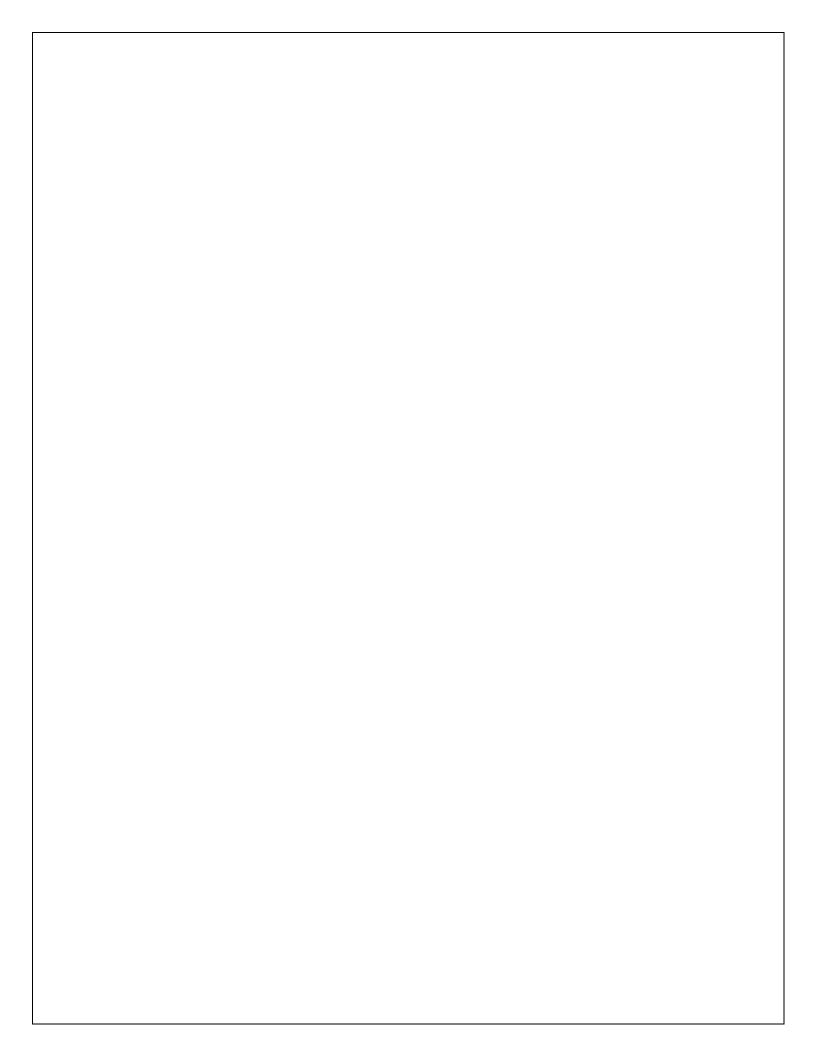
D.N.R.College (Autonomous) Bhimavaram

Department of Mathematics

Paper: 5 - Linear Algebra II B.Sc Semester - IV



Vector Spaces

- **Definition**
- General properties of vector spaces
- Vector Subspaces
- Linear combination of vectors
- Linear span
- Linear sum of two subspaces
- Linear dependence and linear independence of vectors

VECTOR SPACES

Internal Composition: Let A be any set. If $a * b \in A \forall a, b \in A$ and a * b is unique then * is said to be an internal composition in the set A

External composition: Let V and F be any two sets. If $a \circ \alpha \in V$, $\forall a \in F$ and $\forall \alpha \in V$ and $a \circ \alpha$ is unique, then \circ is said to be an external composition in V over F.

Vector Space: Let (F,+,.) be a field. The elements of F will be called scalars. Let V be a non-empty set whose elements will be called vectors. Then V is a vector space over the field F, if it satisfies the following properties.

i) α + β eV for all α , β eV

ii) $\alpha+\beta=\beta+\alpha$ for all $\alpha,\beta\in V$

iii) $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ for all $\alpha, \beta, \gamma \in V$

iv) \exists an element $\bar{o} \in V$ such that $\alpha + \bar{o} = \alpha$ for all $\alpha \in V$

v) To every vector $\alpha \in V$ there exists a vector $-\alpha \in V$ such that $\alpha + (-\alpha) = \bar{o}$

vi) a $\alpha \in V$ for all $a \in F, \alpha \in V$

vii) $a(\alpha+\beta)=a\alpha+a\beta$ for all $a\in F$, $\alpha,\beta\in V$

viii) $(a+b)\alpha=a\alpha+b\alpha$ for all $a,b\in F$ and $\alpha\in V$

ix) (ab) α =a(b α) for all a,beF and α eV

x) $1\alpha_{=}\alpha$ for all $\alpha \in V$

Example: Show that a field K can be regarded as a vector space over any subfield F of K

Solution: K is the set of vectors.

Since K is a field, (K,+) is an abelian group.

The elements of the subfield F are scalars.

Since K is a field, $a\alpha \in K$, $\forall a \in F$, $\forall \alpha \in K$ and $a, \alpha \in K$

If 1 is the unity element of K, 1 is the unity element of F

- (i) $a(\alpha+\beta)=a\alpha+a\beta$, $\forall a\in F$ and $\forall \alpha\in K$, since K is field
- (ii) $(a+b)\alpha = a\alpha + b\alpha \forall a, b \in F and \forall \alpha \in K$, since K is field
- (iii) (ab) $\alpha = a(b\alpha) \forall a, b \in F and \forall \alpha \in K$, since K is field

(iv) $1\alpha = \alpha, \forall \alpha \in K$

Hence K(F) is a vector space

Theorem: Let $(F, +, \cdot)$ be a field. Let $V_n(F) = \{(a_1, a_2, ..., a_n): a_1, a_2, ..., a_n \in F\}$. Then $V_n(F)$ is a vector space with respect to internal composition defined by $\alpha + \beta = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$ and external composition by $a\alpha = (aa_1, aa_2, ..., aa_n)$ where $a \in F$, $\alpha = (a_1, a_2, ..., a_n)$, $\beta = (b_1, b_2, ..., b_n) \in V_n(F)$.

Proof: Let $\alpha = (a_1, a_2, ..., a_n), \beta = (b_1, b_2, ..., b_n), \gamma = (c_1, c_2, ..., c_n) \in V_n(F), a, b \in F$ $V_n(F)$ is closed under Vector addition: Let $\alpha, \beta \in V$. Then $\alpha + \beta = \{(a_1 + b_1, a_2 + b_2, ..., a_n + b_n) \in V_n(F) \}$ + is associative: Let α , β , $\gamma \in V$. Then $(\alpha + \beta) + \gamma = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n) + (c_1, c_2, ..., c_n)$ $= (\overline{a_1 + b_1} + c_1, \overline{a_2 + b_2} + c_2, \dots, \overline{a_n + b_n} + c_n)$ $=(a_1 + \overline{b_1 + c_1}, a_2 + \overline{b_2 + c_2}, \dots, a_n + \overline{b_n + c_n})$ by associative law in F. $= (a_1, a_2, ..., a_n) + (b_1 + c_1, b_2 + c_2, ..., b_n + c_n) = \alpha + (\beta + \gamma)$ $\overline{0}$ = (0, 0, ..., 0) is Zero element: Clearly $\bar{0} = (0, 0, ..., 0) \in V_n(F)$. Let $\alpha \in V_n(F)$. Then $\alpha + \overline{0} = (a_1 + 0, a_2 + 0, ..., a_n + 0) = (a_1, a_2, ..., a_n) = \alpha$ $-\alpha = (-a_1, -a_2, \dots, -a_n)$ is the additive inverse of α : Let $\alpha \in V_n(F)$. Clearly $-\alpha = (-a_1, -a_2, \dots, -a_n) \in V_n(F)$ and $\alpha + (-\alpha) = (a_1 + -a_1, a_2 + -a_2, ..., a_n + -a_n) = (0, 0, ..., 0) = \overline{0}$ + is commutative: Let α , β , $\gamma \in V_n(F)$. Then $\alpha + \beta = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n) = (b_1 + a_1, b_2 + a_2, ..., b_n + a_n) = \beta + \alpha$ \therefore (V_n(F), +) is an abelian group.

<u>V_n(F) is closed under scalar multiplication</u>: Let $a \in F$, $\alpha \in V$. Then $a\alpha = a(a_1, a_2, ..., a_n) = (a a_1, a a_2, ..., a a_n)$ is an unique element of $V_n(F) \forall a \in F, \alpha \in V$

<u>To show $a(\alpha + \beta) = a\alpha + a\beta$ </u>: Let $a \in F$, α , $\beta \in V$. Then $a(\alpha + \beta) = a(a_1 + b_1, a_2 + b_2, ..., a_n + b_n) = (a a_1 + a b_1, a a_2 + a b_2, ..., a a_n + a b_n)$ $= (a a_1, a a_2, ..., a a_n) + (a b_1, a b_2, ..., a b_n) = a(a_1, a_2, ..., a_n) + a(b_1, b_2, ..., b_n)$ = $a \alpha + a\beta$. <u>To show $(a + b) \alpha = a\alpha + b\alpha$ </u>: Let $a b \in F, \alpha \in V_n(F)$. Then $(a + b) \alpha = (a + b) (a_1, a_2, ..., a_n) = (\overline{a + b}a_1, \overline{a + b}a_2, ..., \overline{a + b}a_n)$ = $(a a_1 + b a_1, a a_2 + b a_2, ..., a a_n + b a_n)$ = $(a a_1, a a_2, ..., a a_n) + (b a_1, b a_2, ..., b a_n) = a(a_1, a_2, ..., a_n) + b(a_1, a_2, ..., a_n) = a\alpha$ + $b\alpha$ <u>To show $a(b\alpha) = (ab)\alpha$ </u>: Let $a, b \in F, \alpha \in V_n(F)$. Then $a(b\alpha) = a(b a_1, b a_2, ..., b a_n) = (a\overline{b}a_1, a\overline{b}a_2, ..., a\overline{b}a_n) = (\overline{ab}a_1, \overline{ab}a_2, ..., \overline{ab}a_n)$ = $ab(a_1, a_2, ..., a_n) = (ab)\alpha$ <u>To show that $1\alpha = \alpha$ </u>: Let $\alpha \in V_n(F)$ Then $1 \alpha = 1(a_1, a_2, ..., a_n) = (1 a_1, 1 a_2, ..., 1 a_n) = (a_1, a_2, ..., a_n) = \alpha$ Hence $V_n(F)$ is a vector space.

Example: Prove that the set of all polynomials in an indeterminate x over a field F is a vector space

Solution: Let F[x] be the set of all polynomials over F Let f(x)= $a_0 + a_1x + a_2x^2 + \cdots$, g(x)= $b_0 + b_1x + b_2x^2 + \cdots \in F[x]$ and $c \in F$ f(x)+g(x)= $(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \cdots \in F[x]$ Let f(x)= $a_0 + a_1x + a_2x^2 + \cdots$, g(x)= $b_0 + b_1x + b_2x^2 + \cdots$, h(x)= $c_0 + c_1x + c_2x^2 + \cdots \in F[x]$ [f(x)+g(x)]+h(x)=[$(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \cdots$] + $(c_0 + c_1x + c_2x^2 + \cdots)$ =[$(a_0 + b_0) + c_0$] + [$(a_1 + b_1) + c_1$] $x + [(a_2 + b_2) + c_2$] $x^2 + \cdots$ =[$a_0 + (b_0 + c_0)$] + [$a_1 + (b_1 + c_1)$] $x + [a_2 + (b_2 + c_2)$] $x^2 + \cdots$ = $(a_0 + a_1x + a_2x^2 + \cdots)$ +[$(b_0 + c_0) + (b_1 + c_1)x + (b_2 + c_2)x^2 + \cdots$] =f(x)+[g(x)+h(x)]

Therefore + is associative in F[x]

 $f(x)+O(x)=(a_0+0) + (a_1+0)x + (a_2+0)x^2 + \dots = a_0 + a_1x + a_2x^2 + \dots = f(x)$ Similarly O(x)+f(x)=f(x)

Therefore O(x) is the additive identity in F[x]

Let
$$f(x)=a_0 + a_1x + a_2x^2 + \dots \in F[x]$$

Example: Show that the set V of all matrices with their elements as real numbers is a vector space over the field F of real numbers with respect to addition of matrices as addition of vectors and multiplication of matrices by a scalar as scalar multiplication.

Solution: Let $V = \{ [a_{ij}]_{m \times n} : a_{ij} \in \mathbb{R} \}$. Let $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$, $C = [c_{ij}]_{m \times n} \in V$ where $a_{ij}, b_{ij}, c_{ij} \in \mathbb{R}$

Addition of matrices "+" is internal composition: Let A, $B \in V$. Now A + B = $[a_{ij}]_{m \times n}$ + $[b_{ij}]_{m \times n}$ = $[a_{ij} + b_{ij}]_{m \times n} \in V$ since $a_{ij} + b_{ij} \in \mathbb{R}$. "+" is associative: Let A, B, $C \in V$. Then $(A + B) + C = [a_{ij} + b_{ij}]_{m \times n} + [c_{ij}]_{m \times n} = [(a_{ij} + b_{ij}) + c_{ij}]_{m \times n} = [a_{ij} + (b_{ij} + c_{ij})]_{m \times n} = [a_{ij}]_{m \times n} + [b_{ij} + c_{ij}]_{m \times n} = A + (B + C)$ $\therefore (A + B) + C = A + (B + C).$ $O = [0]_{m \times n}$ is the zero element: Clearly Let $A \in V$. Then $A + O = [a_{ij} + 0]_{m \times n} = [a_{ij}]_{m \times n} = A$. \therefore O = [0]_{*m*×*n*} is the zero element. <u>– A is the negative of A:</u> Let $A \in V$. Then $-A = [-a_{ij}]_{m \times n} \in V$ and $A + (-A) = [a_{ij} + (-a_{ij})]_{m \times n} = [0]_{m \times n} = 0$ \therefore – A is the negative of A "+" is commutative: Let A, $B \in V$. Now A + B = $[a_{ij}]_{m \times n}$ + $[b_{ij}]_{m \times n}$ = $[a_{ij} + b_{ij}]_{m \times n}$ = $[b_{ij} + a_{ij}]_{m \times n}$ = B + A Scalar multiplication is an external composition: Let $a \in F$ and $A \in V$. a A = $\begin{bmatrix} a & a_{ij} \end{bmatrix}_{m \times n} \in V$ since $a & a_{ij} \in F$ (i) $a(A + B) = aA + aB \forall a \in F, A, B \in V$: Let $a \in F$ and $A, B \in V$. $a(A + B) = a[a_{ij} + b_{ij}]_{m \times n} = [a a_{ij} + a b_{ij}]_{m \times n} = [a a_{ij}]_{m \times n} + [a b_{ij}]_{m \times n}$ =aA + aB

(ii)
$$(a + b) A = aA + bA \forall a, b \in F, A \in V$$
:
 $(a + b) A = (a + b) [a_{ij}]_{m \times n} = [(a + b) a_{ij}]_{m \times n} = [a a_{ij}]_{m \times n} + [b a_{ij}]_{m \times n} = aA + bA$
(iii) $\underline{a(bA)} = (\underline{ab})A \forall \underline{a}, \underline{b} \in F, A \in V$:
Let $a, b \in F$ and $A \in V$. Then $a(bA) = a[b a_{ij}]_{m \times n} = [a(ba_{ij})]_{m \times n} = [(ab)a_{ij}]_{m \times n} = (ab)A$
(iv) $\underline{1A} = A \forall A \in V$:
Let $A \in V$. Then $1A = [1 a_{ij}]_{m \times n} = [a_{ij}]_{m \times n} = A$
 $\therefore V$ is a vector space over F

Properties of vector spaces:

Let V(F) be a vector space and \bar{o} be the zero vector of V. Then

i) $a\bar{o}=\bar{o}$ for all $a\in F$ ii) $o\alpha=\bar{o}$ for all $\alpha\in V$ iii) $a(-\alpha)=-(a\alpha)$ iv) $(-a)\alpha=-(a\alpha)$ v) $a(\alpha-\beta)=a\alpha-a\beta$ vi) $a\alpha=\bar{o}$ implies a=o or $\alpha=\bar{o}$ **Proof**: (i) $a\bar{o}=a(\bar{o}+\bar{o})=a\bar{o}+a\bar{o}$ Therefore $\bar{o}+a\bar{o}=a\bar{o}+a\bar{o}=a\bar{o}$ (ii) $0\alpha=(0+0)\alpha=0\alpha+0\alpha$ $\bar{o}+0\alpha=0\alpha+0\alpha\Rightarrow\bar{o}=0\alpha$ (iii) $a[\alpha+(-\alpha)]=a\alpha+a(-\alpha)\Rightarrow a\bar{o}=a\alpha+a(-\alpha)$ $\Rightarrow\bar{o}=a\alpha+a(-\alpha)\Rightarrow a(-\alpha)=-(a\alpha)$ (iv) $[a+(-a)]\alpha=a\alpha+(-a)\alpha\Rightarrow 0\alpha=a\alpha+(-a)\alpha\Rightarrow\bar{o}=a\alpha+(-a)\alpha$ $\Rightarrow(-a)\alpha=-(a\alpha)$ (v) $a(\alpha-\beta)=a[\alpha+(-\beta)]=a\alpha+a(-\beta)=a\alpha+[-(a\beta)]=a\alpha-a\beta$ **Vector subspace**: Let V be a vector space over the field F and let $W \subseteq V$. Then W is called a subspace of V if W itself is a vector space over F with respect to the operations of vector addition and scalar multiplication in V

The necessary and sufficient condition for a nonempty subset W of avector space V(F) to be a subspace of V is that W is closed under vector addition andscalar multiplication in VProof:

Necessary condition

If W itself is a vector space over F with respect to vector addition and scalar multiplication in V, then W must closed with respect to these compositions.

Sufficient Condition

Suppose W is a nonempty subset of V and W is closed under vector addition and scalar multiplication in V.

Let $x \in W$. If $1 \in F$, then $-1 \in F$. $1 \in F, x \in W \Rightarrow (-1)x \in W \Rightarrow -(1x) \in W \Rightarrow -x \in W$

 $x \in W, -x \in W \Rightarrow x + (-x) \in W \Rightarrow \bar{o} \in W$

 $x,y,z \in W, W \subseteq V \Rightarrow x,y,z \in V \Rightarrow (x+y)+z=x+(y+z)$

 $x,y \in W, W \subseteq V \Rightarrow x,y \in V \Rightarrow x+y=y+x$

a, $0 \in F$, $x, x \in W \Rightarrow ax + 0x \in W \Rightarrow ax \in W$

 $a,b\in F,x,y\in V \Rightarrow a(x+y)=ax+ay,$

(a+b)x=ax+bx,(ab)x=a(bx),1x=x ∴W is a vector space and hence W is a subspace of V(F)

Theorem: The necessary and sufficient condition for a nonempty subset W of a vector space V(F) to be a subspace of V is a, b e F and x, y e W ax+by e W

Proof: Necessary condition

Suppose W is a subspace of a vector space V(F)

Let $a, b \in F, x, y \in W$

a∈F,x∈W⇒ax∈W

b∈F,y∈W⇒by∈W (∵ W is closed under scalar multiplication)

 $ax \in W, by \in W \Rightarrow ax + by \in W$ (:: W is closed under vector addition)

 \therefore a,b \in F, x,y \in W \Rightarrow ax+by \in W

Sufficient condition: Suppose that W is a nonempty subset of V such that $a,b\in F$, $x,y\in W \Rightarrow ax+by\in W$

 $1 \in F, x, y \in W \Rightarrow 1x + 1y \in W \Rightarrow x + y \in W$

 $0 \in F, x \in W \Rightarrow 0x + 0x \in W \Rightarrow 0 \in W$

 $-1,0\in F, x\in W \Rightarrow (-1)x+0x\in W \Rightarrow -x\in W$

Let x,y,z∈W

 $x,y,z \in W, W \subseteq V \Rightarrow x,y,z \in V \Rightarrow (x+y)+z=x+(y+z)$

 $x,y \in W, W \subseteq V \Rightarrow x,y \in V \Rightarrow x+y=y+x$

a, $0 \in F$, $x \in W \Rightarrow ax + 0x \in W \Rightarrow ax \in W$

 $a,b\in F,x,y\in V \Rightarrow a(x+y)=ax+ay,$ (a+b)x=ax+bx, (ab)x=a(bx), 1x=x $\therefore W$ is a vector space and hence W is a subspace of V(F)

=

Example: The set W of ordered triads (x,y,0) where x,y \in F is a subspace of $V_3(F)$

Solution: Let $\alpha, \beta \in W$ where $\alpha = (x_1, y_1, 0), \beta = (x_2, y_2, 0)$ for some $x_1, y_1, x_2, y_2 \in F$. Let $a, b \in F$, $a\alpha + b\beta = a(x_1, y_1, 0) + b(x_2, y_2, 0)$ $(ax_1, ay_1, 0) + (bx_2, by_2, 0) = (ax_1 + bx_2, ay_1 + by_2, 0) \in F$

Hence W is a subspace of $V_3(F)$

Example: Prove that the set of all solutions (a,b,c) of the equation a+b+2c=0 is a subspace of the vector space $V_3(R)$

Solution: Let W={(a,b,c): a,b,c∈R and a+b+2c=0} Let $\alpha = (a_1, b_1, c_1), \beta = (a_2, b_2, c_2) \in W$ Then $a_1 + b_1 + 2c_1 = 0$ and $a_2 + b_2 + 2c_2 = 0$ If a,b∈ R, then a α +b β =a (a_1, b_1, c_1) +b (a_2, b_2, c_2) = (aa_1, ab_1, ac_1) + (ba_2, bb_2, bc_2) = $(aa_1 + ba_2, ab_1 + bb_2, ac_1 + bc_2)$ Now $(aa_1 + ba_2) + (ab_1 + bb_2) + 2(ac_1 + bc_2)$ =a $(a_1 + b_1 + 2c_1)$ +b $(a_2 + b_2 + 2c_2)$ =a.0+b.0=0 a α +b β ∈W Hence W is a subspace of the vector space $V_3(R)$

Example: Let R be the field of real numbers and $W=\{(x,y,z)/x,y,z \text{ are rational numbers}\}$. Is W a subspace of $V_3(R)$?

Solution: Let $\alpha = (2,3,4) \in W$, $a = \sqrt{7} \in \mathbb{R}$

aα=√7(2,3,4)=(2√7,3√7,4√7)∉W

Hence W is not a subspace of $V_3(R)$

Example: Show that $W=\{(a,2b,3c):a,b,c\in R\}$ is a subspace of $V_3(R)$

Solution: Let $x = (a_1, 2b_1, 3c_1), y = (a_2, 2b_2, 3c_2) \in W$ and $a, b \in \mathbb{R}$

 $ax+by=a(a_1, 2b_1, 3c_1)+b(a_2, 2b_2, 3c_2) = (aa_1, 2ab_1, 3ac_1)+(ba_2, 2bb_2, 3bc_2)$

 $= (aa_1 + ba_2, 2ab_1 + 2bb_2, 3ac_1 + 3bc_2)$

$$=(aa_1 + ba_2, 2(ab_1 + bb_2), 3(ac_1 + bc_2)) \in W$$

 \therefore W is a subspace of $V_3(R)$

Example: If $a_{1,}a_{2,}a_{3}$ are fixed elements of a field F, then the set W of all ordered triads $(x_{1,}x_{2,}x_{3})$ of elements of F such that $a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} = 0$ is a subspace of $V_{3}(F)$.

Solution: Let $\alpha = (x_{1,}x_{2,}x_{3})$ and $\beta = (y_{1,}y_{2,}y_{3}) \in W$ where $x_{1,}x_{2,}x_{3}$, $y_{1,}y_{2,}y_{3} \in F$

Then $a_1x_1 + a_2 x_2 + a_3x_3 = 0$, $a_1y_1 + a_2 y_2 + a_3y_3 = 0$ If $a, b \in F$, then $a\alpha + b\beta = a (x_1, x_2, x_3) + b (y_1, y_2, y_3)$ $= (ax_1, ax_2, ax_3) + (by_1, by_2, by_3) = (ax_1 + by_1, ax_2 + by_2, ax_3 + by_3)$ Now $a_1(ax_1 + by_1) + a_2(ax_2 + by_2) + a_3(ax_3 + by_3)$ $a_2 x_2 + a_3 x_3) + b(a_1y_1 + a_2 y_2 + a_3y_3) = a0 + b0 = 0$ $\therefore a\alpha + b\beta = (ax_1 + by_1, ax_2 + by_2, ax_3 + by_3) \in W$

Hence W is a subspace of $V_3(F)$

Theorem: The intersection of any two subspaces W_1 and W_2 of a vector space V(F) is a subspace of V(F)

Proof: Since $\bar{o} \in W_1$ and $W_2, W_1 \cap W_2 \neq \emptyset$

Let $\alpha, \beta \in W_1 \cap W_2$ and $a, b \in F$

$$\alpha \in W_1 \cap W_2 \Rightarrow \alpha \in W_1 and \ \alpha \in W_2,$$

 $\beta \in W_1 \cap W_2 \Rightarrow \beta \in W_1 and \beta \in W_2$

Since W_1 is a subspace, $a, b \in F$ and $\alpha, \beta \in W_1 \Rightarrow a\alpha + b\beta \in W_1$

Similarly W_2 is a subspace, $a, b \in F$ and $\alpha, \beta \in W_2 \Rightarrow a\alpha + b\beta \in W_2$

Thus $a, b \in F$, $\alpha, \beta \in W_1 \cap W_2 \Rightarrow a\alpha + b\beta \in W_1 \cap W_2$

Hence $W_1 \cap W_2$ is a subspace of V(F)

Note: The union of two subspaces of V(F) may not be a subspace of V(F)

Example: If R be the field of real numbers, then $W_1 = \{(0,0,z): z \in R\}$ and $W_2 = \{(0,y,0): y \in R\}$ are two subspaces of $V_3(R)$

 $(0,0,2) \in W_1$ and $(0,3,0) \in W_2$

∴ (0,0,2) and (0,3,0) $\in W_1 \cup W_2$

But $(0,0,2)+(0,3,0)=(0,3,2) \notin W_1 \cup W_2$

Hence $W_1 \cup W_2$ is not a subspace of $V_3(R)$

Theorem: The union of two subspaces is a subspace iff one is contained in the other.

Proof: Let W_1 and W_2 be two subspaces of a vector space V(F)

Suppose $W_1 \cup W_2$ is a subspace of V

If possible suppose that $W_1 \not\subseteq W_2$ and $W_2 \not\subseteq W_1$

$$W_1 \nsubseteq W_2 \Rightarrow \exists x \in W_1 \ni x \notin W_2$$
$$W_2 \nsubseteq W_1 \Rightarrow \exists y \in W_2 \ni y \notin W_1$$

 $\mathsf{x} \in W_1 \text{ ,} \mathsf{y} \in W_2 \Rightarrow \mathsf{x}, \mathsf{y} \in W_1 \cup W_2 \Rightarrow \mathsf{x} + \mathsf{y} \in W_1 \cup W_2 \Rightarrow \mathsf{x} + \mathsf{y} \in W_1 \text{ or } \mathsf{x} + \mathsf{y} \in W_2$

If $x+y \in W_1$ then $x \in W_1$, $x+y \in W_1 \Rightarrow y=(x+y)-x \in W_1$ If $x+y \in W_2$ then $y \in W_2$, $x+y \in W_2 \Rightarrow x=(x+y)-y \in W_2$

It is a contradiction

 $\begin{array}{ll} \therefore W_1 \subseteq W_2 \ or W_2 \subseteq W_1. & \text{Conversely} \\ \text{suppose that } W_1 \subseteq W_2 \ or W_2 \subseteq W_1 & \text{If } W_1 \subseteq W_2 \text{ then } W_1 \cup W_2 = W_2 \text{ is a subspace of V} & \text{If } W_2 \subseteq W_1 \text{ then } W_1 \cup W_2 = W_1 \text{ is a subspace of V} & \text{If } W_2 \subseteq W_1 \text{ then } W_1 \cup W_2 = W_1 \text{ is a subspace of V} & \text{If } W_1 \cup W_2 \text{ is a subspace of V} & \text{If } W_1 \cup W_2 \text{ is a subspace of V} & \text{If } W_1 \cup W_2 \text{ is a subspace of V} & \text{If } W_1 \cup W_2 \text{ is a subspace of V} & \text{If } W_2 \in W_1 \text{ then } W_1 \cup W_2 = W_1 \text{ is a subspace of V} & \text{If } W_2 \text{ is } W$

Smallest subspace containing any subset of V(F): Let V(F) be a vector space and S be any subset of V. If U is a subspace of V containing S and is itself contained in every subspace of V containing S, then U is called the smallest subspace of V containing S.

The smallest subspace of V containing S is also called the subspace of V generated or spanned by S and denote it by {S}

- **Linear combination of vectors**: Let V(F) be a vector space. If $\alpha_1, \alpha_2, ..., \alpha_n \in V$, then any vector $\alpha = a_1\alpha_1 + a_2\alpha_2 + \cdots + a_n\alpha_n$ where $a_1, a_2, ..., a_n \in F$ is called a linear combination of the vectors $\alpha_1, \alpha_2, ..., \alpha_n$
- Linear span: Let V(F) be a vector space and S be any non-empty subset of V. Then the linear span of S is the set of all linear combinations of finite sets of elements of S and is denoted by L(S).

Example: Express the vector x=(1,-2,5) as a linear combination of the vectors $x_1=(1,1,1), x_2=(1,2,3), x_3=(2,-1,1)$

Solution: Let $x=ax_1+bx_2+cx_3 \Rightarrow (1,-2,5)=a(1,1,1)+b(1,2,3)+c(2,-1,1)$

 $\Rightarrow (1,-2,5) = (a+b+2c,a+2b-c,a+3b+c)$

 \Rightarrow a+b+2c=1, a+2b-c=-2, a+3b+c=5

Solving these equations, we get a=-6,b=3,c=2

 $\therefore x = -6x_1 + 3x_2 + 2x_3$

THEOREM: The linear span L(S) of any subset S of a vector space V(F) is a subspace of V generated by S ie., L(S)={S}

Proof: Let $\alpha, \beta \in S$

Then
$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m$$
 and $\beta = b_1 \beta_1 + b_2 \beta_2 + \dots + b_n \beta_n$
If $a, b \in F$ then $a \alpha + b \beta = a(a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m) + b(b_1 \beta_1 + b_2 \beta_2 + \dots + b_n \beta_n)$
 $= a(a_1 \alpha_1) + a(a_2 \alpha_2) + \dots + a(a_m \alpha_m) + b(b_1 \beta_1) + b(b_2 \beta_2) + \dots + b(b_n \beta_n)$
 $= (aa_1) \alpha_1 + (aa_2) \alpha_2 + \dots + (aa_m) \alpha_m + (bb_1) \beta_1 + (bb_2) \beta_2 + \dots + (bb_n) \beta_n \in L(S)$
Thus $a, b \in F$ and $\alpha, \beta \in L(S) \Rightarrow a \alpha + b \beta \in L(S)$
Hence $L(S)$ is a subspace of $V(F)$
If $\alpha_r \in S$ then $\alpha_r = 1 \alpha_r \Rightarrow \alpha_r \in L(S) \Rightarrow S \subset L(S)$

 \therefore L(S) is a subspace of V and S is contained in L(S)

If W is any subspace of V containing S, then each element of L(S) belongs to W because W is closed under vector addition and scalar multiplication. Therefore L(S) will be contained in W. Hence $L(S)=\{S\}$

Linear sum of two subspaces: Let W_1 and W_2 be the two subspaces of the vector space V(F). Then the linear sum of the subspaces W_1 and W_2 denoted by $W_1 + W_2$ is the set of all sums $\alpha_1 + \alpha_2$ such that $\alpha_1 \in W_1$, $\alpha_1 \in W_1$.

Thus $W_1 + W_2 = \{ \alpha_1 + \alpha_2 : \alpha_1 \in W_1 , \alpha_2 \in W_2 \}$

Theorem: If W_1 and W_2 are subspaces of the vector space V(F), then (i) $W_1 + W_2$ is a subspace of V(F) (ii) $L(W_1 \cup W_2) = W_1 + W_2$

Proof: Let $\alpha, \beta \in W_1 + W_2$

Then $\alpha = \alpha_1 + \alpha_2$ and $\beta = \beta_1 + \beta_2$ where α_1 , $\beta_1 \in W_1$ and α_2 , $\beta_2 \in W_2$

If $a,b \in F$, then $a\alpha + b\beta = a(\alpha_1 + \alpha_2) + b(\beta_1 + \beta_2)$

- $= (a\alpha_1 + b\beta_1) + (a\alpha_2 + b\beta_2)$ Since $W_1 is$ a subspace, $a\alpha_1 + b\beta_1 \in W_1$. Similarly $a\alpha_2 + b\beta_2 \in W_2$
- $\therefore a\alpha + b\beta = (a\alpha_1 + b\beta_1) + (a\alpha_2 + b\beta_2) \in W_1 + W_2$

Hence $W_1 + W_2$ is a subspace of V(F)

- (ii) Since $\bar{o} \in W_2$, if $\alpha_1 \in W_1$ we can write $\alpha_1 = \alpha_1 + \bar{o} \in W_1 + W_2 \implies W_1 \subseteq W_1 + W_2$. Similarly $W_2 \subseteq W_1 + W_2$
- $\therefore W_1 \cup W_2 \subseteq W_1 + W_2$

Hence $W_1 + W_2$ is a subspace of V containing $W_1 \cup W_2$

Let $\alpha = \alpha_1 + \beta_1 \in W_1 + W_2$. Then $\alpha_1 \in W_1, \beta_1 \in W_2 \Rightarrow \alpha_1, \beta_1 \in W_1 \cup W_2$

Also $\alpha_1 + \beta_1 = 1\alpha_1 + 1\beta_1 \Rightarrow \alpha_1 + \beta_1$ is a linear combination of a finite number of elements $\alpha_1, \beta_1 \in W_1 \cup W_2 \Rightarrow \alpha_1 + \beta_1 \in L(W_1 \cup W_2)$

$$\therefore W_1 + W_2 \subseteq L(W_1 \cup W_2)$$

 $L(W_1 \cup W_2)$ is the smallest subspace containing $W_1 \cup W_2$ and $W_1 + W_2$ is a subspace containing $W_1 \cup W_2 \Rightarrow L(W_1 \cup W_2) \subseteq W_1 + W_2$

 $\operatorname{Hence} W_1 + W_2 = L(W_1 \cup W_2)$

Example: If S,T are subsets of V(F), then (i) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$ (ii) $L(S \cup T) = L(S) + L(T)$ (iii) S is a subspace of $V \Leftrightarrow L(S)=S$ (iv) L(L(S))=L(S)**Solution:**(i) Let $\alpha \in L(S)$ Then $\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n$ where $\alpha_1, \alpha_2, \dots, \alpha_n \in S$ and $a_1, a_2, \dots, a_n \in F$ $\alpha_1, \alpha_2, \dots, \alpha_n \in S, S \subseteq T \Rightarrow \alpha_1, \alpha_2, \dots, \alpha_n \in T$ $a_1, a_2, \dots, a_n \in F, \alpha_1, \alpha_2, \dots, \alpha_n \in T \Rightarrow a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n \in L(T) \Rightarrow \alpha \in L(T)$ $\therefore L(S) \subseteq L(T)$ (ii) Let $\alpha \in L(S \cup T)$ Then $\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m + b_1 \beta_1 + b_2 \beta_2 + \dots + b_p \beta_p$ where $\{\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_p\}$ is a finite subset of SUT such that $\{\alpha_1, \alpha_2, \dots, \alpha_m\} \in S$ and $\{\beta_1, \beta_2, \dots, \beta_n\} \in \mathbb{T}$ $a_1 \alpha_1 +$ $a_2\alpha_2 + \dots + a_m\alpha_m \in L(S)$ and $b_1\beta_1 + b_2\beta_2 + \dots + b_p\beta_p \in L(T)$ $\therefore \alpha \in L(S) + L(T)$ and $L(S \cup T) \subseteq L(S) + L(T)$ Let $y \in L(S) + L(T)$

Then $\gamma = \beta + \delta$ where $\beta \in L(S)$ and $\delta \in L(T)$. Now β will be a linear combination of a finite number of elements of S and δ will be a linear combination of a finite number of elements of T

 $\Rightarrow \beta + \delta$ will be a linear combination of a finite number of elements of SUT

```
\therefore β+δ∈L(S∪T) and L(S)+L(T)⊆ L(S∪T)
```

```
Hence L(S\cup T)=L(S)+L(T)
```

(iii) Suppose S is a subspace of V

```
Let \alpha \in L(S)
```

```
Then \alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n where \alpha_1, \alpha_2, \dots, \alpha_n \in S and a_1, a_2, \dots, a_n \in F
```

Since S is a subspace of V, it is closed with respect to scalar multiplication and vector addition.

 $\therefore \alpha \in L(S) \Rightarrow \alpha \in S \text{ and } L(S) \subseteq S$

Also $S \subseteq L(S)$, we have L(S)=S

```
Conversely suppose that L(S)=S

Since L(S) is a subspace of V and S=L(S), S is also a subspace of V

(iv) Let \alpha \in L(S). Then \alpha = 1\alpha \in L(L(S))

\therefore L(S)\subseteq L(L(S))

Let \alpha \in L(L(S)). Then \alpha = a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n where \alpha_1, \alpha_2, \dots, \alpha_n \in L(S) and a_1, a_2, \dots, a_n \in F

\alpha_1, \alpha_2, \dots, \alpha_n \in L(S) and L(S) is a subspace of V\Rightarrow

\Rightarrow a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n \in L(S) \Rightarrow \alpha \in L(S)

\thereforeL(L(S))\subseteqL(S) and hence L(L(S))=L(S)
```

Linear Dependence: Let V(F) be a vector space. A finite set $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ of vectors of V is said to be linearly dependent if there exist scalars $a_1, a_2, ..., a_n \in F$ not all zero such that $a_1\alpha_1 + a_2\alpha_2 + a_n\alpha_n = \bar{o}$

- **Linear independence**: Let V(F) be a vector space. A Finite set $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ of vectors of V is said to be linearly independent if every relation of the form $a_1\alpha_1 + a_2\alpha_2 + a_n\alpha_n = \bar{o} \Rightarrow a_1 = 0, a_2 = 0, ..., a_n = 0$
- **Example**: Show that the three vectors (1,1,-1), (2,-3,5) and (-2,1,4) of \mathbb{R}^3 are linearly independent.

Solution: Let a,b,c be the real numbers such that

Putting a=0, b=0 in (1), we get c=0

Thus a=0,b=0,c=0 is the only solution of the above equations

 \therefore a(1,1,-1)+b(2,-3,5)+c(-2,1,4)=(0,0,0) \Rightarrow a=0,b=0,c=0

Hence the given vectors of R^3 are linearly independent.

Example: Show that the system of vectors (1,3,2), (1,-7,-8), (2,1,-1) of $V_3(R)$ is linearly dependent.

Solution: Suppose a(1,3,2) + b(1,-7,-8) + c(2,1,-1) = (0,0,0)

 \Rightarrow (a+b+2c, 3a-7b+c, 2a-8b-c) = (0,0,0)

 \Rightarrow a+b+2c = 0 (1)

3a-7b+c = 0 (2)

2a-8b-c = 0 (3)

Multiplying (2) by 2, we get 6a-14b+2c = 0 (4)

Subtracting (1) from (2), $5a-15b = 0 \Rightarrow a=3b$

Adding (2) and (3), $5a-15b = 0 \Rightarrow a=3b$

Put b=1, then a=3

Putting these values in (1), c = -2

 \therefore 3(1,3,2) + 1(1,-7,-8) - 2(2,1,-1) = (0,0,0)

Hence the given vectors are linearly dependent.

Example: Show that the vectors (1,1,2,4), (2,-1,-5,2), (1,-1,-4,0) and (2,1,1,6) are linearly dependent in R^4

Solution: Let (1,1,2,4)= a(2,-1,-5,2)+b(1,-1,-4,0)+c(2,1,1,6)

Then 2a+b+2c=1 (1) -a-b+c=1 (2) -5a-4b+c=2 (3) 2a+0b+6c=4 (4)

Adding (1) and (2), we get a+3c=2. Putting c=0, then a=2

Putting a=2,c=0 in (1), we get b=-3

 $\therefore (1,1,2,4) = 2(2,-1,-5,2) - 3(1,-1,-4,0) + 0(2,1,1,6)$

 $\Rightarrow 1 (1,1,2,4) - 2(2,-1,-5,2) + 3(1,-1,-4,0) - 0(2,1,1,6) = (0,0,0,0)$

: The given vectors are linearly dependent in R^4

Example: Show that the set of vectors $\{(1,2,0), (0,3,1), (-1,0,1)\}$ in $V_3(R)$ is linearly independent.

Solution: Let a,b,c be the real numbers such that a(1,2,0)+b(0,3,1)+c(-1,0,1)=(0,0,0)

(a-c,2a+3b,b+c)=(0,0,0)

 \Rightarrow a-c=0,2a+3b=0,b+c=0

These equations will have a non-zero solution if the coefficient matrix is less than 3, the number of unknowns a,b,c. If the rank is 3, then a=0, b=0, c=0 will be the only solution.

The coefficient matrix A= $\begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

|A|=1(3-0)-2(0+1)=1≠0 and Rank A=3

Hence the zero solution a=0,b=0,c=0 is the only solution and the given system is linearly independent

Example: Find whether the vectors (-1,2,1), (3,0,-1), (-5,4,3) in $V_3(R)$ are linearly independent or not.

Solution: Let a,b,c be scalars such that

a(-1,2,1)+b(3,0,-1)+c(-5,4,3)=(0,0,0) $\Rightarrow(-a+3b-5c,2a+0b+4c,a-b+3c)=(0,0,0)$

 $\Rightarrow -a+3b-5c=0,2a+0b+4c=0,a-b+3c=0$

The coefficient matrix is A== $\begin{bmatrix} -1 & 3 & -5 \\ 2 & 0 & 4 \\ 1 & -1 & 3 \end{bmatrix}$

|A|=-1(0+4)-2(9-5)+1(12-0)=0

∴ Rank<3 and the given system of equations will possess a non-zero solution.

Hence the given vectors are linearly dependent in R^4 **Example**: If α , β , γ are linearly independent vectors of V(R), show that α + β , β + γ , γ + α are also linearly independent

Solution: Let a,b,c∈R

$$a(\alpha+\beta)+b(\beta+\gamma)+c(\gamma+\alpha)=\bar{o} \Rightarrow (a+c)\alpha+(a+b)\beta+(b+c)\gamma=\bar{o}$$

 α,β,γ are linearly independent \Rightarrow a+0b+c=0, a+b+0c=0, 0a+b+c=0

The coefficient matrix A= $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

Rank of A = 3 which is equal to the number of unknowns

 \Rightarrow a=0, b=0, c=0 is the only solution of the given equations

 $\therefore \alpha + \beta, \beta + \gamma, \gamma + \alpha$ are also linearly independent

Example: Is the Vector (2,-5,3) in the subspace of \mathbb{R}^3 spanned by the vectors (1,-3,2), (2,-4,-1), (1,-5,7)?

Solution: Let α =(2,-5,3), α_1 = (1, -3,2), α_2 =(2,-4,-1), α_3 =(1,-5,7)

Let
$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + a_3 \alpha_3$$
, where $a_1, a_2, a_3 \in \mathbb{R}$
 $(2, -5, 3) = a_1 (1, -3, 2) + a_2 (2, -4, -1) + a_3 (1, -5, 7)$
 $\Rightarrow (2, -5, 3) = (a_1 + 2a_2 + a_3, -3 a_1 - 4a_2 - 5 a_3, 2 a_1 - a_2 + 7 a_3)$
 $\Rightarrow a_1 + 2a_2 + a_3 = 2$, (1)
 $-3 a_1 - 4a_2 - 5 a_3 = -5$ (2)
 $2 a_1 - a_2 + 7 a_3 = 3$ (3)
Multiplying (1) by 3 and adding to (2), we get $2a_2 - 2 a_3 = 1 \Rightarrow a_2 - a_3 = 1/2$ (4)
Multiplying (1) by 2 and subtracting from (3), we get $-5a_2 + 5 a_3 = -1$ $\Rightarrow a_2 - a_3 = 1/5$ (5)

From (4) and (5), the above equations are inconsistent

 $\therefore \alpha$ cannot be expressed as a linear combination of the vectors $\alpha_1, \alpha_2, \alpha_3$

Hence the vector (2,-5,3) is not in the subspace of R^3 spanned by the vectors (1,-3,2), (2,-4,-1), (1,-5,7)

Theorem: Every superset of a linearly dependent set of vectors is Linearly dependent.

Proof: Let S={ $\alpha_1, \alpha_2, ..., \alpha_n$ } be a linearly dependent set of vectors

Then there exists scalars $a_1, a_2, \dots, a_n \in F$, not all zero such that

$$a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n = \bar{o}$$
 ...(1)

Let $S' = \{\alpha_1, \alpha_2, ..., \alpha_n, \beta_1, \beta_2, ..., \beta_n\}$ be a superset of S.

Then from (1) $a_1\alpha_1 + a_2\alpha_2 + \cdots + a_n\alpha_n + 0\beta_1 + 0\beta_2 + \cdots + 0\beta_n = \bar{o}$

Here all the scalars are not zero, we have S' is linearly dependent

Hence any superset of a linearly dependent set is linearly dependent

Theorem: Every non-empty subset of a linearly independent set of vectors is linearly independent.

Proof: Let S={ $\alpha_1, \alpha_2, ..., \alpha_m$ } be a linearly dependent set of vectors

Consider the subset $\{\alpha_1, \alpha_2, ..., \alpha_k\}$ where $1 \le k \le m$.

Now
$$a_1\alpha_1 + a_2\alpha_2 + \dots + a_k\alpha_k = \bar{o}$$

 $\Rightarrow a_1\alpha_1 + a_2\alpha_2 + \dots + a_k\alpha_k + 0 \alpha_1 + 0\alpha_{k+1} + \dots + 0\alpha_m = \bar{o}$
 $\Rightarrow a_1 = 0, a_2 = 0, \dots a_k = 0$ (Since S is L.I)

Hence the subset $\{\alpha_1, \alpha_2, ..., \alpha_k\}$ is Linearly independent

Theorem: Let V(F) be a vector space and S={ $\alpha_1, \alpha_2, ..., \alpha_n$ } is a finite subset of non zero vectors of V(F). Then S is linearly independent iff some vector $\alpha_k \in S$, 2≤k≤n can be expressed as a linear combination of its preceding vectors

Proof: Suppose S={ $\alpha_1, \alpha_2, ..., \alpha_n$ } is linearly dependent.

Then there exists $a_1, a_2, \ldots, a_n \in F$, not all zero such that

$$a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n$$
=ō

Let k be the greatest suffix of a for which $\alpha_k \neq \bar{o}$

Then $a_1\alpha_1 + a_2\alpha_2 + \dots + a_k\alpha_k + 0\alpha_{k+1} + \dots + 0\alpha_n = \bar{o}$

$$\Rightarrow a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_k \alpha_k = \bar{o}$$

Suppose k=1 then $a_1 \alpha_1 = \bar{o}$

But $a_1=0 \Rightarrow \alpha_1=\bar{o}$ which contradicts that each element of S is a non-zero vector. Hence k>1, ie.,2≤k≤n Also $a_k\alpha_k=-a_1\alpha_1-a_2\alpha_2-\cdots-a_{k-1}\alpha_{k-1}$ $\Rightarrow a_k^{-1}(a_k\alpha_k)=a_k^{-1}(-a_1\alpha_1-a_2\alpha_2-\cdots-a_{k-1}\alpha_{k-1})$ $\alpha_k=(-a_k^{-1}a_1)\alpha_1+(-a_k^{-1}a_2)\alpha_2+\cdots+(-a_k^{-1}a_{k-1})\alpha_{k-1}$

= Linear combination of preceding vectors

Conversely suppose that some $\alpha_p \in S$ can be expressible as a linear combination of preceding vectors

$$\therefore \alpha_p = b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_{p-1} \alpha_{p-1}$$
$$\Rightarrow b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_{p-1} \alpha_{p-1} + (-1) \alpha_p = \bar{o}$$

 \Rightarrow { α_1 , α_2 , ..., α_p }is Linearly dependent

Hence the superset S={ $\alpha_1, \alpha_2, ..., \alpha_p, ..., \alpha_n$ } is Linearly dependent

- Basis of vector space
- Finite dimensional vector spaces
- Basis extension
- Coordinates
- Dimension of a vector space
- Dimension of a subspace

• Quotient space and dimension of quotient space

Basis of a vector space: A subset S of a vector space V(F) is said to be a basis of V(F), if (i) S consists of linearly independent vectors (ii)L(S)=V

Example: A system S consisting of n vectors

 $e_1 = (1,0,0,...,0), e_2 = (0,1,0,...,0), ... e_n = (0,0,...,0,1)$ is a basis of V_n over the field F.

Solution: Suppose S={ $e_1, e_2, ..., e_n$ } Let $a_1, a_2, ..., a_n \in F$ then $a_1e_1 + a_2e_2 + \dots + a_ne_n = \bar{o}$ $\Rightarrow a_1(1,0,0,...,0) + a_2(0,1,0,...,0) + \dots + a_n(0,0,...,0,1) = \bar{o}$ $\Rightarrow (a_1, a_2 ... a_n) = (0,0,...,0) \Rightarrow a_1 = 0, a_2 = 0, ..., a_n = 0$ \Rightarrow the given vectors are linearly independent Let $\alpha = (a_1, a_2 ... a_n) \in V_n(F)$ $\alpha = (a_1, a_2 \dots a_n) = a_1(1, 0, 0, \dots, 0) + a_2(0, 1, 0, \dots, 0) + \dots + a_n(0, 0, \dots, 0, 1) = a_1e_1 + a_2e_2 + \dots + a_ne_n = \text{linear combination of elements of the set } S \Rightarrow \alpha \in L(S)$

 $\therefore V_n(F) \subseteq L(S)$. We have $L(S) \subseteq V_n(F)$

 $\therefore V_n$ =L(S) and hence S is a basis of V_n (F)

Note1: The basis $S=\{e_1, e_2, ..., e_n\}$ is called standard basis of $V_n(F)$

Note2: The standard basis of V_2 (F) is {(1,0),(0,1)}

Note3: The standard basis of V_3 (F) is {(1,0,0),(0,1,0),(0,0,1)}

- **Example**: Show that the infinite set $S = \{1, x, x^2, x^3, ..., x^n ...\}$ is a basis of the vector space F[x] of all polynomials over the field F
- **Solution**:Let $S' = \{x^{m_1}, x^{m_2}, ..., x^{m_n}\}$ be any finite subset of S having n vectors where $m_1, m_2 ... m_n$ are some non-negative integers.

Let $a_1, a_2, \dots, a_n \in F$ be scalars such that

$$a_1 x^{m_1} + a_2 x^{m_2} + \cdots + a_n x^{m_n} = 0$$
(zero polynomial)

$$\Rightarrow a_1 = 0, a_2 = 0, \dots, a_n = 0$$

Thus every finite subset of S is linearly independent and hence S is linearly independent.

Let $f(x)=a_0 + a_1x + a_2x^2 + \dots + a_tx^t$ be a polynomial of degree t Then $f(x)=a_01 + a_1x + a_2x^2 + \dots + a_tx^t$

Hence S is a basis of F[x]

Example: Show that the vectors (1,2,1), (2,1,0), (1,-1,2) form a basis of R^3

Solution: Since the set {(1,0,0), (0,1,0), (0,0,1)} forms a basis of R^3 , dim $R^3=3$

Let $S = \{(1,2,1), (2,1,0), (1,-1,2)\}$ Consider a(1,2,1)+b(2,1,0)+c(1,-1,2)=(0,0,0) $\Rightarrow(a+2b+c, 2a+b-c, a+2c)=(0,0,0)$ a+2b+c=0 (1) 2a+b-c=0 (2) a+2c=0 (3)

Multiplying (2) by 2, we get 4a+2b-2c=0 (4)

Subtracting (4) from (1) we get $-3a+3c=0 \Rightarrow -a+c=0$ (5)

Adding (3) and (5), $3c=0 \Rightarrow c=0$

Put c=0 in (3) we get a=0 and put c=0,a=0 in (1), we get b=0

: S is linearly independent and hence it forms a basis for R^3 Example: Determine whether or not the following vectors form a basis of R^3 :

(1,1,2), (1,2,5), (5,3,4)

Solution: We know that dim R^3 =3

We have $a_1(1,1,2) + a_2(1,2,5) + a_3(5,3,4) = (0,0,0)$

 \Rightarrow ($a_1 + a_2 + 5a_3$, $a_1 + 2a_2 + 3a_3$, $2a_1 + 5a_2 + 4a_3$) = (0,0,0)

 $\therefore a_{1} + a_{2} + 5a_{3} = 0 \qquad (1)$ $a_{1} + 2a_{2} + 3a_{3} = 0 \qquad (2)$ $2a_{1} + 5a_{2} + 4a_{3} = 0 \qquad (3)$ Subtracting (2) from (1), we get $-a_{2} + 2a_{3} = 0$ Multiplying (1) by 2, we get $2a_{1} + 2a_{2} + 10a_{3} = 0$ Subtracting (5) from (3), we get $3a_{2} - 6a_{3} = 0 \Rightarrow a_{2} - 2a_{3} = 0$ $\Rightarrow a_{2} = 2a_{3}$ putting $a_{2} = 2a_{3}$ in (1), we get $a_{1} = -7a_{3}$ put $a_{3} = 1$, we get $a_{2} = 2$ and $a_{1} = -7$

 \therefore $a_1 = -7$, $a_2 = 2$ and $a_3 = 1$ is a non-zero solution of the above equations.

Hence the given set is linearly dependent and it does not form a basis of \mathbb{R}^3

Finite Dimensional Vector Space: The vector space V(F) is said to be finite dimensional or finitely generated if there exists a finite subset S of V such that V= L(S)

Example: The vector space $V_n(F)$ of n-tuples is a finite dimensional vector space.

- The vector space F[x] of all polynomials over a field F is not finite dimensional.
- **Note**: A vector space which is not finitely generated is called an infinite dimensional space.
- The vector space F[x] of all polynomials over a field F is infinite dimensional

Theorem: There exists a basis for each finite dimensional vector space.

Proof: Let V(F) be a finite dimensional vector space.

Let S={ $\alpha_1, \alpha_2, ..., \alpha_m$ } be a finite subset of V such that L(S)=V

Suppose S does not contain ō

If S is linearly independent, then S itself is a basis of V.

- If S is linearly dependent, then $\exists \alpha_i \in S$ which can be expressed as a linear combination of the preceding vectors $\alpha_1, \alpha_2, ..., \alpha_{i-1}$
- If we omit this vector $\alpha_i \in S$, then the set S' of m-1 vectors $\alpha_1, \alpha_2, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_m$ also generates V ie., V=L(S')
- If $\alpha \in V$, then L(S)=V $\Rightarrow \alpha$ can be written as a linear combination of $\alpha_1, \alpha_2, \dots, \dots, \alpha_m$.

Let
$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_{i-1} \alpha_{i-1} + a_i \alpha_i + a_{i+1} \alpha_{i+1} + \dots + a_m \alpha_m$$

But α_i can be expressed as a linear combination of $\alpha_1, \alpha_{2,} \dots, \alpha_{i-1}$

Let
$$\alpha_i = b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_{i-1} \alpha_{i-1}$$

$$\therefore \alpha = a_1 \alpha_1 + \dots + a_{i-1} \alpha_{i-1} + a_i (b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_{i-1} \alpha_{i-1}) + a_{i+1} \alpha_{i+1} + \dots + a_m \alpha_m$$

Thus α is expressed as a linear combination of the vectors $\alpha_1, \alpha_2, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_m$

 $\therefore \alpha \in V \Rightarrow \alpha$ can be expressed as a linear combination of the vectors in *S*'

Thus L(S')=V

- If S' is linearly independent, then S'will be a basis of V. If S' is linearly dependent, then proceeding as above we shall get a new set of n-2 vectors which generates V.
- Continuing this process, we shall after finite number of steps, obtain a linearly independent subset of S which generates V and hence a basis of V.

Theorem: Let V(F) be a finite dimensional vector space and $S=\{\alpha_1, \alpha_2, ..., \alpha_m\}$ be a linearly independent subset of V. Then either S itself a basis of V or S can be extended to form a basis of V.

Proof:S={ $\alpha_1, \alpha_2, ..., \alpha_m$ } is a linearly independent subset of V

Since V(F) is finite dimensional, it has a finite basis say B

Let $B=\{\beta_1,\beta_2,\ldots,\beta_n\}$

Consider the set $S_1 = \{\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_n\}$

Then $L(S_1)=V$

Each α can be expressed as a linear combination of β 's since B is a basis of V \Rightarrow S₁ is linearly dependent.

Hence some vector in S_1 can be expressed as a linear combination of its preceding vectors.

This vector cannot be any of α 's, since S is linearly independent. So this vector must be some β_i

Consider $S_2 = \{\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \dots, \beta_{i-1}, \beta_{i+1}, \dots, \beta_n\} = S_1 - \{\beta_i\}$

Then $L(S_2) = L(S_1)=V$

If S_2 is linearly independent, then S_2 forms a basis of V and it is the extended set.

If S_2 is linearly dependent, then continue this procedure till we get $S_k \subseteq S$ such that S_k is linearly independent.

 $\therefore L(S_k) = L(S) = V$

Hence S_k will be extended set of S forming a basis of V **Definition**: Let $S = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ be the basis of a vector space over V Let $\beta = a_1\alpha_1 + a_2\alpha_2 + \cdots + a_n\alpha_n \in V$, where $a_1, a_2, ..., a_n \in F$ then the scalars $\{a_1, a_2, ..., a_n (F).\}$ are called the coordinates.

Example: Show that the set {(I,0,0),(1,1,0),(1,1,1)} is a basis of $C^{3}(C)$. Hence find the coordinates of the vector (3+4i,6i,3+7i) in $C^{3}(C)$

Solution: Let S={(I,0,0),(1,1,0),(1,1,1)}

Dimension of a vector space:

The number of elements in any basis of a finite dimensional vector space V(F) is called the dimension of the vector space V(F) and is denoted by dimV

Example: Let V be the vector space of all 2×2 matrices over the field F. Prove that V has dimension 4 by exhibiting a basis for V which has 4 elements.

Sol:
$$\alpha = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $\beta = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\gamma = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $\delta = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ in V
 $a\alpha + b\beta + c\gamma + d\delta = 0 \Rightarrow a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow a = 0, b = 0, c = 0, d = 0$
 \therefore S={ $\alpha, \beta, \gamma, \delta$ } is linearly independent
If $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is any vector in V, then $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a\alpha + b\beta + c\gamma + d\delta$

 \therefore L(S)=V and hence S is a basis of V

dim V = 4

Theorem: If V(F) is a finite dimensional vector space, then any two bases of V have the same number of elements

Proof: Let S_m and S_n be the two bases of V(F) where $S_m = \{\alpha_1, \alpha_2, ..., \alpha_m\}, S_n = \{\beta_1, \beta_2, ..., \beta_n\}$

 $\therefore S_m$ and S_n are linearly independent subsets of V

(i) Consider S_m as the basis of V and S_n as linearly independent

 \Rightarrow L(S_m)=V and n(S_m)=m

 $\therefore S_n$ can be extended to be a basis of V \Rightarrow n \le m

(ii) Consider S_n as the basis of V and S_m as linearly independent

 \Rightarrow L(S_n)=V and n(S_n)=n

 $:: S_m$ can be extended to be a basis of V \Rightarrow m \le n

But both S_m and S_n are bases of V.

 \therefore n≤m and m≤n⇒ m=n

Hence any two bases of V have the same number of elements.

Ex: For the vector space V_3 , the set $S_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$ and $S_2 = \{(1,0,0), (1,1,0), (1,1,1)\}$ are clearly bases and contain the same number of elements

Theorem: Each set of (n+1) or more vectors of a finite dimensional vector space V(F) of dimension n is linearly dependent

Proof: Let V(F) be a finite dimensional vector space of dimension n.LetS be a linearly independent subset of V containing n+1 or more vectors.Then S will form a part of a basis of V.ThusWe shall get a basis of V containing more than n vectors.But everybasis of V will contain exactly n vectors.Hence our

assumption is wrong. ∴ If S contains n+1 or more vectors, then S must be linearly dependent.

Theorem: Let V be a vector space which is spanned by a finite set of vectors $\beta_1, \beta_2, ..., \beta_m$. Then any linearly independent set of vectors in V is finite and contains no more than m vectors.

Proof: Let S = { $\beta_1, \beta_2, \dots, \beta_m$ }SinceL(S)=V, V has a finite basis and dim V \leq m. \therefore Everysubset S' of V which contains more than m vectors is linearly dependent.

Hence the theorem is proved.

Theorem: If a set S of n vectors of a finite dimensional vector space V(F) of dimension n generates V(F), then S is a basis of V

Proof: Let V(F) be a finite dimensional vector space of dimension n. Let $S=\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a subset of V such that L(S)=V. If S is linearly independent, then S will form a basis of V. If S is not linearly independent, then there will exist a proper subset of S which will form a basis of V. Thus we shall get a basis of V containing less than n elements. But every basis of V must contain exactly n elements. \therefore S cannot be linearly dependent and hence S must be a basis of V

- Theorem: If V(F) is a finite dimensional vector space of dimension n, then any set of linearly independent vectors in V forms a basis of V.
- Proof: Let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a linearly independent subset of a finite dimensional vector space V(F) of dimension n. If S is not a basis of V, then it can be extended to form a basis of V. Thus we shall get a basis of V containing more than n vectors. But every basis of V must contain exactly n vectors. \therefore Our assumption is wrong and S must be a basis of V

Dimension of a subspace:

Theorem: Let V(F) be a finite dimensional vector space of dimension n and W be the subspace of V. Then W is a finite dimensional vector space with dim W \leq n.

Proof: dim $V = n \Rightarrow$ each (n+1) or more vectors of V form a linearly dependent set.

W is a subspace of V(F) \Rightarrow each set of (n+1) vectors in W is a subset of V and hence linearly dependent.

Thus any linearly independent set of vectors in W can contain at the most n vectors.

Let S = { $\alpha_1, \alpha_2, ..., \alpha_n$ } be the largest linearly independent subset of W, where m \le n

Now we shall prove that S is the basis of W.

For any $\beta \in W$, consider $S_1 = \{\alpha_1, \alpha_2, \dots, \alpha_m, \beta\}$

Since S is the largest set of linearly independent vectors, S_1 is linearly dependent.

```
 \begin{array}{l} \therefore \exists a_1, a_2, \dots, a_m, b \in \mathsf{F} \text{ not all zero such that} \\ a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m + b\beta = 0 \\ \text{Let } b = 0, \text{ then } a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m = 0 \Rightarrow a_1 = 0, a_2 = \\ 0, \dots, a_m = 0 \Rightarrow S_1 \text{ is linearly independent which is a contradiction.} \\ \therefore b \neq 0. \text{ Then } \exists \ b^{-1} \in \mathsf{F} \ni b b^{-1} = 1 \\ a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m + b\beta = 0 \Rightarrow b\beta = -a_1 \alpha_1 - a_2 \alpha_2 - \dots - a_m \alpha_m \\ \Rightarrow \beta = (-b^{-1}a_1)\alpha_1 + (-b^{-1}a_2)\alpha_2 + \dots + (-b^{-1}a_m)\alpha_m \\ \Rightarrow \beta = a \text{ linear combination of elements of } \mathsf{S} \Rightarrow \beta \in \mathsf{L}(\mathsf{S}) \\ \text{Also S is linearly independent and hence S is the basis of W} \\ \therefore \text{ W is a finite dimensional vector space with dim W \leq n.} \end{array}
```

Theorem: If W_1, W_2 are two subspaces of a finite dimensional vector space V(F) then dim $(W_1 + W_2)$ =dim W_1 +dim W_2 -dim $(W_1 \cap W_2)$ **Proof**: let dim $(W_1 \cap W_2)$ =k and S= $\{\gamma_1, \gamma_2, \gamma_3, \dots, \gamma_k\}$ be a basis of $(W_1 \cap W_2)$ W_2) Then $S \subseteq W_1$ and $S \subseteq W_2$ Since S is linearly independent and $S \subseteq W_1$, S can be extended to form a basis of W_1 . Let $\{\gamma_1, \gamma_2, \dots, \gamma_k, \alpha_1, \alpha_2, \dots, \alpha_m\}$ be a basis of W_1 Then dim W_1 =k+m Similarly let $\{\gamma_1, \gamma_2, ..., \gamma_k, \beta_1, \beta_2, ..., \beta_t\}$ be a basis of W_2 Then dim W_2 =k+t $\dim W_1 + \dim W_2 - \dim (W_1 \cap W_2) = k + m + t$ Let $S_1 = \{\gamma_1, \gamma_2, \dots, \gamma_k, \alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_t\}$ be a basis of $W_1 + W_2$ Let $c_1\gamma_1 + c_2\gamma_2 + \dots + c_k\gamma_k + a_1\alpha_1 + a_2\alpha_2 + \dots + a_m\alpha_m + b_1\beta_1 + b_1\beta_1$ $b_2\beta_2 + \dots + b_t\beta_t = \bar{o}$ $\Rightarrow b_1 \beta_1 + b_2 \beta_2 + \dots + b_t \beta_t = -(c_1 \gamma_1 + c_2 \gamma_2 + \dots + c_k \gamma_k + a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_k \gamma_k + a_k \alpha_1 + a_k \alpha_2 + \dots + a_k \alpha_k + a_k$ $\cdots + a_m \alpha_m \in W_1 \cap W_2$ $b_1 \beta_1 + b_2 \beta_2 + \dots + b_t \beta_t = d_1 \gamma_1 + d_2 \gamma_2 + \dots + d_k \gamma_k$ $\Rightarrow b_1 \beta_1 + b_2 \beta_2 + \dots + b_t \beta_t - d_1 \gamma_1 - d_2 \gamma_2 - \dots - d_k \gamma_k = \bar{o}$ But $\beta_1, \beta_2, \dots, \beta_t, \gamma_1, \gamma_2, \dots, \gamma_k$ are linearly independent vectors. Therefore $b_1 = 0, b_2 = 0, ..., b_t = 0$ $c_1\gamma_1 + c_2\gamma_2 + \dots + c_k\gamma_k + a_1\alpha_1 + a_2\alpha_2 + \dots + a_m\alpha_m = \bar{o} \Rightarrow c_1 = 0, c_2 = 0$ $0, \dots, c_k = 0, a_1 = 0, a_2 = 0, \dots, a_m = 0$ Since $\gamma_1, \gamma_2, \dots, \gamma_k, \alpha_1, \alpha_2, \dots, \alpha_m$ are linearly independent, $c_1 = 0, c_2 =$ $0, \dots, c_k = 0, a_1 = 0, a_2 = 0, \dots, a_m = 0, b_1 = 0, b_2 = 0, \dots, b_t = 0$ Therefore S_1 is linearly independent. Now we show that $L(S_1)=W_1+W_2$

Since $W_1 + W_2$ is a subspace of V and each element of $S_1 \in W_1 + W_2$, $L(S_1) \subseteq W_1 + W_2$

Let $\alpha \in W_1 + W_2$.

 α =some element of W_1 +some element of W_2

= a linear combination of elements of basis of W_1 + a linear combination of elements of basis of W_2

=a linear combination of elements of S_1

$$\therefore \alpha \in L(S_1) \text{ and } W_1 + W_2 \subseteq L(S_1)$$

$$\therefore \mathsf{L}(S_1) = W_1 + W_2$$

 $\therefore S_1$ is a basis of $W_1 + W_2$ and dim $(W_1 + W_2)$ = k+m+t

Hence the theorem.

Example: Let W_1 and W_2 be two subspaces of R^4 given by $W_1 = \{(a, b, c, d): b - 2c + d = 0\}, W_2 = \{(a, b, c, d): a = d, b = 2c\}$. Find the basis and dimension of (i) W_1 (ii) W_2 (iii) $W_1 \cap W_2$ and hence find dim $(W_1 + W_2)$

```
Solution: Given W_1 = \{(a, b, c, d): b - 2c + d = 0\}
```

Let $(a,b,c,d) \in W_1$

```
then
```

Then

```
(a,b,c,d) = (a,2c-d,c,d) = a(1,0,0,0) + c(0,2,1,0) + d(0,-1,0,1)
```

```
\therefore (a,b,c,d)=linear combination of linearly independent set
```

```
\{(1,0,0,0),(0,2,1,0),(0,-1,0,1)\} which form a basis of W_1.
```

```
\therefore \dim W_1 = 3
```

(ii) Given $W_2 = \{(a,b,c,d):a=d, b=2c\}$

Let $(a,b,c,d) \in W_2$ then (a,b,c,d) = (d,2c,c,d) = d(1,0,0,1) + c(0,2,1,0)

 \therefore (a,b,c,d)=linear combination of linearly independent set

 $\{(1,0,0,1),(0,2,1,0)\}$ which form a basis of W_2 .

 $\therefore \dim W_2 = 2$

(iii)
$$W_1 \cap W_2 = \{(a,b,c,d):b-2c+d=0, a=d, b=2c\}$$

Now $b-2c+d=0, a=d, b=2c \Rightarrow b=2c, a=0, d=0$
 $\therefore (a,b,c,d)=(0,2c,c,0)=c(0,2,1,0)$
 \therefore Basis of $W_1 \cap W_2 = (0,2,1,0) \Rightarrow \dim(W_1 \cap W_2)=1$
 $\dim(W_1 + W_2)=\dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)=3+2-1=4$

Let W be any subspace of a vector space V(F). Let $\alpha \in V$. Then the set W+ $\alpha = \{\gamma + \alpha : \gamma \in W\}$ is called a right coset of W in V generated by α .

Similarly the set α +W = { α + γ : $\gamma \in$ W} is called a left coset of W in V generated by α .

Let V/W denote the set of all cosets of W in V i.e.,
V/W =
$$\{W+\alpha: \alpha \in V\}$$

Quotient space: If W is any subspace of a vector space V(F), then the set V/W of all cosets W+ α where $\alpha \in V$, is a vector space over F for addition and scalar multiplication compositions defined as follows:

 $(W+\alpha)+(W+\beta) = W+(\alpha+\beta), \forall \alpha, \beta \in V \text{ and } a(W+\alpha) = W+a\alpha, a \in F, \alpha \in V.$ The vector space V/W is called the Quotient space of V

Theorem: If W is a subspace of a finite dimensional vector space V(F), then dim V/W = dim V - dim W.

Proof: Let m be the dimension of the subspace W of the vector space V(F).

Let S = { $\alpha_1, \alpha_2, ..., \alpha_m$ } be a basis of W.

Since S is a linearly independent subset of V, it can be extended to form a basis of V.

Let $S' = \{\alpha_1, \alpha_2, ..., \alpha_m, \beta_1, \beta_2, ..., \beta_l\}$ be a basis of V

Then dim V = m+l $\therefore \dim V - \dim W = (m+l) - m=l$ Now we shall prove that dim V/W=l Suppose $S_1 = \{W + \beta_1, W + \beta_2, ..., W + \beta_l\}$ Now we prove that S_1 is a basis of V/W Let $a_1(W + \beta_1) + a_2(W + \beta_2) + \dots + a_l(W + \beta_l) = W$ $\Rightarrow (W + a_1 \beta_1) + (W + a_2\beta_2) + \dots + (W + a_l\beta_l) = W$ $\Rightarrow W + (a_1\beta_1 + a_2\beta_2 + \dots + a_l\beta_l) = W + \mathbf{0}$ $\Rightarrow a_1\beta_1 + a_2\beta_2 + \dots + a_l\beta_l \in W$ $\Rightarrow a_1\beta_1 + a_2\beta_2 + \dots + a_l\beta_l = b_1\alpha_1 + b_2\alpha_2 + \dots + b_m\alpha_m$ $\Rightarrow a_1\beta_1 + a_2\beta_2 + \dots + a_l\beta_l = b_1\alpha_1 - b_2\alpha_2 - \dots - b_m\alpha_m = \mathbf{0}$ $\Rightarrow a_1 = 0, a_2 = 0, \dots a_l = 0 (\because \beta_1, \beta_2, \dots, \beta_l, \alpha_1, \alpha_2, \dots, \alpha_m \text{ are L I})$ $\therefore S_1 \text{ is linearly independent.}$

Now we show that
$$L(S_1) = V/W$$
.

Let W+
$$\alpha \in V/W$$

 $\alpha = c_1 \alpha_1 + c_2 \alpha_2 + \dots + c_m \alpha_m + d_1 \beta_1 + d_2 \beta_2 + \dots + d_l \beta_l$
 $= \gamma + d_1 \beta_1 + d_2 \beta_2 + \dots + d_l \beta_l$, where $\gamma = c_1 \alpha_1 + c \alpha_2 + \dots + c_m \alpha_m \in W$
W+ $\alpha = W + (\gamma + d_1 \beta_1 + d_2 \beta_2 + \dots + d_l \beta_l)$
 $= (W+\gamma) + d_1 \beta_1 + d_2 \beta_2 + \dots + d_l \beta_l$
 $= (W+\gamma) + d_1 \beta_1 + d_2 \beta_2 + \dots + d_l \beta_l$
 $= (W + d_1 \beta_1 + d_2 \beta_2 + \dots + d_l \beta_l)$
 $= (W + d_1 \beta_1) + (W + d_2 \beta_2) + \dots + (W + d_l \beta_l)$
 $= d_1(W + \beta_1) + d_2(W + \beta_2) + \dots + d_l(W + \beta_l)$

Thus any element W+ α of V/W can be expressed as a linear combination of S_1 .

$$\therefore V/W = L(S_1)$$

 \therefore *S*₁ is a basis of V/W and dim V/W = *l*

Hence the theorem.

- Linear Transformations
- Linear operators
- Properties of Linear Transformations
- Sum and product of Linear Transformations
- Algebra of Linear operators
- Range and null space of Linear Transformation

- Rank and Nullity of Linear Transformation
- Rank Nullity theorem

LINEAR TRANSFORMATION

Definition: Let U(F) and V(F) be two vector spaces over the same field F. A linear transformation from U into V is a function T from U into V such that $T(a\alpha+b\beta)=aT(\alpha)+bT(\beta)$ for all $\alpha,\beta\in U$ and $a,b\in F$

Zero Transformation: Let U(F) and V(F) be two vector spaces. The function T from U into V defined by $T(\alpha)=\bar{o}$ for all $\alpha \in U$ is a linear transformation from U into V. It is called zero transformation

Identity operator:: Let V(F) be a vector space. The function I from V into V defined by $I(\alpha)=\alpha$ for all $\alpha \in V$ is a linear transformation from V into V. The transformation I is called identity operator on V

Negative of a linear Transformation: Let U(F) and V(F) be two vector spaces. Let T be a linear transformation from U into V. The correspondence -T defined by $(-T)(\alpha) = -[T(\alpha)]$ for all $\alpha \in U$ is a linear transformation from U into V. The linear transformation –T is called the negative of the linear transformation T.

Properties of linear transformations:

Theorem: Let T be a linear transformation from a vector space U(F) into V(F). Then

(i) $T(\bar{o})=\bar{o}$, where \bar{o} on the left hand side is zero of U and \bar{o} on the right hand side is zero vector of V

ii) T(- α)=-T(α), for all $\alpha \in U$

(iii) $T(\alpha-\beta)=T(\alpha)-T(\beta)$, for all $\alpha,\beta\in U$

(iv)T
$$(a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n) = a_1T(\alpha_1) + a_2T(\alpha_2) + \dots + a_nT(\alpha_n)$$

Where $\alpha_1, \alpha_2, \dots, \alpha_n \in U, a_1, a_2, \dots, a_n \in F$
Proof: Let $\alpha \in U$ then T $(\alpha) \in V$
T $(\alpha) + \bar{o} = T(\alpha) = T(\alpha + \bar{o}) = T(\alpha) + T(\bar{o}) \Rightarrow \bar{o} = T(\bar{o})$
(ii) T $[\alpha + (-\alpha)] = T(\alpha) + T(-\alpha)$
But T $[\alpha + (-\alpha)] = T(\alpha) + T(-\alpha)$
But T $[\alpha + (-\alpha)] = T(\alpha) + T(-\alpha) = \bar{o}$ and T $(-\alpha) = -T(\alpha)$
(iii) T $(\alpha - \beta) = T[\alpha + (-\beta)] = T(\alpha) + T(-\beta) = T(\alpha) + [-T(\beta)] = T(\alpha) - T(\beta)$
(iv) We prove this by using mathematical induction.
We know that T $(a_1\alpha_1) = a_1T(\alpha_1)$ Suppose
T $(a_1\alpha_1 + a_2\alpha_2 + \dots + a_{n-1}\alpha_{n-1}) = a_1T(\alpha_1) + a_2T(\alpha_2) + \dots + a_{n-1}T(\alpha_{n-1})$
Then T $(a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n)$
=T $[(a_1\alpha_1 + a_2\alpha_2 + \dots + a_{n-1}\alpha_{n-1}) + T(a_n\alpha_n)]$
=T $[a_1T(\alpha_1) + a_2T(\alpha_2) + \dots + a_{n-1}T(\alpha_{n-1})] + a_nT(\alpha_n)$
= $a_1T(\alpha_1) + a_2T(\alpha_2) + \dots + a_{n-1}T(\alpha_{n-1}) + a_nT(\alpha_n)$
Expressed is The function T: W (B) \rightarrow W (D) defined as T(a, b, b) is a b a \in D.

Example: The function T: $V_3(R) \rightarrow V_2(R)$ defined as T(a,b,c)= (a,b) \forall a,b,c \in R is a linear transformation from $V_3(R) \rightarrow V_2(R)$.

Solution: Let
$$\alpha = (a_1, b_1, c_1), \beta = (a_2, b_2, c_2) \in V_3(R)$$

T $(a\alpha+b\beta)=T[a(a_1, b_1, c_1) + b(a_2, b_2, c_2)]$
=T $[aa_1 + ba_2, ab_1 + bb_2, ac_1 + bc_2]$
= $(aa_1 + ba_2, ab_1 + bb_2)$
= $(aa_1, ab_1) + (ba_2, bb_2)$
= $a(a_1, b_1) + b(a_2, b_2)$
= $aT(a_1, b_1, c_1) + bT(a_2, b_2, c_2)$
= $aT(\alpha) + bT(\beta)$

Therefore T is a linear transformation

Example: Describe explicitly the linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that T(2,3)=(4,5) and T(1,0)=(0,0)

Solution: Let S = {(2,3),(1,0)}

$$a(2,3)+b(1,0)=\bar{o}\Rightarrow(2a+b,3a) = (0,0)\Rightarrow 2a+b=0, 3a=0\Rightarrow a=0, b=0$$

: S is linearly independent

Let $(x,y) \in \mathbb{R}^2$

$$(x,y) = a(2,3)+b(1,0)=(2a+b,3a) \Rightarrow 2a+b=x, 3a=y \Rightarrow a=\frac{y}{3}, b=\frac{3x-2y}{3}$$

$$\therefore$$
 L(S) = R^2

$$T(x,y) = T\left[\frac{y}{3}(2,3) + \frac{3x-2y}{3}(1,0)\right] = \frac{y}{3}T(2,3) + \frac{3x-2y}{3}T(1,0) = \frac{y}{3}(4,5) + \frac{3x-2y}{3}(0,0) = \left(\frac{4y}{3}, \frac{5y}{3}\right)$$

Example: Find T(x,y,z) where T: $R^3 \rightarrow R$ is defined by T(1,1,1) =3, T(0,1,-2) = 1, T(0,0,1) = -2

Solution: Let
$$S = \{(1,1,1), (0,1,-2), (0,0,1)\}$$

Let $a(1,1,1)+b(0,1,-2)+c(0,0,1)=\bar{o}\Rightarrow(a,a+b,a-2b+c)=(0,0,0)\Rightarrow a=0,a+b=0, a-2b+c=0\Rightarrow a=0,b=0,c=0$

 \therefore S is linearly independent

Let $(x,y,z) \in \mathbb{R}^3$

$$(x,y,z)=a(1,1,1)+b(0,1,-2)+c(0,0,1)=(a,a+b,a-2b+c) \Rightarrow a=x, a+b=y, a-2b+c=z \Rightarrow a=x, b=y-x, c=z+2y-3x$$

 \therefore L(S)= R^3

$$T(x,y,z) = T[x(1,1,1) + (y-x)(0,1,-2) + (z+2y-3x)(0,0,1)]$$

=xT(1,1,1) + (y-x)T(0,1,-2) + (z+2y-3x)T(0,0,1) =x(3)+(y-x)(1) + (z+2y-3x)(-2) = 8x-3y-2z

Sum of linear transformations:

Definition: Let T_1 and T_2 be two linear transformations from U(F) into V(F). Then their sum $T_1 + T_2$ is defined by $(T_1 + T_2)(\alpha) = T_1(\alpha) + T_2(\alpha), \forall \alpha \in U$

Theorem: Let U(F) and V(F) be two vector spaces. Let T_1 and T_2 be two linear transformations from U into V. Then the mapping $T_1 + T_2$ defined by

 $(T_1 + T_2)(\alpha) = T_1(\alpha) + T_2(\alpha), \forall \alpha \in U$ is a linear transformation.

Proof: $(T_1 + T_2)(\alpha) = T_1(\alpha) + T_2(\alpha), \forall \alpha \in U$

 $T_1(\alpha) \in V \text{ and } T_2(\alpha) \in V \Rightarrow T_1(\alpha) + T_2(\alpha) \in V$

Let $a, b \in F$ and $\alpha, \beta \in U$

Then
$$(T_1 + T_2)(a\alpha + b\beta) = T_1(a\alpha + b\beta) + T_2(a\alpha + b\beta) = a T_1(\alpha) + b T_1(\beta) + a$$

 $T_2(\alpha) + b T_2(\beta) = a[T_1(\alpha) + T_2(\alpha)] + b[T_1(\beta) + T_2(\beta)]$

$$= a(T_1 + T_2)(\alpha) + b(T_1 + T_2)(\beta)$$

 \therefore $T_1 + T_2$ is a linear transformation from U into V

Scalar multiplication of a Linear Transformation: Let T:U(F) \rightarrow V(F) be a linear transformation and a \in F. Then the function aT defined by (aT)(α)=aT(α) $\forall \alpha \in$ U is a linear transformation.

Example: Let T: $V_3(R) \rightarrow V_2(R)$ and H: $V_3(R) \rightarrow V_2(R)$ be the two linear transformations defined by T(x,y,z)=(x-y,y+z) and H(x,y,z)=(2x,y-z)

Find (i) H+T (ii) aH

Solution: (i) (H+T)(x,y,z) = H(x,y,z) + T(x,y,z) = (2x, y-z) + (x-y, y+z) = (3x-y,2y)

(ii) (aH)(x,y,z) = aH(x,y,z) = a(2x, y-z) = (2ax, ay-az)

Product of Linear Transformations:

Theorem: Let U(F), V(F) and W(F) are three vector spaces and T:V \rightarrow W and H:U \rightarrow V are two linear transformations . Then the composite function TH defined by $(TH)(\alpha)=T[H(\alpha)]=T[H(\alpha)] \forall \alpha \in U$ is a linear transformation from U into W.

Proof: $\alpha \in U \Rightarrow H(\alpha) \in V$

 $\mathrm{H}(\alpha) \in \mathrm{V} \Rightarrow \mathrm{T}[\mathrm{H}(\alpha)] \in \mathrm{W} \Rightarrow (\mathrm{T}\mathrm{H})(\alpha) \in \mathrm{W}$

 \therefore TH is a mapping from U into W

Let $a,b \in F$, $\alpha,\beta \in U$.

Then $(TH)[a\alpha+b\beta] = T[H(a\alpha+b\beta)] = T[aH(\alpha)+bH(\beta)]$ a(TH)(α)+b(TH)(β)

∴ TH is a linear transformation from U into W:

Example: Let $T:R^3 \rightarrow R^2$ and $H:R^3 \rightarrow R^2$ be defined by T(x,y,z) = (3x, y+z) and H(x,y,z) = (2x-z, y). Compute (i) T+H (ii) 4T-5H (iii) TH (iv) HT

Solution: (T+H)(x,y,z) = T(x,y,z) + H(x,y,z) = (3x, y+z)+(2x-z,y) = (5x-z, 2y+z)

=

(ii)
$$(4T-5H)(x,y,z)=4T(x,y,z)-5H(x,y,z)=4(3x, y+z)-5(2x-z,y) =(2x+5z, -y+4z)$$

(iii) TH and HT are not defined because R(T) is not equal to domain of H and vice versa.

Algebra of Linear operators:

Let A,B,C be linear operators on a vector space V(F). Let 0 be the zero operator and I be the identity operator on V. Then (i) A0=0A=0 (ii) AI=IA=A (iii) A(B+C)=AB+AC (iv) (A+B)C=AC+BC (v) A(BC)=(AB)C

Range of a linear transformation: Let U(F) and V(F) be two vector spaces and T be a linear transformation from U into V. Then the range of T written as R(T) is the set of all vectors β in V such that β =T(α), for some α in U. Range (T)={T(α) \in V: $\alpha \in$ U}

Theorem: If U(F) and V(F) are two vector spaces and T is a linear transformation from U into V, then range of T is a subspace of V.

Proof: $\bar{o} \in U \Rightarrow T(\bar{o}) = \hat{\bar{o}} \in R(T)$

 \therefore R(T) is a non-empty subset of V

Let $\beta_1, \beta_2 \in R(T)$. Then there exists $\alpha_1, \alpha_2 \in U$ such that $T(\alpha_1) = \beta_1$, $T(\alpha_2) = \beta_2$

а

Let $a,b \in F$. $\beta_1 + b\beta_2 = aT(\alpha_1) + bT(\alpha_2) = T(a\alpha_1 + b\alpha_2)$

Since U is a vector space , a $\alpha_1 + b\alpha_2 \in U$

T (a $\alpha_1 + b\alpha_2$) = a $\beta_1 + b\beta_2 \in \mathbb{R}(\mathbb{T})$

 \therefore R(T) is a subspace of V

Null space of a linear transformation: Let U(F) and V(F) be two vector spaces and T be a linear transformation from U into V. Then the null space of T written as N(T) is the set of all α in U such that T(α)= $\hat{\sigma}$ (zero vector of V) N(T)={ $\alpha \in U: T(\alpha) = \hat{\sigma}$ }

Theorem: If U(F) and V(F) are two vector spaces and T is a linear transformation from U into V then the kernel of T or null space of T is a subspace of U.

Proof: Let N(T) = { $\alpha \in U:T(\alpha) = \hat{\overline{0}} \in V$ }

Since $T(\bar{o}) = \hat{o} \in V$, therefore at least $\hat{o} \in N(T)$

Thus N(T) is a non-empty subset of U.

Let $\alpha_{1,\alpha_2} \in N(T)$ Then $T(\alpha_1) = \hat{o}$ and $T(\alpha_2) = \hat{o}$

Let a, b \in F. Then a α_1 + b $\alpha_2 \in$ U and T(a α_1 + b α_2)=a T(α_1)+b T(α_2)

 $=a \hat{\bar{o}}+b \hat{\bar{o}}=\hat{\bar{o}}+\hat{\bar{o}}=\hat{\bar{o}}\in V$

Therefore $a \alpha_1 + b \alpha_2 \in N(T)$

Thus $a,b \in F$ and $\alpha_{1,\alpha_{2}} \in N(T) \Rightarrow a \alpha_{1} + b \alpha_{2} \in N(T)$

Therefore N(T) is a sub space of U.

Rank and nullity of a linear transformation: Let T be a linear transformation from a vector space U(F) into V(F) with U as finite dimensional. The rank of T denoted by $\rho(T)$ is the dimension of the range of T ie., $\rho(T) = \dim R(T)$

The nullity of T denoted by v(T) is the dimension of the null space of T ie., v(T) = dimN(T)

Theorem: Let U and V be vector spaces over the field F and T be a linear transformation from U into V. Suppose U is finite dimensional then

$\rho(T) + v(T) = dimU$

Proof: Let N be the null space of T.	Then N
is a subspace of U.	Since U is finite
dimensional, N is finite dimensional.	Let dim N=k and let
$\{\alpha_1, \alpha_2 \dots, \alpha_k\}$ be a basis of N	

Since $\{\alpha_1, \alpha_2 \dots, \alpha_k\}$ is a linearly independent subset of U, we can extend it to form a basis of U. Let dim

U=n and $\{\alpha_1, \alpha_2, ..., \alpha_k, \alpha_{k+1}, ..., \alpha_n\}$ be a basis of U $T(\alpha_1), T(\alpha_2) \dots, T(\alpha_k), T(\alpha_{k+1}), \dots, T(\alpha_n) \in R(T)$ To Prove That $\{T(\alpha_{k+1}), T(\alpha_{k+2}), \dots, T(\alpha_n)\}$ is a basis of R(T) (i) First we shall prove that $T(\alpha_{k+1}), T(\alpha_{k+2}), \dots, T(\alpha_n)$ span R(T) Let $\beta \in R(T)$. Then $\exists \alpha \in U$ such that $T(\alpha) = \beta$. $\alpha \in U \Rightarrow \exists$ $a_1, a_2, \dots, a_n \in F$ such that $\alpha = a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n$ $\Rightarrow T(\alpha) = T(a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n)$ $\Rightarrow \beta = a_1 T(\alpha_1) + \dots + a_k T(\alpha_k) + a_{k+1} T(\alpha_{k+1}) + \dots + a_n T(\alpha_n)$ $\Rightarrow \beta = a_{k+1}T(\alpha_{k+1}) + a_{k+2}T(\alpha_{k+2}) + \dots + a_nT(\alpha_n) \therefore$ $T(\alpha_{k+1}), T(\alpha_{k+2}), \dots, T(\alpha_n)$ span R(T) (ii) Now we prove that $T(\alpha_{k+1}), T(\alpha_{k+2}), \dots, T(\alpha_n)$ are linearly independent Let $c_{k+1}, c_{k+2}, \dots, c_n \in F$ such that $c_{k+1}T(\alpha_{k+1}) + \dots + c_nT(\alpha_n) = \bar{o}$ $\Rightarrow T(c_{k+1}\alpha_{k+1} + \dots + c_n\alpha_n) = \bar{0}$ $\Rightarrow c_{k+1}\alpha_{k+1} + \dots + c_n\alpha_n \in \mathcal{N}(\mathcal{T})$ $\Rightarrow c_{k+1}\alpha_{k+1} + \dots + c_n\alpha_n = b_1\alpha_1 + \dots + b_k\alpha_k$ $\Rightarrow b_1 \alpha_1 + \dots + b_k \alpha_k - c_{k+1} \alpha_{k+1} - \dots - c_n \alpha_n = \bar{o}$ $\Rightarrow b_1 = \dots = b_k = c_{k+1} = \dots = c_n = 0$ \Rightarrow T(α_{k+1}), ..., T(α_n) are linearly independent and form a basis of R(T) Rank T=dim R(T)=n-k Hence rank (T)+nullity(T)=(n-k)+k=n=dim U

Example: Show that the mapping $T: V_2(R) \rightarrow V_3(R)$ defined as

T(a,b)= (a+b,a-b,b) is a linear transformation from $V_2(R) \rightarrow V_3(R)$. Find the range, rank, null space and nullity of T

Solution: Let
$$\alpha = (a_1, b_1), \beta = (a_2, b_2) \in V_2(R)$$

 $T(\alpha)=T(a_1, b_1) = T(a_1 + b_1, a_1 - b_1, b_1)$ and
 $T(\beta)=T(a_2, b_2) = T(a_2 + b_2, a_2 - b_2, b_2)$
Let $a, b \in \mathbb{R}$. Then $a\alpha + b\beta \in V_2(R)$
 $T(a\alpha + b\beta) = T[a(a_1, b_1) + b(a_2, b_2)]$
 $=T(aa_1 + ba_2, ab_1 + bb_2)$
 $=(aa_1 + ba_2 + ab_1 + bb_2, aa_1 + ba_2 - ab_1 - bb_2, ab_1 + bb_2)$
 $=(a(a_1 + b_1) + b(a_2 + b_2), a(a_1 - b_1) + b(a_2 - b_2), ab_1 + bb_2)$
 $=a(a_1 + b_1, a_1 - b_1, b_1) + b(a_2 + b_2, a_2 - b_2, b_2)$
 $=aT(\alpha)+bT(\beta)$

Hence T is a linear transformation from $V_2(R) \rightarrow V_3(R)$

Now $\{(1,0),(0,1)\}$ is a basis for $V_2(R)$

We have T(1,0)=(1+0,1-0,0)=(1,1,0) and T(0,1)=(0+1,0-1,1)=(1,-1,1)

The vectors T (1,0), T(0,1) Span the range of T.

Thus the range of T is the sub space of $V_3(R)$ spanned by the vectors (1,1,0), (1,-1,1).

Now the vectors (1,1,0), $(1,-1,1) \in V_3(R)$ are L.I because if $x,y \in R$, then

x(1,1,0)+y(1,-1,1) = (0,0,0)

 \Rightarrow (x+y,x-y,y)=(0,0,0) \Rightarrow x+y=0, x-y=0, y=0 \Rightarrow x=0,y=0

Therefore the vectors (1,1,0), (1,-1,1) form a basis for range of T

Hence rank $T = \dim of range of T = 2$

Nullity of T = dim of $V_2(R)$ - rank T = 2 - 2 = 0

Therefore null space of T must be the zero sub space of $V_2(R)$.

Otherwise , $(a,b) \in \text{null space of } T$

 \Rightarrow T(a,b)=(0,0,0)

 \Rightarrow (a+b,a-b,b)=(0,0,0) \Rightarrow a+b=0, a-b=0, b=0 \Rightarrow a=0,b=0

Therefore (0,0) is the only element of $V_2(R)$ which belongs to null space of T. Therefore null space of T is the zero sub space of $V_2(R)$.

Example: If T: $V_4(R) \rightarrow V_3(R)$ is a linear transformation defined by

T(a, b, c, d) = (a-b+c+d, a+2c-d, a+b+3c-3d) for a, b, c, $d \in \mathbb{R}$, verify that $\rho(\mathbb{T}) + \vartheta(\mathbb{T}) = \dim V_4(\mathbb{R})$.

Solution: Let $S = \{(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)\}$ be the basis set of $V_4(R)$.

: The transformation T on B will be T(1, 0, 0, 0) = (1, 1, 1),

T(0, 1, 0, 0) = (-1, 0, 1),

T(0, 0, 1, 0) = (1, 2, 3), T(0, 0, 0, 1) = (1, -1, -3).

Let
$$S_1 = \{ (1, 1, 1), (-1, 0, 1), (1, 2, 3), (1, -1, -3) \}.$$

$$\therefore \mathsf{S}_1 \subseteq \mathsf{R}(\mathsf{T})$$

Now we verify whether S_1 is Linearly independent or not,. If not, we find the least

Linearly independent set by forming the matrix, $S_1 = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -3 \end{bmatrix}$

Applying $R_2 + R_1$, $R_3 - R_1$, $R_4 - R_1$

$$S_1 \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & -2 & -4 \end{bmatrix}$$

Again applying $R_4 + 2R_3$, $R_3 - R_2$

 $S_1 \ \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

∴ The non-zero rows of vectors {(1, 1, 1), (0, 1, 2)}

constitute the linearly independent set forming the basis of R(T)

 $\Rightarrow \dim R(T) = 2$

Basis for null space of T

Let $\alpha = (a, b, c, d) \in V_4(R)$

 $\alpha \in N(T) \Rightarrow T(\alpha) = \hat{o}$

 \Rightarrow T (a, b, c, d) = $\hat{\bar{o}}$ where $\hat{\bar{o}} = (0, 0, 0) \in V_3(R)$

 \Rightarrow (a-b+c+d , a+2c-d , a+b+3c-3d) = (0 , 0 , 0)

$$\Rightarrow$$
 a-b+c+d = 0; a+2c-d = 0; a+b+3c-3d = 0

We have to solve these for a , b , c ,d .

Co-efficient matrix =
$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & 2 & -1 \\ 1 & 1 & 3 & -3 \end{bmatrix}$$

Applying $R_2 - R_1$, $R_3 - R_1$.

$$= \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 1 & -2 \\ 0 & 2 & 2 & -4 \end{bmatrix}$$

Again applying $R_3\mathchar`- 2R_2$, the echelon form is

	[1	-1	1	[1
=	0	1	1	$\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$
	L0	0	0	0]

Therefore the equivalent systems of equations are

$$a-b+c+d = 0$$
, $b+c-2d = 0$

 \Rightarrow b = 2d - c , a = d - 2c

The number of free variables is 2 namely c , d and the values of a , b depend on these .

And hence nullity of T = dim N(T) = 2. Choosing c = 1, d = 0, we get a = -2, b = -1Therefore (a, b, c, d) = (-2, -1, 1, 0)Choosing c = 0, d = 1, we get a = 1, b = 2Therefore (a, b, c, d) = (1, 2, 0, 1)Therefore $\{(-2, -1, 1, 0), (1, 2, 0, 1)\}$ constitute a basis of N(T) $\therefore \dim R(T) + \dim N(T) = 2 + 2 = 4 = \dim V_4(R)$

Example: Find the null space, range, rank and nullity of the transformation T: $R^2 \rightarrow R^3$ defined by T (x , y) = (x+y , x-y , y).

Solution : Given that the transformation T: $R^2 \rightarrow R^3$ defined by

$$T(x, y) = (x+y, x-y, y)$$
.

To find the null space, range, rank and nullity of the given transformation.

Null Space and Nullity of T:

Let
$$\alpha = (x,y) \in \mathbb{R}^2$$
 then $\alpha \in \mathbb{N}(\mathbb{T}) \Rightarrow \mathbb{T}(\alpha) = \hat{\mathbb{O}}$

i.e.,
$$T(x, y) = (0, 0, 0)$$

 $\Rightarrow (x+y, x-y, y) = (0, 0, 0)$
 $\Rightarrow x+y = 0, x-y = 0, y= 0$
 $\Rightarrow x = 0, y= 0$
 $\therefore \alpha = (0, 0) = \hat{o} \in \mathbb{R}^2$

Thus the null space of T consists of only zero vector of R²

 \therefore nullity of T = dim N(T) = 0

Range and Rank of T :

Range Space of $T = \{\beta \in R^2 : T(\alpha) = \beta \text{ for } \alpha \in R^2 \}$

: The range space consists of all vectors of the type (x+y , x-y , y)

for all(x,y) $\in \mathbb{R}^2$.

By rank nullity theorem , dim $R(T) + \dim N(T) = \dim R^2$

```
\Rightarrow \dim R(T) + 0 = 2
```

```
\Rightarrow dim R(T) = rank of T = 2
```

Example : Verify Rank - nullity theorem for the linear transformation

T: $R^3 \rightarrow R^3$ defined by T (x , y , z) = (x-y , 2y+z , x+y+z) .

Solution : Given that T: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by T (x , y , z) = (x-y , 2y+z , x+y+z) is a linear transformation .

We know that dimension of $R^3 = 3 \rightarrow (1)$
Let $\alpha = (x,y,z) \in \mathbb{R}^3$
if $\alpha \in N(T)$ then $T(\alpha) = \hat{o}$
\Rightarrow T (x , y , z) = $\hat{\bar{o}}$
\Rightarrow (x-y , 2y+z , x+y+z) = (0 , 0 , 0)
Comparing the components , x-y = 0 ; 2y+z = 0 ; x+y+z = 0
Taking y = k we get x = k and z = -2k
∴ (x , y , z) = (k , k , -2k) = k(1 , 1 , -2)

Thus every element in N(T) is generated by the vector (1, 1, -2)

Thus dim N(T) = 1 \rightarrow (2) Again T (x, y, z) = (x-y, 2y+z, x+y+z) From this T(1, 0, 0) = (1, 0, 1), T(0, 1, 0) = (-1, 2, 1), and T(0, 0, 1) = (0, 1, 1) Let S = {(1, 0, 1), (-1, 2, 1), (0, 1, 1)} and let A = $\begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ R₂+R₁, gives $\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \end{bmatrix}$ R₂/2 gives $\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ R₃- R₂ gives $\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Thus the set {(1, 0, 0) (0, 1, 1)} consists the basis of R(T) i.e., the range of T Thus, dim R(T) = $2 \rightarrow (3)$

Substituting (1), (2), (3) in rank – nullity theorem, rank + nullity = dimension

$$\Rightarrow 1 + 2 = 3$$

This verifies the theorem.

UNIT - 4

CHARACTERISTIC VECTOR AND CHARACTERISTIC VALUE OF A LINEAR OPERATOR:

DEFINITION: Let T be a linear operator on a finite dimensional vector space V(F). A non-zero vector $\alpha \in V$ is called a characteristic vector of T if there exists a scalar c such that $T(\alpha) = c\alpha$. The scalar c is called characteristic value of T corresponding to a characteristic vector α .

Each non-zero vector is called a characteristic vector of T corresponding to a characteristic value c .

CHARACTERISTIC VECTORS AND CHARACTERISTIC VALUES OF A MATRIX:

DEFINITION: Any non-zero vector X is said to be a characteristic vector of a square matrix A if there exists a scalar λ such that $AX = \lambda X$.

Here A can be a $n \times n$ matrix and X can be a $n \times 1$ matrix.

Then λ is said to be a characteristic value of the matrix A corresponding to a characteristic vector X. Also X is said to be characteristic vector corresponding to the characteristic value λ of the matrix A.

If X is a Characteristic vector of a matrix A, X cannot corresponded to more than one characteristic value of A .

Let the characteristic vector X of A correspond to two distinct characteristic values λ_1, λ_2 then $AX = \lambda_1 X$ and $AX = \lambda_2 X$.

Therefore $\lambda_1 X = \lambda_2 X \Rightarrow (\lambda_1 - \lambda_2) X = \bar{o} \Rightarrow \lambda_1 - \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2$

Similarly, if α is a characteristic value of T then α cannot corresponded to more than one characteristic value of T.

CHARACTERISTIC POLYNOMIAL, CHARACTERISTIC EQUATION OF A SQUARE MATRIX:

DEFINITION: Let $A = [a_{ij}]_{n \times n}$ and λ any indeterminate scalar . The matrix A- λI is called the characteristic matrix of A , where I is the unit matrix of order n.

Also| A- λI | =

$a_{11} - \lambda$	<i>a</i> ₁₂		a_{1n}
a_{21}	$a_{22} - \lambda$		a_{2n}
		•••	
a_{n1}	a_{n2}		$a_{nn} - \lambda$

is a polynomial in λ of degree n , is called the characteristic polynomial of A .

It is denoted by $f(\lambda)$. The equation $|A - \lambda I| = 0$ is called the characteristic equation of A **EXAMPLE:** The characteristic polynomial

of the matrix
$$A = \begin{vmatrix} 1 & 0 & 5 \\ 0 & 2 & 6 \\ 3 & 1 & 4 \end{vmatrix}$$
 is det (A- λI)

i.e.,
$$\begin{vmatrix} 1 - \lambda & 0 & 5 \\ 0 & 2 - \lambda & 6 \\ 3 & 1 & 4 - \lambda \end{vmatrix} = \lambda^3 + 7 \lambda^2 + 7 \lambda - 28$$

Note: A scalar λ is a characteristic root of a square matrix A if and only if $|A - \lambda I| = 0$.

Theorem: The characteristic vectors corresponding to distinct characteristic roots of a matrix are linearly independent.

Proof: Let A be a square matrix.

Let X_1 , X_2 ,..., X_m be characteristic vectors of A corresponding to respective distinct characteristic roots λ_1 , λ_2 ,..., λ_m .

Then $AX_i = \lambda_i X_i$ for $i = 1, 2, ..., m \rightarrow (1)$

Now we prove that the set of vectors $\{X_1, X_2, ..., X_m\}$ is linearly independent. Since $x_1 \neq \bar{o}$, the set $\{x_1\}$ is L.I

If { X_1 , X_2 ,..., X_m } is linearly dependent, then we can choose r (r<m) such that { X_1 , X_2 ,..., X_r } is linearly independent and { X_1 , X_2 ,..., X_r , X_{r+1} } is linearly dependent

Hence we can choose scalars k_1 , k_2 ,..., k_r , k_{r+1} not all zeros such that $k_1 X_1 + k_2 X_2 + \dots + k_r X_r + k_{r+1} X_{r+1} = \bar{o} \rightarrow (2)$

$$\Rightarrow A(k_1 X_1 + k_2 X_2 + + k_r X_r + k_{r+1} X_{r+1}) = A(\bar{o})$$

$$\Rightarrow k_1 (AX_1) + k_2 (AX_2) + + k_r (AX_r) + k_{r+1} (A X_{r+1}) = \bar{o}$$

$$\Rightarrow k_1 (\lambda_1 X_1) + k_2 (\lambda_2 X_2) + + k_r (\lambda_r X_r) + k_{r+1} (\lambda_{r+1} X_{r+1}) = \bar{o} \rightarrow (3)$$

$$(3) - \lambda_{r+1} (2) \Rightarrow k_1 (\lambda_1 - \lambda_{r+1}) X_1 + + k_r (\lambda_r - \lambda_{r+1}) X_r = \bar{o} \rightarrow (4)$$

Since { X_1 , X_2 ,..., X_r } is linearly independent and λ_1 , λ_2 ,..., λ_{r+1} are distinct, we have $k_1 = 0$, ..., $k_r = 0$.

Putting k_1 =0,, k_r =0 in (2), we obtain k_{r+1} X_{r+1} = \bar{o} But X_{r+1} \neq \bar{o} . So , k_{r+1} = 0

Thus (2) \Rightarrow k₁ =0, ..., k_r=0, k_{r+1} = 0

But this contradicts our assumption that the scalars k_1 , k_2 ,...., k_r , k_{r+1} are all not zeros .

Hence our assumption that $\{X_1 \text{ , } X_2 \text{ ,...,} X_m\}$ is linearly dependent is wrong .

 $\div \{X_1$, X_2 ,..., $X_m\}$, which corresponding to distinct characteristic roots of a matrix A are linearly independent .

Note: Distinct characteristic vectors of T corresponding to distinct characteristic values of T are linearly independent.

CHARACTERISTIC POLYNOMIAL OF A LINEAR OPERATOR:

DEFINITION: Let T be a linear operator on an n-dimensional vector space V with ordered basis β . We define the characteristic polynomial $f(\lambda)$ of T to be the characteristic polynomial of $A = [T]_{\beta}$ i.e., $f(\lambda) = \det(T-\lambda I) = \det(A-\lambda I)$

The equation det(T- λ I) =0 is called the characteristic equation of T

Example:Prove that the square matrices A and A^I have the same characteristic values.

Solution: If λ is any scalar, then $(A - \lambda I)^{I} = A^{I} - \lambda I^{I} = A^{I} - \lambda I$

$$\Rightarrow | (A - \lambda I)^{I} | = | A^{I} - \lambda I |$$

 $\Rightarrow | A - \lambda I | = | A^{I} - \lambda I |$ $\Rightarrow | A - \lambda I | = 0 \Leftrightarrow | A^{I} - \lambda I | = 0$

i.e., λ is a characteristic value of $A \Leftrightarrow \lambda$ is a characteristic value of A^{I} .

Example: Show that 0 is a characteristic root of a matrix if and only if the matrix is singular.

Solution: 0 is a characteristic value of A

 $\Leftrightarrow \lambda = 0 \text{ satisfies the equation } | A - \lambda I | = 0$ $\Leftrightarrow | A - 0I | = 0$ $\Leftrightarrow | A | = 0$ $\Leftrightarrow A \text{ is singular.}$

NOTE:

 λ is a characteristic root of a non -singular matrix. $\lambda \neq 0$.

At least one characteristic root of every singular matrix is zero

EXAMPLE: T is a linear operator on a finite dimensional vector space V(F). Show that T is not invertible iff 0 is a characteristic value of T.

Solution: Let T be not invertible ie., T is singular Therefore, there exists a non- zero vector α in V such that

 $T\alpha = 0 = 0\alpha.$

Therefore 0 is a characteristic value of TConverselysuppose 0 is a characteristic value of T.Conversely

Then there exists a non- zero vector α in V such that $T\alpha = 0\alpha$.

 \Rightarrow T $\alpha = 0 \Rightarrow$ T is singular \Rightarrow T is not invertible.

EXAMPLE: If λ_1 , λ_2 ,..., λ_n are the characteristic values of a n-rowed square matrix A and k is a scalar, show that $k\lambda_1$, $k\lambda_2$,..., $k\lambda_n$ are the characteristic values of kA

Solution: Let $k \neq 0$.

Now $|kA - \lambda kI| = |k(A - \lambda I)| = k|A - \lambda I|$

 $\Rightarrow |kA- (\lambda k)I| = 0 \Leftrightarrow |A-\lambda I| = 0$

i.e., $k\lambda$ is a characteristic values of $kA \Leftrightarrow \lambda$ is a characteristic value of A.

Thus $k\lambda_1$, $k\lambda_2$,..., $k\lambda_n$ are the characteristic values of kA if λ_1 , λ_2 ,..., λ_n are the characteristic values of A.

Example: Find the eigen roots and the corresponding eigen vectors of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$

Solution: The characteristic equation of A is $|A - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} 1-\lambda & 4\\ 3 & 2-\lambda \end{vmatrix} = 0$$

 $\Rightarrow (\lambda + 2)(\lambda - 5) = 0$

Hence the eigen roots of A are -2, 5.

Case 1: Let $\lambda = -2$.

Eigen vectors X corresponding to the eigen root -2 are given by (A-(-2)I)X = 0

i.e.,
$$\begin{bmatrix} 1+2 & 4 \\ 3 & 2+2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

i.e.,
$$\begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$R_2 \rightarrow R_2 - R_1 \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow 3x_1 + 4x_2 = 0$$

Let $x_2 = k$, then $x_1 = -4k/3$

 \therefore Eigen vectors corresponding to the eigen root -2 are given by

k
$$\begin{bmatrix} -4/3 \\ 1 \end{bmatrix}$$
 where k is a non-zero parameter.
Clearly, the subspace generated by $\begin{bmatrix} -4/3 \\ 1 \end{bmatrix}$
is a one dimensional characteristic space of R^2

Case 2: Let $\lambda = 5$.

Eigen vectors X corresponding to the eigen root 5 are given by

$$(A-5I)X = 0$$

i.e.,
$$\begin{bmatrix} -4 & 4 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$R_2 \rightarrow R_2 + \begin{pmatrix} 3 \\ 4 \end{pmatrix} R_1 \begin{bmatrix} -4 & 4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow -4 x_1 + 4 x_2 = 0$$

Let $x_2 = k$ then $x_1 = k$

∴ Eigen vectors corresponding to the eigen root 5 are given by $k \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ where k is a non-zero parameter. Clearly the subspace generated by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is a one dimensional characteristic space of R^2

Example: Find the characteristic roots and the corresponding characteristic vectors

of the matrix
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

Solution: The characteristic equation of A is $|A - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} 8-\lambda & -6 & 2\\ -6 & 7-\lambda & -4\\ 2 & -4 & 3-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (8 - \lambda)[21 - 10\lambda + \lambda^2 - 16] + 6[-18 + 6\lambda + 8] + 2[24 - 14 + 2\lambda] = 0$$

$$\Rightarrow -\lambda^{3} + 10\lambda^{2} - 5\lambda + 8\lambda^{2} - 80\lambda + 40 - 60 + 36\lambda + 20 + 4\lambda = 0$$

$$\Rightarrow -\lambda^{3} + 18\lambda^{2} - 45\lambda = 0$$

$$\Rightarrow \lambda(\lambda-3)(\lambda-15) = 0$$

$$\Rightarrow \lambda = 0, 3, 15$$

$$\therefore \text{ The characteristic roots of A are 0, 3, 15}$$

" The characteristic roots of Mare

Case 1: Let $\lambda = 0$.

Characteristic vectors corresponding to the characteristic root 0 are given by

 $(A-0I)X = 0 \Rightarrow$

$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$R_3 \leftrightarrow R_1 \begin{bmatrix} 2 & -4 & 3 \\ -6 & 7 & -4 \\ 8 & -6 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$R_3 \rightarrow 3 R_3 + 4 R_2$$
, $R_2 \rightarrow R_2 + 3 R_1 \begin{bmatrix} 2 & -4 & 3 \\ 0 & -5 & 5 \\ 0 & 10 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$

 $R_3 \rightarrow R_3 + 2 R_2$

$$\begin{bmatrix} 2 & -4 & 3 \\ 0 & -5 & 5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$\Rightarrow 2x_1 - 4x_2 + 3x_3 = 0$$
, $-5x_2 + 5x_3 = 0$

Let
$$x_3 = k$$
 therefore $x_2 = k$ and $2 x_1 = k$ i.e., $x_1 = k/2$

 \div Characteristic vectors corresponding to the characteristic root 0 are given by

$$k \begin{bmatrix} 1/2 \\ 1 \\ 1 \end{bmatrix}$$
 where k is a non zero parameter

Similarly , by considering characteristic equations (A-3I)X = 0, (A-15I)X = 0

We get characteristic vectors $k_1 \begin{bmatrix} -1 \\ -1/2 \\ 1 \end{bmatrix}$, $k_2 \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$ for non-zero

parameters k_1 , k_2 respectively corresponding to the characteristic roots 3, 15.

MATRIC POLYNOMIAL

DEFINITION: An expression of the form $F(x) = A_0 + A_1x + A_2 x^2 + ... + A_m x^m$, $A_m \neq 0$, where $A_0, A_1, A_2, ..., A_m$ are matrices each of order $n \times n$ over a field F, is called a matric polynomial of degree m.

The matrices themselves are matric polynomials of zero degree.

EQUALITY OF MATRIC POLYNOMIALS

DEFINITION : Two matric polynomials are equal if and only if the coefficients of like powers of x are the same.

ADDITION AND MULTIPICATION OF POLYNOMIALS

Let
$$G(x) = A_0 + A_1x + A_2x^2 + ... + A_m x^m$$
 and $H(x)$
 $= B_0 + B_1x + B_2x^2 + ... + B_Kx^k$ We
define : if m>k then $G(x) + H(x) = (A_0 + B_0) + (A_1 + B_1)x + ... + (A_k + B_k) x^k$
 $+ A_{k+1} x^{k+1} + + A_m x^m$ similarly we
have $G(x) + H(x)$ where m=k and mG(x)H(x) = A_0B_0 + (A_0B_1 + A_1B_0)x
 $+ (A_0B_2 + A_1B_1 + A_2B_0)x^2 + + A_kB_m x^{k+m}$

CAYLEY – HAMILTON THEOREM (MATRICES)

THEOREM: Every square matrix satisfies its characteristic equation . **Proof:** Let $A = [a_{ij}]_{n \times n}$

The characteristic equation of A is det $(A - \lambda I) = f(\lambda)$

$$= \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

$$= (-1)^{n} [\lambda_{n} + a_{1} \lambda_{n-1} + a_{2} \lambda_{n-2} + ... + a_{n}] \text{ where } a_{i} \text{'s } \epsilon \text{ F}$$

Let adj (A- λ I) = B₀ $\lambda^{n-1} + B_{1}\lambda^{n-2} + ... + B_{n-2}\lambda^{1} + B_{n-1} \text{ where } B_{0}, B_{1}, ..., B_{n-1}$
are n-rowed square matrices

Now
$$(A-\lambda I)$$
 adj $(A-\lambda I) = \det (A-\lambda I) I$
 $\Rightarrow (A-\lambda I)(B_0 \lambda^{n-1}+B_1 \lambda^{n-2}+....+B_{n-2} \lambda+B_{n-1}) = (-1)^n [\lambda^n+a_1 \lambda^{n-1}+a_2 \lambda^{n-2}]$

Comparing coefficients of like powers of $\boldsymbol{\lambda}$, we obtain

$$-B_{0} = (-1)^{n} I,$$

$$A B_{0} - B_{1} = (-1)^{n} a_{1} I,$$

$$A B_{1} - B_{2} = (-1)^{n} a_{2} I,$$
.....

 $B_{n-1} = (-1)^n a_n I$.

Premultiplying the above equations successively by A^n , A^{n-1} , ...,I and adding,

we obtain

$$0 = (-1)^{n} A^{n} + (-1)^{n} a_{1} A^{n-1} + (-1)^{n} a_{2} A^{n-2} + \dots + (-1)^{n} a_{n} I$$

$$\Rightarrow (-1)^{n} [A^{n} + a_{1} A^{n-1} + a_{2} A^{n-2} + \dots + a_{n} I] = 0$$

$$\Rightarrow A^{n} + a_{1} A^{n-1} + a_{2} A^{n-2} + \dots + a_{n} I = 0$$

$$\Rightarrow A \text{ satisfies its characteristic equation.}$$

A satisfies its characteristic equation

$$\Rightarrow (-1)^{n} [A^{n} + a_{1} A^{n-1} + a_{2} A^{n-2} + ... + a_{n} I] = 0$$

$$\Rightarrow A^{n} + a_{1} A^{n-1} + a_{2} A^{n-2} + + a_{n} I = 0$$

$$\Rightarrow A^{-1} [A^{n} + a_{1} A^{n-1} + a_{2} A^{n-2} + + a_{n} I] = 0 \Rightarrow a_{n} A^{-1} = -A^{n-1} - a_{1} A^{n-2} - a_{n-1} I$$

$$\Rightarrow A^{-1} = (-1/a_{n}) [A^{n-1} + a_{1} A^{n-2} + ... + a_{n-1} I]$$

CAYLEY - HAMILTON THEOREM (LINEAR OPERATOR)

А

THEOREM: T is a linear operator on a vector space V(F) of dimension n.

If f(x) is the characteristic polynomial of T, then f(T) = 0 (zero operator). i.e., T satisfies its characteristic equation .

Example: Verify cayley –Hamilton Theorem when T is a linear operator defined by T(a,b)=(a+2b,-2a+b).

Solution: Let $\beta = \{e_1, e_2\}$ $T(e_1) = T(1,0) = (1+2(0), -2(1)+0) = (1,-2)$ and $T(e_2) = T(0,1) = (2,1)$

Thus A=[T]_{$$\beta$$} = $\begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$

Let A be an $n \times n$ matrix and let f(t) be the characteristic polynomial of A. Then f(A)=0, the $n \times n$ zero matrix.

The characteristic polynomial of T is $f(T) = \det (A - \lambda I)$

 $) = \begin{vmatrix} 1 - \lambda & 2 \\ -2 & 1 - \lambda \end{vmatrix} = \lambda^2 - 2\lambda + 5$

Now
$$f(T) = T^2 - 2T + 5$$

Given $T(a,b) = (a+2b,-2a+b)$
Therefore $T^2(a,b) = T(a+2b,-2a+b)$
 $= (a+2b+2(-2a+b),-2(a+2b)-2a+b)$
 $= (a+2b-4a+2b,-2a-4b-2a+b)$
 $= (-3a+4b,-4a-3b)$
 $2T(a,b) = (2a+4b,-4a+2b),$
 $= 5(a,b) = (5a,5b)$
 $T^2 - 2T + 5I = (-3a+4b-2a-4b+5a,-4a-3b+4a-2b+5b) = (0,0) = T_0$

Thus T satisfies its characteristic equation.

$$f(A) = A^{2} - 2A + 5I = \begin{bmatrix} -3 & 4 \\ -4 & -3 \end{bmatrix} + \begin{bmatrix} -2 & -4 \\ 4 & -2 \end{bmatrix} + \begin{bmatrix} -3 & 4 \\ -4 & -3 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

Example: Using Cayley-Hamilton theorem , find the inverse of the

matrix A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$$

Solution:

Given A = $\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$

The characteristic equation of A is $|A - \lambda I| = 0$

.e.,
$$\begin{vmatrix} 1 - \lambda & 2 & 3 \\ 2 & -1 - \lambda & 4 \\ 3 & 1 & -1 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (1-\lambda)[(1+\lambda^2)-4]-2[(1+\lambda)-12]+3[2+3(1+\lambda)] = 0$$

$$\Rightarrow \quad \lambda^3 + \lambda^2 - 18\lambda - 40 = 0$$

Since every square matrix satisfies its characteristic equation,

we have
$$A^3 + A^2 - 18A - 40I = 0$$

Multiplying with A^{-1} on both sides $A^2 + A \cdot 18I = 40 A^{-1}$

$$\Rightarrow$$
 $A^{-1} = 1/40 [A^2 + A - 18I]$

we have
$$A^2 = \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 2 & 4 & 14 \end{bmatrix}$$

therefore $A^{-1} = \frac{1}{40} \left\{ \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 2 & 4 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix} - \begin{bmatrix} 18 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 18 \end{bmatrix} \right\}$
 $A^{-1} = \frac{1}{40} \begin{bmatrix} -3 & 5 & 11 \\ 14 & -10 & 2 \\ 5 & 5 & -5 \end{bmatrix}$

UNIT-5

INNER PRODUCT SPACES

DEFINITION: Let V(F) be a vector space where F is a field of real numbers or the

field of complex numbers. The vector space V(F)is said to be an inner product space if there is defined for any two vectors $\alpha,\beta\in V$ an element $\langle \alpha,\beta\rangle\in F$ such that (1). $\langle \alpha,\beta\rangle = \langle \beta,\alpha\rangle$

(2). $\langle \alpha, \alpha \rangle > 0$ (zero element in F) for $\alpha \neq \overline{0}$

(3). $\langle a\alpha + b\beta, \gamma \rangle = a \langle \alpha, \gamma \rangle + b \langle \beta, \gamma \rangle$ for any $\alpha, \beta, \gamma \in V$ and $a, b \in F$.

A function f:VxV \rightarrow F satisfying the above properties is called an inner product.

If f is the inner product function then $f(\alpha,\beta) = (\alpha,\beta)$ or (α,β) for all $\alpha,\beta\in V$

From the definition it is clear that a vector space V over F endowed with a specific inner product is an inner product space.

If F = R the field of real numbers then V(F) is called **Euclidean space or Real inner product space.**

If F = C the field of complex numbers then V(F) is called **Unitary space or Complex** inner product space.

An inner product space having only zero vector is called zero space or nullspace.

If V(F) is an inner product space then V(F) is a vector space. A sub space W(F) of the vector space V(F) is also inner product space with the same inner product as in V(F).

PROBLEMS:

If $\alpha = (a_1, a_2, a_3), \beta = (b_1, b_2, b_3)$ are the elements of a vector space R³, then $\langle \alpha, \beta \rangle = a_1 b_1 + a_2 b_2 + a_3 b_3$ defines an inner product on R³.

Solution : Let $\alpha = (a_1, a_2, a_3), \beta = (b_1, b_2, b_3)$ and $\gamma = (c_1, c_2, c_3) \in \mathbb{R}^3$.

Then $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3 \in \mathbb{R}$.

(1).
$$\langle \alpha, \beta \rangle = a_1b_1 + a_2b_2 + a_3b_3 = b_1a_1 + b_2a_2 + b_3a_3 = \langle \beta, \alpha \rangle = \langle \beta, \alpha \rangle$$

(2).
$$\langle \alpha, \alpha \rangle = a_1 a_1 + a_2 a_2 + a_3 a_3 = a_1^2 + a_2^2 + a_3^2$$

If $\alpha = (a_1, a_2, a_3) \neq (0, 0, 0)$ then at least one of a_1, a_2, a_3 is not zero.

So, $\langle \alpha, \alpha \rangle = a_1^2 + a_2^2 + a_3^2 > 0$.

(3). For a,b \in F and α , β , $\gamma \in R^3$ we have

$$a\alpha+b\beta = a(a_1,a_2,a_3)+b(b_1,b_2,b_3) = (aa_1+bb_1, aa_2+bb_2, aa_3+bb_3)$$

 $(a\alpha+b\beta,\gamma) = (aa_1+bb_1)c_1 + (aa_2+bb_2)c_2 + (aa_3+bb_3)c_3$

$$= (aa_1c_1 + aa_2c_2 + aa_3c_3) + (bb_1c_1 + bb_2c_2 + bb_3c_3)$$

 $= a(a_1c_1 + a_2c_2 + a_3c_3) + b(b_1c_1 + b_2c_2 + b_3c_3)$

= a $\langle \alpha, \gamma \rangle$ b $\langle \beta, \gamma \rangle$

Therefore the product $(\alpha,\beta) = a_1b_1 + a_2b_2 + a_3b_3$ is an inner product on

the vector space R³.

Hence R³ is an inner product space with the above inner product

and $R^{3}(R)$ is real inner product space.

NOTE : The inner product of α and β namely , $\langle \alpha, \beta \rangle = a_1b_1 + a_2b_2 + a_3b_3$ is Called the dot product of α and β and denoted by $\alpha.\beta$. This is Called the standard inner product in R³.

If $\alpha = (a_1, a_2, ..., a_n), \beta = (b_1, b_2, ..., b_n)$ are the elements of a vector space $V_n(C)$ where C is the field of complex numbers, then $\langle \alpha, \beta \rangle = a_1 \overline{b} + a_2 \overline{b} + a_2 \overline{b} + a_2 \overline{b} = a_1 \overline{b} + a_2 \overline{b} + a_2 \overline{b} = a_1 \overline{b} + a_2 \overline{b} + a_2 \overline{b} + a_2 \overline{b} = a_1 \overline{b} + a_2 \overline{b} + a_2 \overline{b} + a_2 \overline{b} + a_2 \overline{b} = a_1 \overline{b} + a_2 \overline{$

Solution: Let a, b \in C and α , β , $\gamma \in V_n$ so that $\alpha = (a_1, a_2, ..., a_n), \beta = (b_1, b_2, ..., b_n), \beta = (b_1, b_2, ..., b_n)$ $\gamma = (c_1, c_2, ..., c_n)$ where a's, b's and c's are complex numbers. n n $= \overline{ba_{1}} \overline{a_{1}} \dots + \overline{ba_{2}} a_{1} \overline{b} + a_{2} \overline{b} + \dots + a_{n} \overline{b} = \langle \alpha, \beta \rangle.$ п (2) $\langle \alpha, \alpha \rangle = a_1 \overline{\alpha} + a_2 \overline{\alpha} + ... + a_n \overline{\alpha} = |a_1|^2 + |a_2|^2 + ... + |a_n|^2$ If $\alpha \neq 0$ then at least one of $a_1, a_2, ..., a_n$ is non zero complex number. So $\langle \alpha, \alpha \rangle = |a_1|^2 + |a_2|^2 + ... + |a_n|^2 > 0$. (3) $a\alpha + b\beta = a(a_1, a_2, ..., a_n) + b(b_1, b_2, ..., b_n)$ = $(aa_1+bb_1, aa_2+bb_2, \dots, aa_n+bb_n)$ $\langle a\alpha + b\beta, \gamma \rangle = (aa_1 + bb_1)\overline{q} + (aa_2 + bb_2)\overline{q}, \dots, (aa_n + bb_n)\overline{q}$ = $(aa_1\bar{q} + aa_2\bar{q} + ... + aa_n\bar{q} + (bb_1\bar{q} + bb_2\bar{q} + ... + bb_n\bar{q})$ $= a(a_1 a + a_2 b + ... + a_n a + b(b_1 a + b_2 b + ... + b_n a + b_$ $= a(\alpha,\gamma)+b(\beta,\gamma)$ Therefore the product $(\alpha,\beta) = a_1 \overline{b} + a_2 \overline{b} + ... + a_n \overline{b}$ is an inner product on V_n(C).

Therefore $V_n(C)$ or $C^n(C)$ is the unitary space.

Let V(C) be the vector space of all continuous complex valued functions on the closed interval [0,1]. For f,g \in V if $\langle f,g \rangle = \int_0^1 f(t)\overline{g}$, then V is an inner product space.

Solution :

NORM OR LENGTH OF A VECTOR

DEFINITION: Let V be an inner product space over the field F. The narm (length) of $\alpha \in V$ denoted by $\| \alpha \|$ is defined as the positive square root of $\langle \alpha, \alpha \rangle$.

Norm or length of $\alpha \in V = || \alpha || = \sqrt{(\alpha, \alpha)} \Rightarrow || \alpha ||^2 = \langle \alpha, \alpha \rangle.$

NOTE : 1. For $\alpha \in V$, $\langle \alpha, \alpha \rangle$ is non-negative real number and hence the norm of α is always non-negative real number.

2. $\alpha = \overline{0} \Leftrightarrow || \alpha || = 0$

EXAMPLE : 1. In the inner product space $V_2(R) = R^2(R)$; If $\alpha = (a,b) \in V_2$

then $\| \alpha \| = \|(a,b)\| = \sqrt{a^2 + b^2} = \sqrt{\langle \alpha, \alpha \rangle}$.

2. In the inner product space $V_3(R) = R^3(R)$; If $\alpha = (a,b,c) \in V_3$

then $\|\alpha\| = \|(a,b,c)\| = \sqrt{a^2 + b^2 + c^2} = \sqrt{\langle \alpha, \alpha \rangle}$.

3. In the inner product space $V_n(R) = R^n(R)$; If $\alpha = (a_1, a_2, ..., a_n) \in$

 $V_n then \ \| \ \alpha \ \| = \| (\ a_1, a_2, \ldots, a_n) \| = \sqrt{|a_1|^2 + |a_2|^2 + \ldots + |a_n|^2} = \sqrt{\langle \alpha, \alpha \rangle \ .}$

THEOREM : In an inner product space V(F) (1) $\| \alpha \| > 0$ if $\alpha \neq \overline{0}$ and

(2) $\|\mathbf{a} \ \alpha \| = |\mathbf{a}| \| \ \alpha \|$ where 0, $\mathbf{a} \in \mathbf{F}$ and 0, $\overline{\alpha} \in \mathbf{V}$.

Solution : (1) If $\alpha \neq \overline{0}$ then $\langle \alpha, \alpha \rangle > 0$.

 $\| \alpha \| = \sqrt{\langle \alpha, \alpha \rangle} > 0$. for any $\alpha \in V$, $\| \alpha \| \ge 0$.

(2) By the definition of norm , $\| a \alpha \|^2 = \langle a\alpha, a\alpha \rangle$

= $a \langle \alpha, a \alpha \rangle$ = $a \overline{\alpha} \langle \alpha, \alpha \rangle$

Therefore $\|a \alpha\| = |a| \|\alpha\|$ where 0, $a \in F$ and $\overline{0}, \alpha \in V$.

NOTE: If
$$\alpha \in V$$
 and $\alpha \neq 0$ by the above theorem $\|\alpha\| > 0$. Since $\|\alpha\| (> 0) \in F$ and
F is a field, there exists $\begin{array}{c}1 \\ \hline \|\alpha\| \end{array} \in F$ such that $\|\alpha\| \\ \hline \|\alpha\| \end{array} = 1$. Now for $\begin{array}{c}1 \\ \hline \|\alpha\| \end{array} \in F$ and
 $\hline \|\alpha\| \end{array}$
 $\alpha \in V$ we have $\begin{array}{c}1 \\ \hline \|\alpha\| \end{array} \alpha \in V$, such that $\left\langle \begin{array}{c}1 \\ \hline \|\alpha\| \end{array} \alpha, \begin{array}{c}1 \\ \hline \|\alpha\| \end{array} \alpha \right\rangle = \begin{array}{c}1 \\ \hline \|\alpha\| \end{array} \left\langle \begin{array}{c}1 \\ \hline \|\alpha\| \end{array} \right\rangle$
 $= \left(\begin{array}{c}-1 \\ \hline \|\alpha\| \end{array}\right) \left(\begin{array}{c}1 \\ \hline \|\alpha\| \end{array}\right) \|\alpha\|^2 = 1$

Hence $\alpha \in V$ and $\alpha \neq \overline{0}$, $1 \quad \alpha \in V$ is a vector of length 1. $\|\alpha\|$

DEFINITION : Let V(F) be an inner product space. $\alpha \in V$ is called a unit vector if $\|\alpha\| = 1$. If $\alpha \in V$ then 1 $\alpha \in V$ is unit vector.

|| a ||

Example : (1) In the inner product space R^2 , i = (1,0), j = (0,1) are unit vectors.

(2) In the inner product space R³ with standard inner product

i = (1,0,0), j = (0,1,0) and k = (0,0,1) are vectors of length 1.

THEOREM : Cauchy-Schwarz's inequality

In an inner product space V(F) , $|\langle \alpha, \beta \rangle| \leq || \alpha || || \beta ||$ for all α , $\beta \in V$.

Proof : Case (1). Let $\alpha = \overline{0}$. Then $\langle \alpha, \beta \rangle = \langle 0, \overline{\beta} \rangle = 0$ and $\| \alpha \|^2 = \langle \alpha, \alpha \rangle = \langle 0, \overline{0} \rangle = 0$.

Therefore $|\langle \alpha, \beta \rangle| = 0$ and $||\alpha|| ||\beta|| = 0$.

Therefore
$$|\langle \alpha, \beta \rangle| = ||\alpha|| ||\beta||$$
.
Case (2). Let $\alpha \neq \overline{0}$. Then $||\alpha|| > 0$ so that $\frac{1 > 0}{||\alpha||}$.

Take $\gamma \in V$ so that $\gamma = \beta - \frac{1}{\|\alpha\|^2} \alpha$.

Now
$$\langle \gamma, \gamma \rangle = \langle \beta - \frac{1}{\|\alpha\|^2} \alpha, \beta - \frac{1}{\|\alpha\|^2} \alpha \rangle$$

$$= \langle \beta, \beta \rangle - \frac{\langle \beta, \alpha \rangle}{\| \alpha \|^2} \langle \beta, \alpha \rangle - \frac{\langle \beta, \alpha \rangle}{\| \alpha \|^2} \langle \alpha, \beta \rangle + \frac{\langle \beta, \alpha \rangle}{\| \alpha \|^2} \langle \alpha, \alpha \rangle$$

$$= \|\|\beta\|^{2} - \frac{\langle \beta, \alpha \rangle \langle \beta, \alpha \rangle}{\|\alpha\|^{2}} - \frac{\langle \beta, \alpha \rangle \langle \alpha, \beta \rangle}{\|\alpha\|^{2}} + \frac{\langle \beta, \alpha \rangle \langle \beta, \alpha \rangle}{\|\alpha\|^{2}}$$

$$= \|\beta\|^{2} - \frac{\langle\beta,\alpha\rangle \langle\alpha,\beta\rangle}{\|\alpha\|^{2}} = \|\beta\|^{2} - \frac{\langle\alpha,\beta\rangle \langle\alpha,\beta\rangle}{\|\alpha\|^{2}}$$

But by the definition of the norm ; $\langle \gamma, \gamma \rangle \ge 0$

Therefore
$$\|\beta\|^2 - \frac{\langle \alpha, \beta \rangle^- \langle \alpha, \beta \rangle}{\|\alpha\|^2} \ge 0$$

$$\Rightarrow \quad \|\beta\|^2 \ge \frac{|\langle \alpha, \beta \rangle|^2}{\|\alpha\|^2}$$

$$\Rightarrow \quad \|\beta\|^2 \|\alpha\|^2 \ge |\langle \alpha, \beta \rangle|^2$$

$$\Rightarrow \quad (\|\beta\|\|\alpha\|)^2 \ge |\langle \alpha, \beta \rangle|^2$$

Therefore $\|\beta\| \|\alpha\| \ge |\langle \alpha, \beta \rangle|$ as $\|\beta\| \|\alpha\|$ and $|\langle \alpha, \beta \rangle|$ are non-negative.

Hence $|\langle \alpha, \beta \rangle| \leq ||\alpha|| ||\beta||$.

NOTE: For
$$\gamma \in V$$
, $\langle \gamma, \gamma \rangle = 0 \Rightarrow \gamma = 0 \Rightarrow \beta - \frac{\langle \beta, \alpha \rangle}{\|\alpha\|^2} \alpha = 0 \Rightarrow \beta = \frac{\langle \beta, \alpha \rangle}{\|\alpha\|^2} \alpha$
 $\Rightarrow \beta$ vector = scalar multiple of the vector α
 $\Rightarrow \alpha$, β are linearly dependent.

Hence α , β are linearly dependent vectors of $V \Leftrightarrow |\langle \alpha, \beta \rangle| = ||\alpha|| ||\beta||$.

THEOREM : (Triangle inequality)

In an inner product space V(F) , $\| \alpha + \beta \| \le \| \alpha \| + \| \beta \|$ for all α , $\beta \in V$.

Proof : By the definition of norm , $\|\alpha+\beta\|^2 = \langle \alpha+\beta, \alpha+\beta \rangle$

$$= \langle \alpha, \alpha \rangle + \langle \alpha, \beta \rangle + \langle \beta, \alpha \rangle + \langle \beta, \beta \rangle$$

$$= \| \alpha \|^{2} + \langle \alpha, \beta \rangle + \| \beta \|^{2}$$

$$= \| \alpha \|^{2} + 2 \operatorname{Re} \langle \alpha, \beta \rangle + \| \beta \|^{2}$$

$$\leq \| \alpha \|^{2} + 2 | \langle \alpha, \beta \rangle | + \| \beta \|^{2}$$

$$\leq \| \alpha \|^{2} + 2 \| \alpha \| \| \beta \| + \| \beta \|^{2}$$

$$\leq (\| \alpha \| + \| \beta \|)^{2}$$

Therefore $\|\alpha + \beta\|^2 \le (\|\alpha\| + \|\beta\|)$

As both $\|\alpha+\beta\|$ and $\|\alpha\| + \|\beta\|$ are non-negative we have $\|\alpha+\beta\| \le \|\alpha\| + \|\beta\|$.

THEOREM : (Parallelogram law)

If α , β are two vectors in an inner product space V(F) then

 $|| \alpha - \beta ||^2 + || \alpha + \beta ||^2 = 2 (|| \alpha ||^2 + || \beta ||^2)$

Proof : $\|\alpha - \beta\|^2 = \langle \alpha - \beta, \alpha - \beta \rangle$

 $= \langle \alpha, \alpha \rangle - \langle \alpha, \beta \rangle - \langle \beta, \alpha \rangle + \langle \beta, \beta \rangle$ $= \| \alpha \|^{2} - \langle \alpha, \beta \rangle - \langle \beta, \alpha \rangle + \| \beta \|^{2}$

 $\|\alpha+\beta\|^2 = \langle \alpha+\beta \rangle, \alpha+\beta \rangle = \langle \alpha,\alpha \rangle + \langle \alpha,\beta \rangle + \langle \beta,\alpha \rangle + \langle \beta,\beta \rangle = \|\alpha\|^2 + \langle \alpha,\beta \rangle + \langle \beta,\alpha \rangle + \|\beta\|^2$

Therefore $\|\alpha - \beta\|^2 + \|\alpha + \beta\|^2 = 2 \|\alpha\|^2 + 2 \|\beta\|^2 = 2 (\|\alpha\|^2 + \|\beta\|^2)$

NORMED VECTOR SPACE AND DISTANCE

DEFINITION : Let V(F) be an inner product space in which norm of a vector $\alpha \in V$ is defined as $\| \alpha \| = \sqrt{\langle \alpha, \alpha \rangle}$. The inner product space with this definition of norm is called a normed vector space if the following conditions are true :

(i) $\| \alpha \| \ge 0$ and $\| \alpha \| = 0 \Leftrightarrow \alpha = 0$

(ii) $|| a \alpha || = |a| || \alpha || and$

(iii) $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$ for all $\alpha, \beta \in V$, $a \in F$

As the above three conditions are true in every inner product space , every inner product space is a normed vector space.

DEFINITION : Let α , β be two vectors in an inner product space V(F). The distance between the vectors α , β denoted by $d(\alpha,\beta)$ is defined as $\|\alpha-\beta\|$.

NOTE : (1) If α , $\beta \in V$ then $d(\alpha, \beta) = ||\alpha - \beta||$

⇔

d
$$[\langle \alpha, \beta \rangle]^2 = \|\alpha - \beta\|^2 = \langle \alpha - \beta, \alpha - \beta \rangle$$

(2) $d(\alpha,\beta)$ is a non-negative real number.

THEOREM : If $\alpha, \beta, \gamma \in V(F)$ an inner product space then (1) d (α, β) ≥ 0 and

 $d(\alpha,\beta) = 0 \Leftrightarrow \alpha = \beta \quad (2) \ d(\alpha,\beta) = d(\beta,\alpha) \ \text{and} \quad (3) \ d(\alpha,\beta) + d(\beta,\gamma) \ge d(\alpha,\gamma).$

Proof: (1) By the definition, $d(\alpha,\beta) = ||\alpha-\beta|| \ge 0$ since norm of a vector is a

non-negative real number.

$$d\langle \alpha, \beta \rangle = 0 \Leftrightarrow ||\alpha - \beta|| = 0 \Leftrightarrow ||\alpha - \beta||^{2} = 0 \Leftrightarrow \langle \alpha - \beta, \alpha - \beta \rangle = 0 \Leftrightarrow \alpha - \beta = 0 \text{ i.e., } \alpha = \beta$$

$$(2) d\langle \alpha, \beta \rangle = ||\alpha - \beta|| = ||(-1)(\beta - \alpha)|| = |-1| ||\beta - \alpha|| = 1 ||\beta - \alpha|| = d \langle \beta, \alpha \rangle.$$

$$(3) d \langle \alpha, \beta \rangle + d \langle \beta, \gamma \rangle = ||\alpha - \beta|| + ||\beta - \gamma|| \ge ||\alpha - \beta + \beta - \gamma|| \text{ By triangle inequality}$$

$$\geq ||\alpha - \gamma|| = d \langle \alpha, \gamma \rangle.$$

NOTE: (1) In an inner product space V(F) the distance function d : V \rightarrow F, defined as d(α,β) = $\|\alpha-\beta\|$ for all α , $\beta \in V$ is satisfying the properties (1),(2),(3) of the metric space.

(2) For $\alpha, \beta, \gamma \in V$; $d \langle \alpha + \gamma, \beta + \gamma \rangle = || \alpha + \gamma - \beta - \gamma || = ||\alpha - \gamma || = d \langle \alpha, \gamma \rangle$.

PROBLEMS

1. If $\alpha = (2,1,1+i)$ is a vector in C³ with standard inner product find $\|\alpha\|$ and the unit vector of α .

Solution :
$$\| \alpha \|^2 = \langle \alpha, \alpha \rangle = (2)(2 + 1(1 + (1+i)(1+i)))$$

= (2)(2) + 1(1) + (1+i)(1-i)
= 4 + 1 + 2 = 7.
Unit vector of $\alpha = 1$
 $\frac{1}{\| \alpha \|} \alpha = \frac{1}{\sqrt{7}} (2,1,1+i).$

2. If $\alpha = (4,1,8),\beta = (1,0,-1)$ are two vectors in R³ find the angle between α and β .

Solution :
$$\| \alpha \| = \sqrt{4^2 + 1^2 + 8^2} = \sqrt{81} = 9$$
 and
 $\| \beta \| = \sqrt{1^2 + 0^2 + (-3)^2} = \sqrt{10}$
 $\langle \alpha, \beta \rangle = (4)(1) + (1)(0) + (8)(-3) = -20.$
If θ = angle between α and β then $\cos \theta = \frac{|\langle \alpha, \beta \rangle|}{\| \alpha \| \| \| \beta \|} = \frac{|-20|}{9(\sqrt{10})} = \frac{20}{9(\sqrt{10})} = \frac{2}{9}\sqrt{10}.$

3. If α,β are two vectors in an inner product space , then α,β are linearly dependent if and only if $|\langle \alpha,\beta \rangle| = ||\alpha|| ||\beta||$.

Solution : Let α , β be linearly dependent.

Then either
$$\alpha = 0$$
 or $\beta = 0$ or $\alpha = a\beta$ where 'a' is a scalar.
When $\alpha = 0$: $\langle \alpha, \beta \rangle = \langle 0, \beta \rangle = 0$ and $|| \alpha || = 0$.
When $\beta = \overline{0}$: $\langle \alpha, \beta \rangle = \langle \alpha, \overline{0} \rangle = \overline{\langle 0, \alpha} = 0$ and $|| \beta || = 0$.
When $\alpha = a\beta$: $\langle \alpha, \beta \rangle = \langle a\beta, \beta \rangle = a \langle \beta, \beta \rangle = a || \beta ||^2$ and $|| \alpha || = || a\beta || = |a| ||\beta||$

Therefore $|\langle \alpha, \beta \rangle| = |a| ||\beta||^2 = (|a| ||\beta||) (||\beta||) = ||\alpha|| ||\beta||$. Conversely, let $|\langle \alpha, \beta \rangle| = ||\alpha|| ||\beta||$. When $\alpha = \overline{0}$ the vectors α, β be linearly dependent.

<β,α>

When $\alpha \neq \overline{0}$; we have $\| \alpha \| > 0$.

Consider the vector $\gamma = \beta - \frac{1}{\|\alpha\|^2} \alpha$.

Now $\langle \boldsymbol{\gamma}, \boldsymbol{\gamma} \rangle = \langle \boldsymbol{\beta} - \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2} \boldsymbol{\alpha}, \boldsymbol{\beta} - \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2} \boldsymbol{\alpha} \rangle$ $= \langle \boldsymbol{\beta}, \boldsymbol{\beta} \rangle - \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2} \langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle - \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2} \langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle + \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2} \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2} \langle \boldsymbol{\alpha}, \boldsymbol{\alpha} \rangle$ $= \|\|\boldsymbol{\beta}\|^2 - \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle \langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2} - \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle \langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2} + \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle \langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2}$ $= \|\|\boldsymbol{\beta}\|^2 - \frac{\langle \boldsymbol{\beta}, \boldsymbol{\alpha} \rangle \langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2} = \|\|\boldsymbol{\beta}\|^2 - \frac{\langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle \langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle}{\|\|\boldsymbol{\alpha}\|\|^2}$ $= \|\|\boldsymbol{\beta}\|^2 - \frac{|\langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle|^2}{\|\|\boldsymbol{\alpha}\|\|^2} - \|\|\boldsymbol{\alpha}\|^2 \|\boldsymbol{\beta}\|^2 = \mathbf{0}.$

$$= \|\beta\|^{2} - \frac{1}{\|\alpha\|^{2}} = \|\beta\|^{2} - \frac{1}{\|\alpha\|^{2}} = \frac{1}{\|\alpha\|^{2}}$$

Therefore $\langle \gamma, \gamma \rangle = 0 \Rightarrow \gamma = \overline{0}$ $\Rightarrow \qquad \beta - \frac{\langle \beta, \alpha \rangle}{\| \alpha \|^2} \alpha = \underline{0}$ $\Rightarrow \qquad \beta = \frac{\langle \beta, \alpha \rangle}{\| \alpha \|^2} \alpha = \underline{0}$ $\Rightarrow \qquad \beta = a\alpha \quad \text{where } a = \frac{\langle \beta, \alpha \rangle}{\| \alpha \|^2} \text{ is a scalar.}$

Therefore α,β be linearly dependent.

4. Two vectors α,β in an unitary space V(C) are such that $\langle \alpha,\beta \rangle = 0$ iff $||\alpha\alpha+b\beta||^2 = |\alpha|^2 ||\alpha||^2 + |b|^2 ||\beta||^2$ for all $a,b \in C$. Solution : Let $\langle \alpha,\beta \rangle = 0$. Then $\overline{\langle \alpha\beta} = 0$.

 $\|a\alpha+b\beta\|^2 = \langle a\alpha+b\beta , a\alpha+b\beta \rangle = a \langle \alpha, a\alpha+b\beta \rangle + b \langle \beta, a\alpha+b\beta \rangle$

 $= a[\bar{\alpha}\alpha,\alpha + \bar{b}\alpha,\beta + b[\bar{\alpha}\beta,\alpha + \bar{b}\beta,\beta + b]$

 $= \bar{a\alpha}\alpha,\alpha\rangle + \bar{ab}\alpha,\beta\rangle + \bar{b\alpha}\beta,\alpha\rangle + \bar{bb}\beta\beta,\beta\rangle$

= $|a^2| \|\alpha\|^2 + a\bar{b}\alpha,\beta$ + $b\bar{a}$ $\overline{\langle \alpha \beta}$ + $|b^2| \|\beta\|^2$ \rightarrow (1) $= |a^{2}| \| \alpha \|^{2} + 0 + 0 + |b^{2}| \| \beta \|^{2}$ $= |a^2| \| \alpha \|^2 + |b^2| \| \beta \|^2$ Conversely, Let $\|a\alpha+b\beta\|^2 = |a|^2 \|\alpha\|^2 + |b|^2 \|\beta\|^2$ for all $a, b \in C$. Using (1) we have $\|a^2\|\|\alpha\|^2 + \bar{ab}\alpha,\beta\rangle + \bar{ba\alpha\beta} + \|b^2\|\|\beta\|^2 = \|a^2\|\|\alpha\|^2 + \|b^2\|\|\beta\|^2$ $\Rightarrow a\bar{b}(\alpha,\beta) + b\bar{a} \quad \overline{\langle \alpha\beta \rangle} = 0 \quad \rightarrow (2)$ Take a = 1, b = 1 so that $\overline{a} = 1$, $\overline{b} = 1$ Then (2): (1)(1) $\langle \alpha, \beta \rangle$ + (1)(1) $\overline{\langle \alpha, \beta \rangle}$ = 0 $\Rightarrow \langle \alpha, \beta \rangle + \langle \alpha \beta \rangle = 0$ \Rightarrow 2 Re $\langle \alpha, \beta \rangle = 0$ \Rightarrow Re $\langle \alpha, \beta \rangle = 0$ Take a = i, b = 1 so that $\overline{a} = -i$, $\overline{b} = 1$ Then (2) : $i \langle \alpha, \beta \rangle - i \overline{\langle \alpha \beta \rangle} = 0$ \Rightarrow i [$\langle \alpha, \beta \rangle - \overline{\langle \alpha \beta}$] = 0 $\Rightarrow \langle \alpha, \beta \rangle - \overline{\langle \alpha \beta \rangle} = 0$ $\Rightarrow 2 \text{ Im} \langle \alpha, \beta \rangle =$ 0

Thus we have Re $\langle \alpha, \beta \rangle = 0$ and Im $\langle \alpha, \beta \rangle = 0$.

Hence $\langle \alpha, \beta \rangle = 0$.

5. If u,v are two vectors in a complex inner product space with standardinner product then prove that

 $4\langle u,v \rangle = || u+v ||^2 - || u-v ||^2 + i || u+iv ||^2 - i || u-iv ||^2.$

Solution:
$$||u + v||^{2} = \langle u + v, u + v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

 $= ||u||^{2} + \langle u, v \rangle + \langle v, u \rangle + ||v||^{2} \rightarrow (1)$
 $||u - v||^{2} = \langle u - v, u - v \rangle = \langle u, u \rangle - \langle v, u \rangle + \langle v, v \rangle$
 $= ||u||^{2} - \langle u, v \rangle - \langle v, u \rangle + ||v||^{2} \rightarrow (2)$
 $||u + iv||^{2} = \langle u + iv, u + iv \rangle = \langle u, u \rangle + \overline{i} \langle u, v \rangle + i\langle v, u \rangle + i i \overline{i} \langle v, v \rangle$
 $= ||u||^{2} - i\langle u, v \rangle + i\langle v, u \rangle + i i \overline{i} \langle v, v \rangle$
 $= ||u||^{2} - i\langle u, v \rangle + i \langle v, u \rangle + i v ||^{2} \rightarrow$
(3)
 $||u - iv||^{2} = \langle u - iv, u - iv \rangle = \langle u, u \rangle - \overline{i} \langle u, v \rangle - i\langle v, u \rangle + i \overline{i} \langle v, v \rangle$
 $= ||u||^{2} + i\langle u, v \rangle - i\langle v, u \rangle + ||v||^{2} \rightarrow$
 $i ||u - iv||^{2} = i ||u||^{2} - \langle u, v \rangle + \langle v, u \rangle + i ||v||^{2} \rightarrow (4)$
From (1),(2),(3) and (4) : $||u + v||^{2} - ||u - v||^{2} + i ||u + iv||^{2} - i ||u - iv||^{2}$
 $= \{2\langle u, v \rangle + 2\langle v, u \rangle\} + \{2\langle u, v \rangle - 2\langle v, u \rangle\}$

= 4 ‹u,v›