
  

 

 

 

 

 

 
Introduction 

Digital Electronics  

 

A digital computer stores data in terms of digits (numbers) and proceeds in discrete steps from one 
state to the next. The states of a digital computer typically involve binary digits which may take the 

form of the presence or absence of magnetic markers in a storage medium , on-off switches or relays. 

In digital computers, even letters, words and whole texts are represented digitally. 

 

Digital Logic is the basis of electronic systems, such as computers and cell phones. Digital 

Logic is rooted in binary code, a series of zeroes and ones each having an opposite value. 

This system facilitates the design of electronic circuits that convey information, including 

logic gates. Digital Logic gate functions include and, or and not. The value system translates 

input signals into specific output. Digital Logic facilitates computing, robotics and other 

electronic applications. 

 

Digital Logic Design is foundational to the fields of electrical engineering and computer 

engineering. Digital Logic designers build complex electronic components that use both 

electrical and computational characteristics. These characteristics may involve power, current, 

logical function, protocol and user input. Digital Logic Design is used to develop hardware, 

such as circuit boards and microchip processors. This hardware processes user input, system 

protocol and other data in computers, navigational systems, cell phones or other high-tech 

systems. 



  

 

 

 

 

 
Numeric systems 

                  Number system 

 

The numeric system we use daily is the decimal system, but this system is not convenient for machines 
since the information is handled codified in the shape of on or off bits; this way of codifying takes us 

to the necessity of knowing the positional calculation which will allow us to express a number in any 

base where we need it. 

 

Radix number systems 
 

The numeric system we use daily is the decimal system, but this system is not convenient for machines 

since the information is handled codified in the shape of on or off bits; this way of codifying takes us 

to the necessity of knowing the positional calculation which will allow us to express a number in any 

base where we need it. 

 
A base of a number system or radix defines the range of values that a digit may have. 

 
In the binary system or base 2, there can be only two values for each digit of a number, 

either a "0" or a "1". In the octal system or base 8, there can be eight choices for each digit 

of a number: 

"0", "1", "2", "3", "4", "5", "6", "7". 

 
In the decimal system or base 10, there are ten different values for each 

digit of a number: "0", "1", "2", "3", "4", "5", "6", "7", "8", "9". 

In the hexadecimal system, we allow 16 values for each digit of a number: 

 
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", and "F". 

 
Where “A” stands for 10, “B” for 11 and so on. 

 

Conversion among radices 
 

- Convert from Decimal to Any Base 

 

Let’s think about what you do to obtain each digit. As an example, let's start with a decimal number 

1234 and convert it to decimal notation. To extract the last digit, you move the decimal point left by 

one digit, which means that you divide the given number by its base 10. 

 
1234/10 = 123 + 4/10 

 
The remainder of 4 is the last digit. To extract the next last digit, you again move the decimal point left 

by one digit and see what drops out. 

 
123/10 = 12 + 3/10 

 
The remainder of 3 is the next last digit. You repeat this process until there is nothing left. Then you 

stop. In summary, you do the following: 



  

 

 

 

Quotient Remainder 

 

 

 

 

 

 

| | | | 

1 2 3 4 (Base 10) 

 

Now, let's try a nontrivial example. Let's express a decimal number 1341 in binary notation. Note that 

the desired base is 2, so we repeatedly divide the given decimal number by 2. 

Quotient Remainder 
 

1341/2 = 670 1 ----------------------+ 

670/2 = 335 0 --------------------+ | 

335/2 = 167 1 ------------------+ | | 

167/2 = 83 1 ----------------+ | | | 

83/2 = 41 1 --------------+ | | | | 

41/2 = 20 1 ------------+ | | | | | 

20/2 = 10 0 ----------+ | | | | | | 

10/2 = 5 0 --------+ | | | | | | | 

5/2 = 2 1 ------+ | | | | | | | | 

2/2 = 1 0 ----+ | | | | | | | | | 

1/2 = 0 1 --+ | | | | | | | | | |(Stop when the 

    | | | | | | | | | | | quotient is 0) 

    1 0 1 0 0 1 1 1 1 0 1 (BIN; Base 2) 

 

Let's express the same decimal number 1341 in octal notation. 

Quotient Remainder 
 

1341/8 = 167 5 --------+ 
 

167/8 = 20 7 ------+ | 

20/8 = 2 4 ----+ | | 

2/8 = 0 2 --+ | | | (Stop when the quotient is 0) 

    | | | |   

    2 4 7 5 (OCT; Base 8) 

 

Let's express the same decimal number 1341 in hexadecimal notation. 

Quotient Remainder 
 

1341/16 = 83 13 ------+ 
 

83/16 = 5 3 ----+ | 

5/16 = 0 5 --+ | | (Stop when the quotient is 0) 

   | | |  

   5 3 D (HEX; Base 16) 

In conclusion, the easiest way to convert fixed point numbers to any base is to convert each part 

separately. We begin by separating the number into its integer and fractional part. The integer part is 

converted using the remainder method, by using a successive division of the number by the base until a 
zero is obtained. At each division, the reminder is kept and then the new number in the base r is 

obtained by reading the remainder from the lat remainder upwards. 

 
The conversion of the fractional part can be obtained by successively multiplying the fraction with the 

base. If we iterate this process on the remaining fraction, then we will obtain successive significant 

digit. This methods form the basis of the multiplication methods of converting fractions between bases 

 
Example. Convert the decimal number 3315 to hexadecimal notation. What about the hexadecimal 

equivalent of the decimal number 3315.3? 

1234/10 = 123 4 --------+ 

123/10 = 12 3 ------+ | 

12/10 = 1 2 ----+ | | 

1/10 = 0 1 --+ | | |(Stop when the quotient is 0) 

 



  

 

 

 



Solution: 
Quotient Remainder 

 

3315/16 = 207 3 ------+ 
 

207/16 = 12 15 ----+ | 

12/16 = 0 12 --+ | | (Stop when the quotient is 0) 

   | | |  

   C F 3 (HEX; Base 16) 

 

 

 

 
 

 

 

 

 

 

: 

Thus, 3315.3 (DEC) --> CF3.4CCC... 

(HEX) 

 

- Convert From Any Base to Decimal 

 
Let's think more carefully what a decimal number means. For example, 1234 means that there are four 

boxes (digits); and there are 4 one's in the right-most box (least significant digit), 3 ten's in the next 

box, 2 hundred's in the next box, and finally 1 thousand's in the left-most box (most significant digit). 

The total is 1234: 

 

Original Number: 1 2 3 4 

 | | | | 

How Many Tokens: 1 2 3 4 

Digit/Token Value: 1000 100 10 1 

Value: 1000 + 200 + 30 + 4 = 1234 

 

or simply, 1*1000 + 2*100 + 3*10 + 

4*1 = 1234 

 

Thus, each digit has a value: 10^0=1 for the least significant digit, increasing to 10^1=10, 10^2=100, 

10^3=1000, and so forth. 

 
Likewise, the least significant digit in a hexadecimal number has a value of 16^0=1 for the least 

significant digit, increasing to 16^1=16 for the next digit, 16^2=256 for the next, 16^3=4096 for the 
next, and so forth. Thus, 1234 means that there are four boxes (digits); and there are 4 one's in the 

right-most box (least significant digit), 3 sixteen's in the next box, 2 256's in the next, and 1 4096's in 

the left-most box (most significant digit). The total is: 

 
1*4096 + 2*256 + 3*16 + 

4*1 = 4660 

 
In summary, the conversion from any base to base 10 can be obtained from the formulae 

 

n1 
x  d bi 

 
Where b is the base, d the digit at position i, m the number of digit after the decimal point, n the number 

1 0 i i 

im 

of digits of the integer part and X10 is the obtained number in decimal. This form the basic of the 
polynomial method of converting numbers from any base to decimal 

 
Example. Convert 234.14 expressed in an octal notation to decimal. 

 
2*82 + 3*81 + 4*80+1*8-1 + 4*8-2 = 2*64 +3*8 +4*1 +1/8 +4/64 =156.1875 

  
Product 

 
Integer Part 

(HEX; Base 16) 

0.4 C C C ... 

| | | | 

0.3*16 = 4.8 4 ----+ | | | | | 

0.8*16 = 12.8 12 ------+ | | | | 

0.8*16 = 12.8 12 --------+ | | | 

0.8*16 = 12.8 12 ----------+ | | 

 :   ---------------------+ 

 



  

 

 

 

Example. Convert the hexadecimal number 4B3 to decimal notation. What about  the decimal 
equivalent of  the hexadecimal number 4B3.3? 

 
Solution: 

 

 

 

 

 
Example. Convert 234.14 expressed in an octal notation to decimal. 

 
Solution: 

Original Number: 2 3 4  . 1 4 

 

 

 

 

- Relationship between Binary - Octal and Binary-hexadecimal 

 
As demonstrated by the table bellow, there is a direct correspondence between the binary system and 

the octal system, with three binary digits corresponding to one octal digit. Likewise, four binary digits 

translate directly into one hexadecimal digit. 

 
 

 

With such relationship, In order to convert a binary number to octal, we partition the base 2 number 

into groups of three starting from the radix point, and pad the outermost groups with 0’s as needed to 

form triples. Then, we convert each triple to the octal equivalent. 

 
For conversion from base 2 to base 16, we 

use groups of four. Consider converting 

101102 to base 8: 

101102 = 0102 1102 = 28 68 = 268 

 
Notice that the leftmost two bits are padded with a 0 on the left in order to create a full triplet. 

BIN OCT HEX DEC 

0000 00 0 0 

0001 01 1 1 

0010 02 2 2 

0011 03 3 3 

0100 04 4 4 

0101 05 5 5 

0110 06 6 6 

0111 07 7 7 

1000 10 8 8 

1001 11 9 9 

1010 12 A 10 

1011 13 B 11 

1100 14 C 12 

1101 15 D 13 

1110 16 E 14 

1111 17 F 15 

Original Number: 4 

| 

B 

| 

 3 

| 

. 3 

| 

 

How Many Tokens: 4 11  3 3  

Digit/Token Value: 256 16  1 0.0625  

Value: 1024 +176 + 3 + 0.1875 = 1203.1875 

 

 | | | | |  

How Many Tokens: 2 3 4 1 4  

Digit/Token Value: 64 8 1 0.125 0.015625  

Value: 128 + 24 + 4 + 0.125 + 0.0625 = 156.1875 

 



  

 

 

 

Now consider converting 101101102 to base 16: 

 
101101102 = 10112  01102 = B16  616 = B616 

 
(Note that ‘B’ is a base 16 digit corresponding to 1110. B is not a variable.) 

 
The conversion methods can be used to convert a number from any base to any other base, but it may 

not be very intuitive to convert something like 513.03 to base 7. As an aid in performing an unnatural 

conversion, we can convert to the more familiar base 10 form as an intermediate step, and then 

continue the conversion from base 10 to the target base. As a general rule, we use the polynomial 

method when converting into base 10, and we use the remainder and multiplication methods when 

converting out of base 10. 

 

Numeric complements 
 

The radix complement of an n digit number y in radix b is, by definition, bn − y. Adding this to x 
results in the value x + bn − y or x − y + bn. Assuming y ≤ x, the result will always be greater than bn 

and dropping the initial '1' is the same as subtracting bn, making the result x − y + bn − bn or just x − y, 

the desired result. 

 
The radix complement is most easily obtained by adding 1 to the diminished radix complement, which 

is (bn − 1) − y. Since (bn − 1) is the digit b − 1 repeated n times (because bn − 1 = bn − 1n = (b − 1)(bn − 1 
+ bn − 2 + ... + b + 1) = (b − 1)bn 
− 1 + ... + (b − 1), see also binomial numbers), the diminished radix complement of a number is found 

by complementing each digit with respect to b − 1 (that is, subtracting each digit in y from b − 1). 
Adding 1 to obtain the radix complement can be done separately, but is most often combined with the 

addition of x and the complement of y. 

 
In the decimal numbering system, the radix complement is called the ten's complement and the 
diminished radix complement the nines' complement. 

 
In binary, the radix complement is called the two's complement and the diminished radix complement 

the ones' complement. The naming of complements in other bases is similar. 

 
- Decimal example 

 
To subtract a decimal number y from another number x using the method of complements, the ten's 

complement of y (nines' complement plus 1) is added to x. Typically, the nines' complement of y is 

first obtained by determining the complement of each digit. The complement of a decimal digit in the 
nines' complement system is the number that must be added to it to produce 9. The complement of 3 is 

6, the complement of 7 is 2, and so on. Given a subtraction problem: 

 
873 (x) 

- 218 (y) 

The nines' complement of y (218) is 781. In this case, because y is three digits long, this is the same 
as subtracting y 
from 999. (The number of 9's is equal to the 

number of digits of y.) Next, the sum of x, the 

nines' complement of y, and 1 is taken: 

873 (x) 

+ 781 (complement of y) 

+ 1 (to get the ten's complement of y) 

===== 1655 

 

The first "1" digit is then dropped, giving 655, the correct answer. 

 
If the subtrahend has fewer digits than the minuend, leading zeros must be added which will become 



  

 

 

 

leading nines when the nines' complement is taken. For example: 

48

03

2 

(x 

- 391 (y) 

becomes the sum: 

48032 (x) 

+ 99608 (nines' complement of y) 

+ 1 (to get the ten's complement) 

====== 147641 

Dropping the "1" gives the answer: 47641 

 
- Binary example 

 
The method of complements is especially useful in binary (radix 2) since the ones' complement is 

very easily obtained by inverting each bit (changing '0' to '1' and vice versa). And adding 1 to get the 
two's complement can be done by simulating a carry into the least significant bit. For example: 

 
01100100 (x, equals decimal 100) 

- 00010110 (y, equals decimal 22) 

 

becomes the sum: 
01100100 (x) 

+ 11101001 (ones' complement of y) 

+ 1 (to get the two's complement) 

======= 

101001110 

 

Dropping the initial "1" gives the answer: 01001110 (equals decimal 78) 

 

Signed fixed point numbers 
 

Up to this point we have considered only the representation of unsigned fixed point numbers. The 

situation is quite different in representing signed fixed point numbers. There are four different ways of 

representing signed numbers that are commonly used: sign-magnitude, one’s complement, two’s 

complement, and excess notation. We will cover each in turn, using integers for our examples. The 

Table below shows for a 3-bit number how the various representations appear. 

 

Decimal Unsigned Sign–Mag. 1’s Comp. 2’s Comp. Excess 4 

7 111 – – – – 

6 110 – – – – 

5 101 – – – – 

4 100 – – – – 

3 011 011 011 011 111 

2 010 010 010 010 110 

1 001 001 001 001 101 

+0 000 000 000 000 100 

-0 – 100 111 000 100 

-1 – 101 110 111 011 

-2 – 110 101 110 010 

-3 – 111 100 101 001 

-4 – – – 100 000 

Table1. 3 bit number representation 



  

 

 

 

- Signed Magnitude Representation 

 
The signed magnitude (also referred to as sign and magnitude) representation is most familiar to us as 
the base 10 number system. A plus or minus sign to the left of a number indicates whether the 

number is positive or negative as in 

+1210 or 1210. In the binary signed magnitude representation, the leftmost bit is used for the sign, 

which takes on a value of 0 or 1 for ‘+’ or ‘’, respectively. The remaining bits contain the absolute 

magnitude. 

 

Consider representing (+12)10 and (12)10 in an eight-bit format: 

 
(+12)10 = (00001100)2 

 

(12)10 = (10001100)2 

 
The negative number is formed by simply changing the sign bit in the positive number from 0 to 1. 

Notice that there are both positive and negative representations for zero: +0= 00000000 and -0= 
10000000. 

 
- One’s Complement Representation 

 
The one’s complement operation is trivial to perform: convert all of the 1’s in the number to 0’s, and 

all of the 0’s to 1’s. See the fourth column in Table1 for examples. We can observe from the table that 

in the one’s complement representation the leftmost bit is 0 for positive numbers and 1 for negative 
numbers, as it is for the signed magnitude representation. This negation, changing 1’s to 0’s and 

changing 0’s to 1’s, is known as complementing the bits. Consider again representing (+12)10 and 

(12)10 in an eight-bit format, now using the one’s complement representation: 

 
(+12)10 = (00001100)2 

 

(12)10 = (11110011)2 

 

Note again that there are representations for both +0 and 0, which are 00000000 and 11111111, 

respectively. As a result, there are only 28  1 = 255 different numbers that can be represented even 

though there are 28 different bit patterns. 

 
The one’s complement representation is not commonly used. This is at least partly due to the difficulty 

in making comparisons when there are two representations for 0. There is also additional complexity 

involved in adding numbers. 

- Two’s Complement Representation 

 
The two’s complement is formed in a way similar to forming the one’s complement: complement all of 

the bits in the number, but then add 1, and if that addition results in a carry-out from the most 
significant bit of the number, discard the carry-out. 

 
Examination of the fifth column of Table above shows that in the two’s complement representation, 
the leftmost bit is again 0 for positive numbers and is 1 for negative numbers. However, this number 

format does not have the unfortunate characteristic of signed-magnitude and one’s complement 

representations: it has only one representation for zero. To see that this is true, consider forming the 

negative of (+0)10, which has the bit pattern: (+0)10 = (00000000)2 

 
Forming the one’s complement of (00000000)2 produces (11111111)2 and adding 

 

1 to it yields (00000000)2, thus (0)10 = (00000000)2. The carry out of the leftmost position is 
discarded in two’s complement addition (except when detecting an overflow condition). Since there is 

only one representation for 0, and since all bit patterns are valid, there are 28 = 256 different numbers 

that can be represented. 

 

Consider again representing (+12)10 and (12)10 in an eight-bit format, this time using the two’s 

complement representation. Starting with (+12)10 =(00001100)2, complement, or negate the number, 

producing (11110011)2. 



  

 

 

 

Now add 1, producing (11110100)2, and thus (12)10 = (11110100)2: 

 
(+12)10 = (00001100)2 

 

(12)10 = (11110100)2 

 
There is an equal number of positive and negative numbers provided zero is considered to be a 
positive number, which is reasonable because its sign bit is 0. The positive numbers start at 0, but the 

negative numbers start at 1, and so the magnitude of the most negative number is one greater than the 

magnitude of the most positive number. The positive number with the largest magnitude is +127, and 

the negative number with the largest magnitude is 128. There is thus no positive number that can be 

represented that corresponds to the negative of 128. If we try to form the two’s complement negative 

of 128, then we will arrive at a negative number, as shown below: 

 

(128)10 = (10000000)2 

(128)10 = (01111111 

(128)10 + (+0000001)2 

(128)10 ——————)2 

(128)10 = (10000000)2 

 
The two’s complement representation is the representation most commonly used in conventional 

computers. 

 
- Excess Representation 

 
In the excess or biased representation, the number is treated as unsigned, but is “shifted” in value by 

subtracting the bias from it. The concept is to assign the smallest numerical bit pattern, all zeros, to the 

negative of the bias, and assign the remaining numbers in sequence as the bit patterns increase in 
magnitude. A convenient way to think of an excess representation is that a number is represented as 

the sum of its two’s complement form and another number, which is known as the “excess,” or “bias.” 

Once again, refer to Table 2.1, the rightmost column, for examples. 

 

Consider again representing (+12)10 and (12)10 in an eight-bit format but now using an excess 128 

representation. An excess 128 number is formed by adding 128 to the original number, and then 
creating the unsigned binary version. For (+12)10, we compute (128 + 12 = 140)10 and produce the bit 

pattern (10001100)2. For (12)10, we compute (128 + 12 = 116)10 and produce the bit pattern 

(01110100)2 

 
(+12)10 = (10001100)2 

 

(12)10 = (01110100)2 

 
Note that there is no numerical significance to the excess value: it simply has the effect of shifting the 
representation of the two’s complement numbers. 

 
There is only one excess representation for 0, since the excess representation is simply a shifted 
version of the two’s complement representation. For the previous case, the excess value is chosen to 

have the same bit pattern as the largest negative number, which has the effect of making the numbers 

appear in numerically sorted order if the numbers are viewed in an unsigned binary representation. 

 

Thus, the most negative number is (128)10 = (00000000)2 and the most positive number is (+127)10 = 

(11111111)2. This representation simplifies making comparisons between numbers, since the bit 

patterns for negative numbers have numerically smaller values than the bit patterns for positive 

numbers. This is important for representing the exponents of floating point numbers, in which 
exponents of two numbers are compared in order to make them equal for addition and subtraction. 

 
choosing a bias: 

 
The bias chosen is most often based on the number of bits (n) available for representing an integer. To 

get an approximate equal distribution of true values above and below 0, the bias should be 2(n-1) or 2(n-1) 

- 1 



  

 

 

 

Floating point representation 
 

Floating point is a numerical representation system in which a string of digits represent a real 

number. The name floating point refers to the fact that the radix point (decimal point or more 
commonly in computers, binary point) can be placed anywhere relative to the digits within the string. 

A fixed point is of the form a  bn where a is the fixed point part often referred to as the mantissa, or 

significand of the number b represents the base and n the exponent. Thus a floating point number can 

be characterized by a triple of numbers: sign, exponent, and significand. 

 
- Normalization 

 
A potential problem with representing floating point numbers is that the same number can be 
represented in different ways, which makes comparisons and arithmetic operations difficult. For 

example, consider the numerically equivalent forms shown below: 

 

3584.1  100 = 3.5841  103 = .35841  104. 

 
In order to avoid multiple representations for the same number, floating point numbers are maintained 
in normalized form. That is, the radix point is shifted to the left or to the right and the exponent is 

adjusted accordingly until the radix point is to the left of the leftmost nonzero digit. So the rightmost 

number above is the normalized one. Unfortunately, the number zero cannot be represented in this 

scheme, so to represent zero an exception is made. The exception to this rule is that zero is represented 
as all 0’s in the mantissa. 

 
If the mantissa is represented as a binary, that is, base 2, number, and if the normalization condition is 

that there is a leading “1” in the normalized mantissa, then there is no need to store that “1” and in fact, 

most floating point formats do not store it. Rather, it is “chopped off ” before packing up the number 
for storage, and it is restored when unpacking the number into exponent and mantissa. This results in 

having an additional bit of precision on the right of the number, due to removing the bit on the left. 

This missing bit is referred to as the hidden bit, also known as a hidden 1. 

 
For example, if the mantissa in a given format is 1.1010 after normalization, then the bit pattern that is 

stored is 1010— the left-most bit is truncated, or hidden. 

 

Possible floating point format. 
 

In order to choose a possible floating point format for a given computer, the programmer must take 

into consideration the following: 

 
The number of words used (i.e. the total 
number of bits used.) The representation of 

the mantissa (2s complement etc.) 

The representation of the exponent (biased etc.) 
The total number of bits devoted for the mantissa 

and the exponent The location of the mantissa 

(exponent first or mantissa first) 
 

Because of the five points above, the number of ways in which a floating point number may be 

represented is legion. Many representation use the format of sign bit to represent a floating point where 

the leading bit represents the sign 

Sign Exponent Mantissa 

 

 
Binary code 

 
Internally, digital computers operate on binary numbers. When interfacing to humans, digital 
processors, e.g. pocket calculators, communication is decimal-based. Input is done in decimal then 

converted to binary for internal processing. For output, the result has to be converted from its internal 

binary representation to a decimal form. Digital system represents and manipulates not only binary 

number but also many other discrete elements of information. 



  

 

 

 

 
-Binary coded Decimal 

 
In computing and electronic systems, binary-coded decimal (BCD) is an encoding for decimal numbers 

in which each digit is represented by its own binary sequence. Its main virtue is that it allows easy 

conversion to decimal digits for printing or display and faster decimal calculations. Its drawbacks are 

the increased complexity of circuits needed to implement mathematical operations and a relatively 
inefficient encoding. It occupies more space than a pure binary representation.In BCD, a digit is 

usually represented by four bits which, in general, represent the values/digits/characters 0-9 

 
To BCD-encode a decimal number using the common encoding, each decimal digit is stored in a four-bit 

nibble. 
 

Decimal: 0 1 2 3 4 5 6 7 8 9 

BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

 

Thus, the BCD encoding for the number 127 would be: 

 
0001 0010 0111 

 

The position weights of the BCD code are 8, 4, 2, 1. Other codes (shown in the table) use position 
weights of 8, 4, -2, -1 

and 2, 4, 2, 1. 

 
An example of a non-weighted code is the excess-3 code where digit codes is 

obtained from their binary equivalent after adding 3. Thus the code of a 

decimal 0 is 0011, that of 6 is 1001, etc 

Decimal Digit 

 

 

 

 

 

 

 

 

 

 

 

 
 

it is very important to understand the difference between the conversion of a decimal number to binary 
and the binary coding of a decimal number. In each case, the final result is a series of bits. The bits 

obtained from conversion are binary digit. Bits obtained from coding are combinations of 1’s and 0’s 

arranged according to the rule of the code used. 

e.g. the binary conversion of 13 is 1101; the BCD coding of 13 is 00010011 

 
- Error-Detection Codes 

 
Binary information may be transmitted through some communication medium, e.g. using wires or 

wireless media. A corrupted bit will have its value changed from 0 to 1 or vice versa. To be able to 

detect errors at the receiver end, the sender sends an extra bit (parity bit) with the original binary 
message. 

 
A parity bit is an extra bit included with the n-bit binary message to make the total number of 1’s in 

this message (including the parity bit) either odd or even. If the parity bit makes the total number of 

1’s an odd (even) number, it is called odd (even) parity. The table shows the required odd (even) 

 8 4 2 1 
Code 

8 4 -2 -1 
code 

2 4 2 1 
code 

Excess-3 

code 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 

2 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 

3 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 
4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 

5 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 
6 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 

7 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 
8 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 

9 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 

 



  

 

 

 

parity for a 3-bit message 

 
Three-Bit Message        Odd Parity Bit Even Parity Bit 

X Y Z P P 

0 0 0 1 0 
0 0 1 0 1 

0 1 0 0 1 
0 1 1 1 0 

1 0 0 0 1 
1 0 1 1 0 

1 1 0 1 0 
1 1 1 0 1 

 

No error is detectable if the transmitted message has 2 bits in error since the total number of 1’s will 

remain even (or odd) as in the original message. 

 
In general, a transmitted message with even number of errors cannot be detected by the parity bit. 

 
- Gray code 

 
The Gray code consist of 16 4-bit code words to represent the decimal Numbers 0 to 15.   For Gray 
code, successive code words differ by only one bit from one to the next 

 

Gray Code Decimal Equivalent 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 1 2 

0 0 1 0 3 
0 1 1 0 4 

0 1 1 1 5 

0 1 0 1 6 
0 1 0 0 7 

1 1 0 0 8 

1 1 0 1 9 
1 1 1 1 10 

1 1 1 0 11 
1 0 1 0 12 
1 0 1 1 13 

1 0 0 1 14 

1 0 0 0 15 

 

Character Representation 
 

Even though many people used to think of computers as "number crunchers", people figured out long 

ago that it's just as important to handle character data. 

 
Character data isn't just alphabetic characters, but also numeric characters, punctuation, spaces, etc. 

Most keys on the central part of the keyboard (except shift, caps lock) are characters. Characters need 

to represented. In particular, they need to be represented in binary. After all, computers store and 

manipulate 0's and 1's (and even those 0's and 1's are just abstractions. The implementation is typically 
voltages). 

 
Unsigned binary and two's complement are used to represent unsigned and signed integer respectively, 

because they have nice mathematical properties, in particular, you can add and subtract as you'd 
expect. 

 
However, there aren't such properties for character data, so assigning binary codes for characters is 

somewhat arbitrary. The most common character representation is ASCII, which stands for American 
Standard Code for Information Interchange. 

 



  

 

 

 

There are two reasons to use ASCII. First, we need some way to represent characters as binary 

numbers (or, equivalently, as bitstring patterns). There's not much choice about this since computers 

represent everything in binary. 

If you've noticed a common theme, it's that we need representation schemes for everything. However, 
most importantly, we need representations for numbers and characters. Once you have that (and 

perhaps pointers), you can build up everything you need. 

 
The other reason we use ASCII is because of the letter "S" in ASCII, which stands for "standard". 

Standards are good because they allow for common formats that everyone can agree on. 

 
Unfortunately, there's also the letter "A", which stands for American. ASCII is clearly biased for the 
English language character set. Other languages may have their own character set, even though 

English dominates most of the computing world (at least, programming and software). 

 
Even though character sets don't have mathematical properties, there are some nice aspects about 

ASCII. In particular, the lowercase letters are contiguous ('a' through 'z' maps to 9710 through 12210). 

The upper case letters are also contiguous ('A' through 'Z' maps to 6510 through 9010). Finally, the digits 
are contiguous ('0' through '9' maps to 4810 through 5710). 

Since they are contiguous, it's usually easy to determine whether a character is lowercase or uppercase 

(by checking if the ASCII code lies in the range of lower or uppercase ASCII codes), or to determine 
if it's a digit, or to convert a digit in ASCII to an integer value. 

 
ASCII Code (Decimal) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The characters between 0 and 31 are generally not printable (control characters, etc). 32 is the space 

character.   Also note that there are only 128 ASCII characters. This means only 7 bits are required to 

represent an ASCII character. However, since the smallest size representation on most computers is a 

byte, a byte is used to store an ASCII character. The Most Significant bit(MSB) of an ASCII character 

is 0. 

ASCII Code (Hex) 
 

00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p 

01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q 

02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r 

03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s 

04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t 

05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u 

06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v 

07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w 

08 bs 18 can 28 ( 38 8 48 H 58 X 68 h 78 x 

09 ht 19 em 29 ) 39 9 49 I 59 Y 69 i 79 y 

0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z 

0b vt 1b esc 2b + 3b ; 4b K 5b [ 6b k 7b { 

0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c | 

0d cr 1d gs 2d - 3d = 4d M 5d ] 6d m 7d } 

0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~ 

0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del 

0 nul 16 dle 32 sp 48 0 64 @ 80 P 96 ` 112 p 

1 soh 17 dc1 33 ! 49 1 65 A 81 Q 97 a 113 q 

2 stx 18 dc2 34 " 50 2 66 B 82 R 98 b 114 r 

3 etx 19 dc3 35 # 51 3 67 C 83 S 99 c 115 s 

4 eot 20 dc4 36 $ 52 4 68 D 84 T 100 d 116 t 

5 enq 21 nak 37 % 53 5 69 E 85 U 101 e 117 u 

6 ack 22 syn 38 & 54 6 70 F 86 V 102 f 118 v 

7 bel 23 etb 39 ' 55 7 71 G 87 W 103 g 119 w 

8 bs 24 can 40 ( 56 8 72 H 88 X 104 h 120 x 

9 ht 25 em 41 ) 57 9 73 I 89 Y 105 i 121 y 

10 nl 26 sub 42 * 58 : 74 J 90 Z 106 j 122 z 

11 vt 27 esc 43 + 59 ; 75 K 91 [ 107 k 123 { 

12 np 28 fs 44 , 60 < 76 L 92 \ 108 l 124 | 

13 cr 29 gs 45 - 61 = 77 M 93 ] 109 m 125 } 

14 so 30 rs 46 . 62 > 78 N 94 ^ 110 n 126 ~ 

15 si 31 us 47 / 63 ? 79 O 95 _ 111 o 127 del 

 



  

 

 

 

 
 

The difference in the ASCII code between an uppercase letter and its corresponding lowercase letter is 

2016. This makes it easy to convert lower to uppercase (and back) in hex (or binary). 

 
Other Character Codes 

 
While ASCII is still popularly used, another character representation that was used (especially at IBM) 

was EBCDIC, which stands for Extended Binary Coded Decimal Interchange Code (yes, the word 

"code" appears twice). This character set has mostly disappeared. EBCDIC does not store characters 

contiguously, so this can create problems alphabetizing "words". 

One problem with ASCII is that it's biased to the English language. This generally creates some 
problems. One common solution is for people in other countries to write programs in ASCII. 

 
Other countries have used different solutions, in particular, using 8 bits to represent their alphabets, 

giving up to 256 letters, which is plenty for most alphabet based languages (recall you also need to 
represent digits, punctuation, etc). 

 
However, Asian languages, which are word-based, rather than character-based, often have more words 

than 8 bits can represent. In particular, 8 bits can only represent 256 words, which is far smaller than 
the number of words in natural languages. 

 
Thus, a new character set called Unicode is now becoming more prevalent. This is a 16 bit code, which 
allows for about 65,000 different representations. This is enough to encode the popular Asian 

languages (Chinese, Korean, Japanese, etc.). It also turns out that ASCII codes are preserved. What 

does this mean? To convert ASCII to Unicode, take all one byte ASCII codes, and zero-extend them to 

16 bits. That should be the Unicode version of the ASCII characters. 

 
The biggest consequence of using Unicode from ASCII is that text files double in size. The second 
consequence is that endianness begins to matter again. Endianness is the ordering of individually 

addressable sub-units (words, bytes, or even bits) within a longer data word stored in external memory. 

The most typical cases are the ordering of bytes within a 16-, 32-, or 64-bit word, where endianness is 

often simply referred to as byte order. The usual contrast is between most versus least significant byte 
first, called big-endian and little-endian respectively. 

Big-endian places the most significant bit, digit, or byte in the first, or leftmost, position. Little-endian 

places the most significant bit, digit, or byte in the last, or rightmost, position. Motorola processors 

employ the big-endian approach, whereas Intel processors take the little-endian approach. Table 

bellow illustrates how the decimal value 47,572 would be expressed in hexadecimal and binary notation 
(two octets) and how it would be stored using these two methods. 

Table : Endianess 
 

Number Big-Endian Little-Endian 

Hexadecimal   

B9D4 B9D4 4D9B 

Binary   

10111001 10111001 11010100 
11010100 11010100 10111001 

 

 
With single bytes, there's no need to worry about endianness. However, you have to consider that with 

two byte quantities. 

 
While C and C++ still primarily use ASCII, Java has already used Unicode. This means that Java must 

create a byte type, because char in Java is no longer a single byte. Instead, it's a 2 byte Unicode 
representation. 

 

 

 



  

 

 

 

Binary Logic 
 

Introduction 
 

Binary logic deals with variables that assume discrete values and with operators that assume logical 

meaning. 

 
While each logical element or condition must always have a logic value of either "0" or "1", we 

also need to have ways to combine different logical signals or conditions to provide a logical 
result. 

 
For example, consider the logical statement: "If I move the switch on the wall up, the light will 
turn on." At first glance, this seems to be a correct statement. However, if we look at a few other 

factors, we realize that there's more to it than this. In this example, a more complete statement 

would be: "If I move the switch on the wall up and the light bulb is good and the power is on, the 
light will turn on." 

 
If we look at these two statements as logical expressions and use logical terminology, we can 

reduce the first statement to: 

 
Light = Switch 

 
This means nothing more than that the light will follow the action of the switch, so that when the 

switch is up/on/true/1 the light will also be on/true/1. Conversely, if the switch is 
down/off/false/0 the light will also be off/false/0. 

 
Looking at the second version of the statement, we have a slightly more 

complex expression: Light = Switch and Bulb and Power 

When we deal with logical circuits (as in computers), we not only need to deal with logical 
functions; we also need some special symbols to denote these functions in a logical diagram. 

There are three fundamental logical operations, from which all other functions, no matter how 

complex, can be derived. These functions are named and, or, and not. Each of these has a specific 
symbol and a clearly-defined behaviour. 

 
AND. The AND operation is represented by a dot(.) or by the absence of an operator. E.g. x.y=z xy=z 

are all read as x AND y=z. the logical operation AND is interpreted to mean that  z=1 if and only if x=1 

and y=1 otherwise z=0 

 
OR. The operation is represented by a + sign for example, x+y=z is interpreted as x OR y=z meaning 

that z=1 if x=1 or y=1 or if both x=1 and y=1. If both x and y are 0, then z=0 

 

NOT. This operation is represented by a bar or a prime. For example x′= x =z is interpreted as NOT x 

=z meaning that z is what x is not 
 

It should be noted that although the AND and the OR operation have some similarity with the 
multiplication and addition respectively in binary arithmetic , however one should note that an 

arithmetic variable may consist of many digits. A binary logic variable is always 0 or 1. 

 
e.g. in binary arithmetic, 1+1=10 while in binary logic 1+1=1 

 

Basic Gate 
 

The basic building blocks of a computer are called logical gates or just gates. Gates are basic circuits 

that have at least one (and usually more) input and exactly one output. Input and output values are the 

logical values true and false. In computer architecture it is common to use 0 for false and 1 for true. 

Gates have no memory. The value of the output depends only on the current value of the inputs. A 

useful way of describing the relationship between the inputs of gates 



  

 

 

 

and their output is the truth table. In a truth table, the value of each output is tabulated for every 

possible combination of the input values. 

 
We usually consider three basic kinds of gates, and-gates, or-gates, and not-gates (or inverters). 

 
- The AND Gate 

 
The AND gate implements the AND function. With the gate shown to the left, both inputs must 
have logic 1 signals applied to them in order for the output to be a logic 1. With either input at logic 

0, the output will be held to logic 0. 

 

 

 
The truth table for an and-gate with two inputs looks like this: 

x y | z  

0 0 | 0 

0 1 | 0 

1 0 | 0 

1 1 | 1 

There is no limit to the number of inputs that may be applied to an AND function, so there is no 

functional limit to the number of inputs an AND gate may have. However, for practical reasons, 

commercial AND gates are most commonly manufactured with 2, 3, or 4 inputs. A standard 
Integrated Circuit (IC) package contains 14 or 16 pins, for practical size and handling. A standard 

14-pin package can contain four 2-input gates, three 3-input gates, or two 4- input gates, and still 

have room for two pins for power supply connections. 

 
- The OR Gate 

 
The OR gate is sort of the reverse of the AND gate. The OR function, like its verbal counterpart, 
allows the output to be true (logic 1) if any one or more of its inputs are true. Verbally, we might 

say, "If it is raining OR if I turn on the sprinkler, the lawn will be wet." Note that the lawn will still 

be wet if the sprinkler is on and it is also raining. This is correctly reflected by the basic OR 

function. 

 
In symbols, the OR function is designated with a plus sign (+). In logical diagrams, the symbol 

below designates the OR gate. 
 

 

 
The truth table for an or-gate with two inputs looks like this: 

x y | z  

0 0 | 0 

0 1 | 1 

1 0 | 1 

1 1 | 1 

As with the AND function, the OR function can have any number of inputs. However, practical 

commercial OR gates are mostly limited to 2, 3, and 4 inputs, as with AND gates. 



  

 

 

 

- The NOT Gate, or Inverter 

 
The inverter is a little different from AND and OR gates in that it always has exactly one input as 
well as one output. Whatever logical state is applied to the input, the opposite state will appear at the 

output. 
 

 

 
The truth table for an inverter looks like this: 

x | y 

 0 | 1 

1 | 0 

 

The NOT function, as it is called, is necesasary in many applications and highly useful in others. A 

practical verbal application might be: 

 
The door is NOT locked = You may enter 

 
In the inverter symbol, the triangle actually denotes only an amplifier, which in digital terms means 

that it "cleans up" the signal but does not change its logical sense. It is the circle at the output which 

denotes the logical inversion. The circle could have been placed at the input instead, and the logical 

meaning would still be the same 

 

Combined gates 
 

Sometimes, it is practical to combine functions of the basic gates into more complex gates, for instance 

in order to save space in circuit diagrams. In this section, we show some such combined gates together 

with their truth tables. 

 
- The nand-gate 

 
The nand-gate is an and-gate with an inverter on the output. So instead of drawing several gates like this: 

 
 

 

 
We draw a single and-gate with a little ring on the output like this: 

 
 

 

 
The nand-gate, like the and-gate can take an arbitrary number of inputs. 

 
The truth table for the nand-gate is like the one for the and-gate, except that all output values have been 
inverted: 
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x y | z 

0 0 | 1 

0 1 | 1 

1 0 | 1 

1 1 | 0 

The truth table clearly shows that the NAND operation is the complement of the AND 

 
- The nor-gate 

 

The nor-gate is an or-gate with an inverter on the output. So instead of drawing several gates like this: 

 

 
 

We draw a single or-gate with a little ring on the output like this: 
 

 

 
The nor-gate, like the or-gate can take an arbitrary number of inputs. 

The truth table for the nor-gate is like the one for the or-gate, except that all output values 

have been inverted: 

    x y | z 
 

0 0 | 1 

0 1 | 0 
1 0 | 0 

1 1 | 0 
 

- The exclusive-or-gate 

 
The exclusive-or-gate is similar to an or-gate. It can have an arbitrary number of inputs, and its output 

value is 1 if and only if exactly one input is 1 (and thus the others 0). Otherwise, the output is 0. 

 
We draw an exclusive-or-gate like this: 

 

 

 
The truth table for an exclusive-or-gate with two inputs looks like this: 
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x   y | z 
 

0   0 | 0 

0   1 | 1 

1   0 | 1 
1   1 | 0 

 

- The exclusive-Nor-gate 

 
The exclusive-Nor-gate is similar to an N or-gate. It can have an arbitrary number of inputs, and its 

output value is 1 if and only if the two input are of the same values (1 and 1 or 0 and 0). Otherwise, the 

output is 0. 

 
We draw an exclusive-Nor-gate like this: 

 

 

The truth table for an exclusive-nor-gate with two 

inputs looks like this:  

 X  y | z 
 

0   0 | 1 

0   1 | 0 
1   0 | 0 
1   1 | 1 

 
 

Let us limit ourselves to gates with n inputs. The truth tables for such gates have 2n lines. Such a gate 

is completely defined by the output column in the truth table. The output column can be viewed as a 

string of 2n binary digits. How many different strings of binary digits of length 2n are there? The 

answer is 22n, since there are 2k different strings of k binary digits, and if k=2n, then there are 22n such 

strings. In particular, if n=2, we can see that there are 16 different types of gates with 2 inputs. 

Families of logic gates 

There are several different families of logic gates. Each family has its capabilities and limitations, its 

advantages and disadvantages. The following list describes the main logic families and their 

characteristics. You can follow the links to see the circuit construction of gates of each family. 
 

- Diode Logic (DL) 
 

Diode logic gates use diodes to perform AND and OR logic functions. Diodes have the property of 

easily passing an electrical current in one direction, but not the other. Thus, diodes can act as a logical 

switch. 
 

Diode logic gates are very simple and inexpensive, and can be used effectively in specific situations. 
However, they cannot be used extensively, as they tend to degrade digital signals rapidly. In addition, 

they cannot perform a NOT function, so their usefulness is quite limited. 
 

- Resistor-Transistor Logic (RTL) 
 

Resistor-transistor logic gates use Transistors to combine multiple input signals, which also amplify 
and invert the resulting combined signal. Often an additional transistor is included to re-invert the 

output signal. This combination provides clean output signals and either inversion or non-inversion as 

needed. 
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RTL gates are almost as simple as DL gates, and remain inexpensive. They also are handy because 
both normal and inverted signals are often available. However, they do draw a significant amount of 

current from the power supply for each gate. Another limitation is that RTL gates cannot switch at the 

high speeds used by today's computers, although they are still useful in slower applications. 
 

Although they are not designed for linear operation, RTL integrated circuits are sometimes used as 

inexpensive small- signal amplifiers, or as interface devices between linear and digital circuits. 
 

- Diode-Transistor Logic (DTL) 
 

By letting diodes perform the logical AND or OR function and then amplifying the result with a 

transistor, we can avoid some of the limitations of RTL. DTL takes diode logic gates and adds a 
transistor to the output, in order to provide logic inversion and to restore the signal to full logic levels. 

 

- Transistor-Transistor Logic (TTL) 
 

The physical construction of integrated circuits made it more effective to replace all the input diodes in 

a DTL gate with a transistor, built with multiple emitters. The result is transistor-transistor logic, which 
became the standard logic circuit in most applications for a number of years. 

 

As the state of the art improved, TTL integrated circuits were adapted slightly to handle a wider range 

of requirements, but their basic functions remained the same. These devices comprise the 7400 family 
of digital ICs. 

 

- Emitter-Coupled Logic (ECL) 
 

Also known as Current Mode Logic (CML), ECL gates are specifically designed to operate at 
extremely high speeds, by avoiding the "lag" inherent when transistors are allowed to become 

saturated. Because of this, however, these gates demand substantial amounts of electrical current to 

operate correctly. 
 

- CMOS Logic 
 

One factor is common to all of the logic families we have listed above: they use significant amounts of 

electrical power. Many applications, especially portable, battery-powered ones, require that the use of 

power be absolutely minimized. To accomplish this, the CMOS (Complementary Metal-Oxide-

Semiconductor) logic family was developed. This family uses enhancement-mode MOSFETs as its 
transistors, and is so designed that it requires almost no current to operate. 

 

CMOS gates are, however, severely limited in their speed of operation. Nevertheless, they are highly 

useful and effective in a wide range of battery-powered applications. 
 

Most logic families share a common characteristic: their inputs require a certain amount of current in 
order to operate correctly. CMOS gates work a bit differently, but still represent a capacitance that 

must be charged or discharged when the input changes state. The current required to drive any input 

must come from the output supplying the logic signal. Therefore, we need to know how much current 
an input requires, and how much current an output can reliably supply, in order to determine how 

many inputs may be connected to a single output. 
 

However, making such calculations can be tedious, and can bog down logic circuit design. Therefore, 
we use a different technique. Rather than working constantly with actual currents, we determine the 

amount of current required to drive one standard input, and designate that as a standard load on any 

output. Now we can define the number of standard loads a given output can drive, and identify it that 
way. Unfortunately, some inputs for specialized circuits require more than the usual input current, and 

some gates, known as buffers, are deliberately designed to be able to drive more inputs than usual. For 

an easy way to define input current requirements and output drive capabilities, we define two new 

terms: fan-in and fan-out 
 

Fan-in 

 
Fan-in is a term that defines the maximum number of digital inputs that a single logic gate can accept. 

Most transistor- transistor logic ( TTL ) gates have one or two inputs, although some have more than 

two. A typical logic gate has a fan- in of 1 or 2. 



  

 

 

 

In some digital systems, it is necessary for a single TTL logic gate to drive several devices with fan-in 
numbers greater than 1. If the total number of inputs a transistor-transistor logic (TTL) device must 

drive is greater than 10, a device called a buffer can be used between the TTL gate output and the 

inputs of the devices it must drive. A logical inverter (also called a NOT gate) can serve this function 
in most digital circuits. 

 
Fan-out 

 
Fan-out is a term that defines the maximum number of digital inputs that the output of a single logic 

gate can feed. Most transistor-transistor logic ( TTL ) gates can feed up to 10 other digital gates or 

devices. Thus, a typical TTL gate has a fan-out of 10. 

 
In some digital systems, it is necessary for a single TTL logic gate to drive more than 10 other gates or 
devices. When this is the case, a device called a buffer can be used between the TTL gate and the 

multiple devices it must drive. A buffer of this type has a fan-out of 25 to 30. A logical inverter (also 

called a NOT gate) can serve this function in most digital circuits. 

 
Remember, fan-in and fan-out apply directly only within a given logic family. If for any reason you 
need to interface between two different logic families, be careful to note and meet the drive 

requirements and limitations of both families, within the interface circuitry 
 

Boolean Algebra 
One of the primary requirements when dealing with digital circuits is to find ways to make them as 

simple as possible. This constantly requires that complex logical expressions be reduced to simpler 
expressions that nevertheless produce the same results under all possible conditions. The simpler 

expression can then be implemented with a smaller, simpler circuit, which in turn saves the price of the 

unnecessary gates, reduces the number of gates needed, and reduces the power and the amount of 
space required by those gates. 

 
One tool to reduce logical expressions is the mathematics of logical expressions, introduced by George 

Boole in 1854 and known today as Boolean Algebra. The rules of Boolean Algebra are simple and 
straight-forward, and can be applied to any logical expression. The resulting reduced expression can 

then be readily tested with a Truth Table, to verify that the reduction was valid. 

 
Boolean algebra is an algebraic structure defined on a set of elements B, together with two binary 

operators(+, .) provided the following postulates are satisfied. 

 
1. Closure with respect to operator + and Closure with respect to operator . 
2. An identity element with respect to + designated 

by 0: X+0= 0+X=X An identity element with 

respect to . designated by 1: X.1= 1.X=X 

3. Commutative with 

respect to +: X=Y=Y+X 

Commutative with respect 

to .: X.Y=Y.X 

4. . distributive over +: X.(Y+Z)=X.Y+X.Z 

 
+ distributive over .: X+(Y.Z)=(X+Y).(X+Z) 

 

5. For every element x belonging to B, there exist an element x′ or x called the 

complement of x such that x. x′=0 and x+ x′=1 

6. There exists at least two elements x,y belonging to B such that x ≠y 
 

The two valued Boolean algebra is defined on a set B={0,1} with two binary operators + and. 



  

 

 

 

 

   
 

Closure. from the tables, the result of each operation is either 0 or 1 and 1 ,0 belongs to B 

 
Identity. From the truth table we see that 0 is the identity element for + and 1 is the 

identity element for . . Commutative law is obvious from the symmetry of binary 

operators table. 

Distributive Law. x.(y+z)=x.y+x.z 

 

 

 
Distributive of + over . can be shown as in the truth table above 

 
From the complement table we can see that x+ x′=1 i.e 1+0=1 and x. x′=0 i.e 1.0=0 

 
Principle of duality of Boolean algebra 

 
The principle of duality state that every algebraic expression which can be deduced from the postulates 

of Boolean algebra remains valid if the operators and the identity elements are interchanged. This 

mean that the dual of an expression is obtained changing every AND(.) to OR(+), every OR(+) to 
AND(.) and all 1's to 0's and vice-versa 

 

Laws of Boolean Algebra 
 

Postulate 2 : 

 
(a) 0 + A = A (b) 1.A = A 

 
Postulate 5 : 

 

(a) A + A′ =1 (b) A. A′=0 

 
Theorem1 : Identity Law 

 

(a) A + A = A (b) A A = A 

 
Theorem2 

 

(a) 1 + A = 1 (b) 0. A = 0 

 
Theorem3: involution 

 
A′′=A 

x y z y+z x.(y+z) x.y x.z x.y+x.z 

0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 

0 1 0 1 0 0 0 0 

0 1 1 1 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 1 1 1 0 1 1 

1 1 0 1 1 1 0 1 

1 1 1 1 1 1 1 1 

x x′ 

0 1 

1 0 

 

X Y x+y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

X y x.y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 



  

 

 

 

Postulate 3 : Commutative Law 
(a) A + B = B + A (b) A B = B A 

Theorem4: Associate Law 

(a) (A + B) + C = A + (B + C) (b) (A B) C = A (B C) 

Postulate4: Distributive Law 

(a) A (B + C) = A B + A C (b) A + (B C) = (A + B) (A + C) 

Theorem5 : De Morgan's Theorem 

 
(a) (A+B)′= A′B′ (b) (AB)′= A′+ B′ 

Theorem6 : Absorption 
(a) A + A B = A (b) A (A + B) = A 

 
Prove Theorem 1 : (a) 

X+X=X 

x+x=(X+X).1 by postulate 2b 
=(x+x)(x+x′) 5a 

=x+xx′ 4b 
=x+0 5b 

=x 2a 

Prove Theorem 1 : (b) 

X.X=X 
xx=(X.X)+0 by postulate 2a 

=x.x+x.x′ 5b 
=x(x+x′) 4a 

=x.1 5a 

=x 2b 
Prove Theorem 2 : (a) 

X+1=X 
x+1=1.(X+1)

 

by postulate 2b 

(x+x′)=(x+1)  5a 

=x+x′.1 4b 

=x+ x′ 2b 
=1 5a 

Prove Theorem 2 : (b) 
X.0=0 
x.0=0+(X.0)

 

by postulate 2a 

(x.x′)=(x.0)  5b 

=x.x′+0 4a 

=x.x′ 2a 
=0 5b 

Prove Theorem 6 : (a) 

X+xy=X 
x+xy=x.1+xy by postulate 2b 

=x(1+y) 4b 

=x(y+1) 3a 
=x.1 2b 
=x 2b 

Prove Theorem 6 : (b) X(x+y)=X 

X(x+y)=(x+0).(x+y) by postulate 2a 

=x+0.y 4a 

=x +0 2a 
=x 2a 

 
Using the laws given above, complicated expressions can be simplified. 

 
 

  

 



  

 

 

 

 

 
Introduction 

Combinational circuit 

 

The combinational circuit consist of logic gates whose outputs at any time is determined directly from 
the present combination of input without any regard to the previous input. A combinational circuit 

performs a specific information processing operation fully specified logically by a set of Boolean 

functions. 

 
A combinatorial circuit is a generalized gate. In general such a circuit has m inputs and n outputs. 

Such a circuit can always be constructed as n separate combinatorial circuits, each with exactly one 

output. For that reason, some texts only discuss combinatorial circuits with exactly one output. In 
reality, however, some important sharing of intermediate signals may take place if the entire n-output 

circuit is constructed at once. Such sharing can significantly reduce the number of gates required to 

build the circuit. 

 
When we build a combinatorial circuit from some kind of specification, we always try to make it as 

good as possible. The only problem is that the definition of "as good as possible" may vary greatly. In 

some applications, we simply want to minimize the number of gates (or the number of transistors, 

really). In other, we might be interested in as short a delay (the time it takes a signal to traverse the 

circuit) as possible, or in as low power consumption as possible. In general, a mixture of such criteria 

must be applied. 

 

Describing existing circuits using Truth tables 
 

To specify the exact way in which a combinatorial circuit works, we might use different methods, such 

as logical expressions or truth tables. 

 
A truth table is a complete enumeration of all possible combinations of input values, each one with its 
associated output value. 

 
When used to describe an existing circuit, output values are (of course) either 0 or 1. Suppose for 

instance that we wish to make a truth table for the following circuit: 

 

 
All we need to do to establish a truth table for this circuit is to compute the output value for the circuit 
for each possible combination of input values. We obtain the following truth table: 

 
w x y | a b 

      - 0 0 0 | 0 1 

0 0 1 | 0 1 
0 1 0 | 1 1 

0 1 1 | 1 0 
1 0 0 | 1 1 

1 0 1 | 1 1 

1 1 0 | 1 1 
1 1 1 | 1 0 



  

 

 

 

 

 

Specifying circuits to build 
 

When used as a specification for a circuit, a table may have some output values that are not specified, 

perhaps because the corresponding combination of input values can never occur in the particular 

application. We can indicate such unspecified output values with a dash -. 

 
For instance, let us suppose we want a circuit of four inputs, interpreted as two nonnegative binary 

integers of two binary digits each, and two outputs, interpreted as the nonnegative binary integer 
giving the quotient between the two input numbers. Since division is not defined when the 

denominator is zero, we do not care what the output value is in this case. Of the sixteen entries in the 

truth table, four have a zero denominator. Here is the truth table: 

 
x1 x0 y1 y0 | z1 z0 

    - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unspecified output values like this can greatly decrease the number of circuits necessary to build the 

circuit. The reason is simple: when we are free to choose the output value in a particular situation, we 

choose the one that gives the fewest total number of gates. 

 
Circuit minimization is a difficult problem from complexity point of view. Computer programs that try 

to optimize circuit design apply a number of heuristics to improve speed. In this course, we are not 
concerned with optimality. We are therefore only going to discuss a simple method that works for all 

possible combinatorial circuits (but that can waste large numbers of gates). 

 
A separate single-output circuit is built for each output of the combinatorial circuit. 

 
Our simple method starts with the truth table (or rather one of the acceptable truth tables, in case we 

have a choice). Our circuit is going to be a two-layer circuit. The first layer of the circuit will have at 
most 2n AND-gates, each with n inputs (where n is the number of inputs of the combinatorial circuit). 

The second layer will have a single OR-gate with as many inputs as there are gates in the first layer. For 

each line of the truth table with an output value of 1, we put down a AND- gate with n inputs. For each 

input entry in the table with a 1 in it, we connect an input of the AND-gate to the corresponding input. 
For each entry in the table with a 0 in it, we connect an input of the AND-gate to the corresponding 

input inverted. 

 
The output of each AND-gate of the fist layer is then connected to an input of the OR-gate of the second 

layer. 

 
As an example of our general method, consider the following truth table (where a - indicates that we 

don't care what value is chosen): 

0 0 0 0 | - - 

0 0 0 1 | 0 0 
0 0 1 0 | 0 0 

0 0 1 1 | 0 0 
0 1 0 0 | - - 

0 1 0 1 | 0 1 

0 1 1 0 | 0 0 
0 1 1 1 | 0 0 

1 0 0 0 | - - 

1 0 0 1 | 1 0 
1 0 1 0 | 0 1 

1 0 1 1 | 0 0 
1 1 0 0 | - - 

1 1 0 1 | 1 1 

1 1 1 0 | 0 1 

1 1 1 1 | 0 1 
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x y z | a b 
       - 0 0 0 | - 0 

0 0 1 | 1 1 
0 1 0 | 1 - 

0 1 1 | 0 0 
1 0 0 | 0 1 

1 0 1 | 0 - 
1 1 0 | - - 

1 1 1 | 1 0 
The first step is to arbitrarily choose values for the undefined outputs. With out simple method, the 

best solution is to choose a 0 for each such undefined output. We get this table: 

         x y z | a b 
       - 0 0 0 | 0 0 

0 0 1 | 1 1 

0 1 0 | 1 0 

0 1 1 | 0 0 
1 0 0 | 0 1 

1 0 1 | 0 0 
1 1 0 | 0 0 

1 1 1 | 1 0 
Now, we have to build two separate single-output circuits, one for the a column and one for the b 

column. A=x′y′z+x′yz′+xyz ,   B=x′y′z+xy′z′ 

For the first column, we get three 3-input AND-gates in the first layer, and a 3-input OR-gate in the 

second layer. We get three AND -gates since there are three rows in the a column with a value of 1. 
Each one has 3-inputs since there are three inputs, x, y, and z of the circuit. We get a 3-input OR-gate 

in the second layer since there are three AND -gates in the first layer. 

 
Here is the complete circuit for the first column: 

 

 
For the second column, we get two 3-input AND -gates in the first layer, and a 2-input OR-gate in the 

second layer. We get two AND-gates since there are two rows in the b column with a value of 1. Each 

one has 3-inputs since again there are three inputs, x, y, and z of the circuit. We get a 2-input AND-
gate in the second layer since there are two AND-gates in the first layer. 

 
Here is the complete circuit for the second column: 

 

 
 

Now, all we have to do is to combine the two circuits into a single one: 



  

) 

 

 

 

 
While this circuit works, it is not the one with the fewest number of gates. In fact, since both output 

columns have a 1 in the row correspoding to the inputs 0 0 1, it is clear that the gate for that row can be 
shared between the two subcircuits: 

 
 

 
In some cases, even smaller circuits can be obtained, if one is willing to accept more layers (and thus 

a higher circuit delay). 
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Boolean functions 
 

Operations of binary variables can be described by mean of appropriate mathematical function called 

Boolean function. A Boolean function define a mapping from a set of binary input values into a set of 

output values. A Boolean function is formed with binary variables, the binary operators AND and OR 

and the unary operator NOT. 

 
For example , a Boolean function f(x1,x2,x3,……,xn) =y defines a mapping from an arbitrary 

combination of binary input values (x1,x2,x3,……,xn) into a binary value y. a binary function with n 

input variable can operate on 2n distincts values. Any such function can be described by using a truth 

table consisting of 2n rows and n columns. The content of this table are the values produced by that 

function when applied to all the possible combination of the n input variable. 

 
Example 

 
 

 
The function f, representing x.y, that is f(x,y)=xy. Which mean that f=1 if x=1 and y=1 and f=0 

otherwise. 

 
For each rows of the table, there is a value of the function equal to 1 or 0. The function f is equal to the 

sum of all rows that gives a value of 1. 

 
A Boolean function may be transformed from an algebraic expression into a logic diagram composed 

of AND, OR and NOT gate. When a Boolean function is implemented with logic gates, each literal in 

the function designates an input to a gate and each term is implemented with a logic gate . e.g. 

 

 

 

 

 

F=xyz  
F=x+y′z 

 

Complement of a function 
 

The complement of a function F is F′ and is obtained from an interchange of 0’s to 1’s and 1’s to 0’s in 

the value of F. 

the complement of a function may be derived algebraically trough De Morgan’s theorem 

 
(A+B+C+….)′= A′B′C′…. 

(ABC….)′= A′+ B′+C′…… 

 
The generalized form of de Morgan’s theorem state that the complement of function is obtained by 

interchanging AND and OR and complementing each literal. 

 
F=X′YZ′+X′Y′Z′ F′=( X′YZ′+X′Y′Z′)′ 

=( X′YZ′)′.( X′Y′Z′)′ 

=( X′′+Y′+Z′′)( X′′+Y′′+Z′′) 

=( X+Y′+Z)( X+Y+Z) 

x y x.y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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Canonical form(Minterns and Maxterms ) 
 

A binary variable may appear either in it normal form or in it complement form . consider two binary 

variables x and y combined with AND operation. Since each variable may appears in either form there 

are four possible combinations: x′y′, x′y, xy′,xy. Each of the term represent one distinct area in the 

Venn diagram and is called minterm or a standard product. With n variable, 2n minterms can be 

formed. 

 
In   a similar fashion, n variables forming an OR term provide 2n possible combinations called 

maxterms or standard sum. Each maxterm is obtained from an OR term of the n variables, with each 

variable being primed if the corresponding bit is 1 and un-primed if the corresponding bit is 0. Note 

that each maxterm is the complement of its corresponding minterm and vice versa. 

 

 

 

A Boolean function may be expressed algebraically from a given truth table by forming a minterm for 

each combination of variable that produce a 1 and taken the OR of those terms. 

 
Similarly, the same function can be obtained by forming the maxterm for each combination of variable 

that produces 0 and then taken the AND of those term. 

 
It is sometime convenient to express the bolean function when it is in sum of minterms, in the following 

notation: 

 
F(X,Y,Z)=∑(1,4,5,6,7) . the summation symbol∑ stands for the ORing of the terms; the number follow 

ing it are the minterms of the function. The letters in the parenthesis following F form list of the 

variables in the order taken when the minterm is converted to an AND term. 

 
So, F(X,Y,Z)=∑(1,4,5,6,7) = X’Y’Z+XY’Z’+XY’Z+XYZ’+XYZ 

 
Sometime it is convenient to express a Boolean function in its sum of minterm. If it is not in that case, 

the expression is expanded into the sum of AND term and if there is any missing variable, it is ANDed 

with an expression such as x+x′ where x is one of the missing variable. 

 
To express a Boolean function as a product of maxterms, it must first be brought into a form of OR 

terms. This can be done by using distributive law x+xz=(x+y)(x+z). then if there is any missing 

variable, say x in each OR term is ORded with xx′. 

 
e.g. represent F=xy+x′z as a product of maxterm 

 
=(xy +x′)(xy+z) (x+x′)(y+x′)(x+z)(y+z) 

(y+x′)(x+z)(y+z) 

Adding missing variable in each term (y+x′)= x′+y+zz′ 

                                 =(x′+y+z)( x′+y+z′) (x+z) 

                                                                       = x+z+yy′=(x+y+z)(x+y′+z) 

                                        (y+z)= y+z+xx′   =( x+y+z)( x′+y+z)  

F= ( x+y+z)( x+y′+z) ( x′+y+z)( x′+y+z′) 

X Y Z Minterm maxterm 

0 0 0 x′y′z′ X+y+z 

0 0 1 X′y′z X+y+z′ 

0 1 0 X′yz′ X+y′+z 

0 1 1 X′yz X+y′+z′ 

1 0 0 Xy′z′ X′+y+z 

1 0 1 Xy′z X′+y+z′ 

1 1 0 Xyz′ X′+y′+z 

1 1 1 Xyz X′+y′+z′ 
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A convenient way to express this function is as follow : 

 
F(x,y,z)= ∏ (0,2,4,5) 

 

Standard form 
 

Another way to express a boolean function is in satndard form. Here the term that form the function 

may contains one, two or nay number of literals. There are two types of standard form. The sum of 

product and the product of sum. 

 
The sum of product(SOP) is a Boolean expression containing AND terms called product term of one 

or more literals each. The sum denotes the ORing of these terms 

 
e.g. F=x+xy′+x′yz 

 
the product of sum (POS)is a Boolean expression containing OR terms called SUM terms. Each term 

may have any number of literals. The product denotes the ANDing of these terms 

 
e.g. F= x(x+y′)(x′+y+z) 

 
a boolean function may also be expressed in a non standard form. In that case, distributive law can be 

used to remove the parenthesis 

 
F=(xy+zw)(x′y′+z′w′) 

 
= xy(x′y′+z′w′)+zw(x′y′+z′w′) 

 
=Xyx′y +xyz′w′ +zwx′y′ +zwz′w′ 

 
=xyz′w′+zwx′y′ 

 
A Boolean equation can be reduced to a minimal number of literal by algebraic manipulation. 

Unfortunately, there are no specific rules to follow that will guarantee the final answer. The only 

methods is to use the theorem and postulate of Boolean algebra and any other manipulation that 

becomes familiar 

 

Describing existing circuits using Logic expressions 
 

To define what a combinatorial circuit does, we can use a logic expression or an expression 

for short. Such an expression uses the two constants 0 and 1, variables such as x, y, and z (sometimes 

with suffixes) as names of inputs and outputs, and the operators +, . and a horizontal bar or a prime 

(which stands for not). As usual, multiplication is considered to have higher priority than addition. 

Parentheses are used to modify the priority. 

 
If Boolean functions in either Sum of Product or Product of Sum forms can be implemented 

using 2-Level implementations. 

 
For SOP forms AND gates will be in the first level and a single OR gate will be in 

the second level. For POS forms OR gates will be in the first level and a single 

AND gate will be in the second level. Note that using inverters to complement 

input variables is not counted as a level. 
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Examples: 

 
(X′+Y)(Y+XZ′)′+X(YZ)′ 

 
The equation is neither in sum of product nor in product of sum. The implementation is as follow 

 
 

 

X1X2′X3+X1′X2′X2+X1′X2X′3 

 
The equation is in sum of product. The implementation is in 2-Levels. AND gates form the first level 

and a single OR gate the second level. 
 

 

 

(X+1)(Y+0Z) 

 
The equation is neither in sum of product nor in product of sum. The implementation is as follow 

 
 

 
Power of logic expressions 

 
A valid question is: can logic expressions describe all possible combinatorial circuits?. The answer is 

yes and here is why: 

 
You can trivially convert the truth table for an arbitrary circuit into an expression. The expression will 
be in the form of a sum of products of variables and there inverses. Each row with output value of 1 of 

the truth table corresponds to one term in the sum. In such a term, a variable having a 1 in the truth 

table will be uninverted, and a variable having a 0 in the truth table will be inverted. 
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Take the following truth table for example: 

 
x y z | f 

       - 0 0 0 | 0 

0 0 1 | 0 
0 1 0 | 1 

0 1 1 | 0 
1 0 0 | 1 

1 0 1 | 0 
1 1 0 | 0 

1 1 1 | 1 
The corresponding expression is: 

 
X′Y′Z+XY′Z′+XYZ 

 
Since you can describe any combinatorial circuit with a truth table, and you can describe any truth 
table with an expression, you can describe any combinatorial circuit with an expression. 

 

Simplicity of logic expressions 
 

There are many logic expressions (and therefore many circuits) that correspond to a certain truth table, 

and therefore to a certain function computed. For instance, the following two expressions compute the 

same function: 

 
X(Y+Z) XY+XZ 

 
The left one requires two gates, one and-gate and one or-gate. The second expression requires two 
and-gates and one or-gate. It seems obvious that the first one is preferable to the second one. However, 

this is not always the case. It is not always true that the number of gates is the only way, nor even the 

best way, to determine simplicity. 

 
We have, for instance, assumed that gates are ideal. In reality, the signal takes some time to propagate 

through a gate. We call this time the gate delay. We might be interested in circuits that minimize the 
total gate delay, in other words, circuits that make the signal traverse the fewest possible gates from 

input to output. Such circuits are not necessarily the same ones that require the smallest number of 

gates. 

 

Circuit minimization 
 

The complexity of the digital logic gates that implement a Boolean function is directly related to the 

complexity of the algebraic expression from which the function is implemented. Although the truth 

table representation of a function is unique, it can appear in many different forms when expressed 

algebraically. 

Simplification through algebraic manipulation 
A Boolean equation can be reduced to a minimal number of literal by algebraic manipulation as stated 

above. Unfortunately, there are no specific rules to follow that will guarantee the final answer. The 

only methods is to use the theorem and postulate of Boolean algebra and any other manipulation that 

becomes familiar 

e.g. simplify x+x′y 

x+x′y=(x+x′)(x+y)=x+y simplify x′y′z+x′yz+xy′ 

x′y′z+x′yz+xy′=x′z(y+y′)+xy′ 

=x′z+xy′ 

Simplify xy +x′z+yz 

xy +x′z+yz= xy +x′z+yz(x+x′) xy +x′z+yzx+yzx′ 

xy(1+z) +x′z(1+y) 

=xy+x′z 
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Karnaugh map 

 
The Karnaugh map also known as Veitch diagram or simply as K map is a two dimensional form of 

the truth table, drawn in such a way that the simplification of Boolean expression can be immediately 

be seen from the location of 1’s in the map. The map is a diagram made up of squares , each sqare 

represent one minterm. Since any Boolean function can be expressed as a sum of minterms, it follows 

that a Boolean function is recognized graphically in the map from the area enclosed by those squares 

whose minterms are included in the function. 

 
A two variable Boolean function can be represented as follow 

 

 

A 

0 1 

 
 
 
 

B 1 

 
 
 

A three variable function can be represented as follow 
 

 

 

 
AB 

00 01 

A 
 

 

11 10 

 
 
 

 

C 1 

 

B 

A 

B 

0 
A’B’ AB’ 

A’B AB 

 

A’B’C’ A’BC’ ABC’ AB’C’ 

A’B’C A’BC ABC AB’C 
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A four variable Boolean function can be represented in the map bellow 

 
 
 

AB 
00 01 

CD 

A 
 

11 10 

 

00 

 
01 D 

 
01 

C 
 

01 

 

B 
 

To simplify a Boolean function using karnaugh map, the first step is to plot all ones in the function 

truth table on the map. The next step is to combine adjacent 1’s into a group of one, two, four, 

eight, sixteen. The group of minterm should be as large as possible. A single group of four minterm 

yields a simpler expression than two groups of two minterms. 

 
In a four variable karnaugh map, 

 
1 variable product term is obtained if 8 adjacent squares are covered 2 variable product term is obtained 

if 4 adjacent squares are covered 3 variable product term is obtained if 2 adjacent squares are covered 1 

variable product term is obtained if 1 square is covered 

A square having a 1 may belong to more than one term in the sum of product expression 

 
The final stage is reached when each of the group of minterms are ORded together to form the 

simplified sum of product expression 

 
The karnaugh map is not a square or rectangle as it may appear in the diagram. The top edge is 

adjacent to the bottom edge and the left hand edge adjacent to the right hand edge. Consequent, two 

squares in karnaugh map are said to be adjacent if they differ by only one variable 

 

Implicant 
 

In Boolean logic, an implicant is a "covering" (sum term or product term) of one or more minterms in a 

sum of products (or maxterms in a product of sums) of a boolean function. Formally, a product term P 
in a sum of products is an implicant of the Boolean function F if P implies F. More precisely: 

 

P implies F (and thus is an implicant of F) if F also takes the value 1 whenever P equals 1. 

where 
 F is a Boolean of n variables. 

 P is a product term 

 
This means that P < = F with respect to the natural ordering of the Boolean space. For instance, the 

function 

 
f(x,y,z,w) = xy + yz + w 

A’B’C’D’ A’BC’D’ ABC’D’ AB’C’D’ 

A’B’C’D A’BC’D ABC’D AB’C’D 

A’B’CD A’BCD ABCD AB’CD 

A’B’CD’ A’BCD’ ABCD’ AB’CD’ 
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1 

1 

1 

1 

1 

1 

is implied by xy, by xyz, by xyzw, by w and many others; these are the implicants of f. 

 

Prime implicant 
 

A prime implicant of a function is an implicant that cannot be covered by a more general (more 

reduced - meaning with fewer literals) implicant. W.V. Quine defined a prime implicant of F to be an 

implicant that is minimal - that is, if the removal of any literal from P results in a non-implicant for F. 

Essential prime implicants are prime implicants that cover an output of the function that no 

combination of other prime implicants is able to cover. 

 

 

 
 

 
AB 

00 01 
CD 

A 
 

 

11 10 

 
 

Non prime implicant 

 

00 
 

01 D 

 

11 prime implicant 
C 

1 
10 prime implicant 

 

B 

 
 
 

AB 
00 01 

CD 

A 
 

 

11 10 

 
 

 
Essential prime implicant 

 

00 
 

01 D 

 
11 

C 

 

Non Essential prime implicant 

Essential prime implicant 
 

10 
 
 

B 
 

In simplifying a Boolean function using karnaugh map, non essential prime implicant are not needed 

1 

1 

1 

1 

1 

1 
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Minimization of Boolean expressions using Karnaugh maps. 
 

Given the following truth table for the majority function. 

 
a b C M(output) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 
The Boolean 

algebraic 

expression is m = 

a′bc + ab′c + abc′ 

+ abc. 

the minimization using algebraic manipulation can 

be done as follows. m = a′bc + abc + ab′c + abc + abc′ 

+ abc 

= (a′ + a)bc + a(b′ + b)c + ab(c′ + c) 

 
= bc + ac + ab 

 
The abc term was replicated and combined with the other terms. 

 
To use a Karnaugh map we draw the following map which has a position (square) corresponding to 

each of the 8 possible combinations of the 3 Boolean variables. The upper left position corresponds to 

the 000 row of the truth table, the lower right position corresponds to 101. 
 
 

 
ab 

00 01 

a 
 

 

11 10 

 
 
 

 

c 1 

 

b 
 

 

The 1s are in the same places as they were in the original truth table. The 1 in the first row is at 

position 110 (a = 1, b = 1, c = 0). 

 
The minimization is done by drawing circles around sets of adjacent 1s. Adjacency is horizontal, 

vertical, or both. The circles must always contain 2n 1s where n is an integer. 

  1  

 1 1 1 

 



  

 

 

 

 

 
ab 

00 01 

a 
 

 

11 10 

 
 
 

 

c 1 

 

b 
 

 

We have circled two 1s. The fact that the circle spans the two possible values of a 

 
(0 and 1) means that the a term is eliminated from the Boolean expression corresponding to this circle. 

 
Now we have drawn circles around all the 1s. Thus the 

expression reduces to bc + ac + ab 

as we saw before. 

 
What is happening? What does adjacency and grouping the 1s together have to do with minimization? 

Notice that the 1 at position 111 was used by all 3 circles. This 1 corresponds to the abc term that was 

replicated in the original algebraic minimization. Adjacency of 2 1s means that the terms 
corresponding to those 1s differ in one variable only. In one case that variable is negated and in the 

other it is not. 

 
The map is easier than algebraic minimization because we just have to recognize patterns of 1s in the 

map instead of using the algebraic manipulations. Adjacency also applies to the edges of the map. 

 
Now for 4 Boolean variables. The Karnaugh map is drawn as shown below. 

 
 

 
 

AB 
00 01 

A 
 

11 10 

 

00 
 

01 D 

 
01 

C 

 
01 

 
 

B 

CD 

c 

0 

  
 

  1 

  1 1   1  

   

 

  1  

 1 1  

 1 1 1 

  1 1 

 



  

 

 

 

1 1 

1 

The following corresponds to the Boolean expression 

 
Q = A′BC′D + A′BCD + ABC′D′ + ABC′D + ABCD + ABCD′ + AB′CD + AB′CD′ 

 
RULE: Minimization is achieved by drawing the smallest possible number of circles, each 
containing the largest possible number of 1s. 

 

Grouping the 1s together results in the following. 

 
 

 
AB 

00 01 
CD 

A 
 

11 10 

 

00 
 

01 D 

 
01 

C 
 

01  
 
 

B 
 
 

The expression for the 

groupings above is Q = 

BD + AC + AB 

This expression requires 3 2-input AND gates and 1 3-input OR gate. 

 
Other examples 

 
1. F=A′B+AB 

 
 

A 
   

0 1 

 

 

=B 

B 1 

 
 

 
2. F=A′B′C′+A′B′C+A′BC′+ABC′+ABC 

A 

B 

0 

1 

1 

1 

1 1 

  

  

 1 1  

  

 



  

 

 

 

A 
AB 

00 01 11 10 

C 

0 

C 1 
1 1 

1 1 1 

1 

1 

1 

1 

1 

1 

1 1 

1 

 
 
 

 

 

 

 

=A’B’+BC’+AB 
 
 
 
 

B 

 

3. F=AB+A′BC′D+A′BCD+AB′C′D′ 
 

 

 

 
AB 

00 01 
CD 

A 
 

11 10 

 

00 
 

01 D =BD+AB+AC’D’ 
 

01 
C 

 

01 
 
 

B 
 

4. F=AC′D′+A′B′C+A′C′D+AB′D 
 

 

 

AB 
00 01 

CD 

 

A 
 

11 10 

 

00 
 

01 D =B’D+AC’D’+A’C’D+A’B’C 
 

11 
C 

 

10 

 

B 

1 1 

1 

1 

1 1 



  

 

 

 

CD 

5. F=A′B′C′D′+AB′C′D′+A′BC′D+ABC′D+A′BCD+ABCD 
 

 
 

 
AB 

00 01 

A 
 

11 10 

 

00 
 

01 D =BD+D’B’ 

 
11 

C 

 
10 

 

B 
 
 

Obtaining a Simplified product of sum using Karnaugh map 
 

The simplification of the product of sum follows the same rule as the product of sum. However, 

adjacent cells to be combined are the cells containing 0. In this approach, the obtained simplified 

function is F′. since F is represented by the square marked with 1. The function F can be obtained in 
product of sum by applying de morgan’s rule on F′. 

 
F=A′B′C′D′+A′BC′D′+AB′C′D′+A′BC′D+A′B′CD′+A′BCD′+AB′CD′ 
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The obtained simplified F′=AB+CD+BD′. Since F′′=F, By applying de morgan’s rule to F′, we obtain 

F′′=(AB+CD+BD′)′ 

=(A′+B′)(C′+D′)(B′+D) which is he simplified F in product of sum. 
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Don't Care condition 
 

Sometimes we do not care whether a 1 or 0 occurs for a certain set of inputs. It may be that those 

inputs will never occur so it makes no difference what the output is. For example, we might have a 

BCD (binary coded decimal) code which consists of 4 bits to encode the digits 0 (0000) through 9 

(1001). The remaining codes (1010 through 1111) are not used. If we had a truth table for the prime 
numbers 0 through 9, it would be 

 
A B C D F 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 1 

0 0 1 1 1 

0 1 0 0 0 

0 1 0 1 1 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 X 

1 0 1 1 X 

1 1 0 0 X 

1 1 0 1 X 

1 1 1 0 X 

1 1 1 1 X 

 
F=A′B′CD′+A′B′CD+A′BC′D+A′BCD 

 
The X in the above stand for "don’t care", we don't care whether a 1 or 0 is the value for that 

combination of inputs because (in this case) the inputs will never occur. 
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The tabulation method(Quine-McCluskey) 
 

For function of five or more variables, it is difficult to be sure that the best selection is made. In such 

case, the tabulation method can be used to overcome such difficulty. The tabulation method was first 

formulated by Quine and later improved by McCluskey. It is also known as Quine-McCluskey method. 

 
The Quine–McCluskey algorithm (or the method of prime implicants) is a method used for 

minimization of boolean functions. It is functionally identical to Karnaugh mapping, but the tabular 

form makes it more efficient for use in computer algorithms, and it also gives a deterministic way to 

check that the minimal form of a Boolean function has been reached. 

 
The method involves two steps: 

 
Finding all prime implicants of the function. 

 
Use those prime implicants in a prime implicant chart to find the essential prime implicants of the 

function, as well as other prime implicants that are necessary to cover the function. 

 
Step 1: finding prime implicants Minimizing an arbitrary function: 

A B C D f 

m0 0 0 0 0 0 

m1 0 0 0 1 0 

m2 0 0 1 0 0 

m3 0 0 1 1 0 

m4 0 1 0 0 1 

m5 0 1 0 1 0 

m6 0 1 1 0 0 

m7 0 1 1 1 0 

m8 1 0 0 0 1 

m9 1 0 0 1 x 

m10 1 0 1 0 1 

m11 1 0 1 1 1 

m12 1 1 0 0 1 

m13 1 1 0 1 0 

m14 1 1 1 0 x 

m15 1 1 1 1 1 

 

One can easily form the canonical sum of products expression from this table, simply by summing 

the minterms (leaving out don't-care terms) where the function evaluates to one: 

 
F(A,B,C,D) = A′BC′D′ + AB′C′D′ + AB′CD′ + AB′CD + ABC′D′ + ABCD 

 
Of course, that's certainly not minimal. So to optimize, all minterms that evaluate to one are first 

placed in a minterm table. Don't-care terms are also added into this table, so they can be combined with 

minterms: 



  

 

 

 

 

Number of 1s Minterm Binary Representation 

1 m4 0100 

 m8 1000 

2 m9 1001 
 m10 1010 

 m12 1100 

3 m11 1011 

 m14 1110 

4 m15 1111 

At this point, one can start combining minterms with other minterms. If two terms vary by only a 

single digit changing, that digit can be replaced with a dash indicating that the digit doesn't matter. 

Terms that can't be combined any more are marked with a "*". When going from Size 2 to Size 4, treat 

'-' as a third bit value. Ex: -110 and -100 or -11- can be combined, but not -110 and 011-. (Trick: Match 

up the '-' first.) 

 

Number of 1s Minterm 0-Cube | Size 2 Implicants 

| - 

| Size 4 Implicants 

|    - 

1 m4 0100  | m(4,12) -100* | m(8,9,10,11) 10--* 

 m8 1000  | m(8,9) 100- | m(8,10,12,14) 1--0* 

    | m(8,10) 10-0 |    - 

2 m9 1001  | m(8,12) 1-00 | m(10,11,14,15) 1-1-* 

 m10 1010  |---------------------- | 

 m12 1100  | m(9,11) 10-1 | 

------------------------------ | m(10,11) 101- | 

3 m11 1011 | m(10,14) 1-10 | 

 m14 1110 | m(12,14) 11-0 | 

   |    - | 

4 m15 1111 | m(11,15) 1-11 | 

   | m(14,15) 111- | 

 

 

 

 

 

 
At this point, the terms marked with * can be seen as a solution. 

That is the solution is F=AB′+AD′+AC+BC′D′ 

If the karnaugh map was used, we should have obtain an expression simplier than this. To obtain a 

minimal form, we need to use the prime implicant chart 

 
Step 2: prime implicant chart 

 
None of the terms can be combined any further than this, so at this point we construct an essential 

prime implicant table. Along the side goes the prime implicants that have just been generated, and 

along the top go the minterms specified 



  

 

 

 

earlier. The don't care terms are not placed on top - they are omitted from this section because they are 

not necessary inputs. 

 
 

4 8 10 11 12 15 
 

m(4,12) X 
   

X 
 

-100 (BC′D′) 

m(8,9,10,11) 
 

X X X 
  

10--(AB′) 

m(8,10,12,14) 
 

X X 
 

X 
 

1--0 (AD′) 

m(10,11,14,15) 
  

X X 
 

X 1-1- (AC) 

 
In the prime implicant table shown above, there are 5 rows, one row for each of the prime 

implicant and 6 columns, each representing one minterm of the function. X is placed in each row to 

indicate the minterms contained in the prime implicant of that row. For example, the two X in the first 

row indicate that minterm 4 and 12 are contained in the prime implicant represented by (-100) i.e. 

BC′D′ 

 
The completed prime implicant table is inspected for columns containing only a single x. in this 

example, there are two minterms whose column have a single x. 4,15. The minterm 4 is covered by 

prime implicant BC′D′. that is the selection of prime implicant BC′D′ guarantee that minterm 4 is 

included in the selection. Similarly, for minterm 15 is covered by prime implicant AC. Prime 

implicants that cover minterms with a single X in their column are called essential prime implicants. 

 
Those essential prime implicant must be selected. 

 
Now we find out each column whose minterm is covered by the selected essential prime implicant 

 
For this example, essential prime implicant BC′D′ covers minterm 4 and 12. Essential prime implicant 

AC covers 10, 11 and 15. An inspection of the implicant table shows that, all the minterms are covered 

by the essential prime implicant except the minterms 8. The minterms not selected must be included by 

the selection of one or more prime implicants. From this example, we have only one minterm which is 

8. It can be included in the selection either by including the prime implicant AB′ or AD′. Since both of 

them have minterm 8 in their selection. We have thus found the minimum set of prime implicants 

whose sum gives the required minimized function: 

 
F=BC′D′+AD′+AC OR F= BC′D′+AB′+AC. 

 
Both of those final equations are functionally equivalent to this original (very area-

expensive) equation: F(A,B,C,D) = A′BC′D′ + AB′C′D′ + AB′CD′ + AB′CD + 

ABC′D′ + ABCD 

 
 
 
 
 
 
 
 



  

 

 

 

Implementing logical circuit using NAND and NOR gate only. 
 

In addition to AND, OR, and NOT gates, other logic gates like NAND and NOR are also used in the 
design of digital circuits. 

 
The NAND gate represents the complement of the AND operation. Its name is an 

 
abbreviation of NOT AND. The graphic symbol for the NAND gate consists of an AND symbol with a 
bubble on the output, denoting that a complement operation is performed on the output of the AND gate 

as shown earlier 

The NOR gate represents the complement of the OR operation. Its name is an abbreviation of NOT 

OR. The graphic symbol for the NOR gate consists of an OR symbol with a bubble on the output, 
denoting that a complement operation is performed on the output of the OR gate as shown earlier. 

 
A universal gate is a gate which can implement any Boolean function without need to use any other 

gate type. The NAND and NOR gates are universal gates. In practice, this is advantageous since 
NAND and NOR gates are economical and easier to fabricate and are the basic gates used in all IC 

digital logic families. In fact, an AND gate is typically implemented as a NAND gate followed by an 

inverter not the other way around. 

 
Likewise, an OR gate is typically implemented as a NOR gate followed by an inverter not the other way 

around. 

 
NAND Gate is a Universal Gate 

 
To prove that any Boolean function can be implemented using only NAND gates, we will show that 
the AND, OR, and NOT operations can be performed using only these gates. A universal gate is a gate 

which can implement any Boolean function without need to use any other gate type. 

Implementing an Inverter Using only NAND Gate 

 
The figure shows two ways in which a NAND gate can be used as an inverter (NOT gate). 

 
1. All NAND input pins connect to the input signal A gives an output A′. 

 
2. One NAND input pin is connected to the input signal A while all other input pins are connected to 

logic 1. The output will be A′. 

 

Implementing AND Using only NAND Gates 

 
An AND gate can be replaced by NAND gates as shown in the 

figure (The AND is replaced by a NAND gate with its output 

complemented by a NAND gate inverter). 

 

 
 

 

 

 



  

 

 

 

Implementing OR Using only NAND Gates 

 
An OR gate can be replaced by NAND gates as shown in the figure (The OR gate is replaced by a 

NAND gate with all its inputs complemented by NAND gate inverters). 
 

 

 

Thus, the NAND gate is a universal gate since it can implement the AND, OR and NOT functions. 

 
NOR Gate is a Universal Gate: 

 
To prove that any Boolean function can be implemented using only NOR gates, we will show that the 

AND, OR, and NOT operations can be performed using only these gates. 

 
Implementing an Inverter Using only NOR Gate 

 
The figure shows two ways in which a NOR gate can be used as an 

inverter (NOT gate). 1.All NOR input pins connect to the input signal 

A gives an output A′. 

 
2. One NOR input pin is connected to the input signal A while all other input pins are connected to 

logic 0. The output will be A′. 
 
 

 
Implementing OR Using only NOR Gates 

 
An OR gate can be replaced by NOR gates as shown in the figure (The OR is replaced by a NOR gate 
with its output complemented by a NOR gate inverter) 

 

 

 

Implementing AND Using only NOR Gates 

 
An AND gate can be replaced by NOR gates as shown in the figure (The AND gate is replaced by a 

NOR gate with all its inputs complemented by NOR gate inverters) 



  

 

 

 

 

 

 

Thus, the NOR gate is a universal gate since it can implement the AND, OR and NOT functions. 

 
Equivalent Gates: 

 
The shown figure summarizes important cases of gate equivalence. Note that bubbles indicate a 

complement operation (inverter). 

 
A NAND gate is equivalent to an inverted-input OR gate. 

 

 

An AND gate is equivalent to an inverted-input NOR gate. 

 

 
A NOR gate is equivalent to an inverted-input AND gate. 

 
 

 
An OR gate is equivalent to an inverted-input NAND gate. 

 

 
Two NOT gates in series are same as a buffer because they cancel each other as A′′=A. 

 



  

 

 

 

Two-Level Implementations: 

 
We have seen before that Boolean functions in either SOP or POS forms can be implemented using 2-

Level implementations. 

 
For SOP forms AND gates will be in the first level and a single OR gate will be 

in the second level. For POS forms OR gates will be in the first level and a single 

AND gate will be in the second level. Note that using inverters to complement 

input variables is not counted as a level. 

To implement a function using NAND gates only, it must first be simplified to a sum of product and to 

implement a function using NOR gates only, it must first be simplified to a product of sum 

 
We will show that SOP forms can be implemented using only NAND gates, while POS forms can be 
implemented using only NOR gates through examples. 

 
Example 1: Implement the following SOP function using NAND gate only 

 
F = XZ + Y′Z + X′YZ 

 
Being an SOP expression, it is implemented in 2-levels as shown in the figure. 

 
 

 
Introducing two successive inverters at the inputs of the OR gate results in the shown equivalent 
implementation. Since two successive inverters on the same line will not have an overall effect on the 

logic as it is shown before. 
 

 
By associating one of the inverters with the output of the first level AND gate and the other with the 

input of the OR gate, it is clear that this implementation is reducible to 2-level implementation where 

both levels are NAND gates as shown in Figure. 
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Example 2: Implement the following POS function using NOR gates only 

 
F = (X+Z) (Y′+Z) (X′+Y+Z) 

 
Being a POS expression, it is implemented in 2-levels as shown in the figure. 

 

 
Introducing two successive inverters at the inputs of the AND gate results in the shown equivalent 

implementation. Since two successive inverters on the same line will not have an overall effect on the 

logic as it is shown before. 

 

 
By associating one of the inverters with the output of the first level OR gates and the other with the 

input of the AND gate, it is clear that this implementation is reducible to 2-level implementation where 
both levels are NOR gates as shown in Figure. 



  

) 

 

 

 

 
 

There are some other types of 2-level combinational circuits which are 

 
• NAND-AND 

 
• AND-NOR, 

 
• NOR-OR, 

 
• OR-NAND 

 
These are explained by examples. 

 
AND-NOR functions: 

 
Example 3: Implement the following function F=(XZ+Y′Z+X′YZ) ′ OR F′=XZ+Y′Z+X′YZ 

 
Since F′ is in SOP form, it can be implemented by using NAND-NAND circuit. 

 
By complementing the output we can get F, or by using NAND-AND circuit as shown in the figure. 

 
 

 
It can also be implemented using AND-NOR circuit as it is equivalent to NAND- AND circuit as shown 

in the figure. 
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OR-NAND functions: 

 

Example 4: Implement the following function 

F=((X+Z)(Y′+Z)(X′+Y+Z)) ′ orF′ 

(X+Z)(Y′+Z)(X′+Y+Z) 

Since F′ is in POS form, it can be implemented by using NOR-NOR circuit. 

 
By complementing the output we can get F, or by using NOR-OR circuit as shown in the figure. 

 

 

 
 

It can also be implemented using OR-NAND circuit as it is equivalent to NOR-OR circuit as shown in the 
figure 
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Combinatorial Circuits 
 

The design of a combinational circuit starts from the verbal outline of the problem and ends with a 

logic circuit diagram or a set of Boolean functions from which the Boolean function can be easily 

obtained. The procedure involves the following steps: 

 
- The problem is stated 

- The number of available input variables and required output variables is determined. 

- The input and output variable are assigned their letter symbol 

- The truth table that defines the required relationship between the inputs and the outputs is 

derived. 

- The simplified Boolean function for each output is obtained 

- The logic diagram is drawn. 

 

Example of combinational circuit 
 

Adders 
 

In electronics, an adder or summer is a digital circuit that performs addition of numbers. In modern 

computers adders reside in the arithmetic logic unit (ALU) where other operations are performed. 

Although adders can be constructed for many numerical representations, such as Binary-coded decimal 

or excess-3, the most common adders operate on binary numbers. In cases where twos complement or 

ones complement is being used to represent negative numbers, it is trivial to modify an adder into an 

adder-subtracter. Other signed number representations require a more complex adder. 

 
-Half Adder 

 
A half adder is a logical circuit that performs an addition operation on two binary digits. The half adder 

produces a sum and a carry value which are both binary digits. 

 
A half adder has two inputs, generally labelled A and B, and two outputs, the sum S and carry C. S is 

the two-bit XOR of A and B, and C is the AND of A and B. Essentially the output of a half adder is the 

sum of two one-bit numbers, with C being the most significant of these two outputs. 

 
The drawback of this circuit is that in case of a multibit addition, it 

cannot include a carry. Following is the truth table for a half adder: 

A B Carry Sum 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 
Equation of the Sum and Carry. 

 
Sum=A′B+AB′ Carry=AB 

 
One can see that Sum can also be implemented using XOR gate as  A   B 



  

 

 

 

 

 
 

-Full Adder. 

 
A full adder has three inputs A, B, and a carry in C, such that multiple adders can be used to add larger 

numbers. To remove ambiguity between the input and output carry lines, the carry in is labelled Ci or 
Cin while the carry out is labelled Co or Cout. 

 
A full adder is a logical circuit that performs an addition operation on three binary digits. The full 

adder produces a sum and carry value, which are both binary digits. It can be combined with other full 

adders or work on its own. 

 
Input Output 

A B Ci Co S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

 
Co=A′BCi+AB′Ci+ABCi′+ABCi S=A′B′Ci +A′BCi′+ABCi′+ABCi 

A full adder can be trivially built using our ordinary design methods for combinatorial circuits. Here is 

the resulting  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

circuit diagram using NAND gates only: 
 

Co=A′BCi+AB′Ci+ABCi′+ABCi by manipulating Co,  



  

 

 

 

we can see thatCo= Ci(AB)+AB S=A′B′Ci +A′BCi′+ABCi′+ABCi By 

manipulating S, we can see that S=Ci(AB) 

Note that the final OR gate before the carry-out output may be replaced by an XOR gate without 

altering the resulting logic. This is because the only discrepancy between OR and XOR gates occurs 

when both inputs are 1; for the adder shown here, this is never possible. Using only two types of gates 

is convenient if one desires to implement the adder directly using common IC chips. 

 
A full adder can be constructed from two half adders by connecting A and B to the input of one half 

adder, connecting the sum from that to an input to the second adder, connecting Ci to the other input 

and OR the two carry outputs. Equivalently, S could be made the three-bit xor of A, B, and Ci and Co 

could be made the three-bit majority function of A, B, and Ci. The output of the full adder is the two-
bit arithmetic sum of three one-bit numbers. 

 

 

 

 

Ripple carry adder 

 
It is possible to create a logical circuit using multiple full adders to add N-bit numbers. Each full adder 

inputs a Cin, which is the Cout of the previous adder. This kind of adder is a ripple carry adder, since 

each carry bit "ripples" to the next full adder. Note that the first (and only the first) full adder may be 
replaced by a half adder. 

 
 

 
The layout of ripple carry adder is simple, which allows for fast design time; however, the ripple carry 
adder is relatively slow, since each full adder must wait for the carry bit to be calculated from the 

previous full adder. The gate delay can easily be calculated by inspection of the full adder circuit. 

Following the path from Cin to Cout shows 2 gates that must be passed through. Therefore, a 32-bit 

adder requires 31 carry computations and the final sum calculation for a total of 31 * 2 + 1 = 63 gate 
delays. 

 

Subtractor 
 

In electronics, a subtractor can be designed using the same approach as that of an adder. The binary 

subtraction process is summarized below. As with an adder, in the general case of calculations on 

multi-bit numbers, three bits are involved in performing the subtraction for each bit: the minuend (Xi), 
subtrahend (Yi), and a borrow in from the previous (less significant) bit order position (Bi). The 

outputs are the difference bit (Di) and borrow bit Bi + 1. 

 



  

 

 

 

Half subtractor 

 
The half-subtractor is a combinational circuit which is used to perform subtraction of two bits. It has 

two inputs, X (minuend) and Y (subtrahend) and two outputs D (difference) and B (borrow). Such a 

circuit is called a half-subtractor because it enables a borrow out of the current arithmetic operation but 
no borrow in from a previous arithmetic operation. 

 
The truth table for the half subtractor is given below. 

 

 

D=X′Y+X

Y′ or D= X Y B=X′Y 

Full Subtractor 

 
As in the case of the addition using logic gates , a full subtractor is made by combining two half-
subtractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as 

BORIN in the diagram below) and so allows cascading which results in the possibility of multi-bit 

subtraction. 

 
The final truth table for a full subtractor looks like: 

 
A B BORIN D BOROUT 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 0 

0 1 1 0 0 

1 0 0 1 1 

1 0 1 0 1 

1 1 0 0 0 

1 1 1 1 1 

 

 
 

Find out the equations of the borrow 

and the difference The circuit diagram 

for a full subtractor is given below. 

 

X Y D B 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 



  

 

 

 

For a wide range of operations many circuit elements will be required. A neater solution will be to use 

subtraction via addition using complementing as was discussed in the binary arithmetic topic. In this 

case only adders are needed as shown bellow. 

 

Binary subtraction using adders 
 

Our binary adder can already handle negative numbers as indicated in the section on binary arithmetic 

But we have not discussed how we can get it to handle subtraction. To see how this can be done, notice 

that in order to compute the expression x - y, we can compute the expression x + -y instead. We know 

from the section on binary arithmetic how to negate a number by inverting all the bits and adding 1. 

Thus, we can compute the expression as x + inv(y) + 1. It suffices to invert all the inputs of the 

second operand before they reach the adder, but how do we add the 1. That seems to require another 

adder just for that. Luckily, we have an unused carry-in signal to position 0 that we can use. Giving a 1 

on this input in effect adds one to the result. The complete circuit with addition and subtraction looks 

like this: 

 

 

 

Exercise. Generate the truth table and Draw a logic circuit for a 3 bit message Parity Checker and 

generator seen in data representation section 

 

Medium Scale integration component 
 

The purpose of circuit minimization is to obtain an algebraic expression that, when implemented 

results in a low cost circuit. Digital circuit are constructed with integrated circuit(IC). An IC is a small 

silicon semiconductor crystal called chip containing the electronic component for digital gates. The 

various gates are interconnected inside the chip to form the required circuit. Digital IC are categorized 

according to their circuit complexity as measured by the number of logic gates in a single packages. 

 
- Small scale integration (SSI). SSi devices contain fewer than 10 gates. The input and 

output of the gates are connected directly to the pins in the package. 

- Medium Scale Integration. MSI devices have the complexity of approximately 10 to 100 

gates in a single package 

- Large Scale Integration (LSI). LSI devices contain between 100 and a few thousand gates in a 

single package 

- Very Large Scale Integration(VLSI). VLSI devices contain thousand of gates within a single 

package. VLSI devices have revolutionized the computer system design technology giving the 

designer the capabilities to create structures that previously were uneconomical. 

 
Multiplexer 

 
A multiplexer is a combinatorial circuit that is given a certain number (usually a power of two) data 

inputs, let us say 2n, and n address inputs used as a binary number to select one of the data inputs. The 

multiplexer has a single output, which has the same value as the selected data input. 

 



  

 

 

 

In other words, the multiplexer works like the input selector of a home music system. Only one input is 

selected at a time, and the selected input is transmitted to the single output. While on the music system, 

the selection of the input is made manually, the multiplexer chooses its input based on a binary 
number, the address input. 

 
The truth table for a multiplexer is huge for all but the smallest values of n. We therefore use an 
abbreviated version of the truth table in which some inputs are replaced by `-' to indicate that the input 

value does not matter. 

 
Here is such an abbreviated truth table for n = 3. The full truth table would have 2(3 + 23) = 2048 rows. 

SELECT INPUT 

a2 a1 a0 d7 d6 d5 d4 d3 d2 d1 d0 | x 

- - - - -   -   -   -   -   -   -   --- - 

0 0 0 - - - - - - - 0 | 0 

0 0 0 - - - - - - - 1 | 1 

0 0 1 - - - - - - 0 - | 0 

0 0 1 - - - - - - 1 - | 1 

0 1 0 - - - - - 0 - - | 0 

0 1 0 - - - - - 1 - - | 1 

0 1 1 - - - - 0 - - - | 0 

0 1 1 - - - - 1 - - - | 1 

1 0 0 - - - 0 - - - - | 0 

1 0 0 - - - 1 - - - - | 1 

1 0 1 - - 0 - - - - - | 0 

1 0 1 - - 1 - - - - - | 1 

1 1 0 - 0 - - - - - - | 0 

1 1 0 - 1 - - - - - - | 1 

1 1 1 0 - - - - - - - | 0 

1 1 1 1 - - - - - - - | 1 

 
We can abbreviate this table even more by using a letter to indicate the value of the selected input, like 

this: 

 
a2 a1 a0 d7 d6 d5 d4 d3 d2 d1 d0 | x 

- - - - - - - - - - - --- - 

0 0 0 - - - - - - - c | c 

0 0 1 - - - - - - c - | c 

0 1 0 - - - - - c - - | c 

0 1 1 - - - - c - - - | c 

1 0 0 - - - c - - - - | c 

1 0 1 - - c - - - - - | c 

1 1 0 - c - - - - - - | c 

1 1 1 c - - - - - - - | c 

 
The same way we can simplify the truth table for the multiplexer, we can also simplify the 
corresponding circuit. Indeed, our simple design method would yield a very large circuit. The simplified 

circuit looks like this: 



  

 

 

 

 
 
 

 
 

Demultiplexer 

 
The demultiplexer is the inverse of the multiplexer, in that it takes a single data input and n address 

inputs. It has 2n outputs. The address input determine which data output is going to have the same 

value as the data input. The other data outputs will have the value 0. 

 
Here is an abbreviated truth table for the demultiplexer. We could have given the full table since it has 
only 16 rows, but we will use the same convention as for the multiplexer where we abbreviated the 

values of the data inputs. 

 
a2 a1 a0 d | x7 x6 x5 x4 x3 x2 x1 x0 

 

0 0 0 c | 0 0 0 0 0 0 0 c 

0 0 1 c | 0 0 0 0 0 0 c 0 
0 1 0 c | 0 0 0 0 0 c 0 0 
0 1 1 c | 0 0 0 0 c 0 0 0 
1 0 0 c | 0 0 0 c 0 0 0 0 

1 0 1 c | 0 0 c 0 0 0 0 0 
1 1 0 c | 0 c 0 0 0 0 0 0 

1 1 1 c | c 0 0 0 0 0 0 0 

Here is one possible circuit diagram for the demultiplexer: 



  

 

 

 

 
 

 
 

 

Decoder 

 
In both the multiplexer and the demultiplexer, part of the circuits decode the address inputs, i.e. it 

translates a binary number of n digits to 2n outputs, one of which (the one that corresponds to the value 

of the binary number) is 1 and the others of which are 0. 

 
It is sometimes advantageous to separate this function from the rest of the circuit, since it is useful 
in many other applications. Thus, we obtain a new combinatorial circuit that we call the decoder. It has 

the following truth table (for n 

= 3): 

 
a2 a1 a0 | x7 x6 x5 x4 x3 x2 x1 x0 

 

0 0 0 | 0 0 0 0 0 0 0 1 
0 0 1 | 0 0 0 0 0 0 1 0 

0 1 0 | 0 0 0 0 0 1 0 0 

0 1 1 | 0 0 0 0 1 0 0 0 
1 0 0 | 0 0 0 1 0 0 0 0 

1 0 1 | 0 0 1 0 0 0 0 0 
1 1 0 | 0 1 0 0 0 0 0 0 

1 1 1 | 1 0 0 0 0 0 0 0 

Here is the circuit diagram for the decoder: 



  

 

 

 

 
 

 

 

Encoder 

 
An encoder has 2n input lines and n output lines. The output lines generate a binary code corresponding 

to the input value. For example a single bit 4 to 2 encoder takes in 4 bits and outputs 2 bits. It is 

assumed that there are only 4 types of input signals these are : 0001, 0010, 0100, 1000. 

 
I3 I2 I1 I0 F1 F0 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

1 0 0 0 1 1 

 
4 to 2 encoder 

 



  

 

 

 

The encoder has the limitation that only one input can be active at any given time. If two inputs are 
simultaneously active, the output produces an undefined combination. To prevent this we make use of 

the priority encoder. 

 
A priority encoder is such that if two or more inputs are given at the same time, the input having the 
highest priority will take precedence. An example of a single bit 4 to 2 encoder is shown. 

 
I3 I2 I1 I0 F1 F0 

0 0 0 1 0 0 

0 0 1 X 0 1 

0 1 X X 1 0 

1 X X X 1 1 

 
4 to 2 priority encoder 

 
The X’s designate the don’t care condition designating that fact that the binary value may be equal 

either to 0 or 1. For example, the input I3has the highest priority so regarded the value of other inputs, 

if the value of I3 is 1, the output for F1F0=11(binary 3) 

 
Exercise 

 
1 By using algebraic manipulation, Show that: 

- A’B’C+A’BC’+AB’C’+ABC= A  (B  C) - AB+C’D = 

(A+B+C)(A+B’+C)(A’+B+C)(A’+B+C’) 
 

2. A circuit has four inputs D,C,B,A encoded in natural binary form where A is the least significant bit. 

The inputs in the range 0000=0 to 1011=11 represents the months of the year from January (0) to 
December (11). Input in the range 1100-1111(i.e.12 to 15) cannot occur. The output of the circuit is 

true if the month represented by the input has 31 days. Otherwise the output is false. The output for 

inputs in the range 1100 to 1111 is undefined. 

- Draw the truth table to represent the problem and obtain the function F as a Sum of minterm. 

- Use the Karnaugh map to obtain a simplified expression for the function F. 
- Construct the circuit to implements the function using NOR gates only. 

3. A circuit has four inputs P,Q,R,S, representing the natural binary number 0000=0, to 1111=15. P is 

the most significant bit. The circuit has one output, X, which is true if the input to the circuit represents 

is a prime number and false otherwise (A prime number is a number which is only divisible by 1 and 

by itself. Note that zero(0000) and one(0001) are not considered as prime numbers) 

i. Design a true table for this circuit, and hence obtain an expression for X in terms of P,Q,R,S. 
ii. Design a circuit diagram to implement this function using NOR gate only 

 

4. A combinational circuit is defined by the following three Boolean functions: F1=x’y’z’+xz 

F2=xy’z’+x’y F3=x’y’z+xy Design the circuit that implements the functions 
 

5. A circuit implements the Boolean function F=A’B’C’D’+A’BCD’+AB’C’D’+ABC’D It is found 

that the circuit input combinations A’B’CD’, A’BC’D’, AB’CD’ can never occur. 

i. Find a simpler expression for F using the proper don’t care condition. 

ii. Design the circuit implementing the simplified expression of F 
6. A combinational circuit is defined by the following three Boolean functions: F1=x’y’z’+xz 
 F2=xy’z’+x’y F3=x’y’z+xy Design the circuit with a decoder and external gates. 

7. A circuit has four inputs P,Q,R,S, representing the natural binary number 0000=0, to 1111=15. P is 

the most significant bit. The circuit has one output, X, which is true if the number represented is 

divisible by three (Regard zero as being indivisible by three.) 
Design a true table for this circuit, and hence obtain an expression for X in terms of P,Q,R,S as a 

product of maxterms and also as a sum of minterms 

Design a circuit diagram to implement this function 
8. Plot the following function on K map and use the K map to simplify the expression. 

F  ABC  ABC  ABC  ABC  ABC  ABC,F  ABC  ABC  ABC  ABC 

9. Simplify the following expressions by means of Boolean algebra 

F  ABCD  ABCD  ABCD  ABCD  ABCD  ABCD  ABCD  ABCD 

F  ABC  ABC  ABC  ABC  ABC 



  

 

 

 

 

 

 
Introduction 

Sequential circuit 

 

In the previous session, we said that the output of a combinational circuit depends solely upon the 
input. The implication is that combinational circuits have no memory. In order to build sophisticated 

digital logic circuits, including computers, we need more a powerful model. We need circuits whose 

output depends upon both the input of the circuit and its previous state. In other words, we need 
circuits that have memory. 

 
For a device to serve as a memory, it must have three characteristics: 

 

 the device must have two stable states 

 there must be a way to read the state of the device 

 there must be a way to set the state at least once. 

 
It is possible to produce circuits with memory using the digital logic gates we've already seen. To do 

that, we need to introduce the concept of feedback. So far, the logical flow in the circuits we've studied 
has been from input to output. Such a circuit is called acyclic. Now we will introduce a circuit in which 

the output is fed back to the input, giving the circuit memory. (There are other memory technologies 

that store electric charges or magnetic fields; these do not depend on feedback.) 
 

 

Latches and flip-flops 
 

In the same way that gates are the building blocks of combinatorial circuits, latches and flip-flops are 

the building blocks of sequential circuits. 

 
While gates had to be built directly from transistors, latches can be built from gates, and flip-flops can 

be built from latches. This fact will make it somewhat easier to understand latches and flip-flops. 

 
Both latches and flip-flops are circuit elements whose output depends not only on the current 

inputs, but also on previous inputs and outputs. The difference between a latch and a flip-flop is that a 

latch does not have a clock signal, whereas a flip-flop always does. 

 

Latches 
 

How can we make a circuit out of gates that is not combinatorial? The answer is feed-back, which 

means that we create loops in the circuit diagrams so that output values depend, indirectly, on 

themselves. If such feed-back is positive then the circuit tends to have stable states, and if it is negative 

the circuit will tend to oscillate. 

 
In order for a logical circuit to "remember" and retain its logical state even after the controlling 

input signal(s) have been removed, it is necessary for the circuit to include some form of 
feedback. We might start with a pair of inverters, each having its input connected to the other's 

output. The two outputs will always have opposite logic levels. 



  

 

 

 

The problem with this is that we don't have any additional inputs that we can use to change the 
logic states if we want. We can solve this problem by replacing the inverters with NAND or NOR 

gates, and using the extra input lines to control the circuit. 

 
The circuit shown below is a basic NAND latch. The inputs are generally designated "S" and "R" 
for "Set" and "Reset" respectively. Because the NAND inputs must normally be logic 1 to 

avoid affecting the latching action, the inputs are considered to be inverted in this circuit. 

 
The outputs of any single-bit latch or memory are traditionally designated Q and Q'. In a 

commercial latch circuit, either or both of these may be available for use by other circuits. In any 
case, the circuit itself is: 

 

 

For the NAND latch circuit, both inputs should normally be at a logic 1 level. Changing an input to 
a logic 0 level will force that output to a logic 1. The same logic 1 will also be applied to the second 

input of the other NAND gate, allowing that output to fall to a logic 0 level. This in turn feeds back 

to the second input of the original gate, forcing its output to remain at logic 1. 

 
Applying another logic 0 input to the same gate will have no further effect on this circuit. 

However, applying a logic 0 to the other gate will cause the same reaction in the other direction, thus 
changing the state of the latch circuit the other way. 

 
Note that it is forbidden to have both inputs at a logic 0 level at the same time. That state will force 

both outputs to a logic 1, overriding the feedback latching action. In this condition, whichever input 

goes to logic 1 first will lose control, while the other input (still at logic 0) controls the resulting 

state of the latch. If both inputs go to logic 1 simultaneously, the result is a "race" condition, and the 
final state of the latch cannot be determined ahead of time. 

 
The same functions can also be performed using NOR gates. A few adjustments must be made to 

allow for the difference in the logic function, but the logic involved is quite similar. 

 
The circuit shown below is a basic NOR latch. The inputs are generally designated "S" and "R" 
for "Set" and "Reset" respectively. Because the NOR inputs must normally be logic 0 to avoid 

overriding the latching action, the inputs are not inverted in this circuit. The NOR-based latch 

circuit is: 

 
For the NOR latch circuit, both inputs should normally be at a logic 0 level. Changing an input to a 

logic 1 level will force that output to a logic 0. The same logic 0 will also be applied to the second 
input of the other NOR gate, allowing that output to rise to a logic 1 level. This in turn feeds back to 

the second input of the original gate, forcing its output to remain at logic 0 even after the external 

input is removed. 

Applying another logic 1 input to the same gate will have no further effect on this circuit. 
However, applying a logic 1 to the other gate will cause the same reaction in the other direction, thus 

changing the state of the latch circuit the other way. 

 
Note that it is forbidden to have both inputs at a logic 1 level at the same time. That state will 
force both outputs to a logic 0, overriding the feedback latching action. In this condition, 

whichever input goes to logic 0 first will lose control, while the other input (still at logic 1) 

controls the resulting state of the latch. If both inputs go to logic 0 simultaneously, the result is a 
"race" condition, and the final state of the latch cannot be determined ahead of time. 



  

 

 

 

 

 
 

One problem with the basic RS NOR latch is that the input signals actively drive their respective 
outputs to a logic 0, rather than to a logic 1. Thus, the S input signal is applied to the gate that 

produces the Q' output, while the R input signal is applied to the gate that produces the Q output. 

The circuit works fine, but this reversal of inputs can be confusing when you first try to deal with 
NOR-based circuits. 

 

Flip-flops 
 

Latches are asynchronous, which means that the output changes very soon after the input changes. 

Most computers today, on the other hand, are synchronous, which means that the outputs of all the 

sequential circuits change simultaneously to the rhythm of a global clock signal. 

 
A flip-flop is a synchronous version of the latch. 

 
A flip-flop circuit can be constructed from two NAND gates or two NOR gates. These flip-flops are 

shown in Figure 2 and Figure 3. Each flip-flop has two outputs, Q and Q′, and two inputs, set and reset. 

This type of flip-flop is referred to as an SR flip-flop or SR latch. The flip-flop in Figure 2 has two 

useful states. When Q=1 and Q′=0, it is in the set state (or 1-state). When Q=0 and Q′=1, it is in the 

clear state (or 0  -state). The outputs Q and Q′ are complements of each other and are referred to as the 

normal and complement outputs, respectively. The binary state of the flip-flop is taken to be the value of 

the normal output. 

 
When a 1 is applied to both the set and reset inputs of the flip-flop in Figure 2, both Q and Q′ outputs 

go to 0. This condition violates the fact that both outputs are complements of each other. In normal 

operation this condition must be avoided by making sure that 1's are not applied to both inputs 

simultaneously. 

 
 

 
(a) Logic diagram 

 

 
(b) Truth table 

 
Figure 2. Basic flip-flop circuit with NOR gates 



  

 

 

 

 

 

 

(a) Logic diagram 

 

 
(b) Truth table 

 
Figure 3. Basic flip-flop circuit with NAND gates 

 
The NAND basic flip-flop circuit in Figure 3(a) operates with inputs normally at 1 unless the state of 

the flip-flop has to be changed. A 0 applied momentarily to the set input causes Q to go to 1 and Q′ to 

go to 0, putting the flip-flop in the set state. When both inputs go to 0, both outputs go to 1. This 
condition should be avoided in normal operation. 

 
Clocked SR Flip-Flop 

 
The clocked SR flip-flop shown in Figure 4 consists of a basic NOR flip-flop and two AND gates. 

The outputs of the two AND gates remain at 0 as long as the clock pulse (or CP) is 0, regardless of the 

S and R input values. When the clock pulse goes to 1, information from the S and R inputs passes 
through to the basic flip-flop. With both S=1 and R=1, the occurrence of a clock pulse causes both 

outputs to momentarily go to 0. When the pulse is removed, the state of the flip-flop is indeterminate, 

ie., either state may result, depending on whether the set or reset input of the flip-flop remains a 1 

longer than the transition to 0 at the end of the pulse. 

 

 
(a) Logic diagram 

 

 
(b) Truth table 

 
Figure 4. Clocked SR flip-flop 



  

 

 

 

D Flip-Flop 

 
The D flip-flop shown in Figure 5 is a modification of the clocked SR flip-flop. The D input goes 

directly into the S input and the complement of the D input goes to the R input. The D input is sampled 
during the occurrence of a clock pulse. If it is 1, the flip-flop is switched to the set state (unless it was 

already set). If it is 0, the flip-flop switches to the clear state. 

 

 
(a) Logic diagram with NAND gates 

 

 

 

 

 

 
(b) Graphical symbol (c) Transition table 

 

 
 

Figure 5. Clocked D flip-flop 

 
JK Flip-Flop 

 
A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate state of the SR type is 
defined in the JK type. Inputs J and K behave like inputs S and R to set and clear the flip-flop (note 

that in a JK flip-flop, the letter J is for set and the letter K is for clear). When logic 1 inputs are applied 

to both J and K simultaneously, the flip-flop switches to its complement state, ie., if Q=1, it switches to 
Q=0 and vice versa. 

 
A clocked JK flip-flop is shown in Figure 6. Output Q is ANDed with K and CP inputs so that the flip-

flop is cleared during a clock pulse only if Q was previously 1. Similarly, ouput Q′ is ANDed with J 

and CP inputs so that the flip-flop is set with a clock pulse only if Q′ was previously 1. 

 
Note that because of the feedback connection in the JK flip-flop, a CP signal which remains a 1 (while 

J=K=1) after the outputs have been complemented once will cause repeated and continuous transitions 
of the outputs. To avoid this, the clock pulses must have a time duration less than the propagation 

delay through the flip-flop. The restriction on the pulse width can be eliminated with a master-slave or 

edge-triggered construction. The same reasoning also applies to the T flip-flop presented next. 
 
 

 
(a) Logic diagram 



  

 

 

 

 

 
 

(c) Transition table 

 
Figure 6. Clocked JK flip-flop 

 
T Flip-Flop 

 
The T flip-flop is a single input version of the JK flip-flop. As shown in Figure 7, the T flip-flop is 

obtained from the JK type if both inputs are tied together. The output of the T flip-flop "toggles" with each 

clock pulse. 
 
 

 
(a) Logic diagram 

 
 

 

(b) Graphical symbol 

 

 
(c) Transition table 

 

Triggering of Flip-flops 
 

The state of a flip-flop is changed by a momentary change in the input signal. This change is called a 

trigger and the transition it causes is said to trigger the flip-flop. The basic circuits of Figure 2 and 

Figure 3 require an input trigger defined by a change in signal level. This level must be returned to its 

initial level before a second trigger is applied. Clocked flip-flops are triggered by pulses. 

 
The feedback path between the combinational circuit and memory elements in Figure 1 can produce 

instability if the outputs of the memory elements (flip-flops) are changing while the outputs of the 

combinational circuit that go to the 



  

 

 

 

flip-flop inputs are being sampled by the clock pulse. A way to solve the feedback timing problem is to 
make the flip- flop sensitive to the pulse transition rather than the pulse duration. 

 
The clock pulse goes through two signal transitions: from 0 to 1 and the return from 1 to 0. As shown 

in Figure 8 the positive transition is defined as the positive edge and the negative transition as the 
negative edge. 

 
 

 
Figure 8. Definition of clock pulse transition 

 
The clocked flip-flops already introduced are triggered during the positive edge of the pulse, and the 

state transition starts as soon as the pulse reaches the logic-1 level. If the other inputs change while the 

clock is still 1, a new output state may occur. If the flip-flop is made to respond to the positive (or 
negative) edge transition only, instead of the entire pulse duration, then the multiple-transition problem 

can be eliminated. 

 
Master-Slave Flip-Flop 

 
A master-slave flip-flop is constructed from two seperate flip-flops. One circuit serves as a master and 

the other as a slave. The logic diagram of an SR flip-flop is shown in Figure 9. The master flip-flop is 
enabled on the positive edge of the clock pulse CP and the slave flip-flop is disabled by the inverter. 

The information at the external R and S inputs is transmitted to the master flip-flop. When the pulse 

returns to 0, the master flip-flop is disabled and the slave flip-flop is enabled. The slave flip-flop then 
goes to the same state as the master flip-flop. 

 
 

 
Figure 9. Logic diagram of a master-slave flip-flop 

 
 

 

Master slave RS flip flop 

 
The timing relationship is shown in Figure 10 and is assumed that the flip-flop is in the clear state 

prior to the occurrence of the clock pulse. The output state of the master-slave flip-flop occurs on the 

negative transition of the clock 



  

 

 

 

pulse. Some master-slave flip-flops change output state on the positive transition of the clock pulse by 
having an additional inverter between the CP terminal and the input of the master. 

 
 

 
Figure 10. Timing relationship in a master slave flip-flop 

 
Edge Triggered Flip-Flop 

 
Another type of flip-flop that synchronizes the state changes during a clock pulse transition is the edge-
triggered flip- flop. When the clock pulse input exceeds a specific threshold level, the inputs are locked 

out and the flip-flop is not affected by further changes in the inputs until the clock pulse returns to 0 

and another pulse occurs. Some edge-triggered flip-flops cause a transition on the positive edge of the 
clock pulse (positive-edge-triggered), and others on the negative edge of the pulse (negative-edge-

triggered). The logic diagram of a D-type positive-edge-triggered flip-flop is shown in Figure 11. 

 

 
Figure 11. D-type positive-edge triggered flip-flop 

 
When using different types of flip-flops in the same circuit, one must ensure that all flip-flop outputs 

make their transitions at the same time, ie., during either the negative edge or the positive edge of the 

clock pulse. 

 
Direct Inputs 

 
Flip-flops in IC packages sometimes provide special inputs for setting or clearing the flip-flop 

asynchronously. They are usually called preset and clear. They affect the flip-flop without the need for 

a clock pulse. These inputs are useful for bringing flip-flops to an intial state before their clocked 

operation. For example, after power is turned on in a digital system, the states of the flip-flops are 
indeterminate. Activating the clear input clears all the flip-flops to an initial state of 0. The graphic 

symbol of a JK flip-flop with an active-low clear is shown in Figure 12. 

 

 
(a) Graphic Symbol 
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(b) Transition table 

 
Figure 12. JK flip-flop with direct clear 

 

Summary 
 

Since memory elements in sequential circuits are usually flip-flops, it is worth summarising the 
behaviour of various flip-flop types before proceeding further. All flip-flops can be divided into four 

basic types: SR, JK, D and T. They differ in the number of inputs and in the response invoked by 

different value of input signals. The four types of flip- flops are defined in Table 1. 

 
Table 1. Flip-flop Types 

 

 

 

 

 

 

 Q  Q(next) S  R 

 0 0 0 X 

 0 1 1 0 

 1 0 0 1 

 1 1 X 0 

 0 0 Q  0 0 0  X 

JK   0 1 0 Q(next) = JQ′ + K′Q 0 1 1  X 

   1 0 1  1 0 X  1 

   1 1 Q′  1 1 X  0 

       Q  Q(next) D  

       0  0 0  

D      Q(next) = D 0  1 1  

       1  0 0  

       1  1 1  

       Q  Q(next) T  

   T  Q(next)  0  0 0  

T   0  Q Q(next) = TQ′ + T′Q 0  1 1  

   1  Q′  1  0 1  

       1  1 0  

D Q(next) 

0 0 

1 1 

 

     

 
S R Q(next) 

 

 0 0 Q  

 0 1 0  

 1 0 1  

 1 1 ?  

 

 



  

 

 

 

Each of these flip-flops can be uniquely described by its graphical symbol, its characteristic table, its 
characteristic equation or excitation table. All flip-flops have output signals Q and Q′. 

 
The characteristic table in the third column of Table 1 defines the state of each flip-flop as a function 

of its inputs and previous state. Q refers to the present state and Q(next) refers to the next state after 
the occurrence of the clock pulse. The characteristic table for the RS flip-flop shows that the next state 

is equal to the present state when both inputs S and R are equal to 0. When R=1, the next clock pulse 

clears the flip-flop. When S=1, the flip-flop output Q is set to 1. The equation mark (?) for the next 

state when S and R are both equal to 1 designates an indeterminate next state. 

 
The characteristic table for the JK flip-flop is the same as that of the RS when J and K are replaced by 
S and R respectively, except for the indeterminate case. When both J and K are equal to 1, the next 

state is equal to the complement of the present state, that is, Q(next) = Q′. 

 
The next state of the D flip-flop is completely dependent on the input D and independent of 

the present state. The next state for the T flip-flop is the same as the present state Q if T=0 

and complemented if T=1. 

The characteristic table is useful during the analysis of sequential circuits when the value of flip-flop 

inputs are known and we want to find the value of the flip-flop output Q after the rising edge of the 

clock signal. As with any other truth table, we can use the map method to derive the characteristic 

equation for each flip-flop, which are shown in the third column of Table 1. 

 
During the design process we usually know the transition from present state to the next state and wish 

to find the flip- flop input conditions that will cause the required transition. For this reason we will 

need a table that lists the required inputs for a given change of state. Such a list is called the excitation 
table, which is shown in the fourth column of Table 

1. There are four possible transitions from present state to the next state. The required input conditions 

are derived from the information available in the characteristic table. The symbol X in the table 
represents a "don't care" condition, that is, it does not matter whether the input is 1 or 0. 

Synchronous and asynchronous sequential circuit 
asynchronous system is a system whose outputs depend upon the order in which its input variables 
change and can be affected at any instant of time. 

 
Gate-type asynchronous systems are basically combinational circuits with feedback paths. Because of 
the feedback among logic gates, the system may, at times, become unstable. Consequently they are not 

often used. 

Synchronous type of system uses storage elements called flip-flops that are employed to change their 

binary value only at discrete instants of time. Synchronous sequential circuits use logic gates and flip-
flop storage devices. Sequential circuits have a clock signal as one of their inputs. All state transitions 

in such circuits occur only when the clock value is either 0 or 1 or happen at the rising or falling edges 

of the clock depending on the type of memory elements used in the circuit. Synchronization is 
achieved by a timing device called a clock pulse generator. Clock pulses are distributed throughout the 

system in such a way that the flip-flops are affected only with the arrival of the synchronization pulse. 

Synchronous sequential circuits that use clock pulses in the inputs are called clocked-sequential 

circuits. They are stable and their timing can easily be broken down into independent discrete steps, 
each of which is considered separately. 

 
A clock signal is a periodic square wave that indefinitely switches from 0 to 1 and from 1 to 0 at fixed 

intervals. Clock cycle time or clock period: the time interval between two consecutive rising or falling 
edges of the clock. 

Moore and Mealy model of sequential circuit 
Mealy and Moore models are the basic models of state machines. A state machine which uses only 
Entry Actions, so that its output depends on the state, is called a Moore model. A state machine which 

uses only Input Actions, so that the output depends on the state and also on inputs, is called a Mealy 

model. The models selected will influence a design but there are no general indications as to which 
model is better. Choice of a model depends on the application, execution means (for instance, 

hardware systems are usually best realised as Moore models) and personal preferences of a designer 

or programmer. In practise, mixed models are often used with several action types 



  

 

 

 

Register 
 

A register is a sequential circuit with n + 1 (not counting the clock) inputs and n output. To each of the 

outputs corresponds an input. The first n inputs will be called x0 trough xn-1 and the last input will be 

called ld (for load). The n outputs will be called y0 trough yn-1. 

 
When the ld input is 0, the outputs are uneffected by any clock transition. When the ld input is 1, the x 

inputs are stored in the register at the next clock transition, making the y outputs into copies of the x 

inputs before the clock transition. 

 
We can explain this behavior more formally with a state table. As an example, let us take a register 

with n = 4. The left side of the state table contains 9 columns, labeled x0, x1, x2, x3, ld, y0, y1, y2, and 

y3. This means that the state table has 512 rows. We will therefore abbreviate it. Here it is: 

 
ld x3 x2 x1 x0 y3 y2 y1 y0 | y3′ y2′ y1′ y0′ 

 

0 -- -- -- -- c3 c2 c1 c0 | c3 c2 c1 c0 

 
1 c3 c2 c1 c0 -- -- -- -- | c3  c2 c1  c0 

 
As you can see, when ld is 0 (the top half of the table), the right side of the table is a copy of the values 

of the old outputs, independently of the inputs. When ld is 1, the right side of the table is instead a 

copy of the values of the inputs, independently of the old values of the outputs. 

 
Registers play an important role in computers. Some of them are visible to the programmer, and 

are used to hold variable values for later use. Some of them are hidden to the programmer, and are 

used to hold values that are internal to the central processing unit, but nevertheless important. 

 

Shift registers 
 

Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group 

of flip-flops connected in a chain so that the output from one flip-flop becomes the input of the next 

flip-flop. Most of the registers possess no characteristic internal sequence of states. All the flip-flops 

are driven by a common clock, and all are set or reset simultaneously. 

 
In this section, the basic types of shift registers are studied, such as Serial In - Serial Out, Serial In - 

Parallel Out, Parallel In - Serial Out, Parallel In - Parallel Out, and bidirectional shift registers. A 

special form of counter - the shift register counter, is also introduced. 

 
Serial In - Serial Out Shift Registers 

 
A basic four-bit shift register can be constructed using four D flip-flops, as shown below. The 

operation of the circuit is as follows. The register is first cleared, forcing all four outputs to zero. The 

input data is then applied sequentially to the D input of the first flip-flop on the left (FF0). During each 

clock pulse, one bit is transmitted from left to right. Assume a data word to be 1001. The least 

significant bit of the data has to be shifted through the register from FF0 to FF3. 

 



  

 

 

 

In order to get the data out of the register, they must be shifted out serially. This can be done 
destructively or non- destructively. For destructive readout, the original data is lost and at the end of 

the read cycle, all flip-flops are reset to zero. 

 
To avoid the loss of data, an arrangement for a non-destructive reading can be done by adding two 

AND gates, an OR gate and an inverter to the system. The construction of this circuit is shown below. 

 

 

The data is loaded to the register when the control line is HIGH (ie WRITE). The data can be shifted 

out of the register when the control line is LOW (ie READ) 

 
Serial In - Parallel Out Shift Registers 

 
For this kind of register, data bits are entered serially in the same manner as discussed in the last 

section. The difference is the way in which the data bits are taken out of the register. Once the data are 

stored, each bit appears on its respective output line, and all bits are available simultaneously. A 

construction of a four-bit serial in - parallel out register is shown below. 

 

 
A four-bit parallel in - serial out shift register is shown below. The circuit uses D flip-flops and 

NAND gates for entering data (ie writing) to the register. 
 
 



  

 

 

 

D0, D1, D2 and D3 are the parallel inputs, where D0 is the most significant bit and D3 is the least 
significant bit. To write data in, the mode control line is taken to LOW and the data is clocked in. The 

data can be shifted when the mode control line is HIGH as SHIFT is active high 

 
Parallel In - Parallel Out Shift Registers 

 
For parallel in - parallel out shift registers, all data bits appear on the parallel outputs immediately 

following the simultaneous entry of the data bits. The following circuit is a four-bit parallel in - 

parallel out shift register constructed by D flip-flops. 

 

 
The D's are the parallel inputs and the Q's are the parallel outputs. Once the register is clocked, all the 

data at the D inputs appear at the corresponding Q outputs simultaneously. 

 
Bidirectional Shift Registers 

 
The registers discussed so far involved only right shift operations. Each right shift operation has the 

effect of successively dividing the binary number by two. If the operation is reversed (left shift), this 

has the effect of multiplying the number by two. With suitable gating arrangement a serial shift 

register can perform both operations. 

 
A bidirectional, or reversible, shift register is one in which the data can be shift either left or right. A 

four-bit bidirectional shift register using D flip-flops is shown below. 
 

 
Here a set of NAND gates are configured as OR gates to select data inputs from the right or left 

adjacent bistables, as selected by the LEFT/RIGHT control line. 



  

 

 

 

Shift Register Counters 
 

Two of the most common types of shift register counters are introduced here: the Ring counter and the 

Johnson counter. They are basically shift registers with the serial outputs connected back to the serial 

inputs in order to produce particular sequences. These registers are classified as counters because 

they exhibit a specified sequence of states. 

 
Ring Counters 

 
A ring counter is basically a circulating shift register in which the output of the most significant stage 
is fed back to the input of the least significant stage. The following is a 4-bit ring counter constructed 

from D flip-flops. The output of each stage is shifted into the next stage on the positive edge of a 

clock pulse. If the CLEAR signal is high, all the flip- flops except the first one FF0 are reset to 0. FF0 
is preset to 1 instead. 

 
 

 
Since the count sequence has 4 distinct states, the counter can be considered as a mod-4 counter. Only 
4 of the maximum 16 states are used, making ring counters very inefficient in terms of state usage. But 

the major advantage of a ring counter over a binary counter is that it is self-decoding. No extra 

decoding circuit is needed to determine what state the counter is in. 

 

 

 

Johnson Counters 

 
Johnson counters are a variation of standard ring counters, with the inverted output of the last stage fed 

back to the input of the first stage. They are also known as twisted ring counters. An n-stage Johnson 

counter yields a count sequence of length 2n, so it may be considered to be a mod-2n counter. The 

circuit above shows a 4-bit Johnson counter. The state sequence for the counter is given in the table 

 
 



  

 

 

 

 

 
 

 

Again, the apparent disadvantage of this counter is that the maximum available states are not fully 

utilized. Only eight of the sixteen states are being used. 

 

Counters 
 

A sequential circuit that goes through a prescribed sequence of states upon the application of input 

pulses is called a counter. The input pulses, called count pulses, may be clock pulses. In a counter, the 

sequence of states may follow a binary count or any other sequence of states. Counters are found in 
almost all equipment containing digital logic. They are used for counting the number of occurrences of 

an even and are useful for generating timing sequences to control operations in a digital system. 

 
A counter is a sequential circuit with 0 inputs and n outputs. Thus, the value after the clock transition 

depends only on old values of the outputs. For a counter, the values of the outputs are interpreted as a 

sequence of binary digits (see the section on binary arithmetic). 

 
We shall call the outputs o0, o1, ..., on-1. The value of the outputs for the counter after a clock 

transition is a binary number which is one plus the binary number of the outputs before the clock 
transition. 

 
We can explain this behavior more formally with a state table. As an example, let us take a counter 
with n = 4. The left side of the state table contains 4 columns, labeled o0, o1, o2, and o3. This means 

that the state table has 16 rows. Here it is in full: 

 
 

o3 o2 o1 o0 | o3′ o2′ o1′ o0′ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As you can see, the right hand side of the table is always one plus the value of the left hand side of the 

table, except for the last line, where the value is 0 for all the outputs. We say that the counter wraps 

around. 

0 0 0 0 | 0 0 0 1 

0 0 0 1 | 0 0 1 0 
0 0 1 0 | 0 0 1 1 
0 0 1 1 | 0 1 0 0 

0 1 0 0 | 0 1 0 1 

0 1 0 1 | 0 1 1 0 

0 1 1 0 | 0 1 1 1 
0 1 1 1 | 1 0 0 0 

1 0 0 0 | 1 0 0 1 
1 0 0 1 | 1 0 1 0 

1 0 1 0 | 1 0 1 1 

1 0 1 1 | 1 1 0 0 
1 1 0 0 | 1 1 0 1 

1 1 0 1 | 1 1 1 0 
1 1 1 0 | 1 1 1 1 

1 1 1 1 | 0 0 0 0 

 



  

 

 

 

Counters (with some variations) play an important role in computers. Some of them are visible to the 
programmer, such as the program counter (PC). Some of them are hidden to the programmer, and are 

used to hold values that are internal to the central processing unit, but nevertheless important. 

 
Important variations include: 

 
 The ability to count up or down according to the value of an additional input 

 The ability to count or not according the the value of an additional input 

 The ability to clear the contents of the counter if some additional input is 1 

 The ability to act as a register as well, so that a predetermined value is loaded when some 
additional input is 1 

 The ability to count using a different representation of numbers from the normal (such 
as Gray-codes, 7- segment codes, etc) 

 The ability to count with different increments that 1 

 
Design of Counters 

 
Example 1.5 A counter is first described by a state diagram, which is shows the sequence of states 

through which the counter advances when it is clocked. Figure 18 shows a state diagram of a 3-bit 

binary counter. 

 

 

 

 

 

 

 
Figure 
18. State 

diagram 

of a 3-bit 
binary 

counter. 

 

 

 

 

 

 

 
The circuit has no inputs other than the clock pulse and no outputs other than its internal state (outputs 

are taken off each flip-flop in the counter). The next state of the counter depends entirely on its present 

state, and the state transition occurs every time the clock pulse occurs. Figure 19 shows the sequences 
of count after each clock pulse. 

 
 



  

 

 

 

Once the sequential circuit is defined by the state diagram, the next step is to obtain the next-state 
table, which is derived from the state diagram in Figure 18 and is shown in Table 15. 

 
Table 15. State table 

 
 

 
Since there are eight states, the number of flip-flops required would be three. Now we want to 

implement the counter design using JK flip-flops. 

 
Next step is to develop an excitation table from the state table, which is 

shown in Table 16. Table 16. Excitation table 

 

Flip-flop inputs 

 

 

 

 

 

 

 

 

 

 

 

 

Now transfer the JK states of the flip-flop inputs from the excitation table to Karnaugh maps to 

derive a simplified Boolean expression for each flip-flop input. This is shown in Figure 20. 

Present State 

Q2 Q1 Q0 

Next State 

Q2 Q1 Q0 

0 0   0 0   0   1 

0   1   0 

0   1   1 

1   0   0 

1   0   1 

1   1   0 

1   1   1 

0   0   0 

0 0   1 

0 1   0 

0 1   1 

1 0   0 

1 0   1 

1 1   0 

1 1   1 

Output State Transitions    

Present State 

Q2 Q1 Q0 

Next State 

Q2 Q1 Q0 
J2 K2 J1 K1 J0 K0 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 0 0 

0 X 0 X 1 X 

0 X 1 X X 1 

0 X X 0 1 X 

1 X X 1 X 1 

X 0 0 X 1 X 

X 0 1 X X 1 

X 0 X 0 1 X 

X 1 X 1 X 1 

 



  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 20. Karnaugh maps 
 

 

 

 

 

 

 

 

 

 

 
 

The 1s in the Karnaugh maps of Figure 20 are grouped with "don't cares" and the following expressions 

for the J and K inputs of each flip-flop are obtained: 

 
J0 = K0 = 1 

J1 = K1 = Q0 

J2 = K2 = Q1*Q0 

 
The final step is to implement the combinational logic from the equations and connect the flip-

flops to form the sequential circuit. The complete logic of a 3-bit binary counter is shown in Figure 21. 

 

 

 
 

. 

 

 

 
 

Figure 21. Logic diagram of a 3-bit binary counter 

 
Example 1.6 Design a counter specified by the state diagram in Example 1.5 using T flip-flops. 

The state diagram is shown here again in Figure 22. 
 

 

 

 

 

 

Figure 2. State diagram of a 3-bit binary counter. 
 

 

 

 

 
 

 

The state table will be the same as in Example 1.5. 

 
Now derive the excitation table from the state table, which is shown in Table 17. 

 



  

 

 

 

 
 

Table 17. Excitation table. 

 

Output State Transitions 
Flip-flop inputs 

T2 T1 T0 
Present State 

Q2 Q1 Q0 

Next State 

Q2 Q1 Q0 

0 0   0 0   0   1 

0   1   0 

0   1   1 

1   0   0 

1   0   1 

1   1   0 

1   1   1 

0   0   0 

0 0 1 

0 1 1 

0 0 1 

1 1 1 

0 0 1 

0 1 1 

0 0 1 

1 1 1 

0 0   1 

0 1   0 

0 1   1 

1 0   0 

1 0   1 

1 1   0 

1 1   1 

 
Next step is to transfer the flip-flop input functions to Karnaugh maps to derive a simplified Boolean 

expressions, which is shown in Figure 23. 

 

 

 

 

 
Figure 23. Karnaugh maps 

 

 

 

 

 
The following expressions are obtained: 

 
T0 = 1; T1 = Q0; T2 = Q1*Q0 

Finally, draw the logic diagram of the circuit from the expressions obtained. The complete logic 
diagram of the counter is shown in Figure 24. 

 

 

 
Figure 24. Logic diagram of 3-bit binary counter. 

 

 

 
Exercises 

 
Analysis of Sequential Circuits. 

 
1. Derive a) excitation equations, b) next state equations, c) a state/output table, and d) a state 
diagram for the circuit shown in Figure 1.1. Draw the timing diagram of the circuit. 

 

 

 

 

 

 
Figure 1.1 

 

 



  

 

 

 

 

 
2. Derive a) excitation equations, b) next state equations, c) a state/output table, and d) a state 
diagram for the circuit shown in Figure 1.2. 

 

 

 

 
Figure 1.2 

 

 

 

 
3. Derive a) excitation equations, b) next state equations, c) a state/output table, and d) a state 

diagram for the circuit shown in Figure 1.3. 
 

 

 
 

Figure 1.3 
 

 

 

 

4. Derive the state output and state diagran for the sequential circuit shown in Figure 1.4. 

 

 

 

 

 

Figure 1.4 

 

 

 

 

 

5. A sequential circuit uses two D flip-flops as memory elements. The behaviour of the circuit is 

described by the following equations: 

 
D1 = Q1 + x′*Q2 

D2 = x*Q1′ + x′*Q2 

Z = x′*Q1*Q2 + x*Q1′*Q2′ 

 
Derive the state table and draw the state diagram of the circuit. 

 
6. Design a sequential circuit specified by Table 6.1, using JK flip-flops. 

 
Table 6.1 

 
Present State 

Q0 Q1 

Next State Output 

x = 0 x = 1 x = 0 x = 1 

0 0 0 0 0 1 0 0 

0 1 0 0 1 0 0 0 

1 0 1 1 1 0 0 0 

1 1 0 0 0 1 0 1 

 



  

 

 

 

7. Design the sequential circuit in question 6, using T flip-flops. 

 
8. Design a mod-5 counter which has the following binary sequence: 0, 1, 2, 3, 4. Use JK flip-flops. 

 
9. Design a counter that has the following repeated binary sequence: 0, 1, 2, 3, 4, 5, 6, 7. Use RS flip-

flops. 

 
10. Design a counter with the following binary sequence: 1, 2, 5, 7 and repeat. Use JK flip-flops. 

 
11. Design a counter with the following repeated binary sequence: 0, 4, 2, 1, 6. Use T flip-flops. 

12. Design a counter that counts in the sequence 0, 1, 3, 6, 10, 15, using four a) D, b) SR, c) JK and d) T 

flip-flops. 

 
13. The content of a 5-bit shift register serial in parallel out with rotation capability is initially 

11001. The register is shifted four times to the right. What are the content and the output of the 

register after each shift? 



  

 

 

 

 

Memories 
 

A memory is neither a sequential circuit (since we require sequential circuits to be clocked, and 

memories are not clocked), nor a combinatorial circuit, since its output values depend on past values. 

 
In general, a memory has m inputs that are called the address inputs that are used to select exactly one 

out of 2m words, each one consisting of n bits. 

 
Furthermore, it has n connectors that are bidirectional that are called the data lines. These data lines 

are used both as inputs in order to store information in a word selected by the address inputs, and as 

outputs in order to recall a previously stored value. Such a solution reduces the number of required 

connectors by a factor two. 

 
Finally, it has an input called enable (see the section on tri-state logic for an explanation) that controls 

whether the data lines have defined states or not, and an input called r/w that determines the direction 

of the data lines. 

 
A memory with an arbitrary value of m and an arbitrary value of n can be built from memories with 
smaller values of these parameters. To show how this can be done, we first show how a one-bit 

memory (one with m = 0 and n = 1) can be built. Here is the circuit: 
 

 

 
The central part of the circuit is an SR-latch that holds one bit of information. When enable is 0, the 

output d0 is isolated both from the inputs to and the output from the SR-latch. Information is passed 

from d0 to the inputs of the latch when enable is 1 and r/w is 1 (indicating write). Information is passed 
from the output x to d0 when enable is 1 and r/w is 0 (indicating read). 

 
Now that we know how to make a one-bit memory, we must figure out how to make larger memories. 

First, suppose we have n memories of 2m words, each one consisting of a single bit. We can easily 
convert these to a single memory with 2m words, each one consisting of a n bits. Here is how we do it: 



  

 

 

 

 
 

 

 

We have simply connected all the address inputs together, all the enables together, and all the 

read/writes together. Each one-but memory supplies one of the bits of the n-bit word in the final 

circuit. 

 
Next, we have to figure out how to make a memory with more words. To show that, we assume that 

we have two memories each with m address inputs and n data lines. We show how we can connect 
them so as to obtain a single memory with m + 1 address inputs and n data lines. Here is the circuit: 

 

 

 
As you can see, the additional address line is combined with the enable input to select one of the two 

smaller memories. Only one of them will be connected to the data lines at a time (because of the way 

tri-state logic works). 



  
 

ELECTRONICS : DIGITAL ELECTRONICS  -  Page 85  

Read-only memories 
 

A read-only memory (or ROM for short), is like an ordinary memory, except that it does not have the 

capability of writing. Its contents is fixed at the factory. 

 
Since the contents cannot be altered, we don't have a r/w signal. Except for the enable signal, a ROM is 

thus like an ordinary combinatorial circuit with m inputs and n outputs. 

 
ROMs are usually programmable. They are often sold with a contents of all 0s or all 1s. The user can 

then stick it in a special machine and fill it with the desired contents, i.e. the ROM can be 
programmed. In that case, we sometimes call it a PROM (programmable ROM). 

 
Some varieties of PROMS can be erased and re-programmed. The way they are erased is typically 
with ultra-violet light. When the PROM can be erased, we sometimes call it EPROM (erasable 

PROM). 

 

A programmable logic device (PLD) 
 

A programmable logic device or PLD is an electronic component used to build reconfigurable digital 

circuits. Unlike a logic gate, which has a fixed function, a PLD has an undefined function at the time 

of manufacture. Before the PLD can be used in a circuit it must be programmed 

 

Using a ROM as a PLD 
 

Before PLDs were invented, read-only memory (ROM) chips were used to create arbitrary 

combinational logic functions of a number of inputs. Consider a ROM with m inputs (the address 

lines) and n outputs (the data lines). When used as a memory, the ROM contains 2m words of n bits 

each. Now imagine that the inputs are driven not by an m-bit address, but by m independent logic 

signals. Theoretically, there are 2m possible Boolean functions of these m signals, but the structure of 

the ROM allows just 2n of these functions to be produced at the output pins. The ROM therefore 

becomes equivalent to n separate logic circuits, each of which generates a chosen function of the m 

inputs. 

 
The advantage of using a ROM in this way is that any conceivable function of the m inputs can be 

made to appear at any of the n outputs, making this the most general-purpose combinatorial logic 

device available. Also, PROMs (programmable ROMs), EPROMs (ultraviolet-erasable PROMs) and 

EEPROMs (electrically erasable PROMs) are available that can be programmed using a standard 

PROM programmer without requiring specialised hardware or software. However, there are several 

disadvantages: 

 
• They are usually much slower than dedicated logic circuits, 

 
• they cannot necessarily provide safe "covers" for asynchronous logic transitions so the 

PROM's outputs may glitch as the inputs switch, 

 
• They consume more power, and 

 
• Because only a small fraction of their capacity is used in any one application, they often make 

an inefficient use of space. 

 
Since most ROMs do not have input or output registers, they cannot be used stand-alone for sequential 

logic. An external TTL register was often used for sequential designs such as state machines. 
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