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INTRODUCTION :

Set:
Collection of well — defined objects.
Empty Set :
Having No Elements in the Set.
Non — Empty Set :
Having at least one Element in the Set.
Binary Operation / Closure Law
Let S beanon—emptyset. If*:S XS — Sisamapping then * is
called binary operationon S . Ifforalla,beS —a*b€ S
Examples:
1. +,-, - are binary operations on Z
For1,2€ Z »51+2=3 € Z
— 1-2=-1€ Z
— 1:2=2 € Z
2. [ is not binary operation on Z
For1,2€ Z —1/2 ¢ Z



Algebraic Structure :
A non — empty set equipped with one (or) more binary operations is called an
Algebraic Structure
Examples :
(Z,%), (Z,-), (Z,"), (Z,+,-) are all algebraic structures and (Z, /) is not an algebraic
structure.
NOTE:
If + is a binary operation on S then the algebraic structure can be written as
(S, +)
Associative Law :
A binary operation * on S is said to be associative
if (a*b)*c = a*(b*c), for all a,b,c €S.
Examples :
+, * satisfies associative property in Z,
/, - does not satisfies associative property in Z
Semi Group :

An Algebraic structure (G,*) is called a Semi Group if it satisfies the
Associative Law with * in G.
Identity Element :
Let S be a non — empty set and * be a binary operation on S . If there exist
e1 € S such that e;*a=a ,for all a € S ,then e; is called the left Identityof S
with respect to the binary operation *.
Let S be a non — empty set and * be a binary operation on S . If there exist
e, € S such that a* e;=a ,for all a € S ,then e, is called the Right Identityof
S with respect to the binary operation *.
Let S be a non — empty set and * be a binary operation on S . If there exist e
€ S such that e*a = a*e =a ,for all a € S ,then e is called the ldentity
Elementof S with respect to the binary operation *.
Additive Identity is zero.
Multiplicative Identity is One.
Examples :
1. In (z,+) the identity is zero.
2. In (R, ) the identity is one.

Monoid :
A semi Group (G,*) with identity e with respect to the binary operation * is
called Monoid. Example :
1. (Z,+) is a monoid with identity Zero.
2. (N,+) is not a monoid because it has
no identity element.
Invertible Element :
Let (S,*)be a semi Group with identity e. An element a € S is said to be
invertible .If there exists b € S such that a*b=b*a=¢



Here b is called inverse of ain S.
Examples:
1. a+(-a) = 0 —identity
Here, —a is the Inverse of a.
2. a-(1/a) = 1 —identity
Here, a! is the Inverse of a.
GROUP :
An Algebraic structure(G,*) is said to be a group , if the following conditions are
hold.
(i) Associative :
(@a*b)*c = a*(b*c) ,v a, b,c €G

(if) Existence of Identity :
JdJe€GDa*e=e*a=a,Vac€G.

(iii) Existence of Inverse :
foreacha€G3Ib€G D a*bh=b*a=e.

Examples : (Z ,+) is a Group.
Solution :Given that (Z,+)
Claim : (Z ,+) is a Group.
Clearly, (Z, +) is an Algebraic Structure
SO, + is binary operation
(i) Associative :
Leta=1,b=2,c=3
(@+b)+c=a+(b+c)
1+2)+3=1+(2+3)
6=6
=~ Associative Laws holds.
(ii) Existence of Identity :

Lete€Z ,a€Z
a*e=e*a=a
ate=a....... (1)
e=a-a

e=0
substitute, e = 0 in (i)

a+0=a

a=a

=~ 0 1s the identity
(iif) Existence of Inverse :
Leta,b€Z,e€Z

at+b=e
a+b=0
b=-a

Here, “b” is the inverse of “a”



Leta=-1,b=-(-1)=1
Take, a+b=b+a=e
then -1+1=1-1=¢
0=0=e
=~ Every Element in Z has Inverse .
~ (Z, +) forms a Group.
(N ,+) is not a Group.
Here Additive Identity is Zero ,
but we know that the set of all Natural numbersare N=4{1, 2, 3, ...}
Here, the Identity element ‘0’ does not exist .
So, (N ,+) is not a Group.
(N ,-) is not a Group.
Here , Inverse condition fails because N does not contains negative numbers.
So, (N ,-) is not a Group.

AbelianGroup :
A Group (G, *) is said to be Abelian if * is commutative.
e, a*b=b*a Va,b€GC,

Finite and Infinite Groups :
If the set G contains a finite number of elements then the group G is called finite
Group.
Otherwise, it is known as an Infinite Group.
Problems:
If the set G of all even integers forms an abelian group under addition as the
operation.
(or)
If G ={2x/ x€Z}, then Show that (G,+) forms an Abelian group.
Solution:
Given that G = {2x/ x€Z}
={..,4,-2,024,...}
Leta,b,c €G
Here,a=2a,b=2B,c=2y,wherea,,y€Z
Claim :
(G,*) forms an abelian group
(i)Binary Operation / Closure law:

Leta,b€G
Now ,a+b=2a+2f
=2(a+p)€ G
—a+th€G

Therefore, + is binary operation on G.
(ii) Associative law:
Leta,b,c€G
(@+b)+c=Qa+2p)+2y



=2(a+ B) +2y
=2[(a+ P) +7]
=20+ (B +7)]
= 20 +{(2B+ 2y)]
=a+(b+c)
(@+b)+c=a+(b+c)
Therefore, Associative law holds.
(iii) Existence of Identity:
Leta€ G
We know that 0€G
Nowa+0=20+0
=2a +2(0)
=2(a+ 0)
=20
=a
Therefore, ‘0’ is the identity in ‘G’
(iv) Existence of Inverse:
Leta €G
a=2a, forsome o €Z
-a=-2a, for some -0 €Z
— -a €G
Now a + (-a) = 2a +(-2a1)
=20 - 20
=2(o—a)
=2(0)
=0
=e
=~ ‘-a’ is the inverse element of ‘a’ In G
. Every Element in G has Inverse.
. (G, +)is a Group.
AbelianGroup (Commutative Law):

Leta,b€G
Now ,a+b=2a+2f
=2(atP)
=2(B ta)
=23+ 2a
=b+a

~ (G, +) is an abelian group.

2. Show that the set Q" of all positive rational numbers forms an abelian group
under the composition defined by o (circle) such that aob = %V a, b€eQ”

Solution: Given that Q "= The set of all positive rational numbers forms an abelian
group under the composition defined by o(circle), such that aob = %V a,b€qQ’



Claims : (Q", o) forms an abelian group.
(i) Binary Operation / Closure Law :
leta, b€ QF
aob = a?b €Q"
aob € QF

=0 is binary in Q*
(ii) Associative law:

Leta,b,c€Q"

(aob)oc=(a;b)oc

= (¥)c/3

_@%

— Ly
ao(boc)=ao (b—;)

= a(b—;)/3

= (9)

(aob)oc=ao(boc)
Therefore, Associative law holds.
(iii) Existence of Identity:

Leta€ Q"
Suppose that a o e = a for some e € Q*
ae
E
—ac—3e=0
—a(e-3)=0
—a#0(r)e-3=0
—e¢—-3=0
—e=3€Q"
Now, aoe:a03:a_33=a
aoe=a
~ e = 3 is the identity in Q"
(iv) Existence of Inverse:
Leta€Q",b€EQ"
Suppose that,aob=¢
ab
— =
b
3 3
ab =9

b=2€Q
a



. Every element in Q" has Inverse

Commutative:
Leta, b€ QF
Nowaob =g

=~ (Q7, o) forms an abelian group.

Problem:
Show that the set Z forms an abelian group w.r.to the operation * defined by
a*bh=at+b+2Vv a, b€ Z
Solution : Giventhat Z = {0, £1, £2, £3, +4,....}
and a*b = a+b+2
Claim: (Z, *) forms an abelian group.
(i) Binary Operation / Closure Law :
Leta, b €Z
a*b =a+b+2 €Z
a*b €7
. * is binary in
(ii) Associative law:
Leta,b,c€Z
(@a*b)*c = (a+b+2)*c
= a+b+2+c+2
a*(b*c) = a*(b+2+c)
= atb+2+c+2
(@*b)*c = a*(b*c)
(i) Existence of Identity:
Leta€ Z
Suppose that a*e = a, forsome e € Z
ate+2 =a
ate+2-a =0
e+2 =0
=-2€Z

RN



Now a*e = a*(-2)
= a-2+2
=-a
~a*e=a
e = -2 is the identity in Z.

(iv) Existence of Inverse:
Leta€Z,b€Z
Suppose that,a*b =e
ath+2=-2
a+h=-2-2
a+th=-4
a*b =at+b+2
= -4+2
=-2
=e
a*b=e

Commutative:
Leta,b € Z
a*b =atbh+2
= b+a+2
=b*a
a*b=Db*a
(Z, *) forms an abelian group.

Problem:
If G=Q - {1} and * is defined as a*b = a + b - ab then show that (G, *) is an
abelian group.
Solution:
Giventhat G=Q - {1}anda*b =a+ b —ab.
Leta,b€ Q —ab € Q, a=1, b=*1
Claim: (G,*) forms an abelian group.
(i) Binary Operation / Closure Law :

Leta, b €G
a*b = a+b-ab €Q
a*b €Q

Now we have to prove that a*b #1
Suppose thata*b =1

atb-ab=1
atb(l-a) =1
1(a-1)+b(1-a) =0
(a-1)(1-b)=0

a-1=0(or)1-b=0



a=1l(nb=1
which is a contradiction to a1, b#1
~a*b #1 €G

-~ * isbinary in G
(ii) Associative law:
Leta,b,c€G
(@*b)*c = (a+b-ab)*c
= (at+b-ab)+c-(a+b-ab)c
= a+ b-ab+c- ac-bc+abc
=a+b+c-ab-bc-ca+abc
a*(b*c) =a*(b+c-bc)
= a+(b+c-bc) —a (b+c-bc)
= a+ b +c-ab - ac-bc+abc
=a+b+c-ab-bc-ca+abc
(@a*b)*c = a*(b*c)
(iii) Existence of Identity:
Leta€ G
Suppose that a*e = a
ate-ae=a
e—ae=0
e(1-a)=0
e=0(or)1l-a=0
~e=0€G
Nowa*e=a*0
= a+0-a(0)
=a
~a*e=a
e = 0 is the identity in G.

(iv) Existence of Inverse:
Leta€ G
Suppose that a*b =0
atb-ab=0
atb(1-a) =0
b(l-a) =-a
b=—o

1—a
—

C —(a-1)
=—a
(a-1)
)

Ll

Now, a*b =a* (—*
(a—1)



_ ala—1)+a—a2
a—1
T a1
=0
~a*b=e
~ Every Element in G has Inverse.
Commutative:
Leta,b €G
a*b=a+b-ab
= b+a-ba
=b*a
a*b=b*a
(G, *) forms an abelian group.

Problem: Show that the set G of rational numbers other than one under the
composition defined by @, such thata@b = a + b -ab for a,b€ G. forms an
abelian group and hence show that x = 3/2, is a solution of 4@5@x =7
Solution: Giventhat G=Q - {1}anda@b=a+b—ab, fora,b, € G.
Leta,b,c €G
—a,b,c€Q,
buta=1,b#1,c %1
Claim: (G, @) forms an abelian group.
(i) Binary Operation / Closure Law :
Leta, b €G
a@b =a+b-ab €Q
a@b €Q
Now we have to prove that abb #1
Suppose thatab =1
atb-ab=1
atb(l-a) =1
1(a-1)+b(1-a) =0
(a-1)(1-b)=0
a-1=0(or)1-b=0
a=1(r)b=1
which is a contradiction to a#1, b#1
~a@b #1 €G
~ @ isbinary in G
(i) Associative law:
Leta,b,c€G
(a®b) ¢ = (a+b-ab) Hc
= (atb-ab)+c-(a+b-ab)c
= a+ b-ab+c- ac-bc+abc



=a+b+c-ab-bc-ca+abc
a® (b&c) =ad (b+c-bc)
= a+(b+c-bc) —a (b+c-bc)
= a+ b +c-ab - ac-bc+abc
=a+b+c-ab-bc-ca+abc
(a®b) Bc = a® (bDc)
(i) Existence of Identity:
Leta€ G
— a#l
Suppose thatae =a
ate-ae=a
e—a=0
e(l-a)=0
e=0(r)l-a=0
~e=0€GC
NowaPe=a PO
= a+0-a(0)
=a
~a*e=a
e = 0 is the identity in G.

(iv) Existence of Inverse:

Leta€ G
Suppose thata@@ b =0, forsome b € G
— atb-ab=0
— atb(l-a)=0
— Db(l-a)=-a
- 0T
— p=—e—

~(a-1)
— p=—T—

(a-1)
Now, ab =ad(

(a_l)) a
—a+—a——a
(a—1) (a-1)
_ a(a—1)+a—a2
- a—1

a

1

~aPb=¢e

~. Every Element in G has Inverse.
Commutative:
Letab€ G



aéP b = a+b-ab
= b+a-ba
=b P a
ab b=b Pa
(G, @) forms an abelian group.
Now, (4B5) &x =7
(4D5-4(5)) Bx=7
(9-20) ©x=7
-116px=7
114+ x-(-11x) =7
X+ 11x=7+11
12x =18
X =18/12
X =3/2

THEOREM :In a group the identity element is unique .
PROOF: Let eq, e2 be two identities ina group (G,-)
CLAIM :ei=es
Since e; be the identity and e,eG
€1.62 = €2 €1= ez---(l)
since ejbe the identity and e; €G
€2 1= €1.62=€1 - (2)
from 1&2
€1=€7
hence in a group , the identity element is unique .

THEOREM: In a group the inverse of any element is unique.

PROOF :Let (G,-) be a group and “e” be the identity in G , aeG
Let b,c are two inverses of 'a”
a.b=b.a=e ---(1)
since c is the inverse of "a”
a.c =c.a=e----(2)
now b=b.e
=b(a.c)
=(ba)c
=ec
=cC
Therefore b=c
Therefore Ina group ,the inverse of each element is unique

CANCELLATION LAWS :
Leta,b,ceG and a#0 then left cancellation law (LCL):



Ab=bc=> b=c
RIGHT CANCELLATION LAW (RCL):
ba=ca=> b=c

THEOREM :
Cancellation laws hold in a group ina group G .
PROOF : Let a,b,ceG and a#0
Let ‘e be the identity in G

L.C.L: Now ab=ac

a’l(ab)= a*(ac)

(ata)b=(ala)c
Eb=ec

b=c
R.C.L: Now consider ba =ca

(ba) a*=((a))a*
B(aat)=c(aa?)
b=c

therefore hence cancelation laws in group G

THEOREM : IN a group G and a,b€G then (ab)*=b? a?
PROOF : Let a,beG and “¢” be the identity in G
CLAIM : (ab)*=b?a?

(1/ab) =b* a'

1=(a.b) (b at)

Now consider (ab) =(b* a?)

=(ab b1).a’
= a.e.a! (therefore e=1)
=a.al
=1
Now consider (b a) (a.b) =(b*a* a).b
=bt .e.b (e=1)
=blb
=1

Therefore (ab)*=b*al

Problem

Show that a group G is an abelianl (if and only if ) (ab)? = a%b?V a,beG
Soln: given that G be a group

Suppose that (ab)?=ab?V a,beG

Claim: G Isabelian

That is ab=ba

(ab)?= a2.b?

Consider (ab) (ab)=(a.a) (b.b) a(bc)=(ab)c
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(ab)a)b=(a.a)b)b

A(ba)b=a(ab)b

Ba=ab

Therefore G is abelian

Conversely suppose that G is abelian ,that is ab=ba

CLAIM: (ab)*= a2.b?v a,beG
Consider (ab)?=(a b) (ab)
= a(ba)b
= a(ab)b
= (a.a) (b.b)
= a%.b?
(ab)?= a%.b%V a,beG
Therefore a group G is an abeliand (ab)?= a2.b?V a,beG

THEOREM : Inagroup G, for aeG a'=a then show that G is abelian
PROOF : given that G be a group , for aeG a'=a

CLAIM : Gisabelian
Let a,beG

al=a, bl=b
sincea,beG=>a,beG
(ab)'l=ab

bla'l=ab

b.a =ab

therefore G is abelian

NOTE : A semigroup (G,-) is a group [ for an a.beG the eq ax=b and ya=b have solutions
in
G.

THEOREM : A finite semi group (G,-) satisfying cancellation laws is a group
PROOF: Let G ={a; a,...an} be a finite semigroup with 'n” distinct elements and
cancellation laws hold in G

CLAIM : (G,-) is agroup

Leta €G

a. a1, a.ay...a.a,€G

a.ap, a.ay...a.an are all distinct elements in G
let beG

b= a.ax for some unique ax in G

a.a=b

ax=b has unique solution in G similarly , we get ya=b has a unique solution in G
therefore (G,-) is a group
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THEOREM : If G is a group such that (ab)"=a"b" for three consecutive positive
integers V a,beG then show that (G,-) is an abelian group .
Proof : Given that G is a group let a,beG
Let m,m+1,m+2 be three consecutive positive integers .
Such that (ab)™=a™.b™ (1)
(ab) Ml=gm+1 pm+l-(@)
(ab) M2=a™*2 pm+2—(3)
Now consider equation (3)
(ab) M+2—gM+2 |ym+2
(ab) ™1 (ab)!=am1.a.0™1.b
a™!.pb™1.ab=ama.a.b™.b
a™. b™1!.a=ama.bm!
a™.b™b.a=ama.b™b
(ab)™ ba=(ab)™.a.b
ba=ab (by L.C.L)
therefore (G,-) is abelian

Order of an elements of a group :

Let (G, .) be a group and aG then the order of the element a in G is defined as the
least positive integer n such thata" =e

In case such a positive integer does not exist say that the order of "a’ is infinite
(or) zero

The order of *a” is defined as o(a) or | a |

NOTE:
a™*, mis a positive integerinG I O(a) < M

EXAMPLE: Consider the group G={ 1,-1} under usual multiplication . Find the
order of each element in G .

Solution: Given that G={1,-1}

Clearly e=1 is the identify

Leta=1

(@) =(1)=1
(2)°=(1)>=1
(@)°=(1)=1

;Fherefore 0(1)=1



a=-1
@'=(1)'% e
(@)=(1’=1
(2)°=(-1)°=-1=
(@)'= (-1)=1

0 (-1)=2

PROBLEM :Find the order of each element in the multiplication group G={ 1,-
1,i,-i}.

SOL.: Giventhat G ={ 1,-1,i,-i}

Clearly e=1 is the identity

Let a=1

(@) =(1)'=1

(a)>=(1)>=1

(@)°=(1)’=1

;I'herefore O(1)=1

Leta=-1

() =(-1)!=-1ze
(@)*=(-1y°=1
(ay’=(-17=-1=e

(@)= (-1)*=1

O (-1)=2

Let a=i

(@)'=()'=i

(a)° = (i)°=-1

(@)°=(i)’= (igz-i=(-1)i=-i
(@)= (1)*=(i)*.(i)>=(-1) (-1) =1=e
Therefore O(i)=4

Let a=-i

(@) =(-i)'=-i

(@)? = (-1)* = (-i) (-i) =i*=-1

(2 = (i)*= (-i).(-]) (-D)=(-2)-i=i
(@)= ()*=(1)*.()*=(-1) (-1) =1=e
Therefore O (-1)=4

PROBLEM: Find the order of each element of the group G { 1, », » ?} under
usual multiplications



Solution: Giventhat Gis ({1, o, ®%}, -) is a group clearly e =1 is the identity
Leta=1

(@)l =(1)'=1=e

(a)>=(1)’=1=e

(a)°=(1)’=1=e

Therefore 0(1)=1
Leta= o

(a)! =( 0)'= o

(@ =(0 )=0
(@)= (0)*=w3=1=e

;I'herefore 0(w)=3

Let a= o 2
@)= (@0 )i= o
@%=()P=(o*=odo=1lo=o0

(@)= (0°)° =(0°)* = (1)*=1=e
Therefore 0(w ?) =3

NOTE :

(1)  +»= addition modulo “ n” , nZ*
a+n b= reminder when a+b is divisible by 'n”
example 12+, 3=1, 9+31=1, 3+33=0, 8+, 6=0, 2+4 5=3

(2)  Xy= multiplication modulo 'n”, n&
aXpb= reminder when a®bis divisible by 'n’
example: 5x26=0, 3x33=0 , 5x3 3=0.

(3) Inadditive notation ,na=c— O(a) =n.

PROBLEM :Find the order of each element of the group Zs={0,1,2,3,4,5} under
the composition being addition modulo 6(or) +¢
Sol: Given that (Zs, +6) Is a group clearly

e=0 is the identity



1+61 +61 +51 +g1 +61=0
6(1)=0=>0(1) =6

2+s2+52 =0

3(2)=0 => 0(2) =3

3 +63=0

2(3)=0 => 0(3) =2

4 +g4 +4=0

3(4) =0=> 0(4)=3

5 465 +65 +65 +55 +55=0
6(5)=0 =>0(5)=6

DEFINITION :

Let a,b,Ez , we say that a/b (a dividesb ), if b = a.q for some qEz
Example : (1) 216

Here a=2,b=6
alb if b=a.q

6=2(3)
(2) 217
Here a=2 , b=6

alb if b=a.q

7#2(q) , qz

Division algorithm :

Ifa,b ,E z and a#0 then there exist (3) a unique integer 'q” and 'r”’ such
that b=a.q +r.
Example : 217 =7=2.(3) +1.

THEOREM :Ifinagroup G ,a G such that 0(a) ,thena™=e 0 n/m
PROOF: Given that G is a group and acG

Since O(a) =n
Aleast a positive integer such that a"=e.........(1)
Assume that am=e
Claim :nim
By division algorithm M=n.q+r... ........ (2)
am= aMa+r
- an.q+ar:>an.q+r
=(an)q.ar
-1 &
am:.al‘

am™=e, 0<r<n
if r>0 then O(a) =r



which is a contradiction to O(a) n
r>0

r=0

from (2) ,m =n=>nIm

conversely suppose that nim

m=n-q for some q €

CLAIM: aM=e

anzanq

=(@")"

=pl=¢p

WELL ORDERING PRINCIPLE:

Every non empty set of positive integer has a least element (number)

THEOREM : Show that the order of each element in a finite group is finite and is
less than are equal to the order of a group

PROOF: Let G be a finite group and aSG
CLAIM : O(a) is finite

Since a, aEG, -isabinary in G
e

a3€G

By induction, a5 v n

al,az,....a”EG
since G is finite
let a*=a" for some r,sez*, r>s
a%.a®=a".a®
= as-s:ar-s
a0= ars
a"*=e, where r-sez”
let s= { a"=e/mez* }where r-s=m
= sz .
from Well ordering prinicipe ,s has a least number say 'n”
Therefore n is the least positive integer 3 a"=e
0(a) is finite
O0(a) <0(G) :
Suppose that 0(a) < 0(G)
= 0() . 0(G)
= Let O(a)=n then n >O(G)

=
=



= Since al,a%....a" are an distinct
= O(G) =n
= Nn>n
= which is contradiction O(a) = O(G)
COMPOSITION TABLE:
(1) LetG={1,-1,i,-1} the G is a group

1 -1 [ -i
1 1 -1 [ -i
-1 -1 1 -i 1
I I -i -1 1
-i -i [ 1 -1

BINARY / CLOSURE LAW:
Since all that entries (elements) of the table are the elements of G
ASSOCIATIVE LAW :

(a.b) .c=a (bc) ¥ ab,cEG

EXISTENCE OF IDENTITY:

Since the top row is indentical with the row corresponding to 1

EXISTENCE OF INVERSE :

Inverse of 1=1

Inverse of -1=-1

Inverse of i=-1

Inverse of —i =i

Therefore G is a group .

(2)Let G ={ 1,w,w?} then G is a group

1 Q o °
1 1 2
() ()

(DZ

(1) BINARY /CLOSURE LAW:
Since all the existence (elements) of the table are the elements of G
(2) Associative law :

(a,b).c=a.(b.c) v a,b,cG



(3) EXISTENCE OF IDENTITY :
Since the top row is identical with the row corresponding to 1
(4)EXISTENCE OF INVERSE :
Inverse of 1=1
Inverse of w=w?
Inverse of w?’=w
Therefore G is a group
1.)Write down the binary operation table for which addition modulo 6(+) of
the set z¢ = {0,1,2,3,4,5}
Given that ze={ 0,1,2,3,4,5}
(26, +eo)

O‘I-bCAJNI—‘O&l-
QB WN OO
OO B WNF -
R OO & WNN
N OO~ W w
WINF OO~

BWN | OO o1

2.)Write down the binary operation table for which x4 ( multiplication modulo
4) of the set z, ={ 0,1,2,3}.
Given that z,={ 0,1,2,3}.

(24, Xa)
Xa 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

3.)Write down the binary operation table for which user multiplication table for

which user multiplication of the Set a={1,-1}
- 1 -1

1 1 -1

-1 -1 1







UNIT 11

Sub Groups

COMPLEX:

Any subset of a group G is called a complex of G .
Example : 2z is of complex of z
NOTE:

(1) 1f M, N are complex’s of a group G then (M.N)?* = N1, M
(2) If H is a complex of G then H! = { h'{/heH }

SUB GROUP:

Let G be a Group . A non empty Complex H of a Group G is said to
be a Subgroup of G if H is a group with respect to the operation "-’(dot) in G .

EX:
(1) (2z, +) is a sub group of (z, +)
(2)(z ,+) is a sub group of (Q,+)
(3) (Q ,+) is a sub group of (R,+)
NOTE :

(1) If His a Subgroup of G then the identity element in H and G are same .
EX:
*0’ is the identity in z with respect to the SubGroup of 2Z of Z ,0 is
the identity element in 2z.
(2) If H is a SubGroup of a group G and aeG then the inverse of a in G is same
as the inverse ofa in H

EXx:



-z is the common inverse of z in both z and 2z

NOTE:

(1) If H is any sub group G then H'=H
(2)H is a sub group of a group G HH'=H
(3) If H is any subgroup of a group G then H.H =H

THEROEM:

If H and K are two subgroups of a group G, then HK is a
subgroup of G < HK =KH

PROOF:
Given that H and K are two subgroups of a group G
NECESSARY CONDITION:
=Suppose that H.K is a subgroups of G
CLAIM: HK=KH
By known theorem (HK)?= HK

=>K1 H1=HK
=> KH =HK
=> HK =KH

SUFFICIENT CONDITION:
Suppose that HK=KH
CLAIM: HK is a subgroup of G
Consider (HK) (HK)1 = (HK) (K1H?Y)



=H (K K'H?Y)
= H(K K)H?
= (HK) H*
= (KH) H?
= K(H HY)
= KH
=HK

Therefore HK is a subgroup of group G.

THEROEM :
A non empty set complex H is a SubGroup of G
< (1) a,beH = a.b eH
(2) aeH=aeH.
PROOF:

NECESSARY CONDITION:
Suppose that H is a SubGroup of G
CLAIM: (1) and (2) holds
Since (H -) its self a group
(1)Fora,b eH
abeH
fora €H,H is a group

=>al e H.

SUFFICIENT CONDITION:

Suppose that (1)abe H=>abeH



(2)aeH=>a'leH
CLAIM : His a SubGroup of a group G i.e, to prove that (H,-) itself a group
ASSOCIATIVE ; Leta,b,c e H

=a,b,ce G
= (a.b).c= a.(b.c)

IDENTITY: Sinceae H =aleH

By (1)aa?! eH
e eH

Therefore (H,-) itself is a group
Therefore H is a subgroup of G .
THEROEM :

A NON Empty Complex H is a SubGroup of a group G
a,b eH thenab?!eH.

PROOF :
NECESSARY CONDITION:
Suppose that H is a SubGroup of agroup (G .)
CLAIM :
abeH=ab'le H

Since (H -) itself is a group
Leta,b €H

=a€ H, ble
=a,b? eH
SUFFICIENT CONDITION:

suppose that



ab€eH=>ab!eH----- (1)
CLAIM:

H is SubGroup of G (i.e) we have to prove that (H .) itself a Group
(1) ASSOCIATIVE : Leta,b,c €H

=a,b,ce G
= (a.b).c =a.(b.c)

(2) IDENTITY :by (1) ,a,a € H > a.aleH
>e€eH
(3) INVERSE :By (l)e,a€ H>e.a'e H
=aleH
(4) BINARY OPERATION :
Letabe H
=a€HbleH
by (1) ,a.(0)?* € H
—>abeH
Therefore (H,-) itself is a group

Therefore H is a subgroup of G .

THEROEM :

IF Hi,H; are two SubGroup G then Hin Hz is also a
SubGroup of G.
PROOF :

Given that H; and H; are two SubGroups of a group G

CLAIM: Hin Hz is a SubGroup of G



clearlye € HinH;
= Hi N H; is a non empty subset
Leta,b e Hi N H;
= a,b € Hiandab € H,
= a.b?l € Hianda.b? € H;
= ab?! € HinH;
By known theorem ,

H 1nH; is a subgroup of G

PROBLEM :

By an Example to show that the union of two Subgroup’s of
a group need not be a subgroup .

Solution:
consider 2z & 3z are two Subgroups’ of a group (z,+)
Now 2z.U 3z ={0,+ 2, £3, +4, +6...}
Let 3,2 € 22 U3z
= 3+2=5 not belongs to 2z U 3z

Therefore 2zU 3z need not be a subgroup

THEROEM :

If Hiand H2 are two subgroups of a group G, then HiUH: is a
subgroup of G & H1SH> (or) H2SH:

PROOF:



Given Hiand H, are two subgroups of G
SUFFICIENT CONDITION:
Suppose H1SH; (or) H,SH;
CLAIM:
H1UH; is a subgroup of G

If H1SH; = H1UH»=H; is a SubGroup of G
If H,SH;= H1UH»= Hj is a SubGroup of G

Therefore H;UH> is a SubGroup of G
NECESSARY CONDITION:
Suppose H1UH; is a SubGroup of G
CLAIM : H:SH; (or) H,SH;
If possible suppose that H1&H> (or) Ho& Ha
Since H1 SH, = 3 a € H1 3 a not belngs to H»
H,SHi1= 3 b €H23 b not belngs to H;
Sincea €Hi, b € H,>ab €H;UH;

=ab € HiUH,
=ab € H; (or) ab €H;
Sincea' e Hy,ab € H;
= al(ab) € H;

=altab €H;
= eb € H
=>b€H

which is a contradiction to b does not belongs to Hi similarly , we array a
contradiction to a does not belongs to H.



Therefore H1SH, (or) H,SHs,
THEROEM:

A finite non empty complex H is a SubGroup of a Group G <&
a,b € H for abe H

PROOF:
NECESSARY CONDITION:
Suppose that H is a SubGroup of a Group (G,-)
l.e ,(H.)itself is a group
CLAIM:ab e H=>ab € H
Letab e H
—abeH
SUFFICIENT CONDITION:
Leta,b € H-----(1) fora,b € H
CLAIM: H is a subgroup of G
(1) from (1) , . is a Binary operation on H
(2) ASSOCIATIVE LAW:
Letab,c € H
=a,b,c €G
=a.(bc)=(ab).c
3) IDENTITY : Leta € H

Sinceaa E H=>a2 € H
a® eH



a"e Hforn € z*
Let a'=a’ for somer,s € z*, r>s

=a".a® =a’.a®
:ar-s :aS'S
ﬁar- S e aO :e

= a"=e
=>e€H

(4) INVERSE : Leta € H

Clearlyr-s-1 € zt=> a™! € H

Also al.(a™1) = a™=e

Therefore a1 € H is the inverse of "a’
Therefore H itself a group

Therefore H is a subgroup of G

NORMALIZER OF AN ELEMENT IN A GROUP :

If Gisagroup and a € G then the set N (a) ={x € G / ax=x a}
is called the NORMALIZER of "a’ in G.

CENTRAIZER (OR) CENTRE OF A GROUP:

If G is a Group then the set Z (G) (or) Z={ a € G/ax=xa € G} is
called Centre of a Group .

THEROEM:
Show that N (a) of *a’ is a sub group of G .

PROOF:
CLAIM: N (a) is a subgroup of G



Letae G
Since a .e=e .a
= e EN()
Therefore N (a) 20 € G
(1)Letx,y €N (a)
=a X= Xa, ay=y a
Now (xy) a=x (y a)
= X (ay)
=(xa)y

=(ax)y
(xy)a=a(xy)

=XY € N(a)

(2) Letx € N(a)
=X a=ax
=x1(x a)xt=xt(ax)x?

= (x1x) a x1= xta (x x1)

=e. a x=xlae
= .a. x=x1a
=>x! € N (@)
Therefore N(a) is a SubGroup of G .
THEROEM:

Show that the centre Z(G) is a subgroup of G



PROOF :
LetZ={a€eG/ax=xaVXx €G }
CLAIM: Zis a SubGroup of G
Letxe G
Since x. e =e X
>e€EZ
Therefore Z #0 €G
(1)Letabe z
= a x=xa; bx=xb

Now (a b) x=a (b x)
=a(x b)
=(ax)b

(@ab)x=(xa)b
(ab)x=x(ab)

=»abeZ
(2) Letae Z
= X a=a X
=S ax=xa
= al(ax) al=al(xa) al
= (ata) (xal) = alx (aa?)
= e.xal=alx.e
= xal=alx
>ateZz

Therefore Z is a subgroup of G.



COSETS AND LAGRANGE’S THEOREM:
DEFINITION:

Let H be a subgroup of a group G and a€eG then this set a.H ={ a.h/h eH}
Is called left coset of H in G & the set H.a ={ h.a /heH } is called Right coset of H
inG.

NOTE:
If H is a subgroup of an abelian group G then a.H=H.a.
I.e, every left coset is a right coset .
RESULT:
Let H be a subgroup of G and a,b €G
Then

(1) a€H <a.H=H

a€EH <H.a=H
(2)aeHb < H.a=H.b
aebH < a.H=b.H
(3)H.a=H.b < a.bleH
a.H=b.H< albeH
THEROEM:

Any two left cosets of a subgroup of a group are either disjoint
(or) identical .

PROOF:

Let H be a subgroup of a group G and a,beG.



Let aH,bH be two left cosets of Hin G
CLAIM :
aH n bH =@ (or) aH=bH
Suppose that aHNbH #@
To prove that aH =bH
Let ceaHNbH
=c€ aH and cebH
=cH =aH and cH= bH
=aH=cH=bH
=aH=bH
Therefore aH and bH are identical .
THEROEM :

Any two right cosets of a subgroup of a group either disjoint
(or) identical .

PROOF :
Let H be a subgroup of a group G and a,beG
Let Ha,Hb be two Right cosets of H in G

CLAIM: Ha n Hb=0
Suppose that Ha N Hb#Q
To prove that Ha =Hb

Let c € HanHb

=C€EHa and ce Hb



=Hc=Ha and Hc=Hb
=Ha=Hc=Hb
=Ha=Hb

Therefore Ha and Hb are identical .

THEROEM :

If H is any subgroup of a group G then there exists a bijection
between any two left cosets of Hin G .

PROOF :
Given that H is a subgroup ofa G and a,b €G .
Let aH,bH be two left cosets of H in G
Define f: aH —bH by (ah) =bh, for ahe aH
f is one —one:
Let ahy,ah, € aHfor hy,h,eH
Consider f(ah;) =f(ahy)
=bh;i=bh,
=h;=h,
=ah;=ah;
f is on —to:
Let bH €bH
= heH
= ah € aH

by (1) , f(ah) =bh



Therefore, f is onto

Therefore, f:aH—bH is a bijection .
NOTE:

By above theorem , concludes that any two left (right) cosets have the
same no.of elements

THEROEM :

If H is a subgroup of a group G then there is a one to one
correspondece between the set of all distinct left cosets of H inG and the set of all
disrinct Right cosets of H inG .

PROOF:
Let Gy=set of all distinct left cosets of Hin G .
G, = Set of all distinct Right cosets of H in G
Define f:G1—G: by f(aH) =H.a%, for aHeG
f is well defined and one-one :
Let aH ,bH €G;
Let aH =bH
< albeH
s al[(bh]* eH
& Hal=Hb
& f(aH) =f(bH).

fisonto:



Let Ha € G2
=a€E G
sale G
=alHe G,
Therefore f(a*H) =H(@?)* [by (1) ]
=Ha
Therefore f is onto

Therefore f:G;— G is a bijection

THEROEM :
State and Prove Lagrange’s Theorem.
STATEMENT :
If H is a subgroup of a finite group G then O(H) | O(G)
PROOF:
Given that H is a subgroup of a finite group G
=H is finite & the no.of right cosets of H in G is finite

Let Haj,Ha;...., Hak be the distinct right cosets of Hin G .
We know that every Right cosets of
O(Ha;)=0(Hay)=....=O(Hax)=0(H)

Since G is finte , the right cosets partitions into equivalence classes .

Therefore G =Ha;U HayU ... .U Hak



= 0O(G) =0[ Ha;UHa,U . U Hay]
=0(Ha;)+O(Hay) + ...+O(Hayk)

= 0O(G)=0(H) +O(H)+...[ Ktimes ]

= O(G) =O(H).k

= O(H) | O(G).



UNIT : 11
Normal Subgroups
Definition:

A Subgroup H of a Group G is said to be Normal in G if xhx*e H,vheH
,xeG

(or)
X H x! €H Vx € G and it is denoted by Ha G
Theorem :
Show that Every Subgroup of an abelian group is Normal
Proof : let H be a Subgroup of an abelian group G
Claim: H aG
LetheH ,xeG
x h x1 =(hx)x?
=h(xx?)
=he
x h x!
x h xteH
There fore H aG

Theorem :



A Subgroup H of a Group G is Normal in G < xHx'=H ,VxeG
(or)
Ha G xHxl= H, VxeG
Proof :
Necessary condition : let H aG
By definition x Hx?! CH------ (i) VxeG
Claim: xHx'=H VxeG
From (i) xH (x1) 1€ HV
X(x1H x) x1€xH x1
(xxHH( xx1) € xH x1
e(Hx) xtcxHx!
H(x x!)c xH x*!
He € xH x*
H<S xH x'V x € G------ (i)
From (i) and (ii)
XHx'=H,vxeG
Sufficiant Condition :
Suppose that x H x'=H------ i)V x € G
Claim: H aG
From (iii) itis clear
XxHx1CHVY X € G

There fore H a G



Theorem :

A Subgroup H of a group G is Normal in G < Each left coset of H in G
Is aright coset of Hin G

Proof :
Necessary condition :
LetHa G
Claim : Each left coset is a right coset of HinG
By known theorem xH x!=HV x € G
= XHxx=HX
= XHe=HX
> XH=Hx,VXxeG
Therefore Each left coset is a right coset of H in G
Sufficiant condition :
Suppose that Each left coset is right coset of H in G
Thatis X H=H X ........ (i)
Claim: HaG
From (i) ,XH=HX
= XHXt=HXX1
=>XHX!= He
>XHXI=H,vxeG
There fore Ha G

Theorem :



A Subgroup H of a group G is a Normal Subgroup of G & The
product of two right cosets of H in G is again a right coset of Hin G

Proof :
Neccessary Condition :
Let HaG
Claim: Letab,abeG
=Ha ,Hb,Hab € G are right cosets of Hin G
Consider (Ha) (Hb) =H (aH) b
=H (Ha) b
=(HH) ab
=Hab is a right coset

. The product of two right cosets of H in G is again a right coset of
HinG

Sufficiant condition :
Let (Ha) (Hb) =Hab....... (i)
Claim: HaG
Let xeG ,heH
Consider xhx* = (ex) hx! e Hx H x*

“H x x!

= He
=H
= xhx?! eH

=~ By definition , H is a Normal Subgroup of G



Similarly , we can prove the theorem for left cosets
also

Theorem:

Show that the intersection of two Normal Subgroups of a group G is
again a Normal Subgroup of G

proof :
Let H and K be two Normal Subgroups of group G
Clam: HNKa G
Clearly H N K'is a subgroup
LetxeG,heHNK

= XeG,heH

From (i) and
~ X hxteHNK
~HNKaG
Simple group :

A Group G is said to be Simple if it has no proper Normal
Subgroups

Note :

G is Simple if and only if G has no Normal Subgroups other than G and
{e}



Theorem:
Prove that Every group of prime order is simple

Proof :

Let G be a Group of Prime order P
Let N be a Normal Subgroup of G
By Lagrange’s theorem
O(N) / O(G)

= O(N)/P

= O(N) =1 (or) O (N) =P
If O(N) =1 ,then N ={e}
If O(N) =P ,thenN =G
=G has no Proper Normal Subgroups and hence, G is Simple

Hence, Every Group of Prime Order is Simple



UNIT -4
HOMOMORPHISMS
DEFINITIONS:-

HOMOMORPHISM: - Let G,G' be two groups. A mapping f: G >G' is called a
“Homomorphism” if f(ab)=f(a) - f(b) V a,bEG.

HOMOMORPHIC IMAGE :- If f:G>G'is a homomorphism then the set
f(G)={f(a)/a€G} is called a “Homomorphic Image Of G”.

_MONOMORPHISM: - A mapping f:G=>G' is called a “Monomorphism”
if (1) fis homomorphism (I1)f is 1-1.

EPIMORPHISM: - A mapping f:G->G' is called a “Epimorphism” if

(i)f is homomorphism and (ii)f is onto.

Isomorphism: - A mapping f: G>G' is called an “Isomorphism” if (i) f is
homomorphism and (ii) f is both 1-1 and onto.

Endomorphism: - A homomorphism f: G=>G is called an “Endomorphism”.

Automorphism :- A mapping f: GG is called an “Automorphism” if (i) f is
homomorphism (ii) f is both 1-1 and onto.

Isomorphic: - Two graphs G and G’ are said to be “isomorphic” if there exists an
isomorphism of G and G' we write G=G'.



Theorem:- Let (G, - ) and (G, - ) be two groups Let f be a homomorphism from G
onto G' Then (i)f(e)=e' where e be the identity in G and e’ be the identity in G’

(i)f(a™)={f(a)}.”

Proof:- Given that (G, - ) and (G, - ) be two groups and f:G -G’

homomorphism.

i.e., f(ab)=f(a).f(b) V a€G

(i)To prove f(e)=e'
f(e-e)=f(e)
= f(e).f(e)=f(e).e
= fle)=e'
ii) To prove f(a™) = (f(a))™"
=f(e).  By(i) fle)=e’
= e
= f(a”').fla) = e’
Therefore f(a™)=(f(a)) ™"

i.e The inverse of f(a™')is f(a).

Theorem :- If f is a homomorphism from a group (G, - ) into (G', - ) Then

is

(f(G), - ) Is a subgroup of G' (or) the homomorphic Image of a group is a group.

Proof:- Given that f: GG’ is a homomorphism
The homomorphic Image of G is f(G)={f(a)/aEG}

To Prove that f(G) is a subgroup of G’

d



Clearly f(G) €G’
Leta',b € f(G)
Then there exists a,b€G such that f(a)=a' and f(b)=b'
Now a' (b')™'=f(a)-(f(b)) ~°
=f(a) -f(b™")
=f(ab™)
€ f(G)
=a'(b') ' Ef(G)
Therefore a',b'€f(G)’
Then a'(b')™"€f(G)

~f(G) is a subgroup of G’

Theorem:- Every Homomorphic Image of an abelian group is abelian.
Proof:- Let (G, - ) be an abelian group and (G', - ) be a group
Let f:G>G' be a homomorphism
Let G' be the homomorphic Image of G i.e G'=f(G)
To prove that G' is abelian
Since G is abelian =>ab=ba for a,beG
Leta'b'€G’
Then there exists a,b€G 3 f(a)=a'and f(b)=b’
a'b'=f(a)f(b)

= f(ab)



= f(ba)

=f(b) - f(a)

=b'a'
=a'b'=b'a’

Therefore G' is abelian

Kernel of a homomorphism:-

If f is a homomorphism of a group G into a group G' then the kernel of f is defined
by Ker f={xeG/f(x)=e'} where e’ is the identity in G" .

Theorem: - If f is a homomorphism of a group G into a group G' then the
kernel of f is a normal subgroup of G.

Proof:- Given that G and G' are two groups
Also f:G->G' be a homomorphism
To prove that ker f is a normal subgroup of G we know that
Ker f={x€G/f(x)=e'} where e'is the identity in G’
Since e€G = f(e)=e', e€ker f
=ker f20CG
First we Prove ker fis a subgroup of G
Let a,b€ ker f
=f(a)=e" and f(b)=e’
Now f(ab™')=f(a) -f(b™")

= f(a) -(f(b))™



=f(ab™')=€’
=ab™ '€ ker f
Therefore ker f is a subgroup of G.
Now we Prove ker f is normal
Let XEG and a€ ker f =f(a)=e’
Now f(xax™")= f(x)f(a)f(x™")
= f(x).e'.f(x™")
= f(x).f(x™")
= f(xx™")
= f(e)=e’
= f(xax™')=e'
=xax™ '€ ker f

=~ ker fis a normal subgroup of G.

Theorem: - The necessary and sufficient condition for a homomorphism f of a

group G onto group G' with kernel K to be an isomorphism of G into G' is that
k={e}.

Proof: - Let f be a homomorphism of a group G onto a group G'.

Let e,e’ be the identities in G,G' respectively.



Let k be the kernel of f.

i.e., K=Ker f = {xeG/f(x)=e'}
Suppose f:G>G' is an isomorphism
To prove that k = {e}.

Let a€k
=>f(a)=e".
=f(a)=f(e)
=a=e for a€G

Therefore e is the only element of k
=K = {e}
Conversely, suppose K = {e}
To Prove that f is an isomorphism.
Since f is onto homomorphism.
To prove f is one-one
Let a,bEG
f(a) = f(b)
= f(a)(f(b))™'= f(b) (f(b))™
= f(ab™')=e
= ab '€ K ={e}
=ab '=e
=ab 'b=eb

=>ae=Db



=a=b
~ fis one-one

Therefore fis an Isomorphism of G onto G'.

Theorem:- Let f be a homomorphism of a group G into G' then f is
Monomorphism < ker f ={e} where e is the identity in G.

Proof :- Let f be a homomorphism of a group G into G’
We Know that Ker f={xeG/f(x)=e'}
Suppose f: G=>G' is Monomorphism
To Prove that ker f={e}
Let a€ker f
= f(a)=e'.
= f(a) = f(e)
=a = e for a€G
~. e is the only element of ker f
= ker f={e}
Conversely, suppose ker f={e}
To prove that f is Monomorphism
Since f is homomorphism.
To prove f is one-one..
Let a,bEG

f(a)=f(b)



= f(a):(f(b))~'= f(b)-(f(b))™
= f(a)f(b™") =e

= f(ab™)=e

= ab™ '€k = {e}

=ab '=e

=ab 'b=eb

=>ae=b

=a=b

~fis one-one

=~ fis an monomorphism of G into G'.

Theorem:- Let G be a group and N be a normal subgroup of G. Let f be a

mapping from G to G/N defined by f(x)=Nx for x€G . Then f is a
homomorphism of G onto G/N and ker f=N

Proof:- Given that G is a group and N is a normal subgroup of G.

Let f be a mapping from G to G/N defined by f(x)=Nx —>(1) for xeG .

(i) f is a homomorphism :-
Let a,beEG
f(ab)=Nab -~by(1)
= Na:Nb (~"Ha-Hb=Hab)

= f(a).f(b)



= f(ab) = f(a).f(b)
Therefore f is a homomorphism.
(i) f is onto :-
Let Nx€ G/N for x€G
Since x€G
Now f(x)=Nx  ~by (1)
=~ fis onto
(iii) ker f=N :-
The identity of the quotient group G/N is N
= ker f={x€G/f(x)=N}
Let k€ker f
= f(k)=N
By (1) f(k)=Nk
= N = Nk
=>keEN
= kerf EN =2(1) (H=hH, heH)
Let neEN
We have f(n) =Nn=N

=f(n)=N
= n€Eker f

= NCkerf —2(2)

From (1) and (2) we get ker f =N



Definition: - The mapping f:G>G/N such that f(x)=Nx for all x€G is called
Natural (or) “canonical homomorphism”.

PROBLEM:

1. If for a group G, f:G->G is given by f(x)=x?> V x€G is a homomorphism then
prove that G is abelian.

Proof : Given that f:G—->G is a homomorphism and is defined by
f(x)=x? V x€G
To Prove G is a abelian
Let x,y € G = f(x)=x?,f(y)=y?
XyEG= f(xy)=(xy)?
= f(x)-f(y)=(xy)(xy)
= x*y?=(xy)(xy)
= (x-x)(y-y)=(xy)(xy)
= X (xy)y=x(yx)y
=Xy=yX

~ G is abelian.

Theorem: - Let G be a multiplicative group and f:G->G be a mapping such
that for a€G,f(a)=a"'then prove that f is one-one onto. Also prove that f is a
homomorphism iff G is commutative

Proof:- Given that f:G—=>G is a mapping defined by f(a)=a™" for all a€G

(i) fis one—one :- Let a,bEG



f(a) = f(b)

(@) =(b™)"
a=b
=~ fis one - one
(ii) fis onto :- Let xEG
Then x"'€G such thatf(x™) = (x"") ™
=X
= f(x™') =x
~IAXx'EGDf(x)=x
= fis onto
(iii) Suppose f is a homomorphism :-
To prove G is commutative
Let a,b €G =f(a)=a™", f(b)=b™"
Since f(ab)= f(a)-f(b)
= (ab)" =a""b™
= ba '=a~"b”™’
=>((ba) =@ b))
= (b™)"(@™)'=(@”) " (b™)"
= ba=ab
= ab =ba

Conversely, suppose G is commutative



i.e. a,bEG =ab=ba
To prove f is a homomorphism
Now f(ab)=(ab)™
=b™'a”™
=a'b”
= f(a)-f(b)

=f(ab) = f(a)-f(b)

Fundamental theorem of homomorphism of groups:-

Statement:-If f:G G’ is a homomorphism and onto with kernel K, then
Prove that G/K =G'.
OR

Every homomorphism Image of a group G is “Isomorphic” to some “quotient
group” of G.

Proof:- Let f be a homomorphism of a group G onto group G'.
Then f(G)=G'

= Kis a normal subgroup of G.

= G/K is a quotient group.

fora€G, KaeG/K and f(a)EG’

Now Define a mapping @ : G/K > G' by o(Ka)=f(a) for a€G
@ is well defined:-

Let Ka,KbeG/K

Now Ka = Kb



ab™ €K
= f(ab™) =€’
= f(a)-f(b™')=¢'
= f(a):(f(b))™" f(b) = e'f(b)
= f(a)e' = e’ f(b)
= f(a) = f(b)
= o(Ka) = 2(Kb)
=~ @ is well defined
@ is one-one :-
Let Ka,Kb € G/K
2(Ka)=2(Kb)
= f(a ) = f(b)
= f(a) e'= e'f(b)
= f(a)-(f(b))™" f(b) = e" f(b)
= f(a)-(f(b))"'= e’
= f(a)-f(b™") =€’
= f(ab)'= e’
= ab €K
= Ka =Kb
~. @ is one-one.
@ is onto :-

Let XEG'



Since f:G>G' is onto
=3 a€G 3 f(a)=x
Since a€G then ka € G/K
Now @(Ka) = f(a) = x
= o(Ka) = x
- @isonto
@ is a homomorphism:-
Let Ka,Kb € G/K
2 (Ka-Kb) = o(Kab)
= f(ab)
= f(a)-f(b)
= g(Ka)-2(Kb)
= o(Ka-Kb) = o(Ka)-2(Kb)
~. @ is a homomorphism
Hence 2:G/K->G' is an isomorphism.

= G/K=G'

Theorem: - show that the mapping f:G->G Is defined by f(a)=a™' for acG is an
automorphism iff G is abelian.

Proof: - Given that f:G->G is a mapping defined by f(a)=a™ for a€G.
First Assume f is an automorphism.

To prove G is abelian



Let x,y€G = f(x) =x",f(y) =y~
= f(xy) = (xy)™
= f(xy) =y~ 'x~
= flxy) = f(y)f(x)
= f(xy) = f(yx)
= Xy = yX
~ G is abelian
Conversely suppose G is abelian
To prove fis an Automorphism
f is one-one :-

Letx,ye€G

f(x) = f(y)

(x7)"=(y")"
X=y
=~ fis one-one
f is onto :-
Let XxEG (co-domain)
Then x™'€G (domain)
Now f(x™') = (x™")" =x
SXEGI X EGOf(XT) =x

= fis onto



f is homomorphism :-

Let x,y€G
f(xy) = (xy)™
= y_'x_
= X_'y_'
= f(x)-f(y)

= f(xy) = f(x)-f(y)
~ fis a homomorphism

Hence f is an Automorphism.

Theorem: - Let a be a fixed element of a group G.Then the mapping f.:G>G is
defined by f. (x)=a"'xa for Xx€G is an Automorphism of G.
Proof :- Let a be a fixed element of G.

fa:G—>G is defined by fa (x) = a”'xa for xEG
To prove fa is an Automorphism

f.is one-one :-
Let x,y€G

fa(x) =fa(y)
=a xa=a ya
=>X=y
=~ fais one-one
fais onto :-

Let yéG (Co-Domain)



Since a€G
=a" '€G
=aya~ €G (Domain)
Now fa(aya™")=a"'(aya™')a
=(a"'a)y(a™'a)
=eye
=y
~yEGJaya ' €GOfa(aya )=y
= fais onto
fais a homomorphism :-
Let x,y€G
fa(xy) =a”'xya
=a~'xeya
=a 'x(aa”')ya
=a~'xeya
=a 'x(aa”')ya
=(a"'xa) (a”'ya)
= fa(x)-f(a)y
= fa(xy) = fa(x)-fa(y)
=~ fa is a homomorphism

Hence fa is an Automorphism.



Inner Automorphism :- Let G be a group and ‘a’ be a fixed element in G. Then
the mapping fa:G—->G is defined by

fa (x)=a~'xa for x€G is known as Inner Automorphism.

Outer Automorphism :- An Automorphism which is not inner is called outer
Automorphism.

NOTE :- The Set of all Automorphism of a group G is denoted by A(G) and is
defined as A(G)={f/f:G—>G is an Automorphism}.

Theorem:- The set of all Automorphism of a group G form a group with
respect to composition of mappings.

Proof :- Let G be a group
Define A(G)={f/f:G=>G is an Automorphism}
To prove that (A(G),0) is a group.
Binary operation :-
Let f,g € A(G)
Clearly fog is bijective (one-one,onto)
Now (fog)(ab) = f(g(ab))
= f(g(a)-g(b))
= f(g(a))-(g(b))
= fog(a)-fog(b)
= fog is a homomorphism
= fog € A(G)
=~ f,g € A(G)

= fog € A(G)



= ‘0’ is a binary operation on A(G).
Associative :-
Let f,g,h EA(G),xEG
Now ((fog)oh)(x) = (fog)(h(x))
= f(g(h(x)))
= f((goh)(x))
= (fo(goh))(x)
=~ ‘0’ is associative.
Existence of Identity:-
Let f EbA(G).
We know that I:G->G is an Automorphism
= 1EA(G)
Now (fol)(x) = f(I(x))
= f(x)
= fol =f
(lof)(x) = 1(f(x))
=f(x)
lof = f
~ | € A(G) is the identity.

Existance of Inverse :-
Letf € A(G), | € A(G)

Clearly f:G->G is bijective



Let a,bEG
Now f[f(a)-f"(b)]
= (fof™)(a)-(fof")(b)
=1(a)-I(b) =ab
= f[f"'(a)-f"'(b)] = ab
= f[f(f"'(a)-F(b))] =" (ab)
= f7'(a)-f"'(b) = f'(ab)
= ™' is an homomorphism
=f" € AG)

~ (A(G),0) is a group.






UNIT -5
PERMUTATIONS GROUPS

DEFINITION:A Permutation is a one —one mapping of a empty set onto
itself. Thus a permutation is a bijective mapping of a non-empty set onto itself.

Example: f: R — R defined by f(x) = x+1 is a permutation of R since f'is an
one-one mapping onto itself .

Note:If S={ a1, a2,.....an } then a one — one mapping from S onto itself is
called a permutation of degree n. The number of elements in S is called the
degree of permutation.

Equal Permutation: Two permutations f and g defined over a non-empty set S
are said to be equal if f(a) = g(a) for all a €S

Permutation multiplication (or) Product of permutations:

It is the composition of mappings defined over the non —empty set S. If g, fare
two permutations ( bijective mapping ) defined over S, then the product or
multiplications of f, g is defined as gof (or) gf where

(gf) () = g[f(a)] for all a eS.Further gf is also a bijective mapping over S .

Product of Permutations (or) Multiplication of permutations (or)
Composition of permutations in Sy, :

Letf= a1 ap .. au b1 b2 bn
G, b, .. b 9=(, ¢, . )Dbetwoelements

(permutations ) of S,.. Here b1, by, ... by (0r)c:, C2, ... Cqy are nothing but the
elements a; , az,.....an of Sy is some order.

a; an)

aq
Therefore gf = (
ci1 C2 .. Cn

Permutation Group: The set A(S) of all permutations defined over a
non-empty set S forms a group under the operation permutation multi[placation.

The above group is called group of permutations .




Identity Permutation: If f is a permutation of S such that f(a) = a for all
a €S, then f is identity of S and we denote fas I .

Order of permutation: If feS, such that " = 1, the identity permutation in
Sn,where n is the least positive integer, then the order of the permutation f is S,
IS n.

Note: Order of Syis ni
If the number of elements in S is 1, then the order of Sis 11 =1
If the number of elements in S is 2, then the order of Sis 21 =2
If the number of elements in S is 3, then the order of S is 31 = 6 and so on

Problems:
1A=t and B =

2 3 1 1 2

Solution: GiventhatA:(1 2 3andB: 123

2 3 1) (3 1 2)

2 3) 12 3),then find AB and BA.

BA:(l1 I
Therefore AB=BA = |
1 2 3 4 5 1
). 9=(
4

5 3 2 4 1
Solution: Giventhat f=(1 2 3 4 °

5), then find fg and gf.
5

(

2. 17 =( 2 3 4
3 1

2
g:

1 2 3 4 5
53 2 4 ) 4312 )
fg=1 2 3 4 5




123 45 12345

Solution: Given that f=( )

1 2 3 1 4 5 2 1 3 4 5
(
4 3
fo= 1 3
97 ¢
3 5
(fg)h = 2
(4

1 2 3 4 5)
2 5 4 1 3
Next to find f(gh)
1 2
gh=( >
5 4 3
f=1 »
( 1
2

(fg)h =(

3

f(gh) = (*
2

Therefore f(gh) = (fg)h
Multiplication is Associative.

Inverse of a permutation: It is also a permutation (bijection).

Iff= a1 a; .. au -1 bl b2

(b1 by .. bn),thenitsinverse, denotedbyfis(a1 @

Problems:

1. Find the inverse of the permutation f = (1 2

Solution:Giventhatfz(1 2 3 4 5 6

34561)




Example: Consider S={1, 2, 3} and a permutation on Sis f = (
2

Here f(1) = 2

(1) = f(f(1)) = f(2) = 1
The orbits of 1 under f= { (1) , f(2)} = {2, 1}

f(2)=1
(1) = f(f(2)) = f(L) =2
The orbits of 2 under f= { f(2) , (2)} ={ 1, 2}
f(3) =3

The orbits of 3 under f= { f(3)} = {3}.

Problem : Find the orbits of ¢ = (1

2
3
5

Solution : Given that ¢ = (12 é
Now o (1) =2
0*(1)=0c(c(1)=0c(2)=3
6’ (1)=c(c(1))=c(3)=5
6*(1)=c(c’(1))=c (5) =4
°(1)=o (c*(1))=c (4) =1
The orbits of 1 under o is {2,3,5,4,1}.

c(2)=3




6*(2)=0(c(2)=c(3)=5
6’ (2)=0(c*(2))=0(5) =4
*(2)=0(*2)=c(4)=1
*(2) =6 (c*(2)) = o (1) =2

The orbits of 2 under o is {3,5,4,1,2}.
c(3)=5
>(3)=c6(c(3))=c (5) =4
*(3)=0(c*(3))=0c (4) =1
6*(3) =0 (c*(3))=0c (1) =2
o°(3) =06 (c*(3))=0c(2) =3

The orbits of 3 under o is {5,4,1,2,3}.
c(d)=1

6’ (4)=c(c(4)=0c(5) =2

6* (4) = o (c*(4)) = o (4) =3
6t (4) =6 (c*4)=c(1)=5
6*(4) =0 (c*(4) =0 (2) =4
The orbits of 4 under o is {1,2,3,5,4}.
c(5)=4
6> (3) =6 (a(5))=a(5) =1
6’ (5)=c(c*(5) =0 (4) =2
5*(5) =0 (*5)) =0 (1) =3
o*(5) = 6 (6*(5)) =5 (2) =5
The orbits of 5 under o is {4,1,2,3,5}.
G (6) =6




The orbits of 6 under o is {6}.
c(7)=8
6> (7)=c(o(7)) =0 (8) =7
The orbits of 7 under o is {8,7}.
c(8=7
5>(8) =o (c(8)) =0 (7) =8
The orbits of 8 under o is {7,8}.

Problem : Find the order of the permutation ¢ = (1

Solution : Giventhato= ,1 2

(
2 3

Gl N B o

(o)

O\vO\..[:. w O
~ Ul W

~ )

N O~ N F
NS

)

N O
NS [N N N\

= W
-/

(o)
N’
OWwW o U1 WO o TW

2
3
5
1
2
3
5
2
2
3

N Fowos
NN

The order of the permutation o is 5.

Cyclic permutation :Consider a set S = { a1 ,a2,.....an} and a permutation

a
f= ( 1 Lo oo Oy Qg1
az 3 Ak+1




ie., f(a) = a2, f(a2) = a3, f(as) = as...f(ak) = a1, f(ak+1) = ak+1...f(an) = an

This type of permutation f is called a cyclic permutation of length k and
degree n. It is represented by (a; ,az ,....ax) (or) (a1 ,az ,....ax) which is a cycle of
length k (or) k-cycle. The number of elements permuted by a cycle is called it’s
length.

Example: IfS={1,2,3,4,5, 6} thena permutationfon S is
(1 2 3 4 5)
3 1 4 6 5

Solution: It can be writtenas (1 34 6 2)
fis a cycle of length 5
f can also be writtenas (3462 1) (or) (4621 3)etc

Example: Find the order of the cycle (1457)

Solution: Letf=(1457)

2 3 45 6 7.1 2 3 45
2 3 71 6 4 4 2 3 5 7

=

The order of the cycle is 4.




Transposition: A cycle of length 2 is called is called a transposition.

Example :IfS={123 45 }and a permutationfonSis 1 3 4 5
1 3 2 4 5

)
then f= (2, 3) is a cycle of length 2 and degree 5.

Disjoint cycle: Let S ={ a1 ,a2,....an} . If f, g be two cycles on S such that they
have no common elements then these are called disjoint cycles.

Example: LetS={1234567}

» Iff=(137)and g=(245)thenf, g are disjoint cycles .
» Iff=(137)andg=(2 345)thenf, gare not disjoint cycles .

Inverse of a cyclic permutation:
Example : If f=(2 34 1) of degree 5 then find f
Solution : Giventhat f=(234 1)

f"=(1432)

Z 3 4 Yy
3 4 15
= =C 2 34 5
4 1 23 5

Problem : Iff={12345876},9g={41567328}are
cyclicpermutations then show that (fg) " =g " ™.

Since f=(

Solution : Giventhat f={1234587 6}

1 2 3 45 6 7 8
2 3 45 8 1 6

_ 2 4
_(1 3

f=( )

7

678)
7 8 5

)

5
4
1 2 3 45 6 7 8

58 2 1 6 7 3 "4
_.:(12345678

4 3 7 8 1 5 6

1 3
6 2
9= (

g




Therefore (fg) ' B

Order of a cyclic permutation:
1 2 3
3 1

Solution : The cyclic permutation of fis (1 2 3)

p=fi=t 2 3 @
2 1 2

1 2 3
242 3 1

Example : If f= ( ) is a permutation group fs.

):

2 3
3 1

=1

Therefore f is a cyclic permutation of length 3 and degree 3. Also the
order of fis 3.

Problem: write down the following products are disjoint cycles.

i. (132)(567)(261)(45)
i. (136)(1357)(67)(1234)

Solution: (1) (132)(567)
1 2 3




1 2 3 4 5 7
= =(2754 1
(1 7 2 6 4 5) (275463) (1)

(i) (136)(1357)

1 2 3 4 5 6 7)123456
3 17§25476

)

(

2 5
= ¢ 3 6 7
5 1 3

6
4
4

2

4
1 2 5
6 2 7

(67)(1234)

1 2 3 4 5 6 7)123456
1234576£34156

4 5 6 7
1 5 76

(

)

1 23 456 7,1 2 3 45 6 7
Now

6 2547139G 3421576
1 2 3 45 6 7
=( )=(1257)(346)

2 5 4 6 7 3 1

Problem: Express the product (2 5 4)(1 4 3)(2 1) are the product of
disjointcycles and find its inverse.

Solution: Giventhat (254)(143)(21)
(123451234512345

15324)(42135)(21345)




2.3 ) =(1543)(2
1 3 4

Letf= (154 3)(2)

i+ =@as)(@ = 2 3 % 3,

3245)

Note :

«  The multiplication of disjoint cycles is commutative.

» Every permutation can be expressed as a product of disjoint cycles which
Is unique(a part from the order of the factors).

« Every cycle can be expressed as a product of transpositions.

» Every permutation can be expressed as a product of transpositions in
many ways.

Even and Odd Permutations: A permutation is said to be an even (odd)
permutation if it can be expressed as a product of even (odd) number of

transpositions .
Note :
 Identity Permutation I is always an even permutation.

A cycle of length n can be expressed as a product of n-1 transposition. If
n is odd then the cycle can expressed as the product of odd number of
transposition .If n is even then the cycle can expressed as the product of

odd number of transposition.
The product of two odd permutations is an even permutation.
The product of two even permutations is an even permutation.

The product of an odd permutations and an even permutation is an odd
permutation.




» The inverse of an odd permutation is an odd permutation.
« The inverse of an even permutation is an even permutation.
Problem:

Examine whether the following permutations are even (or) odd.

2345067 () 12345678
32456 7 1

(iiii) (L 2345) (12 3) (45) (iv)(jj

Solution: ()t 2 3 4 5 6

=(134567)(2
=(13)(14)(15)16)17)(2)
Therefore the number of transpositions are odd

Given Permutation is odd.

(ii)(12345678
7 3 1.8 5 6 2 4

=(1723)(48)(5)(6)
=(17)(12)(13)(48)(5)(6)

Therefore the number of transpositions are even.

)

Given Permutation is even.
(i) (12345)(123) (45)
(12)(13)(14)(15)(23)(45)
Therefore the number of transpositions are even.
Given Permutation is even.

.~ 1 2 3 4 5 6 7 89
\Y)
()(6 1 4 3 2 5 7 8 9)

=(1652)34)(7)(8) (9)




=(16)(15)(12) (34
Therefore the number of transpositions are even.

Given Permutation is even.

Theorem: Let Sh be the permutation group on n symbols.Then of the n!
Permutations (elements) in %2 n! are even permutations and % n! are
odd permutations.

Solution : Let S, = {e, 2, ....ep ,01, 02, ...0q} be the permutation group on n
symbols where ey, e, ....e, are even permutations and

01, 02 ,....0qare odd permutations (-any permutation can be either even (or)
odd but not both).

s p+g =n!
Let teS, and t be a transposition.

Then teq, te; , ...tep ,t01, t0z ,....toq are elements of S, as permutation
multiplication is a binary operation in S,

Since t is an odd permutation tey, te, , ....te, are all odd and to ,

tO4, tO7 ,....t0q are all even permutations.
Lettej=te fori<p,j<p
= €j =€
which is absurd.
Therefore te; # tej and hence the p permutations are all distinct in Sy .
But S, contains exactly q odd permutations p <q.
Similarly we can show that q even permutations

tO4, tO; ,....t0Oq are all distinct even permutations in Sp.

q=p




p=q=%n!
So has %2 n! even permutations and %2 n! odd permutations.
Alternating set of permutations of degree n:

Let S, be the permutation group on n symbols. The set of all %2 n! even
permutations of S, , denoted by A, is called the alternating set of
permutations of degree n.

Theorem: The set An of all even permutations of degree n forms a group
oforder % n! With respect to permutation multiplication.

Proof: Let set An of all even permutations of degree n
* Closure : Let f,g €A,

I.e., f,g are even permutations on n symbols.
= fg is also an even permutation on n symbols.
= fg €A,

» Associativity: Since a permutation is a bijection, multiplication of
permutations ( composition of mappings) is associative.

Existence of identity: Let | be the identity Permutation on n symbols,
then | €A, , since | is an even permutation.

Then | is an even permutation
= | €A,
Also forany feA, ,fl=If=f
| is an identity element in A,.
+ Existence of inverse: Let feA,

= f is an even permutation.

= f1is also an even permutation

= fleA,

Also ffl = fif=|




Every element of A, is invertible and the inverse of f is

An is a group of order %2 n! since the number of permutation on n symbols is
Y nl

Thus The set An of all even permutations of degree n forms a group of order
Y2 n! With respect to permutation multiplication.

Theorem: The set An of all even permutations on n symbols is a
normalsubgroup of the permutation group Sn on the n symbols.

Proof: Let A be the set of all even permutations on n symbols .

We know that S, is a group on n symbols with respect to Permutation
multiplication and A, (€Sp) is the set of even permutations.

Also A, is a group with respect to Permutation multiplication.
Let feS,and g €A,

g is an even permutation and f is even (or) odd permutation.
If f is an odd permutation then f* is also an odd permutation.

Also fg is an odd permutation.

fgf! is an even permutation and hence fgfleA,

If f is an even permutation then f is also an even permutation.
Also fg is an even permutation.

fgf?t is an even permutation and hence fgfleA, .

Thus f €S,and g €A, = fgfleA, .
A, is a normal subgroup of Sy,

I.e., The set A, of all even permutations on n symbols is a normal subgroup
of the permutation group S, on the n symbols.

Cayley’s theorem :
Theorem: Every finite group G is isomorphic to a Permutation group.

Proof: Let (G, - ) be a finite group.




Now consider f, : G — G defined by fi(X) = ax for all xeG.
Now to prove that f, is a Permutation.
fais well- defined: Let x, y €G.
Suppose X =y
= ax=ay
= fa(x) =fuly)
f. is well-defined.
faisone- one : Let x,y €G.
Suppose fa(x) = fa(y)
= ax=ay
= X=Yy
Therefore f, is one- one.
faisonto : Let x €G.
Since aeG = a*eG
aleG , xeG = a'xeG

Now f, (ax) = a(a’x) = aa(x) = ex = X

For x €G there exists a'xeG such that f, (a'x) = x

Therefore fa is onto .
Therefore fa is a Permutation on G.

Let G'= { f,/aeG} be the set of all permutations on G corresponding to every
element of G.

Now to prove that G'is a group with respect to Permutation multiplication.
Since eeG, f. €G’

G'#0

Closure: Let f;, f, €G’




For every (fafy )(X) = fa(fy (X))

= fa (bx)

= a(bx)

= abx

=fan(X)

= (fa fo )(X) = fan(X) for all xeG.
fafy = fa €G’

Associativity : Let f, ,f, ,f:€G’ for a, b, ¢ €G
fa(fo fe) = fa (fo fc)

= )

= fafc

= (fafo )fe

fa(fofc) = (fafo)fc

Existence of identity:Let e be the identity in G.

Lete €G, f.€G’
Let f,eG’

fafe = T = faand

ffa=fa =12

Identity in G exists and it is f. .

Existence of inverse:Let f, €G’

Since aeG= a'eG

faleG'

fafl=fai="f

falfe=fara =fe




Every element in G' is invertible and (f.) * =,

Therefore G' is a group.
Consider @ : G — G' defined by @(a) = f, for aeG
@ is well- defined : Let a,beG

Supposea=Db
= ax = bx
=f, (X) =f, (X)
=fh=%
=@(a) = @(b)
Therefore® is well-defined.
@ is one- one : Leta,beG.
@(a) = o(b)
= fa="
= fa (X) = (X)
= ax = bx
=a=b
Therefore® is one -one.
@ is onto :Let f, €G’
= aeG and @(a) = f,

For each f, €G" there exists aeG such that @(a) = f,
Therefore @ is onto
@ is a Homomorphism : Leta,b €G
@(ab) = fa
= fufb




= @(a)d(b)
Therefore @ is a Homomorphism.
The finite group G is isomorphic to the permutation group.
Thus the every finite group G is isomorphic to the permutation group.

Note : The group G' in the Cayley’s Theorem is called a regular
permutation group.

* Problem : Find the regular permutation group isomorphic to the
multiplicative group { 1, o, ®*

Solution: We use Cayley’s Theorem

If G is a group then the regular permutation group isomorphic to the
group G is { f./aeG} where f,: G — G defined by f,(x) = ax for all XxeG.

Let G={1, o, »?*} be the multiplicative group then the regular
permutation group isomorphic to the multiplicative group G is

{ fl ) fu)fu)z }




* Problem : Find the regular permutation group isomorphic to the
multiplicative group { 1,-1 ,i ,-i}

Solution: We use Cayley’s Theorem

If G is a group then the regular permutation group isomorphic to the
group G is { f./aeG} where f, : G — G defined by fi(x) = ax for all xeG.

Let G ={ 1,-1 ,i ,-i} Dbe the multiplicative group then the regular
permutation group isomorphic to the multiplicative group G is

{f,fafi,fi}

Cyclic Groups

Note : Let G be a group and ‘a’ be an element of G. Then H = {a"/n€Z} is a
subgroup of G. Further H is the smallest subgroup of G Which contained the
element ‘a’.




Cyclic subgroup generated by ‘a’ : Suppose G is a group and ‘a‘ is an
element of G. Then the subgroup H = {a"/neZ} is called a cyclic subgroup
generated by ‘a’. ‘a’ is called generator of H . This will be written as H = <a»

(or) (a) (or) {a}.

Note : Let G be a cyclic groupgenerated by ‘a’ if O(a) =n, then an =¢ and {
al,az,...a"! ,a"= e} is preciously the set of distinct elements belonging to G,
where 'e' is the identity in the group (G, ).

Cyclic subgroup : Suppose G is a group and there is an element of aeG such

that G = {a"/neZ} then G is called a cyclic group and ‘a’ is called generator of
G .We denote G by <a» (or) (a) (or) {a}.

Theorem: If G is a finite group and aeG , then O(a)/O(G).
Proof : G is a finite group.

Let O(G) = m
Let H be the cyclic subgroup of G generated by’a’ O(a) =n
Therefore O(H) = n

But by Lagranges theorem O(H)/O(G) = n/m
= i.e., 0()/O(G)

Note : If G is a finite group of order nand if a€G. Thena" =e

(identity in G)

Problem : Prove that (Z,+) is a cyclic group.

Solution : Given that (Z,+) is a group and 1€Z
1°=0.1=0

1'=11=1,12=2.1=2....etc

11=-1.1=-1,12=-2.1=-2. ..etc

1 is generator of the cyclic group (Z,+) i.e., Z=<>»

Similarly we can prove that Z =<1,




Problem: Show that G={ 1 ,-1, i, -i} the set of all fourth roots of unity
Is acyclic group with respect to multiplication.

Solution : Giventhat G={1,-1,1, -}
Clearly (G, -) be a group.

=i, @()2=-1,(@G@=iki=-Lli=-i,
()*=i2i2=-1-1.=1

Thus all the elements of G are the power of ieG
G 1s a cyclic group generated by 1, G = <»
Similarly we can have G =«

Problem : Show that the set of all cube roots of unity is a cyclic group
withrespect to multiplication.

Proof : The set of all cube roots of unity G = { 1, ® , ®?}
(0)'=0, (0)P=0*,(o)y=1

Then the elements of G are the power of the single element w€eG.
G is a cyclic group generated by ‘®’. i.e., G = «w»

We can also have G = «»®»

Problem : Show that the set n*" roots of unity with respect to
multiplicationis a cyclic group.

Proof : We know that G = {0° =1, ©', ®?,...., "'}
of = e k=0,1,2,...(n-1) is a group under multiplication.

(wP°=1=¢e, (0)'=0,(®?*=0.0= o?,

Thus, every element of G is some power of o .
G is a cyclic group generated by ‘®’. i.e., G = > .

Theorem : Every cyclic group is an abelian group.




Proof : Let G be a cyclic group generated by’a’then
G = {a"neZ}

Leta", a*€G, r,s €Z

A =a"=a"=a".a
Therefore G is abelian.

Theorem : If ‘a’ is a generator of a cyclic group G then a?is also a
generator of G.

(OR)
If G =<, then G=<«ah
Proof: Let G = «<a» be a cyclic group.
If G={a"/nez}
Leta'eG, reZ
(a")=(al)" ,-rez

Thusa? is the generator of G . i.e., G=ab .

Theorem : Every subgroup of cyclic group is cyclic.
Proof : Let G = <a is a cyclic group then G = {a"/neZ}.
Let H be a subgroup of G.

Then every element of H is an element of G.

Thus every element of H is of the form a", neZ

Let ‘d’ be the smallest positive integer such that a"€eH.

To prove that H = «a%.

Let am™eH, where meZ.
By division algorithm, 3 gq,r€eZ3 m=dqg+rwherer=0(or) 0<r<d.
Therefore a™ = a%* = a4 a" = (a%)%.a" —(1)
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But a’eH= (a¥)9eH= a"eH= a%eH
Now a™, a%eH= a™%eH
= a'€eH

But 0 <r < dand a'eHis a contradiction to our assumption.From (1) , therefore
r=20.

a™ = (a%)d

Therefore H is a cyclic group generated by a“.

ie., H= 5.

Theorem : The quotient of a cyclic group is cyclic.
Proof : Let G = «a» be a cyclic group with ‘a’ as generator.
Let N be a subgroup of G.

Since G is abelian.
Therefore N is normal in G.
We know that G/N = {Nx/xeG }.
Now,aeG,NaeG/N = NNa» € G/N —(1)
Also, NxeG = xeG = «a)
Therefore x =a" for some neZ.
Nx=Na"=N (a,a,...a(ntimes))

= (Na)(Na) ....(Na)(n times)
= (Na)"

Therefore Nx € G/IN = Nx € <Na)
Therefore G/N € (Na» —(2)
From (1) & (2) G/N = <Na)

I.e., quotient group of a cyclic group is cyclic.




Theorem : If P is a prime number then every group of order p is
cyclicgroup i.e., a group of prime order is cyclic.

Proof : Let P >2 be a prime number.
Let G be a group of order p.
Claim : G is a cyclic group.

O(G) = p then there exists at least one element a other  than element e in G.

<a» is cyclic subgroup of G.

afte,acw
@ #£ <©»

O(a) =h

By Lagranges theorem, O(<a»)/O(G) i.e., hlp
h=1(r)h=p
@y # <e>.

Thereforeh=p
O(xa) = O(G)
G=«w@
G is a cyclic group.

Theorem : The order of a cyclic group is equal to the order of its generator.
Proof : Let G be a cyclic group generated by’a’. i.e., G = <a
(i) Let O(a) = n, n is finite number then e = a°, al, a2,...a"eG

Now we prove that this elemens are distinct and this are the only elements of G
such that O(G) =n.

Let i,j (<(n-1)) be two non-negative integer such that a'=al for i # j.

Now eitheri>j(or)i<]j

Suppose i > |




Thena' al=aal

ail = g

ad =a°=eand 0 < (i-) <n

But this contradiction the fact that O(a) =n
Therefore a' # a
Therefore a°, a, a2, ....are all distinct.
Consider any a? €G , where p is any integer.
By Euclid’s algorithm , 3 g,r €Z 3 p = ng+r where 0 <r <n .
ThenaP =" =M a'=(@"%a =a%a =e. a" = a
But a"is on of a°, at, a%...a"!
Hence each aP €G is equal to one of the elements a° , at, a2,...a"* e.,
O(G) = n=0(a).
(i) Let O(a) be infinite.
Let m,n be two positive integers such that a™ = a" for m #n.
Suppose m>n

Thena™a™ =a"a™

=0)(a) is finite
It is a contradiction to the fact that O(a) is infinite.
Therefore a™# a" for m #n.
Hence , G is of infinite order .

Thus from (1) & (2) ,




The order of a cyclic group is equal to the order of its generator.

Note : A cyclic group of order n has @(n) generators.

Problem : Show that the group G = ({ 1,2,3,4,5,6}x7) is cyclic also
writedown all its generators.

Solution : Clearly O(G) =6
If there exists an element aeG such that O(a) = 6
Then G is cyclic group with generator ‘a’
31=3,32=3%x;3=2,3P=3%;3=6,3*=3x;3=4,
3 =373 =5, 3°=3>%;3 = 1 ,the identity element
Therefore G is a cyclic group with generator 3.
Since 5 is relatively prime to 6, 3° is a generator of G.
I.e., *5” is a generator of G.

Note : If n=Pial ,P202 ,...Px. ok where Py, Po,.... Pcare all prime factors of n

then @(n) = n(1- 1/P1) (1- 1/Py)... (1- 1/Py)
Problem : Find the number of cyclic groups of orders 5,6, 8, 12, 15, 60.

Solution : O(G) = 5 the number of generators of
G= @(5)=5(1- 1/5) = 5(4/5) = 4.
O(G) =6, the number of generators of
G= @(6)=6(1-1/2) 1- 1/3) =6(1/2) (2/13) = 2.
O(G) = 8, the number of generators of
G= 0(8)=8(1-1/2)=4

O(G) =12, the number of generators of

G= @(12) = 12(1- 1/2) (1- 1/3) = 12(1/2)(2/3) = 12(1/6) = 4




O(G) =15, (3,5 are the only prime factors of 15)

the number of generators of

G= @(15) = 15(1- 1/3) (1- 1/5) = 15 (2/3)(4/5) = 8
O(G) =60, (2, 3,5 are the only prime factors of 60)

the number of generators of

G= ¢(60)

= 60(1- 1/2)(1- 1/3) (1- 1/5)
= 60 (1/2) (2/3)(4/5)
= 16.
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