer to the file to file data type.It creates a link

between program and operating system.

3). Opening a file: While working with files,the file must be open,the combined fopen() creates a new file or

opening and existing file, it is represented by as follows.

Example :

Variable_name = fopen(“file name”,”file mode”);

FILE *fp;

fp=fopen(“student.txt”,”w”)

; Here w is used for writing mode.

4). Reading a file:

To read data from a file, we use input statements such as fscanf(), fgets(), fgetc(), fread()

5). Writing a file:

To write data from a file, we use output statements such as fprintf(),fputs(),fputc(),fwrite()

6). Closing a file:

Once the file processing finished or completed close all the files that have being opened,fclose() is used

to close file.

How to open a file:

If you want to storee data in the secondary memory,we must specify certain things about the file to the

file,they include:

1. File name

2. Data structure

3. Purpose

1). File name: It is a string of characters that makes a valid file name for the operating system,it contains

primary name,secondary name.

Example:

Student.c

Simple.txt

2). Data structure: Data structure of a file is defined as “FILE” in library of standard input, output function

definitions. FILE is defined as data type

Example

a). FILE *fp;

b). fp=fopen(“file name”, “file mode”);

3). Purpose: It specifies the purpose of opening this file.

	UNIT-I GENERAL FUNDAMENTALS
	Limitations of Computers:-
	Types of Software’s:
	Features:-
	Features:- (1)
	Generations of Computer:-
	Characteristics of First Generation Computers:-
	Characteristics of Second Generation Computers:-
	Characteristics of Third Generation Computers:-
	Characteristics of Fourth Generation Computers:-
	Introduction to Algorithms and Programming Language Algorithm:-
	Properties of Algorithm:-
	** Write An Algorithm for Addition of Two Numbers.
	** Find The Biggest of Three Numbers.
	Benefits of Algorithm:-
	Flow chart:-
	Flow Chart Symbols:-
	Flow Chart Symbols:- (1)
	Basic Structure of A Flow Chart:-
	Advantages of Flow Charts:-
	Disadvantages of Flowchart:-
	Examples:-
	2. Draw a flow chart to find the largest of three numbers
	Programming:-
	1. MachineLanguage (or) Binary Language:-
	2. AssemblyLanguage(Second Generation Language):-
	3. HighLevel Language (or) Third Generation Language:-
	4. Very High Level Language:-
	5. Fifth Generation Language:-
	Pseudo Code:-
	Parts of Pseudo Code:-
	Structured Programming Language:-
	Advantages of Structured Programming Language:-
	Example of Structured Programming:-

	UNIT-II INTRODUCTION
	Uses of C Language:
	Structure of the ‘C’ Program.
	E.g.:- Write the First ‘C’ Program
	#include<stdio.h>
	main() function
	printf(“My First Program in C”);
	Example:-
	Files Used in C Program:
	Examples of Standard Header Files Includes :
	Optional Keywords :
	C – Language Data Type Table Form:
	Numeric Variables:
	Character Variable :
	Declaring Variables :
	For Examples:
	In ‘C’ Variables are Declared at Three Basic as Follows :
	Initializing Variables:
	The Escape Sequences are:
	Some Format Strings are :
	The Control Strings Uses Some Printf () Format Strings Some Format Strings are:
	Write a program to find a day of week.
	Syntax:-do
	E.g: Write a C program to print 1 to N number using for loop.
	2) Example program for Float data type.
	3) Display the ASCII Values of characters &using char datatype.
	4) Example program for enum (Enumerated) data type
	5) Write a program for addition of Three Numbers with using scanf() function.
	6) Write a program to implement all Arithmetic Operations
	7) Write a program to implement Logical Operations.
	9) Write a program to find the bigger of two numbers without false statement. (if- statement example program)
	10) Write a program to find the biggest of two numbers with false statement. (if- else statement example program)
	11) Write a program to find biggest of 3 numbers. (nested if- else statement example program)
	13) Example program for do- while loop
	UNIT-III ARRAYS
	Declaration of One Dimensional Array:
	Initialization of One Dimensional Array:
	Declaration of Two-Dimensional Array:
	E.g. Write a C program to read and print on two dimensional array.
	Output:
	STRING
	Declaration:
	used String Handling Functions.
	E.g: Write a ‘C’ Program to perform various String Operations.
	Out put: Length of string s1 is:4
	Copy of string is : college
	*Converting characters of a string into uppercase:
	*Converting characters of a string into lowercase:
	*Concatenating two strings two form a new string:
	Example program for string reverse.

	UNIT – IV FUNCTIONS
	Advantages of function:
	How function work:
	Function declaration:
	Syntax:-
	Syntax:- (1)
	Syntax:
	Example:
	OUTPUT:
	1. A function without arguments and without return value:
	Syntax:- (2)
	function with arguments and with return value:
	Syntax:- (3)
	function with arguments and without return value:
	Syntax:- (4)
	Output:-
	function without arguments and with return value:
	Syntax:- (5)
	Output:
	** Parameters passing methods with an example programs
	1) Call by value :

	Output :
	2) Call by reference :

	Output : (1)
	Recursion:
	Example:-
	Output:-
	Storage Classes
	1. Automatic storage class 3. Static storage class

	STRUCTURE
	Syntax:
	Eg:-Write a c program to read and display student information using structures #include<stdio.h>
	Output:
	Eg:-Write a c program to read and display student information using structure with in a structure
	Output: (1)

	UNIONS
	Ex:-write a c program to read and display student information using unions #include<stdio.h>
	Output:
	Syntax: Data-type *pointer-variable;
	Advantages and Disadvantages of Pointers:
	Disadvantages:
	Passing arguments to functions using pointers:
	Output :
	Eg :write a program to print address and value of variable
	Difference between ARRAY and POINTERS:
	1.malloc():
	2. calloc():
	3. realloc():
	4. free():

	Files
	Reading data from files:
	Syntax:
	Syntax: (1)
	Syntax: (2)
	Syntax: (3)
	Example program for create a file and write operation.
	Output: Hello
	Syntax: (4)
	Syntax: (5)
	Syntax: (6)
	Write a C program to read operation.
	Types of files:
	1. Sequential File (Text files):
	Sequential Operations:
	2. Random Files (Direct Files):
	Random File Operations:
	3. Binary Files (Indirect Files):
	Binary File Operations:
	Basic File Operations :
	Example :
	Example : (1)
	4). Reading a file:
	5). Writing a file:
	6). Closing a file:
	How to open a file:
	Example:
	Example

