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VECTOR SPACES 

Internal Composition: Let A be any set. If a∗b∊A ∀a,b∊A and  a∗b is unique then ∗ is 
said to be an internal composition in the set A 

External composition: Let V and F be any two sets. If a∘α∊V, ∀a∊F and ∀α∊V and 
a∘α is unique, then ∘ is said to be an external composition in V over F.        

 Vector Space: Let (F,+,.) be a field. The elements of F will be called scalars. Let V be 
a non-empty set whose elements will be called vectors. Then V is a vector space 
over the field F, if it satisfies the following properties. 

i) α+βϵV for all α,βϵV 

ii) α+β=β+α for all α,βϵV 

iii) α+(β+γ)=(α+β)+γ for all α,β,γϵV 

iv) Ǝ an element ōϵV such that  α+ō=α for all αϵV 

v) To every vector αϵV  there exists a vector  –αϵV  such that  α+(-α)=ō 

vi) aαϵV  for all aϵF,αϵV 

vii) a(α+β)=aα+aβ  for all aϵF, α,βϵV 

viii) (a+b)α=aα+bα for all a,bϵF and  αϵV 

ix) (ab)α=a(bα) for all a,bϵF and  αϵV 

x) 1α₌α  for all αϵV 

Example: Show that a field K can be regarded as a vector space over any subfield F 
of K 

Solution: K is the set of vectors. 

Since K is a field, (K,+) is an abelian group. 

The elements of the subfield F are scalars. 

Since K is a field, aα∊K, ∀a∊F, ∀α ∊K and a, α ∊K 

If 1 is the unity element of K, 1 is the unity element of F 

(i) a(α+β)=aα+aβ, ∀ a∊F and ∀ α∊K, since K is field 

(ii) (a+b)α=aα+bα ∀ a,b∊F and ∀ α∊K, since K is field 

(iii) (ab)α=a(bα) ∀ a,b∊F and ∀ α∊K, since K is field 



 
 

(iv)   1α= α, ∀ α∊K 

      Hence K(F) is a vector space  

 

Theorem :  Let (F, +, · ) be a field. Let Vn(F) = {(a1, a2, …, an):  a1, a2, …, an F}.  

Then Vn(F) is a vector space with respect to internal composition defined by   +  = 

(a1 + b1, a2 + b2 , …, an + bn) and external composition by a = (aa1, aa2, … , aan) 

where a ∊ F,  = (a1, a2, …, an),  = (b1, b2, …, bn) Vn(F). 

 

Proof: Let  = (a1, a2, …, an),  = (b1, b2, …, bn),  = (c1, c2,…,cn)Vn(F), a, bF    

𝑉𝑛(𝐹)is closed under Vector addition:  

 Let ,  V. Then  +  = {(a1 + b1, a2 + b2 , …, an + bn) Vn(F) } 

+ is associative:  

Let , ,  V. Then (+ ) +  = (a1 + b1, a2 + b2 , …, an + bn) + (c1, c2, …, cn)   

= (𝑎1 + 𝑏1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑐1, 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑐2, … , 𝑎𝑛 + 𝑏𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑐𝑛)  

= (𝑎1 + 𝑏1 + 𝑐1̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑎2 + 𝑏2 + 𝑐2̅̅ ̅̅ ̅̅ ̅̅ ̅, … , 𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  by associative law in F.  

= (a1, a2, …, an) + (b1 + c1, b2 + c2, …, bn+ cn) =  + ( + ) 

0̅= (0, 0, …, 0) is Zero element:  

Clearly 0̅= (0, 0, …, 0) Vn(F).   

Let Vn(F).   

Then  + 0̅ = (a1 + 0, a2 + 0, …, an + 0) = (a1, a2, …, an) =  

– = (–a1, –a2, …, –an) is the additive inverse of :  

Let  Vn(F).   Clearly  –  = (– a1, – a2, …, – an) Vn(F) and   

 + (– ) = (a1 + – a1, a2 + – a2, …, an + – an) = (0, 0, …, 0) = 0̅ 

+ is commutative:   

Let , ,  Vn(F).    

Then  +  = (a1 + b1, a2 + b2 , …, an + bn) = (b1 + a1, b2 + a2 , …, bn+ an) =  +  

∴  (Vn(F) , +) is an abelian group. 

 

Vn(F) is closed under scalar multiplication: Let a  F,  V. Then 

a = a(a1, a2, …, an) = (a a1, a a2, …, a an) is an unique element of Vn(F) aF,V 

 

To show  a( + ) = a + a:  Let a  F, ,  V. Then  

a(  + ) = a(a1 + b1, a2 + b2 , …, an + bn)   = (a a1 + a b1, a a2 + a b2 , …, a an + a bn)                                                  

= (a a1, a a2, …, a an) + (a b1, a b2, …, a bn)  = a(a1, a2 , …, an) + a(b1, b2, …, bn) 



 
 

= a  + a. 

To show  (a + b)  = a + b:  Let a b  F,  Vn(F).                                             

Then (a + b)  = (a + b) (a1, a2, …, an) = (𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅𝑎1, 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅𝑎2, … , 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅𝑎𝑛) 

= (a a1 + b a1, a a2 + b a2 , …, a an + b an)  

= (a a1, a a2, …, a an) + (b a1, b a2, …, b an) =a( a1, a2, …, an) +b ( a1, a2, …, an)  =a 

+ b 

To show a(b) = (ab) : Let a, b  F,  Vn(F). Then 

a(b) = a(b a1, b a2, …, b an) = (𝑎𝑏𝑎1,̅̅ ̅̅ ̅ 𝑎𝑏𝑎2 ,̅̅ ̅̅ ̅̅ … , 𝑎𝑏𝑎𝑛̅̅ ̅̅ ̅) =(𝑎𝑏̅̅ ̅𝑎1, 𝑎𝑏̅̅ ̅𝑎2, … , 𝑎𝑏̅̅ ̅𝑎𝑛) 

=ab(a1, a2 , …, an)= (ab)                                                              

To show that 1= : Let Vn(F) 

Then 1  = 1(a1, a2, …, an) = (1 a1, 1 a2, …, 1 an) = (a1, a2, …, an) =  
Hence Vn(F) is a vector space. 

Example: Prove that the set of all polynomials in an indeterminate x over a field F is 
a vector space 

Solution: Let F[x] be the set of all polynomials over F 

Let f(x)=𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯ ,  g(x)=𝑏0 + 𝑏1𝑥 + 𝑏2𝑥

2 +⋯∊F[x] and c∊F 

f(x)+g(x)=(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥
2 +⋯∊F[x]                                                      

Let f(x)=𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯ ,  g(x)=𝑏0 + 𝑏1𝑥 + 𝑏2𝑥

2 +⋯, h(x)=𝑐0 + 𝑐1𝑥 +
𝑐2𝑥

2 +⋯ ∊ F[x] 

[f(x)+g(x)]+h(x)=[(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥
2 +⋯ ] +(𝑐0 + 𝑐1𝑥 +

𝑐2𝑥
2 +⋯) 

=[(𝑎0 + 𝑏0) + 𝑐0] + [(𝑎1 + 𝑏1) + 𝑐1]𝑥 + [(𝑎2 + 𝑏2) + 𝑐2]𝑥
2 +⋯ 

=[𝑎0 + (𝑏0 + 𝑐0)] + [𝑎1 + (𝑏1 + 𝑐1)]𝑥 + [𝑎2 + (𝑏2 + 𝑐2)]𝑥
2 +⋯ 

= (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯) +[(𝑏0 + 𝑐0) + (𝑏1 + 𝑐1)𝑥 + (𝑏2 + 𝑐2)𝑥

2 +⋯ ] 
=f(x)+[g(x)+h(x)] 

Therefore + is associative in F[x] 

f(x)+0(x)=(𝑎0 + 0) + (𝑎1 + 0)𝑥 + (𝑎2 + 0)𝑥2 +⋯ = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯=f(x) 

Similarly 0(x)+f(x)=f(x) 

Therefore 0(x) is the additive identity in F[x] 

Let f(x)=𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯ ∊F[x] 



 
 

(-f)(x)=(−𝑎0) + (−𝑎1)𝑥 + (−𝑎2)𝑥
2 +⋯ ∊F[x] 

f(x)+(-f)(x)=[𝑎0 + (−𝑎0)] + [𝑎1 + (−𝑎1)]𝑥 + [𝑎2 + (−𝑎2)]𝑥
2 +⋯                        

= 0 + 0𝑥 + 0𝑥2 +⋯= 0(x) 

Similarly (-f)(x)+f(x)= 0(x) 

∴ (-f)(x) is the additive inverse of f(x) in F[x] 

f(x) + g(x)=(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥
2 +⋯                                         

=(𝑏0 + 𝑎0) + (𝑏1 + 𝑎1)𝑥 + (𝑏2 + 𝑎2)𝑥
2 +⋯ = g(x) + f(x)  

∴ + is commutative in F[x] 

a[f(x)+g(x)]=a[(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥
2 +⋯ ]  

= a(𝑎0 + 𝑏0) + 𝑎(𝑎1 + 𝑏1)𝑥 + 𝑎(𝑎2 + 𝑏2)𝑥
2 +… 

=( a𝑎0 + 𝑎𝑏0) + (𝑎𝑎1 + 𝑎𝑏1)𝑥 + (𝑎𝑎2 + 𝑎𝑏2)𝑥
2 +… 

=[a𝑎0 + 𝑎𝑎1𝑥 + 𝑎𝑎2𝑥
2 +⋯ ] + [𝑎𝑏0 + 𝑎𝑏1𝑥 + 𝑎𝑏2𝑥

2 +⋯ ] =af(x)+ag(x) 

∴ a[f(x)+g(x)]= af(x)+ag(x) 

(a+b)f(x)=(a+b)( 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯)                                                                   =(a+b) 

𝑎0 + (𝑎 + 𝑏)𝑎1𝑥 + (𝑎 + 𝑏)𝑎2𝑥
2 +⋯ 

=(a𝑎0 + 𝑏𝑎0) + (𝑎𝑎1 + 𝑏𝑎1)𝑥 + (𝑎𝑎2 + 𝑏𝑎2)𝑥
2 +… 

=[a𝑎0 + 𝑎𝑎1𝑥 + 𝑎𝑎2𝑥
2 +⋯ ] + [𝑏𝑎0 + 𝑏𝑎1𝑥 + 𝑏𝑎2𝑥

2 +⋯ ] =af(x)+bf(x) 

∴(a+b)f(x)= af(x)+bf(x) 

(ab)f(x)= (ab)𝑎0 + (𝑎𝑏)𝑎1𝑥 + (𝑎𝑏)𝑎2𝑥
2 +⋯ 

=a(b𝑎0) + 𝑎(𝑏𝑎1)𝑥 + 𝑎(𝑏𝑎2)𝑥
2 +⋯ 

= a[b𝑎0 + 𝑏𝑎1𝑥 + 𝑏𝑎2𝑥
2 +⋯]=a[bf(x)] 

∴(ab)f(x)= a[bf(x)] 

1f(x)=1𝑎0 + 1𝑎1𝑥 + 1𝑎2𝑥
2 +⋯=f(x) 

∴F[x] is a vector space over F 

Example:  Show that the set V of all  matrices with their elements as real numbers is 
a vector space over the field F of real numbers with respect to addition of matrices 
as addition of vectors and multiplication of matrices by a scalar as scalar 
multiplication. 



 
 

Solution: Let V = {[𝑎𝑖𝑗]𝑚×𝑛
:  𝑎𝑖𝑗 ∈ ℝ}. Let A = [𝑎𝑖𝑗]𝑚×𝑛

,  𝐵 =  [𝑏𝑖𝑗]𝑚×𝑛
,     

 𝐶 =  [𝑐𝑖𝑗]𝑚×𝑛
  V where 𝑎𝑖𝑗, 𝑏𝑖𝑗 ,  𝑐𝑖𝑗 ∈ ℝ  

  

  Addition of matrices “+” is internal composition: Let A, B  V.    

Now A + B = [𝑎𝑖𝑗]𝑚×𝑛
+ [𝑏𝑖𝑗]𝑚×𝑛

 = [𝑎𝑖𝑗 + 𝑏𝑖𝑗]𝑚×𝑛
  V since 𝑎𝑖𝑗 + 𝑏𝑖𝑗ℝ.                                                                                                           

 “+” is associative: Let A, B, C  V. 

Then (A + B) + C = [𝑎𝑖𝑗 + 𝑏𝑖𝑗]𝑚×𝑛
+  [𝑐𝑖𝑗]𝑚×𝑛

       = [(𝑎𝑖𝑗 + 𝑏𝑖𝑗) + 𝑐𝑖𝑗]𝑚×𝑛
 = 

[𝑎𝑖𝑗 + (𝑏𝑖𝑗 + 𝑐𝑖𝑗)]𝑚×𝑛
         = [𝑎𝑖𝑗]𝑚×𝑛

+  [𝑏𝑖𝑗 + 𝑐𝑖𝑗]𝑚×𝑛
 = A + (B + C) 

∴ (A + B) + C = A + (B + C). 

O = [0]𝑚×𝑛 is the zero element:  

 Clearly Let A  V.   Then A + O = [𝑎𝑖𝑗 + 0]
𝑚×𝑛

=  [𝑎𝑖𝑗]𝑚×𝑛
= 𝐴.   

 ∴ O = [0]𝑚×𝑛 is the zero element.                                                                                                             

– A is the negative of A: 

Let A  V. Then – A = [−𝑎𝑖𝑗]𝑚×𝑛
 V and A + (–A) = [𝑎𝑖𝑗 + (−𝑎𝑖𝑗)]𝑚×𝑛

= [0]𝑚×𝑛= O 

∴ – A is the negative of A 

“+” is commutative: 

Let A, B  V.    

Now A + B = [𝑎𝑖𝑗]𝑚×𝑛
+ [𝑏𝑖𝑗]𝑚×𝑛

 = [𝑎𝑖𝑗 + 𝑏𝑖𝑗]𝑚×𝑛
 = [𝑏𝑖𝑗 + 𝑎𝑖𝑗]𝑚×𝑛

 = B + A  

Scalar multiplication is an external composition:   

Let a ∊ F and A  V.   

a A =[𝑎 𝑎𝑖𝑗]𝑚×𝑛
 V since 𝑎 𝑎𝑖𝑗 𝐹  

(i) a(A + B) = aA + aB  a  F, A, B  V:                                                                                                

Let a ∊ F and A, B  V.  

a(A + B) = 𝑎[𝑎𝑖𝑗 + 𝑏𝑖𝑗]𝑚×𝑛
= [𝑎 𝑎𝑖𝑗 + 𝑎 𝑏𝑖𝑗]𝑚×𝑛

       = [𝑎 𝑎𝑖𝑗]𝑚×𝑛
+ [𝑎 𝑏𝑖𝑗]𝑚×𝑛

      =aA 

+ aB 



 
 

(ii) (a + b) A = aA + bA  a, b  F, A  V:   

(a + b) A = (a + b) [𝑎𝑖𝑗]𝑚×𝑛
  = [(𝑎 + 𝑏) 𝑎𝑖𝑗]𝑚×𝑛

     = [𝑎 𝑎𝑖𝑗]𝑚×𝑛
+  [𝑏 𝑎𝑖𝑗]𝑚×𝑛

    =aA + 

bA   

(iii)  a(bA) = (ab)A   a, b  F, A  V :                                                                                                       

Let a, b ∊ F and A  V. Then a(bA) = a[𝑏 𝑎𝑖𝑗]𝑚×𝑛
  = [𝑎(𝑏𝑎𝑖𝑗)]𝑚×𝑛

                               =   

[(𝑎𝑏)𝑎𝑖𝑗]𝑚×𝑛
=(ab)A 

(iv) 1A = A  A  V:  

Let A  V. Then 1A = [1 𝑎𝑖𝑗]𝑚×𝑛
= [𝑎𝑖𝑗]𝑚×𝑛

= 𝐴  

 ∴ V is a vector space over F 

 

Properties of vector spaces: 

Let V(F) be a vector space and ō be the zero vector of V. Then 

i) aō=ō for all aϵF 

ii) oα=ō for allαϵV 

iii) a(-α)= -(aα) 

iv) (-a)α= -(aα) 

v) a(α-β)=aα-aβ 

vi) aα=ō implies a=o or α=ō 

Proof: (i) aō=a(ō+ō)=aō+aō 

 Therefore ō+aō=aō+aō⇒ō=aō 

(ii)0α=(0+0)α=0α+0α                                                                            ō+0α=0α+0α⇒ō=0α 

(iii)a[α+(-α)]=aα+a(-α)⇒aō=aα+a(-α) 

⇒ō=aα+a(-α) ⇒a(-α)=-(a α) 

(iv)[a+(-a)]α=aα+(-a)α⇒0α=aα+(-a)α⇒ō=aα+(-a)α                                                              
⇒(-a)α=-(aα) 

(v)a(α-β)=a[α+(-β)]=aα+a(-β)  =aα+[-(aβ)]=aα-aβ 



 
 

Vector subspace: Let V be a vector space over the field F and let W⊆V. Then W is 

called a subspace of V if W itself is a vector space over F with respect to the 
operations of vector addition and scalar multiplication in V 

Theorem: The necessary and sufficient condition for a nonempty subset W of a 
vector space V(F) to be a subspace of V is that W is closed under vector addition and 
scalar multiplication in V                                                                              Proof: 
Necessary condition 

If W itself is a vector space over F with respect to vector addition and scalar 
multiplication in V, then W must closed with respect to these compositions. 

Sufficient Condition 

Suppose W is a nonempty subset of V and W is closed under vector addition and 
scalar multiplication in V. 

Let x∊W. If 1∊F, then -1∊F.                                                                                   -
1∊F,x∊W⇒(-1)x∊W⇒-(1x)∊W⇒-x∊W 

x∊W,-x∊W⇒x+(-x)∊W⇒ō∊W 

x,y,z∊W, W⊆V⇒x,y,z∊V⇒(x+y)+z=x+(y+z) 

x,y∊W, W⊆V⇒x,y∊V⇒x+y=y+x 

a, 0∊F, x,x∊W⇒ax+0x∊W⇒ax∊W 

a,b∊F,x,y∊V⇒a(x+y)=ax+ay,      

 (a+b)x=ax+bx,(ab)x=a(bx),1x=x                                                                                                                                                 
∴W is a vector space and hence W is a subspace of V(F) 

Theorem: The necessary and sufficient condition for a nonempty subset W of a 
vector space V(F) to be a subspace of V is a,bϵF and x,yϵW  ax+byϵW 

 

Proof: Necessary condition 

Suppose W is a subspace of a vector space V(F) 

Let a,b∊F, x,y∊W 

a∊F,x∊W⇒ax∊W 

b∊F,y∊W⇒by∊W (∵ W is closed under scalar multiplication) 

ax∊W,by∊W⇒ax+by∊W (∵W is closed under vector addition) 



 
 

∴ a,b∊F, x,y∊W⇒ax+by∊W 

Sufficient condition:  Suppose that W is a nonempty subset of V such that a,b∊F, 
x,y∊W⇒ax+by∊W 

1∊F,x,y∊W⇒1x+1y∊W⇒x+y∊W 

0∊F, x∊W⇒0x+0x∊W⇒0∊W 

-1,0∊F, x∊W⇒(-1)x+0x∊W⇒ -x∊W 

Let x,y,z∊W 

x,y,z∊W, W⊆V⇒x,y,z∊V⇒(x+y)+z=x+(y+z) 

x,y∊W, W⊆V⇒x,y∊V⇒x+y=y+x 

a, 0∊F, x∊W⇒ax+0x∊W⇒ax∊W 

a,b∊F,x,y∊V⇒a(x+y)=ax+ay, (a+b)x=ax+bx, (ab)x=a(bx), 1x=x                        
∴W is a vector space and hence W is a subspace of V(F) 

Example: The set W of ordered triads (x,y,0) where x,yϵF is a subspace of 𝑉3(F) 

Solution: Let  α,βϵW where α=(𝑥1,𝑦1, 0),  β=(𝑥2, 𝑦2 , 0) for some 𝑥1,𝑦1,𝑥2,𝑦2∊F.               

Let a,bϵF, aα+bβ=a(𝑥1,𝑦1,0)+b(𝑥2, 𝑦2,0)                                                                     =  
(𝑎𝑥1, 𝑎𝑦1, 0) + (𝑏𝑥2, 𝑏𝑦2, 0) = (a𝑥1 + 𝑏𝑥2, 𝑎𝑦1 + 𝑏𝑦2, 0)∊F 

Hence W is a subspace of 𝑉3(F) 

Example: Prove that the set of all solutions (a,b,c) of the equation a+b+2c=0 is a 
subspace of the vector space 𝑉3(𝑅) 

Solution: Let W={(a,b,c): a,b,c∊R and a+b+2c=0} 

Let 𝛼 = (𝑎1, 𝑏1, 𝑐1), 𝛽 = (𝑎2, 𝑏2, 𝑐2) ∈ 𝑊 

Then 𝑎1 + 𝑏1 + 2𝑐1 = 0 and 𝑎2 + 𝑏2 + 2𝑐2 = 0  

If a,b∈ 𝑅,  then aα+bβ=𝑎(𝑎1, 𝑏1, 𝑐1)+b(𝑎2, 𝑏2, 𝑐2) 

=(𝑎𝑎1, 𝑎𝑏1, 𝑎𝑐1)+(𝑏𝑎2, 𝑏𝑏2, 𝑏𝑐2) 

=(𝑎𝑎1 + 𝑏𝑎2, 𝑎𝑏1 + 𝑏𝑏2, 𝑎𝑐1 + 𝑏𝑐2) 

Now  (𝑎𝑎1 + 𝑏𝑎2) + (𝑎𝑏1 + 𝑏𝑏2) + 2(𝑎𝑐1 + 𝑏𝑐2) 

=a(𝑎1 + 𝑏1 + 2𝑐1)+b(𝑎2 + 𝑏2 + 2𝑐2)=a.0+b.0=0 

aα+bβ∈W 



 
 

Hence W is a subspace of the vector space 𝑉3(𝑅) 

Example: Let R be the field of real numbers and W={(x,y,z)/x.y,z are rational 
numbers}. Is W a subspace of 𝑉3(R)? 

Solution: Let  α=(2,3,4)ϵW, a=√7ϵR 

aα=√7(2,3,4)=(2√7,3√7,4√7)∉W 

Hence W is not a subspace of 𝑉3(R) 

Example: Show that W={(a,2b,3c):a,b,c∊R} is a subspace of    𝑉3(R)                             

Solution: Let x = (𝑎1, 2𝑏1, 3𝑐1),  𝑦 = (𝑎2, 2𝑏2, 3𝑐2) ∊ 𝑊and a,b ∊R   

ax+by=a( 𝑎1, 2𝑏1, 3𝑐1)+b(𝑎2, 2𝑏2, 3𝑐2)                                           =(a𝑎1, 2𝑎𝑏1, 3𝑎𝑐1)+ 
(𝑏𝑎2, 2𝑏𝑏2, 3𝑏𝑐2) 

=(a𝑎1 + 𝑏𝑎2, 2𝑎𝑏1 + 2𝑏𝑏2 , 3𝑎𝑐1 + 3𝑏𝑐2) 

=(a𝑎1 + 𝑏𝑎2, 2(𝑎𝑏1 + 𝑏𝑏2),3(𝑎𝑐1 + 𝑏𝑐2))∊ 𝑊 

∴ W is a subspace of 𝑉3(𝑅) 

Example:If 𝑎1,𝑎2,𝑎3 are fixed elements of a field F, then the set W of all ordered 

triads  (𝑥1,𝑥2,𝑥3) of elements of F such that 𝑎1𝑥1 + 𝑎2 𝑥2+𝑎3𝑥3=0 is a subspace of 

𝑉3(F). 

Solution: Let α= (𝑥1,𝑥2,𝑥3) and β= (𝑦1,𝑦2,𝑦3) ∊W where 𝑥1,𝑥2,𝑥3, 𝑦1,𝑦2,𝑦3 ∊ F 

Then 𝑎1𝑥1 + 𝑎2 𝑥2+𝑎3𝑥3=0,     𝑎1𝑦1 + 𝑎2 𝑦2+𝑎3𝑦3=0  

If a,b∊F, then aα+bβ= a (𝑥1,𝑥2,𝑥3) + b (𝑦1,𝑦2,𝑦3) 

=  (a𝑥1,𝑎𝑥2,𝑎𝑥3) + (b𝑦1,𝑏𝑦2,𝑏𝑦3)   = (a𝑥1 + b𝑦1,𝑎𝑥2 + b𝑦2,𝑎𝑥3 +b𝑦3)  

Now 𝑎1(a𝑥1 + b𝑦1) + 𝑎2( 𝑎𝑥2 + b𝑦2) + 𝑎3(𝑎𝑥3 +b𝑦3)                                =a(𝑎1𝑥1 +
𝑎2 𝑥2+𝑎3𝑥3)+b(𝑎1𝑦1 + 𝑎2 𝑦2+𝑎3𝑦3)=a0+b0=0 

∴ aα+bβ=(a𝑥1 + b𝑦1,𝑎𝑥2 + b𝑦2,𝑎𝑥3 +b𝑦3) ∊W 

Hence W is a subspace of 𝑉3(𝐹) 

Theorem:The intersection of any two subspaces 𝑊1𝑎𝑛𝑑 𝑊2 of a vector space V(F) is 
a subspace of V(F) 

Proof:     Since ō∊𝑊1 𝑎𝑛𝑑𝑊2,𝑊1 ∩𝑊2 ≠ ∅ 

Let 𝛼, 𝛽𝜖𝑊1 ∩𝑊2 and a,b∊F                                        𝛼𝜖𝑊1 ∩𝑊2 ⇒ 𝛼𝜖𝑊1𝑎𝑛𝑑 𝛼𝜖 𝑊2 , 



 
 

𝛽𝜖𝑊1 ∩𝑊2 ⇒ 𝛽𝜖𝑊1𝑎𝑛𝑑 𝛽𝜖 𝑊2 

Since 𝑊1𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒,  a, b ∊ F and α, β ∊ 𝑊1 ⇒ aα + bβ ∊ 𝑊1            

Similarly 𝑊2𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒,  a, b ∊ F and α, β ∊ 𝑊2 ⇒ aα + bβ ∊ 𝑊2 

Thus a,b∊F, 𝛼, 𝛽𝜖𝑊1 ∩𝑊2 ⇒ aα + bβ ∊ 𝑊1 ∩𝑊2 

Hence 𝑊1 ∩𝑊2 is a subspace of V(F) 

Note: The union of two subspaces of V(F) may not be a subspace of V(F) 

Example: If R be the field of real numbers, then 𝑊1={(0,0,z): z∊R} and 𝑊2={(0,y,0): 
y∊R} are two subspaces of 𝑉3(R) 

(0,0,2)∊ 𝑊1 and (0,3,0)∊ 𝑊2 

∴ (0,0,2) and (0,3,0) ∊𝑊1 ∪𝑊2 

But (0,0,2)+(0,3,0)=(0,3,2) ∉ 𝑊1 ∪𝑊2   

Hence 𝑊1 ∪𝑊2 is not a subspace of   𝑉3(R)                           

Theorem: The union of two subspaces is a subspace iff one is contained in the other. 

Proof: Let 𝑊1𝑎𝑛𝑑 𝑊2 be two subspaces of a vector space V(F) 

Suppose 𝑊1 ∪𝑊2 is a subspace of V 

If possible suppose that  𝑊1⊈𝑊2 and 𝑊2⊈𝑊1 

𝑊1 ⊈ 𝑊2 ⇒ ∃𝑥 ∊ 𝑊1 ∍ 𝑥 ∉ 𝑊2 

𝑊2 ⊈ 𝑊1 ⇒ ∃𝑦 ∊ 𝑊2 ∍ 𝑦 ∉ 𝑊1 

x∊𝑊1 ,y∊𝑊2 ⇒x,y∊𝑊1 ∪𝑊2 ⇒x+y∊𝑊1 ∪𝑊2⇒x+y∊𝑊1 𝑜𝑟 x + y ∊  𝑊2 

If x+y∊𝑊1 then x∊𝑊1, x+y∊𝑊1⇒y=( x+y)-x∊𝑊1                                                        If    
x+y∊𝑊2 then y∊𝑊2, x+y∊𝑊2⇒x=( x+y)-y∊𝑊2 

It is a contradiction 

∴𝑊1 ⊆ 𝑊2 𝑜𝑟𝑊2 ⊆ 𝑊1.                                                                                       Conversely 
suppose that 𝑊1 ⊆ 𝑊2 𝑜𝑟𝑊2 ⊆ 𝑊1 

If 𝑊1 ⊆ 𝑊2 then 𝑊1 ∪𝑊2=𝑊2 is a subspace of V 

If 𝑊2 ⊆ 𝑊1 then 𝑊1 ∪𝑊2=𝑊1 is a subspace of V 

∴ 𝑊1 ∪𝑊2is a subspace of V 



 
 

Smallest subspace containing any subset of V(F): Let V(F) be a vector space and S 

be any subset of V. If U is a subspace of V containing S and is itself contained in 

every subspace of V containing S, then U is called the smallest subspace of V 

containing S. 

     The smallest subspace of V containing S is also called the subspace of V 

generated or spanned by S and denote it by {S} 

Linear combination of vectors: Let V(F) be a vector space. If 𝛼1, 𝛼2, … , 𝛼𝑛ϵV, then 
any vector α= 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛 where 𝑎1, 𝑎2, … , 𝑎𝑛ϵF is called a linear 
combination of the vectors 𝛼1, 𝛼2, … , 𝛼𝑛              

Linear span: Let V(F) be a vector space and S be any non-empty subset of V. Then 
the linear span of S is the set of all linear combinations of finite sets of 
elements of S and is denoted by L(S). 

Example: Express the vector x=(1,-2,5) as a linear combination of the vectors 
𝑥1=(1,1,1), 𝑥2=(1,2,3), 𝑥3=(2,-1,1) 

Solution: Let x=a𝑥1+b𝑥2+c𝑥3 ⇒(1,-2,5)=a(1,1,1)+b(1,2,3)+c(2,-1,1) 

⇒(1,-2,5)=(a+b+2c,a+2b-c,a+3b+c) 

⇒a+b+2c=1, a+2b-c=-2, a+3b+c=5 

Solving these equations, we get a=-6,b=3,c=2 

∴ x=-6𝑥1+3𝑥2+2𝑥3 

THEOREM: The linear span L(S) of any subset S of a vector space V(F) is a subspace 

of V generated by S  ie., L(S)={S} 

Proof: Let α,β∊S 

Then α=𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑚𝛼𝑚 and β=𝑏1𝛽1 + 𝑏2𝛽2 +⋯+ 𝑏𝑛𝛽𝑛 

If a,b∊F then aα+bβ=a(𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑚𝛼𝑚)+b(𝑏1𝛽1 + 𝑏2𝛽2 +⋯+ 𝑏𝑛𝛽𝑛) 

=a(𝑎1𝛼1) + 𝑎(𝑎2𝛼2) + ⋯+ 𝑎(𝑎𝑚𝛼𝑚)+b(𝑏1𝛽1) + 𝑏(𝑏2𝛽2) + ⋯+ 𝑏(𝑏𝑛𝛽𝑛) 

=(a𝑎1)𝛼1 + (𝑎𝑎2)𝛼2 +⋯+ (𝑎𝑎𝑚)𝛼𝑚+(b𝑏1)𝛽1 + (𝑏𝑏2)𝛽2 +⋯+ (𝑏𝑏𝑛)𝛽𝑛∊L(S) 

Thus a,b∊F and α,β∊L(S)⇒aα+bβ∊L(S) 

Hence L(S) is a subspace of V(F) 

If 𝛼𝑟 ∊S then 𝛼𝑟 = 1𝛼𝑟⇒𝛼𝑟 ∊ 𝐿(𝑆)⇒S⊂L(S) 



 
 

∴ L(S) is a subspace of V and S is contained in L(S) 

If W is any subspace of V containing S, then each element of L(S) belongs to W 

because W is closed under vector addition and scalar multiplication. Therefore 

L(S) will be contained in W.                                                                  Hence L(S)={S} 

Linear sum of two subspaces: Let 𝑊1 and𝑊2 be the two subspaces of the vector 
space V(F). Then the linear sum of the subspaces 𝑊1𝑎𝑛𝑑 𝑊2 denoted by 𝑊1 +𝑊2 is 
the set of all sums 𝛼 1 +  𝛼2  such that 𝛼1 ∊ 𝑊1 , 𝛼1 ∊ 𝑊1 .   

Thus  𝑊1 +𝑊2   =  { 𝛼 1 +  𝛼2  :  𝛼1 ∊ 𝑊1 , 𝛼2 ∊ 𝑊2  }                                                                  

Theorem: If 𝑊1 and 𝑊2 are subspaces of the vector space V(F), then (i) 𝑊1 +𝑊2  is 
a subspace of V(F)     (ii) L(𝑊1 ∪𝑊2)=𝑊1 +𝑊2 

Proof: Let α,β∊ 𝑊1 +𝑊2 

Then α = 𝛼1 + 𝛼2 and β = 𝛽1 + 𝛽2 where 𝛼1 , 𝛽1∊𝑊1 𝑎𝑛𝑑 𝛼2 , 𝛽2∊𝑊2 

If a,b∊F, then aα+bβ = a(𝛼1 + 𝛼2) + 𝑏(𝛽1 + 𝛽2) 

= (a𝛼1 + 𝑏𝛽1 ) + (𝑎𝛼2 + 𝑏𝛽2)                                                                                       Since 
𝑊1𝑖𝑠 a subspace, a𝛼1 + 𝑏𝛽1 ∊ 𝑊1. Similarly a𝛼2 + 𝑏𝛽2 ∊ 𝑊2 

∴ aα+bβ=(a𝛼1 + 𝑏𝛽1 ) + (𝑎𝛼2 + 𝑏𝛽2)∊𝑊1 +𝑊2 

Hence 𝑊1 +𝑊2 is a subspace of V(F) 

(ii) Since ō∊𝑊2, if 𝛼1 ∊ 𝑊1we can write 𝛼1 = 𝛼1 + ō∊ 𝑊1 +𝑊2                               ⇒
𝑊1⊆ 𝑊1 +𝑊2 . Similarly 𝑊2 ⊆ 𝑊1 +𝑊2 

∴ 𝑊1 ∪𝑊2 ⊆ 𝑊1 +𝑊2 

Hence 𝑊1 +𝑊2 is a subspace of V containing 𝑊1 ∪𝑊2 

Let α=𝛼1 + 𝛽1 ∊ 𝑊1 +𝑊2. Then 𝛼1 ∊ 𝑊1, 𝛽1 ∊ 𝑊2 ⇒ 𝛼1, 𝛽1 ∊ 𝑊1 ∪𝑊2 

Also 𝛼1 + 𝛽1=1𝛼1 + 1𝛽1⇒𝛼1 + 𝛽1 is a linear combination of a finite number of 
elements 𝛼1, 𝛽1 ∊ 𝑊1 ∪𝑊2 ⇒ 𝛼1 + 𝛽1 ∊ L(𝑊1 ∪𝑊2) 

∴𝑊1 +𝑊2 ⊆ 𝐿(𝑊1 ∪𝑊2) 

 𝐿(𝑊1 ∪𝑊2) is the smallest subspace containing 𝑊1 ∪𝑊2 and 𝑊1 +𝑊2is a 
subspace containing 𝑊1 ∪𝑊2 ⇒  𝐿(𝑊1 ∪𝑊2) ⊆  𝑊1 +𝑊2 

Hence𝑊1 +𝑊2 = 𝐿(𝑊1 ∪𝑊2) 



 
 

Example: If S,T are subsets of V(F), then 

(i) S⊆ T⇒ L(S)⊆L(T)  (ii) L(S∪T)=L(S)+L(T) 

(iii) S is a subspace of V⇔ L(S)=S (iv) L(L(S))=L(S) 

Solution:(i) Let α∊ L(S) 

Then α=𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛  where 𝛼1, 𝛼2, … , 𝛼𝑛∊ S and 𝑎1, 𝑎2, … , 𝑎𝑛ϵF  

𝛼1, 𝛼2, … , 𝛼𝑛∊ S, S⊆ T ⇒  𝛼1, 𝛼2, … , 𝛼𝑛∊ T 

𝑎1, 𝑎2, … , 𝑎𝑛ϵF, 𝛼1, 𝛼2, … , 𝛼𝑛∊ T ⇒𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛 ∊ L(T) ⇒α∊ L(T) 

∴ L(S)⊆L(T)  

(ii) Let α∊L(S∪T) 

Then α=𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑚𝛼𝑚 +  𝑏1 𝛽1 + 𝑏2𝛽2 +⋯+ 𝑏𝑝𝛽𝑝 where 

{𝛼1, 𝛼2, … , 𝛼𝑚, 𝛽1, 𝛽2, … , 𝛽𝑝} is a finite subset of S∪T such that {𝛼1, 𝛼2, … , 𝛼𝑚}∊S 

and {𝛽1, 𝛽2, … , 𝛽𝑝}∊T                                                                                                     𝑎1𝛼1 +

𝑎2𝛼2 +⋯+ 𝑎𝑚𝛼𝑚 ∊L(S) and 𝑏1 𝛽1 + 𝑏2𝛽2 +⋯+ 𝑏𝑝𝛽𝑝 ∊L(T)  

∴α∊L(S)+L(T) and L(S∪T)⊆ L(S)+L(T)  

Let γ∊L(S)+L(T) 

Then  γ=β+δ where β∊L(S) and δ∊L(T).                                                                   Now 
β will be a linear combination of a finite number of elements of S and δ will be a 
linear combination of a finite number of elements of T 

⇒β+δ will be a linear combination of a finite number of elements of S∪T 

∴ β+δ∊L(S∪T) and L(S)+L(T)⊆ L(S∪T) 

Hence L(S∪T)=L(S)+L(T) 

(iii) Suppose S is a subspace of V 

Let α∊ L(S) 

Then α=𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛  where 𝛼1, 𝛼2, … , 𝛼𝑛∊ S and 𝑎1, 𝑎2, … , 𝑎𝑛ϵF  

Since S is a subspace of V, it is closed with respect to scalar multiplication and vector 
addition. 

∴α∊L(S)⇒α∊S and L(S)⊆S 

Also S⊆L(S), we have L(S)=S 



 
 

Conversely suppose that L(S)=S 

Since L(S) is a subspace of V and S=L(S), S is also a subspace of V 

(iv) Let α∊L(S). Then α=1α∊L(L(S)) 

∴ L(S)⊆ L(L(S)) 

Let α∊L(L(S)). Then α= 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛  where 𝛼1, 𝛼2, … , 𝛼𝑛∊L(S) and 
𝑎1, 𝑎2, … , 𝑎𝑛ϵF  

𝛼1, 𝛼2, … , 𝛼𝑛∊L(S) and L(S) is a subspace of V⇒ 

⇒𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛∊L(S)⇒α∊L(S) 

∴L(L(S))⊆L(S) and hence L(L(S))=L(S) 

 

Linear Dependence: Let V(F) be a vector space. A finite set {𝛼1, 𝛼2, … , 𝛼𝑛}of vectors 
of V is said to be linearly dependent if there exist scalars 𝑎1, 𝑎2, … , 𝑎𝑛ϵF not all  zero 
such that 𝑎1𝛼1 + 𝑎2𝛼2 + 𝑎𝑛𝛼𝑛=ō 

Linear independence: Let V(F) be a vector space. A Finite set {𝛼1, 𝛼2, … , 𝛼𝑛} of 
vectors of V is said to be linearly independent if every relation of the form  
𝑎1𝛼1 + 𝑎2𝛼2 + 𝑎𝑛𝛼𝑛= ō⇒ 𝑎1=0,𝑎2=0,…,𝑎𝑛=0 

Example: Show that the three vectors (1,1,-1), (2,-3,5) and (-2,1,4) of 𝑅3 are linearly 
independent. 

Solution: Let a,b,c be the real numbers such that 

a(1,1,-1)+b(2,-3,5)+c(-2,1,4)=(0,0,0) 

⇒(a+2b-2c, a-3b+c, -a+5b+4c)=(0,0,0) 

⇒ a+2b-2c=0             (1)                                                                                                                              
a-3b+c=0             (2)                                                                                            ----------
a+5b+4c=0         (3) 

Multiplying (2) by 2 and adding to (1), we get 3a-4b=0     (4) 

Multiplying (1) by 2 and adding to (3), we get a+9b=0       (5) 

Multiplying (5) by 3 and subtracting by (4), we get -31b=0 or b=0 

Putting b=0 in (5) we get a=0 



 
 

Putting a=0, b=0 in (1), we get c=0 

Thus a=0,b=0,c=0 is the only solution of the above equations 

∴ a(1,1,-1)+b(2,-3,5)+c(-2,1,4)=(0,0,0)⇒a=0,b=0,c=0 

Hence the given vectors of 𝑅3 are linearly independent. 

Example: Show that the system of vectors (1,3,2), (1,-7,-8), (2,1,-1) of 𝑉3(R) is 
linearly dependent. 

Solution: Suppose a(1,3,2) + b(1,-7,-8) + c(2,1,-1) = (0,0,0) 

⇒ (a+b+2c, 3a-7b+c, 2a-8b-c) = (0,0,0) 

⇒ a+b+2c = 0      (1) 

    3a-7b+c = 0      (2) 

    2a-8b-c = 0       (3) 

Multiplying (2) by 2, we get 6a-14b+2c = 0      (4) 

Subtracting (1) from (2), 5a-15b = 0⇒ a=3b 

Adding (2) and (3),  5a-15b = 0⇒ a=3b 

Put b=1, then a=3  

Putting these values in (1), c = -2 

∴ 3(1,3,2) + 1(1,-7,-8) - 2(2,1,-1) = (0,0,0)  

Hence the given vectors are linearly dependent. 

Example: Show that the vectors (1,1,2,4), (2,-1,-5,2), (1,-1,-4,0) and (2,1,1,6) are 
linearly dependent in 𝑅4 

Solution: Let  (1,1,2,4)= a(2,-1,-5,2)+b(1,-1,-4,0)+c(2,1,1,6) 

Then 2a+b+2c=1       (1) 

            -a-b+c=1         (2) 

          -5a-4b+c=2      (3) 

         2a+0b+6c=4      (4) 

Adding (1) and (2), we get a+3c=2. Putting c=0, then a=2 



 
 

Putting a=2,c=0 in (1), we get b= -3 

∴   (1,1,2,4)= 2(2,-1,-5,2)-3(1,-1,-4,0)+0(2,1,1,6) 

⇒  1 (1,1,2,4)- 2(2,-1,-5,2)+3(1,-1,-4,0)-0(2,1,1,6)=(0,0,0,0) 

∴ The given vectors are linearly dependent in 𝑅4 

Example: Show that the set of vectors {(1,2,0),(0,3,1),(-1,0,1)} in 𝑉3(R) is linearly 
independent. 

Solution: Let a,b,c be the real numbers such that                              
a(1,2,0)+b(0,3,1)+c(-1,0,1)=(0,0,0) 

(a-c,2a+3b,b+c)=(0,0,0) 

⇒a-c=0,2a+3b=0,b+c=0 

These equations will have a non-zero solution if the coefficient matrix is less 
than 3, the number of unknowns a,b,c. If the rank is 3, then a=0, b=0, c=0 
will be the only solution. 

The coefficient matrix A=[
1 0 −1
2 3 0
0 1 1

] 

|A|=1(3-0)-2(0+1)=1≠0 and Rank A=3 

Hence the zero solution a=0,b=0,c=0 is the only solution and the given system is 
linearly independent 

Example: Find whether the vectors (-1,2,1), (3,0,-1), (-5,4,3)  in 𝑉3(R) are linearly 
independent or not. 

Solution: Let a,b,c be scalars such that 

a(-1,2,1)+b(3,0,-1)+c(-5,4,3)=(0,0,0)  

⇒(-a+3b-5c,2a+0b+4c,a-b+3c)=(0,0,0) 

⇒ -a+3b-5c=0,2a+0b+4c=0,a-b+3c=0 

The coefficient matrix  is A==[
−1 3 −5
2 0 4
1 −1 3

] 

|A|= -1(0+4)-2(9-5)+1(12-0)=0 



 
 

∴ Rank<3 and the given system of equations will possess a non-zero solution. 

Hence the given vectors are linearly dependent in 𝑅4 
Example: If α,β,γ are linearly independent vectors of V(R), show that α+β, β+γ, γ+α 

are also linearly independent 

Solution: Let a,b,c∊R 

a(α+β)+b(β+γ)+c(γ+α)=ō ⇒ (a+c)α+(a+b)β+(b+c)γ=ō 

α,β,γ are linearly independent⇒a+0b+c=0, a+b+0c=0, 0a+b+c=0 

The coefficient matrix A= [
1 0 1
1 1 0
0 1 1

] 

Rank of A = 3 which is equal to the number of unknowns 

⇒a=0, b=0, c=0 is the only solution of the given equations 

∴α+β,β+γ,γ+α are also linearly independent 

Example: Is the Vector (2,-5,3) in the subspace of 𝑅3 spanned by the vectors       (1,-
3,2),  (2,-4,-1),(1,-5,7)? 

Solution: Let α=(2,-5,3), 𝛼1 = (1, −3,2), 𝛼2=(2,-4,-1), 𝛼3=(1,-5,7) 

 Let α= 𝑎1 𝛼1 + 𝑎2 𝛼2 + 𝑎3 𝛼3, where 𝑎1, 𝑎2 , 𝑎3 ∊ R 

(2,-5,3)= 𝑎1 (1, −3,2) + 𝑎2 (2, −4, −1) + 𝑎3 (1,-5,7) 

⇒ (2,-5,3)= (𝑎1 +2𝑎2  +  𝑎3 , -3 𝑎1 −4𝑎2 − 5 𝑎3 ,2 𝑎1 −𝑎2  + 7 𝑎3) 

⇒𝑎1 +2𝑎2  +  𝑎3 = 2,         (1) 

 -3 𝑎1 −4𝑎2 − 5 𝑎3 = −5       (2) 

2 𝑎1 −𝑎2  + 7 𝑎3 = 3               (3) 

Multiplying (1) by 3 and adding to (2), we get 2𝑎2 − 2 𝑎3=1⇒𝑎2 −𝑎3=1/2       (4) 

Multiplying (1) by 2 and subtracting from (3) ,we get −5𝑎2 + 5 𝑎3 = −1            ⇒𝑎2 
−𝑎3=1/5      (5) 

From (4) and (5), the above equations are inconsistent 

∴ α cannot be expressed as a linear combination of the vectors 𝛼1, 𝛼2, 𝛼3 



 
 

Hence the vector (2,-5,3) is not in the subspace of 𝑅3 spanned by the vectors      (1,-
3,2), (2,-4,-1),(1,-5,7) 

     Theorem: Every superset of a linearly dependent set of vectors is Linearly 
dependent. 
Proof: Let S={𝛼1, 𝛼2, … , 𝛼𝑛} be a linearly dependent set of vectors 

Then there exists scalars 𝑎1, 𝑎2, … , 𝑎𝑛ϵF, not all zero such that 

𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛=ō    …(1) 

Let 𝑆′={𝛼1, 𝛼2, … , 𝛼𝑛, 𝛽1, 𝛽2, … , 𝛽𝑛} be a superset of S. 

Then from (1) 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛 +  0 𝛽1 + 0𝛽2 +⋯+ 0𝛽𝑛=ō 

Here all the scalars are not zero, we have  𝑆′is linearly dependent 

Hence any superset of a linearly dependent set is linearly dependent 

Theorem: Every non-empty subset of a linearly independent set of vectors is linearly 

independent. 

Proof: Let S={𝛼1, 𝛼2, … , 𝛼𝑚} be a linearly dependent set of vectors 

Consider the subset {𝛼1, 𝛼2, … , 𝛼𝑘} where 1≤k≤m. 

No𝑤 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑘𝛼𝑘=ō 

⇒𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑘𝛼𝑘 +  0 𝛼1 + 0𝛼𝑘+1 +⋯+ 0𝛼𝑚=ō          
⇒𝑎1=0,𝑎2=0,…𝑎𝑘=0   (Since S is L.I) 

Hence the subset {𝛼1, 𝛼2, … , 𝛼𝑘}  is Linearly independent 
 

Theorem: Let V(F) be a vector space and S={𝛼1, 𝛼2, … , 𝛼𝑛}  is a finite subset of non 

zero vectors of V(F). Then S is linearly independent iff some vector 𝛼𝑘∊S, 2≤k≤n can 

be expressed as a linear combination of its preceding vectors 

Proof: Suppose S={𝛼1, 𝛼2, … , 𝛼𝑛}  is linearly dependent. 

Then there exists 𝑎1, 𝑎2, … , 𝑎𝑛ϵF, not all zero such that 

 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛=ō 

Let k be the greatest suffix of a for which 𝛼𝑘≠ō 

Then 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑘𝛼𝑘 + 0𝛼𝑘+1 +⋯+ 0𝛼𝑛=ō 



 
 

⇒𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑘𝛼𝑘=ō 

Suppose k=1 then 𝑎1𝛼1=ō 

But 𝑎1=0⇒𝛼1=ō which contradicts that each element of S is a non- zero vector. 

Hence k˃1, ie.,2≤k≤n 

Also 𝑎𝑘𝛼𝑘=-𝑎1𝛼1 − 𝑎2𝛼2 −⋯− 𝑎𝑘−1𝛼𝑘−1 

⇒𝑎𝑘
−1(𝑎𝑘𝛼𝑘)=𝑎𝑘

−1 (- 𝑎1𝛼1 − 𝑎2𝛼2 −⋯− 𝑎𝑘−1𝛼𝑘−1) 

𝛼𝑘=(-𝑎𝑘
−1𝑎1)𝛼1 + (−𝑎𝑘

−1𝑎2)𝛼2 +⋯+ (−𝑎𝑘
−1𝑎𝑘−1)𝛼𝑘−1 

    = Linear combination of preceding vectors 

Conversely suppose that some 𝛼𝑝∊S can be expressible as a linear combination of 

preceding vectors 

∴𝛼𝑝=𝑏1𝛼1 + 𝑏2𝛼2 +⋯+ 𝑏𝑝−1𝛼𝑝−1 

⇒𝑏1𝛼1 + 𝑏2𝛼2 +⋯+ 𝑏𝑝−1𝛼𝑝−1 + (−1)𝛼𝑝=ō 

⇒{𝛼1, 𝛼2, … , 𝛼𝑝}is Linearly dependent 

Hence the superset S={𝛼1, 𝛼2, … , 𝛼𝑝, … , 𝛼𝑛}  is Linearly dependent 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Basis of vector space 

 Finite dimensional vector spaces 

 Basis extension 

 Coordinates 

 Dimension of a vector space 

 Dimension of a subspace 



 
 

 Quotient space and dimension of quotient space 

 

 

 

 

 

 

 

 

 

 

 

 

Basis of a vector space: A subset S of a vector space V(F) is said to be a 
basis of V(F), if (i) S consists of linearly independent vectors (ii)L(S)=V 

Example: A system S consisting of n vectors 

𝑒1=(1,0,0,…,0),𝑒2=(0,1,0,…,0),…𝑒𝑛=(0,0,…,0,1) is a basis of 𝑉𝑛 over the 
field F. 

Solution: Suppose S={𝑒1, 𝑒2,… , 𝑒𝑛} 

Let 𝑎1, 𝑎2, … , 𝑎𝑛ϵF then 𝑎1𝑒1 + 𝑎2𝑒2 +⋯+ 𝑎𝑛𝑒𝑛=ō 

⇒𝑎1(1,0,0,… ,0) + 𝑎2(0,1,0,… ,0) +⋯+ 𝑎𝑛(0,0,… ,0,1) =ō 

⇒(𝑎1, 𝑎2…𝑎𝑛) =(0,0,…,0)⇒𝑎1 = 0, 𝑎2 = 0,… , 𝑎𝑛 = 0 

⇒the given vectors are linearly independent 

Let α=(𝑎1, 𝑎2…𝑎𝑛)∊𝑉𝑛(F) 



 
 

 α=(𝑎1, 𝑎2…𝑎𝑛) = 𝑎1(1,0,0,… ,0) + 𝑎2(0,1,0,… ,0) + ⋯+
𝑎𝑛(0,0,… ,0,1)=𝑎1𝑒1 + 𝑎2𝑒2 +⋯+ 𝑎𝑛𝑒𝑛=linear combination of 
elements of the set S⇒α∊L(S) 

∴ 𝑉𝑛(F)⊆L(S). We have L(S)⊆ 𝑉𝑛(F) 

∴𝑉𝑛=L(S) and hence S is a basis of 𝑉𝑛(F) 

Note1: The basis S={𝑒1, 𝑒2, … , 𝑒𝑛}is called standard basis of 𝑉𝑛(F) 

Note2: The standard basis of 𝑉2 (F) is {(1,0),(0,1)} 

Note3: The standard basis of 𝑉3 (F) is {(1,0,0),(0,1,0),(0,0,1)} 

 

 

 

 

Example: Show that the infinite set S={1,x,𝑥2, 𝑥3,… , 𝑥𝑛…} is a basis of 
the vector space F[x] of all polynomials over the field F 

Solution:Let 𝑆′= {𝑥𝑚1 , 𝑥𝑚2 ,… , 𝑥𝑚𝑛 } be any finite subset of S having n 

vectors where 𝑚1,𝑚2…𝑚𝑛 are some non-negative integers. 

Let 𝑎1, 𝑎2, … , 𝑎𝑛ϵF be scalars such that 

𝑎1𝑥
𝑚1 + 𝑎2𝑥

𝑚2 +⋯ + 𝑎𝑛  𝑥
𝑚𝑛=0(zero polynomial) 

⇒𝑎1 = 0, 𝑎2 = 0,… , 𝑎𝑛 = 0 

Thus every finite subset of S is linearly independent and hence S is 
linearly independent. 

Let f(x)=𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯ +𝑎𝑡𝑥

𝑡 be a polynomial of degree t 

Then f(x)=𝑎01 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯ +𝑎𝑡𝑥

𝑡 

Hence S is a basis of F[x] 



 
 

Example: Show that the vectors (1,2,1), (2,1,0), ( 1,-1,2) form a basis of 

𝑅3 

Solution: Since the set {(1,0,0), (0,1,0), (0,0,1)} forms a basis of 𝑅3, 

dim𝑅3=3 

Let S = {(1,2,1), (2,1,0), ( 1,-1,2)} 

Consider a(1,2,1)+b(2,1,0)+c(1,-1,2)=(0,0,0) 

⇒(a+2b+c, 2a+b-c, a+2c)=(0,0,0) 

a+2b+c=0     (1) 

2a+b-c=0       (2) 

a+2c=0          (3) 

 

 

 

Multiplying (2) by 2, we get 4a+2b-2c=0    (4) 

Subtracting (4) from (1) we get -3a+3c=0⇒ -a+c=0    (5) 

Adding (3) and (5), 3c=0⇒c=0 

Put c=0 in (3) we get a=0 and put c=0,a=0 in (1), we get b=0 

∴ S is linearly independent and hence it forms a basis for 𝑅3 

Example: Determine whether or not the following vectors form a basis of 

𝑅3: 

(1,1,2), (1,2,5), (5,3,4) 

Solution: We know that dim 𝑅3=3 

We have𝑎1(1,1,2) + 𝑎2(1,2,5) + 𝑎3(5,3,4) = (0,0,0) 

⇒(𝑎1 + 𝑎2 + 5𝑎3, 𝑎1 + 2𝑎2 + 3𝑎3,2𝑎1 + 5𝑎2 + 4𝑎3) = (0,0,0) 



 
 

∴𝑎1 + 𝑎2 + 5𝑎3=0         (1)                                                                                      

𝑎1 + 2𝑎2 + 3𝑎3=0          (2)                                                                                              

 2𝑎1 + 5𝑎2 + 4𝑎3=0       (3) 

Subtracting (2) from (1), we get - 𝑎2 + 2𝑎3=0    

Multiplying (1) by 2, we get     2𝑎1 + 2𝑎2 + 10𝑎3=0    

Subtracting (5) from (3), we get   3 𝑎2 − 6𝑎3=0 ⇒𝑎2 − 2𝑎3=0 

⇒𝑎2 = 2𝑎3 

putting 𝑎2 = 2𝑎3 in (1), we get 𝑎1 = −7𝑎3 

put 𝑎3=1, we get 𝑎2 = 2 𝑎𝑛𝑑 𝑎1 = −7 

 ∴   𝑎1= -7, 𝑎2 = 2 𝑎𝑛𝑑 𝑎3 = 1 is a non-zero solution of the above 

equations. 

Hence the given set is linearly dependent and it does not form a basis 

of 𝑅3               

Finite Dimensional Vector Space: The vector space V(F) is said to be finite 
dimensional or finitely generated if there exists a finite subset S of V such 
that V= L(S) 

Example: The vector space 𝑉𝑛(F) of n-tuples is a finite dimensional vector 
space. 

The vector space F[x] of all polynomials over a field F is not finite 
dimensional. 

Note: A vector space which is not finitely generated is called an infinite 
dimensional space. 

The vector space F[x] of all polynomials over a field F is infinite 
dimensional 

Theorem: There exists a basis for each finite dimensional vector space. 

Proof: Let V(F) be a finite dimensional vector space. 



 
 

Let S={𝛼1, 𝛼2, … , 𝛼𝑚}  be  a finite subset of V such that L(S)=V 

Suppose S does not contain ō 

If S is linearly independent, then S itself is a basis of V. 

If S is linearly dependent, then ∃𝛼𝑖 ∊S which can be expressed as a linear 
combination of the preceding vectors 𝛼1, 𝛼2, … , 𝛼𝑖−1 

If we omit this vector 𝛼𝑖 ∊ S, then the set 𝑆′ of m-1 vectors 
𝛼1, 𝛼2,… , 𝛼𝑖−1, 𝛼𝑖+1, … , 𝛼𝑚 also generates V ie., V=L(𝑆′) 

If α∊V, then L(S)=V ⇒α can be written as a linear combination of 
𝛼1, 𝛼2,… ,… , 𝛼𝑚.  

Let α=𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑖−1𝛼𝑖−1 + 𝑎𝑖  𝛼𝑖 + 𝑎𝑖+1𝛼𝑖+1 +⋯+ 𝑎𝑚𝛼𝑚 

But 𝛼𝑖 can be expressed as a linear combination of 𝛼1, 𝛼2,… ,𝛼𝑖−1 

Let 𝛼𝑖=𝑏1𝛼1 + 𝑏2𝛼2 +⋯+ 𝑏𝑖−1𝛼𝑖−1 

∴α=𝑎1𝛼1 +⋯+ 𝑎𝑖−1𝛼𝑖−1 + 𝑎𝑖  (𝑏1𝛼1 + 𝑏2𝛼2 +⋯+ 𝑏𝑖−1𝛼𝑖−1) +
𝑎𝑖+1𝛼𝑖+1 +⋯+ 𝑎𝑚𝛼𝑚 

Thus α is expressed as a linear combination of the vectors 

𝛼1, 𝛼2,… , 𝛼𝑖−1, 𝛼𝑖+1, … , 𝛼𝑚 

∴α∊V⇒α can be expressed as a linear combination of the vectors in 𝑆′ 

Thus L(𝑆′)=V 

If 𝑆′ is linearly independent, then 𝑆′will be a basis of V. If 𝑆′is linearly 

dependent, then proceeding as above we shall get a new set of n-2 

vectors which generates V. 

Continuing this process, we shall after finite number of steps, obtain a 
linearly independent subset of S which generates V and hence a basis 

of V. 

Theorem: Let V(F) be a finite dimensional vector space and 

S={𝛼1, 𝛼2, … , 𝛼𝑚}  be a linearly independent subset of V. Then either S 
itself a basis of V or S can be extended to form a basis of V. 



 
 

Proof:S={𝛼1, 𝛼2, … , 𝛼𝑚}  is a linearly independent subset of V 

Since V(F) is finite dimensional, it has a finite basis say B 

Let B={𝛽1, 𝛽2, … , 𝛽𝑛 } 

Consider the set 𝑆1={𝛼1, 𝛼2, … , 𝛼𝑚 , 𝛽1, 𝛽2, … , 𝛽𝑛} 

Then L(𝑆1)=V 

Each α can be expressed as a linear combination of β’s since B is a basis of 
V⇒𝑆1is linearly dependent. 

Hence some vector in 𝑆1can be expressed as a linear combination of 
its preceding vectors. 

This vector cannot be any of α’s, since S is linearly independent.      So 
this vector must be some 𝛽𝑖 

Consider 𝑆2={𝛼1, 𝛼2, … , 𝛼𝑚, 𝛽1, … , 𝛽𝑖−1, 𝛽𝑖+1… , 𝛽𝑛}=𝑆1-{𝛽𝑖} 

Then L(𝑆2) = L(𝑆1)=V 

If 𝑆2 is linearly independent, then 𝑆2 forms a basis of V and it is the 

extended set. 

If 𝑆2 is linearly dependent, then continue this procedure till we get 𝑆𝑘 ⊆ 𝑆 

such that 𝑆𝑘 is linearly independent. 

∴L(𝑆𝑘) = L(S)=V 

Hence 𝑆𝑘will be extended set of S forming a basis of V 

Definition: Let  S={𝛼1, 𝛼2, … , 𝛼𝑛}  be the basis of a vector space over V 

Let β= 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛∊V, where 𝑎1, 𝑎2, … , 𝑎𝑛 ∊ F then the 

scalars {𝑎1, 𝑎2, … , 𝑎𝑛 (F). } are called the coordinates. 

Example: Show that the set {(I,0,0),(1,1,0),(1,1,1)} is a basis of 𝐶3(C). 

Hence find the coordinates of the vector (3+4i,6i,3+7i) in 𝐶3(C) 

Solution: Let S={(I,0,0),(1,1,0),(1,1,1)} 



 
 

A = [
1 0 0
1 1 0
1 1 1

] 𝑅2 − 𝑅1, 𝑅3 − 𝑅2 [
1 0 0
0 1 0
0 0 1

] 

∴ Rank A=3 and the given set of vectors is linearly independent. 

Let z=(a,b,c)∊ 𝐶3 

(a,b,c)= p(1,0,0)+q(1,1,0)+r(1,1,1)=(p+q+r, q+r , r) 

⇒a=p+q+r,  b=q+r,  c=r⇒ r=c, q=b-c, p=a-b 

∴ z=(a-b)(1,0,0)+(b-c)(1,1,0)+c(1,1,0)∊L(S) 

∴ S is a basis of 𝐶3                                                                                                  If 
(a,b,c)=(3+4i,6i,3+7i), then p= a-b=3+4i-6i=3-2i,                                  q=b-
c=6i-3-7i=-3-i and r=c=3+7i                                                                       ∴ 3-2i, 
-3-i, 3+7i are the coordinates of the given vector. 

 

Dimension of a vector space: 

The number of elements in any basis of a finite dimensional vector space 
V(F) is called the dimension of the vector space V(F) and is denoted 
by dimV 

Example: Let V be the vector space of all 2×2 matrices over the field F. 

Prove that V has dimension 4 by exhibiting a basis for V which has 4 

elements. 

Sol: α= [
1 0
0 0

],   β= [
0 1
0 0

] ,     γ=[
0 0
1 0

] and  δ=[
0 0
0 1

] in V 

aα+bβ+cγ+dδ=0⇒ a[
1 0
0 0

] + 𝑏 [
0 1
0 0

] + c[
0 0
1 0

] +d[
0 0
0 1

]=[
0 0
0 0

] 

⇒[
𝑎 𝑏
𝑐 𝑑

] = [
0 0
0 0

] ⇒a=0,b=0,c=0,d=0 

∴ S={α,β,γ,δ} is linearly independent 

If [
𝑎 𝑏
𝑐 𝑑

] is any vector in V, then [
𝑎 𝑏
𝑐 𝑑

]= aα+bβ+cγ+dδ 



 
 

∴ L(S)=V and hence S is a basis of V 

dim V = 4 

Theorem: If V(F) is a finite dimensional vector space, then any two bases 
of V have the same number of elements 

Proof: Let 𝑆𝑚  𝑎𝑛𝑑 𝑆𝑛 be the two bases of V(F) where 
𝑆𝑚  ={𝛼1, 𝛼2, … , 𝛼𝑚}, 𝑆𝑛={𝛽1, 𝛽2,… , 𝛽𝑛} 

∴𝑆𝑚  𝑎𝑛𝑑 𝑆𝑛 are linearly independent subsets of V 

(i) Consider 𝑆𝑚 as the basis of V and 𝑆𝑛 as linearly independent 

⇒L(𝑆𝑚)=V and n(𝑆𝑚)=m 

∴𝑆𝑛 can be extended to be a basis of V⇒n≤m 

(ii) Consider 𝑆𝑛 as the basis of V and 𝑆𝑚 as linearly independent 

⇒L(𝑆𝑛)=V and n(𝑆𝑛)=n 

∴𝑆𝑚 can be extended to be a basis of V⇒m≤n 

But both 𝑆𝑚  𝑎𝑛𝑑 𝑆𝑛 are bases of V. 

∴n≤m and m≤n⇒ m=n 

Hence any two bases of V have the same number of elements. 

Ex: For the vector space 𝑉3 , the set 𝑆1={(1,0,0),(0,1,0),(0,0,1)} and 
𝑆2={(1,0,0),(1,1,0),(1,1,1)} are clearly bases and contain the same 
number of elements 

Theorem:  Each set of (n+1) or more vectors of a finite dimensional vector 
space V(F) of dimension n is linearly dependent 

Proof: Let V(F) be a finite dimensional vector space of dimension n.    Let 
S be a linearly independent subset of V containing n+1 or more vectors.                                                                                                            
Then S will form a part of a basis of V.                                                        Thus 
we shall get a basis of V containing more than n vectors.              But every 
basis of V will contain exactly n vectors.                               Hence our 



 
 

assumption is wrong.                                                                      ∴ If S 
contains n+1 or more vectors, then S must be linearly dependent. 

Theorem: Let V be a vector space which is spanned by a finite set of 
vectors 𝛽1, 𝛽2, … , 𝛽𝑚. Then any linearly independent set of vectors in V is 
finite and contains no more than m vectors. 

Proof: Let S ={ 𝛽1, 𝛽2, … , 𝛽𝑚 }                                                                    Since 
L(S)=V, V has a finite basis and dim V ≤ m.                                            ∴ Every 
subset 𝑆′of V which contains more than m vectors is linearly dependent. 

Hence  the theorem is proved.  

Theorem: If a set S of n vectors of a finite dimensional vector space V(F) 
of dimension n generates V(F), then S is a basis of V 

Proof: Let V(F) be a finite dimensional vector space of dimension n.   Let 
S={𝛼1, 𝛼2, … , 𝛼𝑛} be a subset of V such that L(S)=V.                             If 
S is linearly independent, then S will form a basis of V.                                      
If S is not linearly independent, then there will exist a proper subset 
of S which will form a basis of V.                                                         Thus 
we shall get a basis of V containing less than n elements.      But every 
basis of V must contain exactly n elements.                          ∴ S cannot 
be linearly dependent and hence S must be a basis of V 

Theorem: If V(F) is a finite dimensional vector space of dimension n, then 
any set of linearly independent vectors in V forms a basis of V. 

Proof: Let {𝛼1, 𝛼2, … , 𝛼𝑛} be a linearly independent subset of a finite 
dimensional vector space V(F) of dimension n.                                     If 
S is not a basis of V, then it can be extended to form a basis of V. Thus 
we shall get a basis of V containing more than n vectors.      But every 
basis of V must contain exactly n vectors.                      ∴Our 
assumption is wrong and S must be a basis of V 

Dimension of a subspace:  



 
 

Theorem: Let V(F) be a finite dimensional vector space of dimension n 

and W be the subspace of V. Then W is a finite dimensional vector 

space with dim W≤n. 

Proof: dim V = n⇒ each (n+1) or more vectors of V form a linearly  

dependent set. 

W is a subspace of V(F)⇒each set of (n+1) vectors in W is a subset of 

V and hence linearly dependent. 

Thus any linearly independent set of vectors in W can contain at the 

most n vectors. 

Let S = {𝛼1, 𝛼2, … , 𝛼𝑛} be the largest linearly independent subset of W, 

where m≤n 

Now we shall prove that S is the basis of W. 

For any β∊W, consider 𝑆1= {𝛼1, 𝛼2, … , 𝛼𝑚, β} 

Since S is the largest set of linearly independent vectors, 𝑆1is linearly 

dependent. 

∴∃𝑎1, 𝑎2, … , 𝑎𝑚 , 𝑏 ∊ F not all zero such that                                         

𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑚𝛼𝑚+bβ=0 

Let b=0, then 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑚𝛼𝑚 = 0 ⇒ 𝑎1 = 0, 𝑎2 =

0,… , 𝑎𝑚 = 0 ⇒ 𝑆1 is linearly independent which is a contradiction. 

∴b≠0. Then ∃ 𝑏−1∊F ∋ b𝑏−1=1 

𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑚𝛼𝑚+bβ=0⇒bβ=−𝑎1𝛼1 − 𝑎2𝛼2 −⋯− 𝑎𝑚𝛼𝑚 

⇒β=(−𝑏−1𝑎1)𝛼1 + (−𝑏−1𝑎2)𝛼2 +⋯+ (−𝑏−1𝑎𝑚)𝛼𝑚 

⇒β= a linear combination of elements of S⇒β∊L(S) 

Also S is linearly independent and hence S is the basis of W 

∴ W is a finite dimensional vector space with dim W≤n. 



 
 

𝑻𝒉𝒆𝒐𝒓𝒆𝒎: 𝐼𝑓 𝑊1,𝑊2 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑠 𝑜𝑓 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟
space V(F) then dim(𝑊1 +𝑊2)=dim𝑊1+dim𝑊2-dim(𝑊1 ∩𝑊2) 
Proof: let dim(𝑊1 ∩𝑊2)=k and S={𝛾1,𝛾2,𝛾3,… , 𝛾𝑘}  be a basis of (𝑊1 ∩

𝑊2) 
Then S⊆ 𝑊1and S⊆ 𝑊2 

Since S is linearly independent and S⊆ 𝑊1, 
S can be extended to form a basis of 𝑊1. 
Let {𝛾1,𝛾2,… , 𝛾𝑘, 𝛼1, 𝛼2, … , 𝛼𝑚} be a basis of 𝑊1 

Then dim𝑊1=k+m 

Similarly let {𝛾1,𝛾2,… , 𝛾𝑘, 𝛽1, 𝛽2, … , 𝛽𝑡} be a basis of 𝑊2 

Then dim𝑊2=k+t 

dim𝑊1+dim𝑊2-dim(𝑊1 ∩𝑊2)=k+m+t 

Let 𝑆1= {𝛾1,𝛾2,… , 𝛾𝑘, 𝛼1, 𝛼2, … , 𝛼𝑚, 𝛽1, 𝛽2, … , 𝛽𝑡} be a basis of 𝑊1 +𝑊2 

Let 𝑐1𝛾1 + 𝑐2𝛾2 +⋯+ 𝑐𝑘𝛾𝑘 + 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑚𝛼𝑚 +  𝑏1 𝛽1 +
𝑏2𝛽2 +⋯+ 𝑏𝑡𝛽𝑡 =ō 

⇒𝑏1 𝛽1 + 𝑏2𝛽2 +⋯+ 𝑏𝑡𝛽𝑡= -(𝑐1𝛾1 + 𝑐2𝛾2 +⋯+ 𝑐𝑘𝛾𝑘 + 𝑎1𝛼1 + 𝑎2𝛼2 +
⋯+ 𝑎𝑚𝛼𝑚) ∈ 𝑊1 ∩𝑊2 
𝑏1 𝛽1 + 𝑏2𝛽2 +⋯+ 𝑏𝑡𝛽𝑡=𝑑1𝛾1 + 𝑑2𝛾2 +⋯+ 𝑑𝑘𝛾𝑘 

⇒𝑏1 𝛽1 + 𝑏2𝛽2 +⋯+ 𝑏𝑡𝛽𝑡 − 𝑑1𝛾1 − 𝑑2𝛾2 −⋯− 𝑑𝑘𝛾𝑘 = ō 

But 𝛽1, 𝛽2, … , 𝛽𝑡 ,𝛾1,𝛾2,, … , 𝛾𝑘 are linearly independent vectors. 

Therefore  𝑏1 = 0, 𝑏2 = 0,… , 𝑏𝑡 = 0 

𝑐1𝛾1 + 𝑐2𝛾2 +⋯+ 𝑐𝑘𝛾𝑘 + 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑚𝛼𝑚=ō⇒𝑐1 = 0, 𝑐2 =
0,… , 𝑐𝑘 = 0, 𝑎1 = 0, 𝑎2 = 0,… , 𝑎𝑚 = 0 

Since 𝛾1,𝛾2,… , 𝛾𝑘, 𝛼1, 𝛼2, … , 𝛼𝑚 are linearly independent, 𝑐1 = 0, 𝑐2 =

0,… , 𝑐𝑘 = 0, 𝑎1 = 0, 𝑎2 = 0,… , 𝑎𝑚 = 0,𝑏1 = 0, 𝑏2 = 0,… , 𝑏𝑡 = 0 

Therefore 𝑆1 is linearly independent. 

Now we  show that L(𝑆1)=𝑊1 +𝑊2 



 
 

Since 𝑊1 +𝑊2 is a subspace of V and each element of                  𝑆1∊𝑊1 +
𝑊2,  L(𝑆1) ⊆  𝑊1 +𝑊2 

Let α∊𝑊1 +𝑊2.                                                                                            Then 
α=some element of  𝑊1+some element of 𝑊2 

= a linear combination of elements of basis of 𝑊1+ a linear combination 
of elements of basis of 𝑊2 

=a linear combination of elements of 𝑆1 

∴ α∊ L(𝑆1) and 𝑊1 +𝑊2⊆ L(𝑆1) 

∴ L(𝑆1) =  𝑊1 +𝑊2 

∴ 𝑆1 is a basis of   𝑊1 +𝑊2 and dim(𝑊1 +𝑊2)= k+m+t 

Hence the theorem. 
Example: Let 𝑊1𝑎𝑛𝑑 𝑊2 be two subspaces of 𝑅4 given by                         

𝑊1 = {(𝑎, 𝑏, 𝑐, 𝑑): 𝑏 − 2𝑐 + 𝑑 = 0}, 𝑊2={(a,b,c,d):a=d, b=2c}. Find the 

basis and dimension of (i) 𝑊1 (ii) 𝑊2(iii) 𝑊1 ∩𝑊2 𝑎𝑛𝑑 hence find 

dim(𝑊1 +𝑊2) 

Solution: Given 𝑊1 = {(𝑎, 𝑏, 𝑐, 𝑑): 𝑏 − 2𝑐 + 𝑑 = 0} 

Let (a,b,c,d)∊𝑊1                                                                                             then 

(a,b,c,d)=(a,2c-d,c,d)=a(1,0,0,0)+c(0,2,1,0)+d(0,-1,0,1) 

∴ (a,b,c,d)=linear combination of linearly independent set 

{(1,0,0,0),(0,2,1,0),(0,-1,0,1)} which form a basis of 𝑊1. 

∴  dim𝑊1=3 

(ii) Given 𝑊2={(a,b,c,d):a=d, b=2c} 

Let (a,b,c,d)∊𝑊2 then (a,b,c,d)=(d,2c,c,d)=d(1,0,0,1)+c(0,2,1,0) 

∴ (a,b,c,d)=linear combination of linearly independent set 

{(1,0,0,1),(0,2,1,0)} which form a basis of 𝑊2. 

∴  dim𝑊2=2 



 
 

(iii) 𝑊1 ∩𝑊2 ={(a,b,c,d):b-2c+d=0, a=d, b=2c} 

Now b-2c+d=0, a=d, b=2c ⇒ b=2c, a=0, d=0 

∴ (a,b,c,d)=(0,2c,c,0)=c(0,2,1,0) 

∴ Basis of 𝑊1 ∩𝑊2 = (0,2,1,0)⇒ dim(𝑊1 ∩𝑊2)= 1 

 dim(𝑊1 +𝑊2)=dim𝑊1 + 𝑑𝑖𝑚𝑊2- dim(𝑊1 ∩𝑊2)=3+2-1=4 

 

   Let W be any subspace of a vector space V(F). Let α∊V. Then the set 

W+α = {γ+α: γ∊W} is called a right coset of W in V generated by α. 

Similarly   the set α+W = {α+γ: γ∊W} is called a left coset of W in V 

generated by α. 

Let V/W denote the set of all cosets of W in V                                           i.e.,  

V/W = {W+α:  α∊V}                                                                                                                    

Quotient space: If W is any subspace of a vector space V(F), then the set 

V/W of all cosets W+α where  α∊V, is a vector space over F for addition 

and scalar multiplication compositions defined as follows: 

(W+α)+(W+β) = W+(α+β), ∀α,β∊V and a(W+α) = W+aα, a∊ F, α∊V. The 

vector space V/W is called the Quotient space of V 

Theorem: If W is a subspace of a finite dimensional vector space V(F), 

then dim V/W = dim V – dim W. 

Proof: Let m be the dimension of the subspace W of the vector space 

V(F). 

Let S = {𝛼1, 𝛼2, … , 𝛼𝑚} be a basis of W. 

Since S is a linearly independent subset of V, it can be extended to form a 

basis of V. 

Let 𝑆′ = {𝛼1, 𝛼2, … , 𝛼𝑚, 𝛽1, 𝛽2, … , 𝛽𝑙} be a basis of V 



 
 

Then dim V = m+𝑙 

∴ dim V – dim W = (m+𝑙) - m=𝑙 

Now we shall prove that dim V/W=𝑙 

Suppose 𝑆1= {𝑊 +  𝛽1,𝑊 + 𝛽2, … ,𝑊 + 𝛽𝑙}  

Now we prove that 𝑆1 is a basis of V/W 

Let 𝑎1(𝑊 +  𝛽1) + 𝑎2(𝑊 + 𝛽2) + ⋯+ 𝑎𝑙(𝑊 + 𝛽𝑙)=W 

⇒(𝑊 + 𝑎1 𝛽1) + (𝑊 + 𝑎2𝛽2) +⋯+ (𝑊 + 𝑎𝑙𝛽𝑙)=W 

⇒ W+(𝑎1𝛽1 + 𝑎2𝛽2 +⋯+ 𝑎𝑙𝛽𝑙)=W+𝑶 

⇒𝑎1𝛽1 + 𝑎2𝛽2 +⋯+ 𝑎𝑙𝛽𝑙 ∊ W 

⇒𝑎1𝛽1 + 𝑎2𝛽2 +⋯+ 𝑎𝑙𝛽𝑙 = 𝑏1𝛼1 + 𝑏2𝛼2 +⋯+ 𝑏𝑚𝛼𝑚 

⇒𝑎1𝛽1 + 𝑎2𝛽2 +⋯+ 𝑎𝑙𝛽𝑙 − 𝑏1𝛼1 − 𝑏2𝛼2 −⋯− 𝑏𝑚𝛼𝑚=𝑶 

⇒   𝑎1=0, 𝑎2 = 0,…  𝑎𝑙 = 0 (∵𝛽1, 𝛽2, … , 𝛽𝑙,𝛼1, 𝛼2, … , 𝛼𝑚 are L I) 

∴ 𝑆1 is linearly independent. 

Now we show that L(𝑆1) = V/W. 

Let W+α ∊ V/W 

α=𝑐1𝛼1 + 𝑐2𝛼2 +⋯+ 𝑐𝑚𝛼𝑚 + 𝑑1𝛽1 + 𝑑2𝛽2 +⋯+ 𝑑𝑙𝛽𝑙 

=γ + 𝑑1𝛽1 + 𝑑2𝛽2 +⋯+ 𝑑𝑙𝛽𝑙, 𝑤ℎ𝑒𝑟𝑒 𝛾 = 𝑐1𝛼1 + 𝑐𝛼2 +⋯+ 𝑐𝑚𝛼𝑚 ∊W 

W+α=W+(γ + 𝑑1𝛽1 + 𝑑2𝛽2 +⋯+ 𝑑𝑙𝛽𝑙)                                                   

=(W+γ) + 𝑑1𝛽1 + 𝑑2𝛽2 +⋯+ 𝑑𝑙𝛽𝑙                                                         =W 

+( 𝑑1𝛽1 + 𝑑2𝛽2 +⋯+ 𝑑𝑙𝛽𝑙)                                                             =(W + 

𝑑1𝛽1) + (𝑊 + 𝑑2𝛽2) + ⋯+ (𝑊 + 𝑑𝑙𝛽𝑙)                              =𝑑1(W + 𝛽1) +

𝑑2(𝑊 + 𝛽2) + ⋯+ 𝑑𝑙(𝑊 + 𝛽𝑙) 

Thus any element W+α of V/W can be expressed as a linear 

combination of  𝑆1. 

∴ V/W =L(𝑆1) 



 
 

∴ 𝑆1is a basis of  V/W and dim V/W = 𝑙 

Hence the theorem. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Linear Transformations 

 Linear operators 

 Properties of Linear Transformations 

 Sum and product of Linear Transformations 

 Algebra of Linear operators 

 Range and null space of Linear Transformation 



 
 

 Rank and Nullity of Linear Transformation 

 Rank – Nullity theorem 

 

 

 

 

 

 

                                             LINEAR TRANSFORMATION  

  Definition: Let U(F) and V(F)  be two vector spaces over the same field F.  A linear 
transformation from U into V is a function T from U into V such that 
T(aα+bβ)=aT(α)+bT(β) for all α,β∊U and a,b∊F 

Zero Transformation: Let U(F) and V(F) be two vector spaces. The function T from U 
into V defined by T(α)=ō for all α∊U is a linear transformation from U into V. It is 
called zero transformation 

Identity operator:: Let  V(F) be a vector space. The function I from V into V defined 
by I(α)=α for all α∊V is a linear transformation from V into V. The transformation 
I is called identity operator on V 

Negative of a linear Transformation: Let U(F) and V(F) be two vector spaces. Let T 
be a linear transformation from U into V. The correspondence  -T  defined by (-
T)(α)= -[T(α)] for all α∊U is a linear transformation from U into V. The linear 
transformation –T is called the negative of the linear transformation T. 

Properties of linear transformations: 

Theorem: Let T be a linear transformation from a vector space U(F) into V(F). 
Then 

(i) T(ō)=ō, where ō on the left hand side is zero of U and ō on the right hand side 
is zero vector of V 

 ii) T(-α)=-T(α) , for all α∊U 

(iii) T(α-β)=T(α)-T(β), for all α,β∊U  



 
 

(iv)T(𝒂𝟏𝜶𝟏 + 𝒂𝟐𝜶𝟐 +⋯+ 𝒂𝒏𝜶𝒏) = 𝒂𝟏𝑻(𝜶𝟏) + 𝒂𝟐𝑻(𝜶𝟐) + ⋯+ 𝒂𝒏𝑻(𝜶𝒏) 

Where  𝜶𝟏, 𝜶𝟐, … , 𝜶𝒏∊U, 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏∊F 

Proof: Let α∊U then T(α)∊V 

T(α)+ ō=T(α)=T(α+ ō)=T(α)+T(ō)⇒ō=T(ō) 

(ii) T[α+(-α)]=T(α)+T(-α) 

But T[α+(-α)]=T(ō)=ō∊V 

Therefore T(α)+T(-α)=ō and  T(-α)=-T(α)  

(iii) T(α-β)= T[α+(-β)]=T(α)+T(-β)= T(α)+[-T(β)]= T(α)-T(β) 

(iv) We prove this by using mathematical induction.                                                                   
We know that  T(𝑎1𝛼1)=𝑎1𝑇(𝛼1)                                                                       Suppose 
T(𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛−1𝛼𝑛−1) = 𝑎1𝑇(𝛼1) + 𝑎2𝑇(𝛼2) + ⋯+ 𝑎𝑛−1𝑇(𝛼𝑛−1) 

Then T(𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛) 

=T[(𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛−1𝛼𝑛−1)+𝑎𝑛𝛼𝑛] 

=T(𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛−1𝛼𝑛−1)+ 𝑇( 𝑎𝑛𝛼𝑛) 

=[𝑎1𝑇(𝛼1) + 𝑎2𝑇(𝛼2) + ⋯+ 𝑎𝑛−1𝑇(𝛼𝑛−1)] + 𝑎𝑛𝑇(𝛼𝑛) 

=𝑎1𝑇(𝛼1) + 𝑎2𝑇(𝛼2) + ⋯+ 𝑎𝑛−1𝑇(𝛼𝑛−1) + 𝑎𝑛𝑇(𝛼𝑛) 

Example: The function T: 𝑽𝟑(𝑹) → 𝑽𝟐(𝑹) defined as T(a,b,c)= (a,b)  ∀ a,b,c ∊ R is a 
linear transformation from 𝑽𝟑(𝑹) → 𝑽𝟐(𝑹).  

Solution: Let 𝛼 = (𝑎1, 𝑏1, 𝑐1), 𝛽 = (𝑎2, 𝑏2, 𝑐2) ∈ 𝑉3(𝑅) 

T(aα+bβ)=T[𝑎(𝑎1, 𝑏1, 𝑐1) + 𝑏(𝑎2, 𝑏2, 𝑐2)] 

=T[𝑎𝑎1 + 𝑏𝑎2, 𝑎𝑏1 + 𝑏𝑏2, 𝑎𝑐1 + 𝑏𝑐2] 

=(𝑎𝑎1 + 𝑏𝑎2, 𝑎𝑏1 + 𝑏𝑏2)                                    

=(𝑎𝑎1, 𝑎𝑏1) + (𝑏𝑎2, 𝑏𝑏2) 

=a(𝑎1, 𝑏1) + 𝑏(𝑎2, 𝑏2)  

=aT(𝑎1, 𝑏1, 𝑐1) + 𝑏𝑇(𝑎2 ,  𝑏2, 𝑐2) 

=aT( 𝛼) + 𝑏𝑇(𝛽) 

Therefore  T is a linear transformation 



 
 

 

Example: Describe  explicitly the linear transformation T:𝑹𝟐→𝑹𝟐 such that 

T(2,3)=(4,5) and T(1,0)=(0,0) 

Solution: Let S = {(2,3),(1,0)} 

a(2,3)+b(1,0)=ō⇒(2a+b,3a) = (0,0)⇒2a+b=0, 3a=0⇒ a=0, b=0 

∴ S is linearly independent 

Let (x,y)∊ 𝑅2 

(x,y) = a(2,3)+b(1,0)=(2a+b,3a)⇒ 2a+b=x, 3a=y ⇒ a=
𝑦

3
, b=

3𝑥−2𝑦

3
 

∴ L(S) = 𝑅2 

T(x,y)= T[
𝑦

3
(2,3) + 

3𝑥−2𝑦

3
(1,0)]=

𝑦

3
𝑇(2,3) + 

3𝑥−2𝑦

3
𝑇(1,0)                      = 

𝑦

3
(4,5) +

 
3𝑥−2𝑦

3
(0,0)= (

4𝑦

3
,
5𝑦

3
) 

Example: Find T(x,y,z) where T: 𝑹𝟑 → 𝑹 is defined by T(1,1,1) =3, T(0,1,-2) = 1, 

T(0,0,1)= -2 

Solution: Let S= {(1,1,1),(0,1,-2),(0,0,1)} 

Let a(1,1,1)+b(0,1,-2)+c(0,0,1)=ō⇒(a,a+b,a-2b+c)=(0,0,0)⇒a=0,a+b=0,    a-

2b+c=0⇒a=0,b=0,c=0 

∴ S is linearly independent 

Let (x,y,z) ∊𝑅3 

 (x,y,z)=a(1,1,1)+b(0,1,-2)+c(0,0,1)=(a,a+b,a-2b+c)                              ⇒a=x, 

a+b=y,  a-2b+c=z⇒a=x, b=y-x, c=z+2y-3x 

∴ L(S)= 𝑅3 

T(x,y,z)=T[x(1,1,1)+(y-x)(0,1,-2)+(z+2y-3x)(0,0,1)]                                     

=xT(1,1,1)+(y-x)T(0,1,-2)+(z+2y-3x)T(0,0,1)                                          =x(3)+(y-

x)(1)+(z+2y-3x)(-2)=8x-3y-2z 



 
 

Sum of linear transformations: 

Definition: Let 𝑇 1 𝑎𝑛𝑑 𝑇2 be two linear transformations from U(F) into V(F). 

Then their sum 𝑇 1+ 𝑇2 is defined by (𝑇 1+ 𝑇2)(𝛼) = 𝑇 1(𝛼) +  𝑇2(𝛼), ∀𝛼 ∈ 𝑈 

Theorem: Let U(F) and V(F) be two vector spaces. Let 𝑻 𝟏 𝒂𝒏𝒅 𝑻𝟐 be two linear 

transformations from U into V. Then the mapping 𝑻 𝟏+ 𝑻𝟐 defined by 

(𝑻 𝟏+ 𝑻𝟐)(𝜶) = 𝑻 𝟏(𝜶) +  𝑻𝟐(𝜶), ∀𝜶 ∈ 𝑼 is a linear transformation. 

Proof: (𝑇 1+ 𝑇2)(𝛼) = 𝑇 1(𝛼) +  𝑇2(𝛼), ∀𝛼 ∈ 𝑈 

 𝑇 1(𝛼) ∊ 𝑉 𝑎𝑛𝑑 𝑇2(𝛼) ∊ 𝑉⇒ 𝑇 1(𝛼) +  𝑇2(𝛼) ∊ 𝑉 

Let a,b∊F and α ,β∊U 

Then (𝑇 1+ 𝑇2)(𝑎𝛼 + 𝑏𝛽) = 𝑇 1(𝑎𝛼 + 𝑏𝛽) +  𝑇2(𝑎𝛼 + 𝑏𝛽)=a 𝑇 1(𝛼) + 𝑏 𝑇1(𝛽)+ a 

𝑇 2(𝛼) + 𝑏 𝑇2(𝛽)=a[𝑇 1(𝛼) +  𝑇2(𝛼)]+b[𝑇 1(𝛽) +  𝑇2(𝛽)] 

=a(𝑇 1+ 𝑇2)(𝛼)+b(𝑇 1+ 𝑇2)(𝛽) 

∴ 𝑇 1+ 𝑇2 is a linear transformation from U into V 

Scalar multiplication  of a Linear Transformation: Let T:U(F)→V(F) be a linear 

transformation and a∊F. Then the function aT defined by (aT)(α)=aT(α) ∀α∊U is a 

linear transformation. 

Example: Let T: 𝑽𝟑(𝑹) → 𝑽𝟐(𝑹) and H: 𝑽𝟑(𝑹) → 𝑽𝟐(𝑹) be the two linear 

transformations defined by T(x,y,z)=(x-y,y+z) and H(x,y,z)=(2x,y-z) 

Find (i) H+T  (ii) aH 

Solution: (i) (H+T)(x,y,z) = H(x,y,z) + T(x,y,z) = (2x, y-z) + (x-y, y+z)= (3x-y,2y) 

(ii) (aH)(x,y,z) = aH(x,y,z)= a(2x, y-z) = (2ax, ay-az) 

Product of Linear Transformations: 

Theorem: Let U(F), V(F) and W(F) are three vector spaces and T:V→W and H:U→V 

are two linear transformations . Then the composite function TH defined by 

(TH)(α)=T[H(α)] = T[H(α)] ∀𝜶 ∈U is a linear transformation from U into W. 



 
 

Proof: 𝛼∊U⇒ H(α)∊V 

H(α)∊V⇒ T[H(α)]∊W ⇒ (TH)(α)∊W 

∴ TH is a mapping from U into W 

Let a,b∊F, α,β∊U. 

Then (TH)[aα+bβ]= T[H(aα+bβ)]= T[aH(α)+b H(β)]                                        = 

a(TH)(α)+b(TH)(β) 

∴ TH is a linear transformation from U into W: 

Example: Let  T:𝑹𝟑→𝑹𝟐 and H:𝑹𝟑→𝑹𝟐 be defined by T(x,y,z) = (3x, y+z) and 

H(x,y,z)= (2x-z, y). Compute (i) T+H (ii) 4T-5H  (iii) TH  (iv) HT 

Solution: (T+H)(x,y,z) = T(x,y,z) + H(x,y,z) = (3x, y+z)+(2x-z,y)            =(5x-z, 

2y+z) 

(ii) (4T-5H)(x,y,z)=4T(x,y,z)-5H(x,y,z)=4(3x, y+z)-5(2x-z,y)          =(2x+5z, -

y+4z) 

(iii) TH and HT are not defined because R(T) is not equal to domain of H and 

vice versa. 

Algebra of Linear operators: 

Let A,B,C be linear operators on a vector space V(F). Let 0 be the zero operator 

and I be the identity operator on V. Then (i) A0=0A=0 (ii) AI=IA=A  (iii)  

A(B+C)= AB+AC (iv) (A+B)C=AC+BC  (v) A(BC)=(AB)C 

Range of a linear transformation: Let U(F) and V(F) be two vector spaces and T be a 
linear transformation from U into V. Then the range of T written as R(T) is the set of 
all vectors β in V such that β=T(α), for some α in U.                                                                                             
Range (T)={T(α)∊V:α∊U} 
Theorem: If U(F) and V(F) are two vector spaces and T is a linear transformation 

from U into V , then range of  T is a subspace of V. 

Proof: ō∊U  ⇒T(ō)= o ̂ ∊R(T) 

∴ R(T) is a non-empty subset of V 



 
 

Let  𝛽1, 𝛽2 ∈ R(T). Then there exists  𝛼1, 𝛼2 ∈ U such that  T( 𝛼1) = 𝛽1,         T( 

𝛼2) = 𝛽2 

Let a,b∊F .                                                                                                                              a 

𝛽1 + 𝑏𝛽2 = aT( 𝛼1) +bT( 𝛼2) = T (a 𝛼1 + 𝑏𝛼2) 

Since U is a vector space , a 𝛼1 + 𝑏𝛼2 ∊U 

T (a 𝛼1 + 𝑏𝛼2)= a 𝛽1 + 𝑏𝛽2∊R(T) 

∴ R(T) is a subspace of V 

Null space of a linear transformation: Let U(F) and V(F) be two vector spaces and T 
be a linear transformation from U into V. Then the null space of T written as N(T) is 
the set of all α in U such that T(α)= o ̂    (zero vector of V)                                                                                                   
N(T)={α∊U: T(α)= o ̂  } 

Theorem: If U(F) and V(F) are two vector spaces and T is a linear transformation 
from U into V then  the kernel of T or null space  of T is a subspace of U. 

Proof : Let N(T) = {α∊U:T(α)= o ̂ ∊V} 

Since T(ō)= o ̂ ∊V,therefore at least o ̂ ∊N(T) 

Thus N(T) is a non-empty subset of U. 

Let α1,α2∊N(T) Then T(α1)= o ̂  and T(α2)= o ̂  

Let a, b∊F. Then a α1+ b α2 ∊U and T(a α1+ b α2)=a T(α1)+b T(α2) 

=a o ̂+b o ̂= o ̂+ o ̂= o ̂ ∊V 

Therefore  a α1+ b α2 ∊ N(T) 

Thus a,b∊ F and α1,α2∊N(T)⇒ a α1+ b α2 ∊N(T) 

Therefore  N(T)  is a sub space of U. 

Rank and nullity of a linear transformation: Let T be a linear transformation from a 
vector space U(F) into V(F) with U as finite dimensional. The  rank of T denoted by 
ρ(T) is the dimension of the range of T ie., ρ(T) =dim R(T) 

The nullity of T denoted by ν(T) is the dimension of the null space of T              ie., 
ν(T) =dimN(T) 

Theorem: Let U and V be vector spaces over the field F and T be a linear 
transformation from U into V. Suppose U is finite dimensional then  



 
 

 ρ(T) + ν(T)=dimU 

Proof: Let N be the null space of T.                                                                          Then N 
is a subspace of U.                                                                                       Since U is finite 
dimensional , N is finite dimensional.                                                 Let dim N=k and let 
{𝛼1, 𝛼2… , 𝛼𝑘}     be a basis of N 

Since {𝛼1, 𝛼2… ,𝛼𝑘} is a linearly independent subset of U, we can extend it to form a 
basis of U.                                                                                                                  Let dim 
U=n and {𝛼1, 𝛼2… ,𝛼𝑘 , 𝛼𝑘+1, … , 𝛼𝑛}be a basis of U 

T(𝛼1), 𝑇(𝛼2)… , 𝑇(𝛼𝑘), 𝑇(𝛼𝑘+1), . . , 𝑇(𝛼𝑛)∊R(T) 

To  Prove  That  {𝑇(𝛼𝑘+1), 𝑇(𝛼𝑘+2), . . , 𝑇(𝛼𝑛)}  is a basis of R(T) 

(i) First we shall prove that 𝑇(𝛼𝑘+1), 𝑇(𝛼𝑘+2), . . , 𝑇(𝛼𝑛) span R(T) 

Let β∊R(T). Then ∃α∊U such that T(α)=β.                                                          α∊U⇒∃ 
𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝐹 such that 𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛 

⇒ T(𝛼) = 𝑇(𝑎1𝛼1 + 𝑎2𝛼2 +⋯+ 𝑎𝑛𝛼𝑛) 

⇒β=𝑎1𝑇(𝛼1) + ⋯+ 𝑎𝑘𝑇(𝛼𝑘) + 𝑎𝑘+1𝑇(𝛼𝑘+1) + ⋯+ 𝑎𝑛𝑇(𝛼𝑛) 

⇒β= 𝑎𝑘+1𝑇(𝛼𝑘+1) + 𝑎𝑘+2𝑇(𝛼𝑘+2) + ⋯+ 𝑎𝑛𝑇(𝛼𝑛) ∴
 𝑇(𝛼𝑘+1), 𝑇(𝛼𝑘+2), . . , 𝑇(𝛼𝑛) span R(T) 

(ii) Now we prove that 𝑇(𝛼𝑘+1), 𝑇(𝛼𝑘+2),… , 𝑇(𝛼𝑛) are linearly independent 

Let 𝑐𝑘+1, 𝑐𝑘+2, … , 𝑐𝑛 ∈ 𝐹 such that 𝑐𝑘+1𝑇(𝛼𝑘+1) + ⋯+ 𝑐𝑛𝑇(𝛼𝑛) = ō 

⇒T(𝑐𝑘+1𝛼𝑘+1 +⋯+ 𝑐𝑛𝛼𝑛) = ō 

⇒ 𝑐𝑘+1𝛼𝑘+1 +⋯+ 𝑐𝑛𝛼𝑛 ∈ N(T)                                                              

⇒𝑐𝑘+1𝛼𝑘+1 +⋯+ 𝑐𝑛𝛼𝑛=𝑏1𝛼1 +⋯+ 𝑏𝑘𝛼𝑘    

⇒𝑏1𝛼1 +⋯+ 𝑏𝑘𝛼𝑘 − 𝑐𝑘+1𝛼𝑘+1 −⋯− 𝑐𝑛𝛼𝑛 = ō 

⇒𝑏1 = ⋯ = 𝑏𝑘 = 𝑐𝑘+1 = ⋯ = 𝑐𝑛 = 0 

⇒T(𝛼𝑘+1),… , 𝑇(𝛼𝑛) are linearly independent and form a basis of R(T) 

Rank T=dim R(T)=n-k 

Hence rank (T)+nullity(T)=(n-k)+k=n=dim U 

Example: Show that the mapping T:𝑽𝟐(𝑹) → 𝑽𝟑(𝑹) defined as  



 
 

T(a,b)= (a+b,a-b,b) is a linear transformation from 𝑽𝟐(𝑹) → 𝑽𝟑(𝑹). Find the 
range,rank, null space and nullity of T 

Solution: Let 𝛼 = (𝑎1, 𝑏1), 𝛽 = (𝑎2, 𝑏2) ∈ 𝑉2(𝑅) 

T(𝛼)=𝑇(𝑎1, 𝑏1) = 𝑇(𝑎1 + 𝑏1, 𝑎1 − 𝑏1, 𝑏1) and  

T(𝛽)=𝑇(𝑎2, 𝑏2) = 𝑇(𝑎2 + 𝑏2, 𝑎2 − 𝑏2, 𝑏2) 

Let a,b∊R. Then aα+bβ∊ 𝑉2(𝑅)  

T(aα+bβ)= T[a(𝑎1, 𝑏1) + 𝑏(𝑎2, 𝑏2)] 

=𝑇(𝑎𝑎1 + 𝑏𝑎2, 𝑎𝑏1 + 𝑏𝑏2) 

=(a𝑎1 + 𝑏𝑎2 + 𝑎𝑏1 + 𝑏𝑏2, 𝑎𝑎1 + 𝑏𝑎2 − 𝑎𝑏1 − 𝑏𝑏2 , 𝑎𝑏1 + 𝑏𝑏2)    

=(a(𝑎1 + 𝑏1) + 𝑏(𝑎2 + 𝑏2), 𝑎(𝑎1 − 𝑏1) + 𝑏(𝑎2 − 𝑏2), 𝑎𝑏1 + 𝑏𝑏2)    

=a(𝑎1 + 𝑏1, 𝑎1 − 𝑏1, 𝑏1) + 𝑏(𝑎2 + 𝑏2, 𝑎2 − 𝑏2 , 𝑏2)    

=aT(α)+bT(β) 

Hence T is a linear transformation from 𝑉2(𝑅) → 𝑉3(𝑅) 

Now  {(1,0),(0,1)} is a basis for  𝑉2(𝑅)  

We have T(1,0)=(1+0,1-0,0)=(1,1,0) and T(0,1)=(0+1,0-1,1)=(1,-1,1) 

The vectors T (1,0), T(0,1) Span the  range of T. 

Thus the range of T is the sub space of  𝑉3(𝑅) spanned by the vectors  (1,1,0) , (1,-
1,1). 

Now the vectors  (1,1,0) , (1,-1,1)∊ 𝑉3(𝑅)  are L.I because if x,y ∊ R ,then  

x(1,1,0)+y(1,-1,1) = (0,0,0) 

⇒(x+y,x-y,y)=(0,0,0) ⇒ x+y=0, x-y=0, y=0 ⇒ x=0,y=0 

Therefore the vectors  (1,1,0) , (1,-1,1) form a basis for range of T 

Hence rank T = dim of range of T = 2 

Nullity of T = dim of 𝑉2(𝑅) - rank T = 2 -2 = 0 

Therefore null space of T must be the zero sub space of  𝑉2(𝑅) . 

Otherwise , (a,b) ∊ null space of T  

⇒ T(a,b)=(0,0,0)  



 
 

 ⇒(a+b,a-b,b)=(0,0,0) ⇒ a+b=0, a-b=0, b=0 ⇒ a=0,b=0 

Therefore (0,0) is the only element of  𝑉2(𝑅) which belongs to null space of T. 

Therefore null space of T is the zero sub space of  𝑉2(𝑅) . 
 

Example: If  T: V4(R) → V3(R) is a linear transformation defined by  

 T(a, b, c, d) = (a-b+c+d , a+2c-d , a+b+3c-3d) for a , b, c , d ∈ R , verify that 𝞺(T) + 

𝟅(T) = dim V4(R). 

Solution  : Let  S = {(1 , 0 , 0 , 0) (0 , 1 , 0 , 0) (0 , 0 , 1 , 0) (0 , 0 , 0 , 1)} be the basis 

set of V4(R). 

∴ The transformation T   on B  will be T(1 , 0 , 0 , 0) = (1 , 1 ,1) ,  

T(0 , 1 , 0 , 0) = (-1 , 0 , 1) ,  

T(0 , 0 , 1 , 0) = (1 , 2 , 3) , T(0 , 0 , 0 , 1) = (1 , -1 , -3). 

Let S1 = { (1 , 1 ,1) ,(-1 , 0 , 1) , (1 , 2 , 3) , (1 , -1 , -3) }. 

∴ S1 ⊆ R(T) 

Now we verify whether S1 is Linearly independent or not,. If not, we find the least   

Linearly independent set by forming the matrix, S1 = [

1 1 1
−1 0 1
1 2 3
1 −1 −3

] 

Applying R2 + R1 , R3 - R1 , R4 - R1  

  S1       ̴  [

1 1 1
0 1 2
0 1 2
0 −2 −4

] 

Again applying R4 + 2R3 , R3 – R2 



 
 

  S1       ̴  [

1 1 1
0 1 2
0 0 0
0 0 0

] 

∴ The non-zero rows of vectors {(1 , 1 ,1) ,(0 , 1 , 2)} 

constitute the linearly independent set forming the basis of R(T)  

⇒ dim R(T) = 2 

Basis for null space of T  

 Let α = (a , b , c, d) ∈ V4(R) 

  α ∈ N(T)⇒ T(α) = o ̂  

⇒ T (a , b , c, d) = o ̂   where o ̂  = (0 , 0 , 0) ∈ V3(R) 

⇒ (a-b+c+d , a+2c-d , a+b+3c-3d) = (0 , 0 , 0) 

⇒ a-b+c+d = 0 ; a+2c-d = 0 ; a+b+3c-3d = 0 

We have to solve these for a , b , c ,d . 

Co-efficient matrix = [
1 −1 1 1
1 0 2 −1
1 1 3 −3

] 

Applying R2 - R1 , R3 - R1 . 

                                 = [
1 −1 1 1
0 1 1 −2
0 2 2 −4

] 

 Again applying R3 - 2R2  , the echelon form is  

                                  = [
1 −1 1 1
0 1 1 −2
0 0 0 0

] 

Therefore the equivalent systems of equations are  

               a-b+c+d = 0 , b+c-2d = 0  



 
 

               ⇒  b = 2d - c , a = d - 2c 

The number of free variables is 2 namely c , d and the values of a , b depend on 

these . 

And hence   nullity of T   = dim N(T) = 2. 

Choosing   c = 1 , d = 0 , we get    a = -2 , b = -1 

Therefore (a , b , c , d ) = (-2 , -1 , 1 , 0) 

Choosing     c =  0 , d = 1 ,   we get   a = 1 , b = 2 

Therefore (a , b , c , d ) = (1 , 2 , 0 , 1) 

Therefore {(-2 , -1 , 1 , 0) ,  (1 , 2 , 0 , 1)} constitute a basis of N(T) 

     ∴   dim R(T) + dim N(T) = 2 +2 = 4 =  dim V4(R) 

 

Example: Find the null space, range, rank and nullity of the transformation T: R2 → 

R3 defined by T (x , y) = (x+y , x-y , y) . 

Solution : Given that the transformation T: R2 → R3 defined by 

 T (x , y) = (x+y , x-y , y) . 

To find the null space, range, rank and nullity of the given transformation. 

Null Space  and Nullity of T :  

 Let α = (x,y) ∈ R2 then α ∈ N(T)⇒ T(α) = o ̂  

i.e., T(x , y) = ( 0 , 0 , 0)  

⇒ (x+y , x-y , y) = ( 0 , 0 , 0)  

⇒ x+y = 0 , x-y = 0 , y= 0 

⇒ x = 0 , y= 0 

 ∴ α = (0 , 0) = o ̂  ∈ R2  



 
 

Thus the null space of T consists of only zero vector of R2  

∴ nullity of T = dim N(T) = 0 

Range and Rank of T : 

Range Space of T = {β∈ R2 : T(α) = β for α∈ R2 } 

∴ The range space consists of all vectors of the type (x+y , x-y , y) 

 for all(x,y) ∈ R2  . 

By rank nullity theorem , dim R(T) + dim N(T) = dim R2 

⇒ dim R(T) + 0 = 2  

⇒ dim R(T) =  rank of T = 2  

 

Example : Verify Rank - nullity theorem for the linear transformation   

T: R3 → R3 defined by T (x , y , z ) = (x-y , 2y+z , x+y+z) . 

Solution : Given that T: R3 → R3 defined by T (x , y , z ) = (x-y , 2y+z , x+y+z) is a linear 

transformation .  

We know that dimension of  R3 = 3 → (1) 

Let α = (x,y,z) ∈ R3  

if α ∈ N(T) then T(α) = o ̂  

⇒ T (x , y , z ) = o ̂  

⇒ (x-y , 2y+z , x+y+z) = (0 , 0 , 0) 

Comparing the components , x-y = 0 ; 2y+z = 0 ; x+y+z = 0 

Taking y = k we get x = k and z = -2k 

∴ (x , y , z ) = (k , k , -2k) = k(1 , 1 , -2) 

Thus every element in N(T) is generated by the vector (1 , 1 , -2) 



 
 

Thus dim N(T) = 1 → (2) 

Again T (x , y , z ) = (x-y , 2y+z , x+y+z) 

From this T(1 , 0 , 0 ) = (1 , 0 ,1) , T(0 , 1 , 0 ) = (-1 , 2 , 1) ,  and  

T(0 , 0 , 1 ) = (0 , 1 , 1) 

Let S = {(1 , 0 ,1) ,(-1 , 2 , 1) ,(0 , 1 , 1)} and let A = [
1 0 1
−1 2 1
0 1 1

] 

R2+R1 , gives    ̴[
1 0 1
0 2 2
0 1 1

] 

R2/2 gives   ̴ [
1 0 1
0 1 1
0 1 1

] 

R3- R2  gives   ̴ [
1 0 1
0 1 1
0 0 0

] 

Thus the set {(1 , 0 , 0) (0 , 1 , 1 )} consists the basis of R(T) i.e., the range of T  

Thus, dim R(T) = 2 → (3) 

Substituting (1)  , (2) , (3) in rank – nullity theorem , rank + nullity = dimension  

⇒ 1 + 2 = 3 

This verifies the theorem. 

 

 

 

 

 

 



 
 

 

                                                  UNIT - 4 

CHARACTERISTIC VECTOR AND CHARACTERISTIC VALUE OF A 

LINEAR OPERATOR: 

DEFINITION: Let T be a linear operator on a finite dimensional vector 

space V(F). A non-zero vector α∈V is called a characteristic vector of T 

if there exists a scalar c such that T(α)= cα. The scalar c is called 

characteristic value of T corresponding to a characteristic vector α. 

Each non-zero vector is called a characteristic vector of T 

corresponding to a characteristic value c .  

CHARACTERISTIC VECTORS AND CHARACTERISTIC VALUES OF A 

MATRIX: 

DEFINITION:    Any non- zero vector X is said to be a characteristic 

vector of a square matrix A if there exists a scalar λ such that AX = λX. 

Here A can be a n × n matrix and X can be a n × 1 matrix. 

Then λ is said to be a characteristic value of the matrix A 

corresponding to a characteristic vector X . Also X is said to be 

characteristic vector corresponding to the characteristic value λ of the 

matrix A. 

If X is a Characteristic vector of a matrix A, X cannot corresponded to 

more than one characteristic value of A . 

 Let the characteristic vector X of A correspond to two distinct 

characteristic values λ1,λ2 then AX = λ1X and AX = λ2X. 

Therefore λ1 X =λ2 X ⇒(λ1 -λ2) X = ō ⇒λ1 -λ2 =0        ⇒λ1 = λ2 

Similarly, if α is a characteristic value of T then α cannot corresponded 

to more than one characteristic value of T. 



 
 

CHARACTERISTIC POLYNOMIAL, CHARACTERISTIC EQUATION OF A 

SQUARE MATRIX: 

DEFINITION: Let A = [aij]n×n and λ any indeterminate scalar . The 

matrix A- λI is called the characteristic matrix of A , where I is the unit 

matrix of order n. 

 

Also| A- λI |  = 

                                    |

𝑎11 − λ 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 − λ … 𝑎2𝑛
… … … …
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛 − λ

| 

 

  

is a polynomial in λ of degree n , is called the characteristic polynomial 

of A . 

It is denoted by f(𝜆). The equation | A- λI |=0 is called the 

characteristic equation of A  EXAMPLE: The characteristic polynomial 

of the matrix A = |
1 0 5
0 2 6
3 1 4

| is det (A- λI) 

  

i.e., |
1 − λ 0 5
0 2 − λ 6
3 1 4 − λ

| =  λ3+ 7 λ2+7 λ -28 

Note: A scalar λ is a characteristic root of a square matrix A if and only 

if| A- λI |= 0. 

Theorem: The characteristic vectors corresponding to distinct 

characteristic roots of a matrix are linearly independent. 

Proof: Let A be a square matrix. 



 
 

Let X1 , X2 ,….,Xm be characteristic vectors of A corresponding to 

respective distinct characteristic roots λ1 , λ2 ,….,λm . 

Then AXi = λi Xi for i= 1,2,…m → (1) 

Now we prove that the set of vectors                    { X1, X2,…., Xm} is 

linearly independent.           Since x1≠ ō, the set { x1} is L.I 

If { X1 , X2 ,….,Xm} is linearly dependent , then we can choose r (r<m) 

such that { X1 , X2 ,….,Xr} is linearly independent and { X1 , X2 ,….,Xr , 

Xr+1 } is linearly dependent  

Hence we can choose scalars k1 , k2 ,….,kr , kr+1 not all zeros such that                                             

k1 X1 + k2 X2+….+kr Xr + kr+1 Xr+1 = ō → (2) 

⇒ A(k1 X1 + k2 X2+….+krXr + kr+1 Xr+1 )= A(ō) 

⇒k1 (AX1) + k2 (AX2) +….+ kr (AXr) + kr+1(A Xr+1 )= ō 

 ⇒ k1 (λ1X1) + k2 (λ2X2) +….+ kr (λrXr)  + kr+1(λr+1 Xr+1 )= ō → (3) 

(3) - λr+1 (2)⇒ k1 (λ1- λr+1) X1 +….+ kr (λr- λr+1) Xr= ō → (4) 

 Since { X1 , X2 ,….,Xr} is linearly independent and λ1 , λ2 ,….,λ r+1 are 

distinct,      we have k1 =0, …., kr=0. 

Putting k1 =0, ….,kr=0 in (2),we obtain kr+1 Xr+1= ō But Xr+1 ≠ ō . So , 

kr+1 = 0 

Thus (2) ⇒ k1 =0, …., kr=0 , kr+1 = 0 

But this contradicts our assumption that the scalars k1 , k2 ,….,kr , kr+1 

are all not zeros . 

Hence our assumption that {X1 , X2 ,….,Xm} is linearly dependent is 

wrong . 

 ∴ {X1 , X2 ,….,Xm} , which corresponding to distinct characteristic roots 

of a matrix A are linearly independent . 



 
 

Note: Distinct characteristic vectors of T corresponding to distinct 

characteristic values of T are linearly independent. 

CHARACTERISTIC POLYNOMIAL OF A LINEAR OPERATOR: 

DEFINITION: Let T be a linear operator on an     n-dimensional vector 

space V with ordered basis β . We define the characteristic polynomial 

f(λ) of T to be the characteristic polynomial of   A = [𝑇]𝛽 i.e., f(λ) = det 

(T-λI) = det (A-λI)  

The equation det(T-λI) =0 is called the characteristic equation of T 

Example:Prove that the square matrices A and Aᶦ have the same 

characteristic values. 

Solution: If λ is any scalar, then (A-λI)ᶦ = Aᶦ-λIᶦ = Aᶦ-λI 

⇒ | (A- λI)ᶦ | = | Aᶦ- λI | 

  

⇒ | A- λI | = | Aᶦ- λI | 

⇒| A- λI | = 0 ⇔ | Aᶦ- λI | = 0 

  

i.e., λ is a characteristic value of A ⇔ λ is a characteristic value of Aᶦ. 

Example: Show that 0 is a characteristic root of a matrix if and only if 

the matrix is singular. 

Solution: 0 is a characteristic value of A 

 ⇔ λ = 0 satisfies the equation | A- λI | = 0 

⇔ | A- 0I | = 0 

 ⇔ | A | = 0 

⇔ A is singular. 



 
 

 

NOTE: 

λ is a characteristic root of a non -singular matrix. λ≠0. 

At least one characteristic root of every singular matrix is zero 

EXAMPLE: T is a linear operator on a finite dimensional vector space 

V(F) . Show that T is not invertible iff 0 is a characteristic value of T . 

Solution: Let T be not invertible ie., T is singular Therefore, there 

exists a non- zero vector α in V such that 

Tα = 0= 0α. 

 Therefore 0 is a characteristic value of T                                   Conversely 

suppose 0 is a characteristic value of T. 

Then there exists a non- zero vector α in V such that Tα = 0α. 

⇒ Tα = 0 ⇒ T is singular ⇒ T is not invertible . 

EXAMPLE: If λ1 , λ2 ,….,λn are the characteristic values of a n-rowed 

square matrix A and k is a scalar, show that kλ1 , kλ2 ,…., kλn are the 

characteristic values of kA 

Solution: Let k≠0. 

 Now |kA- λkI |= |k(A- λI) |= k| A- λI | 

⇒ |kA- (λk)I |=0 ⇔ | A- λI | =0 

i.e., kλ is a characteristic values of kA ⇔ λ is a characteristic value of A. 

Thus kλ1 , kλ2 ,…., kλn are the characteristic values of kA if λ1 , λ2 ,….,λn 

are the characteristic values of A. 

Example: Find the eigen roots and the corresponding eigen vectors of 

the matrix 

    A = [
1 4
3 2

] 



 
 

  

Solution: The characteristic equation of A is | A- λI | =0 

 

                         ⇒   |
1 −  λ 4
3 2 −  λ

| =0 

  

     ⇒ (λ+2)(λ-5) = 0 

  

Hence the eigen roots of A are -2 , 5.  

Case 1: Let λ = -2. 

Eigen vectors X corresponding to the eigen root  -2 are given by      (A-

(-2)I)X =0 

 i.e.,   [
1 + 2 4
3 2 + 2

] [
𝑥1
𝑥2
] = [

0
0
] 

             

  i.e.,   [
3 4
3 4

] [
𝑥1
𝑥2
] = [

0
0
] 

R2  → R2 – R1 [
3 4
0 0

] [
𝑥1
𝑥2
] = [

0
0
] 

  ⇒ 3x1 + 4x2 =0 

Let x2 = k , then x1 = -4k/3 

 ∴ Eigen vectors corresponding to the eigen root -2 are given by   

   k  [
−4

3⁄

1
]   where k is a non-zero parameter. 

     Clearly,  the subspace generated by [
−4

3⁄

1
] 

is a one dimensional characteristic space of 𝑅2 



 
 

Case 2: Let λ = 5. 

 Eigen vectors X corresponding to the eigen root 5 are given by 

 (A-5I)X =0 

  i.e.,   [
−4 4
3 −3

] [
𝑥1
𝑥2
] = [

0
0
] 

R2 → R2 +( 
3

4
) R1 [

−4 4
0 0

] [
𝑥1
𝑥2
] = [

0
0
] 

⇒-4 x1 +4 x2 = 0 

Let x2 = k then x1 = k 

 ∴ Eigen vectors corresponding to the eigen root 5 are given by k[
1
1
] 

where k is a non-zero parameter.                                                          Clearly  

the subspace generated by[
1
1
] is a one dimensional characteristic 

space of 𝑅2 

Example: Find the characteristic roots and the corresponding 

characteristic vectors 

of the matrix   A =[
8 −6 2
−6 7 −4 
2 −4 3

] 

  

Solution: The characteristic equation of A is | A- λI | =0 

                     

 ⇒  |
8 −  λ −6 2
−6 7 −  λ −4 
2 −4 3 −  λ

| =0 

 

⇒ (8 − 𝜆)[21-10λ+𝜆2-16]+6[-18+6λ+8]+2[24-14+2λ]= 0 



 
 

⇒ - 𝜆3+10𝜆2-5λ+8𝜆2-80λ+40-60+36λ+20+4λ = 0 

⇒ -𝜆3+18𝜆2-45λ =0 

 ⇒λ(λ-3)(λ-15)=0 

⇒ λ = 0 , 3, 15 

∴ The characteristic roots of A are 0 , 3, 15 

 Case 1: Let λ = 0. 

Characteristic vectors corresponding to the characteristic root 0 are 

given by 

(A-0I)X = 0 ⇒    

        [
8 −6 2
−6 7 −4
2 −4 3

] [

𝑥1
𝑥2
𝑥3
] = 0 

 

 

 𝑅3↔ 𝑅1 [
2 −4 3
−6 7 −4
8 −6 2

] [

𝑥1
𝑥2
𝑥3
] = 0     

  

 

  

𝑅3 → 3 𝑅3 +4 𝑅2   , 𝑅2 → 𝑅2  +3 𝑅1  [
2 −4 3
0 −5 5
0 10 −10

] [

𝑥1
𝑥2
𝑥3
] = 0 

  

𝑅3 → 𝑅3  +2 𝑅2    



 
 

 

 [
2 −4 3
0 −5 5
0 0 0

] [

𝑥1
𝑥2
𝑥3
] = 0 

 

 ⇒ 2𝑥1-4𝑥2+3𝑥3 = 0 , -5𝑥2+5𝑥3 = 0 

  

Let 𝑥3 = k therefore 𝑥2= k and 2 𝑥1 = k i.e., 𝑥1 = k/2 

∴Characteristic vectors corresponding to the characteristic root 0 are 

given by 

𝑘 [
1/2
1
1
]  where k is a non zero parameter 

Similarly , by considering characteristic equations (A-3I)X = 0 ,      (A-

15I)X = 0 

We get characteristic vectors 𝑘1  [
−1
−1/2
1

] ,   𝑘2 [
2
−2
1
] for non-zero 

parameters k1 , k2 respectively corresponding to the characteristic 

roots 3, 15. 

  

 

 

MATRIC POLYNOMIAL 

DEFINITION:  An expression of the form                                                 F(x) 

= A0+A1x+A2 𝑥2+…+Am 𝑥𝑚, Am≠0,where A0,A1,A2,…Am are matrices 

each of order n×n over a field F, is called a matric polynomial of 

degree m. 



 
 

The matrices themselves are matric polynomials of zero degree. 

EQUALITY OF MATRIC POLYNOMIALS 

DEFINITION : Two matric polynomials are equal if and only if  the 

coefficients of like powers of x are the same. 

ADDITION AND MULTIPICATION OF POLYNOMIALS 

 Let G(x) = A0+A1x+A2𝑥2+…+Am 𝑥𝑚and                                             H(x) 

= B0+B1x+B2𝑥2+…+BK𝑥𝑘                                                                  We 

define : if m>k then G(x)+H(x)=(A0+B0)+(A1+B1)x+…+(Ak+ Bk) 𝑥𝑘   

+ Ak+1 𝑥𝑘+1+….+ Am𝑥𝑚                                                                similarly we 

have G(x)+H(x) where m=k and m<k. 

Also G(x)H(x)=A0B0+(A0B1+A1B0)x   

+(A0B2+A1B1+A2B0)𝑥2+….+AkBm𝑥𝑘+𝑚 

The degree of the product of two matric polynomials is less than or 

equal to the sum of their degrees 

CAYLEY – HAMILTON THEOREM (MATRICES) 

THEOREM: Every square matrix satisfies its characteristic equation .                                        

Proof: Let A = [aij]n×n  

The characteristic equation of A is det (A-𝜆I) = f(𝜆) 

=|

𝑎11 − λ 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 − λ … 𝑎2𝑛
… … … …
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛 − λ

| 

  

 = (−1)𝑛 [𝜆𝑛+a1 𝜆𝑛−1+a2 𝜆𝑛−2+… +an] where ai’s ϵ F 

Let adj (A-λI ) = B0 𝜆𝑛−1+B1𝜆𝑛−2 + ....+Bn-2𝜆1+Bn-1 where B0, B1 ,.... Bn-1 

are n-rowed square matrices  



 
 

Now (A-λI ) adj (A-λI ) = det (A-λI ) I 

 ⇒ (A-λI )( B0 𝜆𝑛−1+B1 𝜆𝑛−2+ ..... +Bn-2 𝜆+Bn-1) = (−1)𝑛  [𝜆𝑛+a1 

𝜆𝑛−1+a2 𝜆𝑛−2 

Comparing coefficients of like powers of λ , we obtain 

 - B0 = (−1)𝑛 I , 

A B0- B1 = (−1)𝑛 a1 I , 

A B1- B2 = (−1)𝑛  a2 I , 

........................... 

 ...........................                                                                                                        A 

Bn-1 = (−1)𝑛 an I . 

Premultiplying the above  equations successively by 𝐴𝑛, 𝐴𝑛−1, …,I 

and adding , 

we obtain 

0 = (−1)𝑛 𝐴𝑛 + (−1)𝑛  a1 𝐴𝑛−1   + (−1)𝑛 a2𝐴𝑛−2 +……+ (−1)𝑛 an I 

⇒ (−1)𝑛 [𝐴𝑛 +a1 𝐴𝑛−1 + a2 𝐴𝑛−2 +…..+ an I] = 0 

⇒ 𝐴𝑛 +a1 𝐴𝑛−1+ a2 𝐴𝑛−2 +….+ an I = 0 

⇒ A satisfies its characteristic equation.  

A satisfies its characteristic equation 

⇒ (−1)𝑛 [𝐴𝑛 +a1 𝐴𝑛−1 + a2 𝐴𝑛−2 + …+ an I] = 0 

⇒ 𝐴𝑛 +a1 𝐴𝑛−1 + a2 𝐴𝑛−2 +….+ an I = 0 

⇒ 𝐴−1  [𝐴𝑛 +a1 𝐴𝑛−1 + a2 𝐴𝑛−2 + ..... + an I] = 0 ⇒ 𝑎𝑛 𝐴−1 = - 𝐴𝑛−1 - 𝑎1 

𝐴𝑛−2 - 𝑎𝑛−1 I 

⇒ 𝐴−1 = (-1/an) [𝐴𝑛−1 + a1 𝐴𝑛−2 +⋯  + an-1 I] 

CAYLEY – HAMILTON THEOREM (LINEAR OPERATOR) 



 
 

THEOREM: T is a linear operator on a vector space V(F) of dimension 

n. 

If f(x) is the characteristic polynomial of T , then f(T) = 0 (zero 

operator ). i.e., T satisfies its characteristic equation . 

Example: Verify cayley –Hamilton Theorem when T is a linear 

operator defined by T(a,b)=(a+2b,-2a+b). 

Solution: Let β ={e1,e2} 

T(e1)=T(1,0)=(1+2(0),-2(1)+0)=(1,-2) and                                 T(e2)= 

T(0,1)=(2,1) 

Thus A=[T]β =[
1 2
−2 1

] 

 Let A be an n×n matrix and let f(t) be the characteristic polynomial of 

A.                               Then f(A)=0, the n×n zero matrix. 

The characteristic polynomial of T is f(T) = det (A-λI 

)=|
1 − 𝜆 2
−2 1 − 𝜆

|=𝜆2-2λ+5                                   

                                                                                                                                                                                           

Now f(T) = 𝑇2 -2T+5  

Given T(a,b) = (a+2b,-2a+b)                                                            

Therefore 𝑇2 (a,b) = T(a+2b,-2a+b) 

= (a+2b+2(-2a+b),-2(a+2b)-2a+b) 

 = (a+2b-4a+2b,-2a-4b-2a+b) 

= (-3a+4b,-4a-3b) 

2T (a,b) = (2a+4b,-4a+2b) ,                                                                          5𝙸 

= 5 (a,b) = (5a,5b) 

𝑇2 -2T+5𝙸 = (-3a+4b-2a-4b+5a,-4a-3b+4a-2b+5b) = (0,0) = T0 

 Thus T satisfies its characteristic equation. 



 
 

f(A) = 𝐴2 -2A+5𝙸                 =[
−3 4
−4 −3

]+[
−2 −4
4 −2

] + [
−3 4
−4 −3

] +

[
5 0
0 5

] =  [
0 0
0 0

]=0  

 

Example: Using  Cayley-Hamilton theorem , find the inverse of the 

   matrix  A = [
1 2 3
2 −1 4
3 1 −1

] 

  

Solution: 

 Given A = [
1 2 3
2 −1 4
3 1 −1

] 

The characteristic equation of A is  |A- λI | = 0 

.e., |
1 − λ 2 3
2 −1 − λ 4
3 1 −1 − λ

|=0 

 

 ⇒ (1-λ)[(1+ 𝜆2)-4]-2[(1+λ)-12]+3[2+3(1+λ)] = 0 

⇒  𝜆3+ 𝜆2 -18λ-40 = 0 

Since every square matrix satisfies its characteristic equation, 

 we have 𝐴3 + 𝐴2 -18A-40𝙸 = 0 

Multiplying with 𝐴−1 on both sides 𝐴2 +A-18𝙸 = 40 𝐴−1  

⇒  𝐴−1    = 1/40 [𝐴2 +A-18I] 

 



 
 

we have A2 =        [
14 3 8
12 9 −2
2 4 14

] 

therefore 𝐴−1 =
1

40
 {[
14 3 8
12 9 −2
2 4 14

] + [
1 2 3
2 −1 4
3 1 −1

] − [
18 0 0
0 18 0
0 0 18

]}    

                                                                              

                   A-1=
1

40
 [
−3 5 11
14 −10 2
5 5 −5

] 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT-5 

INNER PRODUCT SPACES 

DEFINITION: Let V(F) be a vector space where F is a field of real numbers or the 



 
 

field of complex numbers. The vector space V(F)is said to be an inner product 

space if there is defined for any two vectors α,βϵV an element ‹α,β› ϵ F such that 

(1). ‹α,β› = ‹β, α› 
 

(2). ‹α,α› > 0 (zero element in F) for α≠0 
(3). ‹aα+bβ,γ› = a‹α,γ› + b‹β,γ› for any α,β,γ ϵ V and a,b ϵ F. 

A function f:VxV→F satisfying the above properties is called an inner product. 

If f is the inner product function then f‹α,β› = ‹α,β› or (α,β) for all α,βϵV 

From the definition it is clear that a vector space V over F endowed with a specific 

inner product is an inner product space. 

If F = R the field of real numbers then V(F) is called Euclidean space or Real inner 

product space. 

If F = C the field of complex numbers then V(F) is called Unitary space or Complex 

inner product space. 

An inner product space having only zero vector is called zero space or nullspace. 

If V(F) is an inner product space then V(F) is a vector space. A sub space W(F) of 

the vector space V(F) is also inner product space with the same inner product as 

in V(F). 

 

 
PROBLEMS: 

 

If α = (a1,a2,a3),β = (b1,b2,b3) are the elements of a vector space R3 ,then 

‹α,β› = a1b1 + a2b2 + a3b3 defines an inner product on R3 . 

Solution : Let α = (a1,a2,a3),β = (b1,b2,b3) and γ = (c1,c2,c3) ϵ R3 . 



 
 

1 2 3 

1 2 3 

Then a1,a2,a3,b1,b2,b3,c1,c2,c3 ϵ R. 
 

(1). ‹α,β› = a1b1 +a2b2+a3b3 = b1a1+b2a2+b3a3 = ‹β,α› = ‹β, α› . 

(2). ‹α,α› = a1a1 +a2a2+a3a3 = a 2 +a 2+a 2 

If α = (a1,a2,a3) ≠ (0,0,0) then at least one of a1,a2,a3 is not zero. 

So, ‹α,α› = a 2 +a 2+a 2 > 0. 

(3). For a,b ϵ F and α,β,γ ϵ R3 we have 

aα+bβ = a(a1,a2,a3)+b(b1,b2,b3) = (aa1+ bb1 , aa2+ bb2 , aa3+ bb3) 

‹aα+bβ,γ› = (aa1+ bb1)c1 + (aa2+ bb2)c2 + (aa3+ bb3)c3 
 

= (aa1c1+ aa2c2+ aa3c3) + (bb1c1+ bb2c2+ bb3c3) 

= a(a1c1 +a2c2+a3c3) + b(b1c1 +b2c2+b3c3) 
 

= a ‹α,γ› b ‹β,γ› 

Therefore the product ‹α,β› = a1b1 +a2b2+a3b3 is an inner product on 

the vector space R3 . 

Hence R3 is an inner product space with the above inner product 

and R3(R) is real inner product space. 

 

NOTE : The inner product of α and β namely , ‹α,β› = a1b1 +a2b2+a3b3 is Called the 

dot product of α and β and denoted by α.β . This is Called the standard inner  

product in R3. 

 
 

If α = (a1,a2,…, an),β = (b1,b2,…, bn) are the elements of a vector space Vn(C) 

where C is the field of complex numbers, then ‹α,β› = a1̅�̅̅�̅̅ + a2̅�̅̅�̅̅ +…+ an̅�̅̅̅�̅̅ = 
𝒏 

𝒊=𝟏 

𝒂𝒊𝒃̅̅𝒊 defines an inner product on Vn(C). 
𝟏 𝟐 𝒏 

∑ 



 
 

𝟎 

Solution : Let a,b ϵ C and α,β,γ ϵ Vn so that α = (a1,a2,…, an),β = (b1,b2,…, bn), 

γ = (c1,c2,…, cn) where a’s, b’s and c’s are complex numbers. 
 

(1) ‹β, α› = b̅̅̅̅�̅̅̅̅̅�+̅̅̅̅b̅̅̅̅�̅̅̅̅�+̅̅̅⋯̅̅̅+̅̅̅̅b̅̅̅̅�̅̅̅̅̅�= b̅̅̅̅̅�̅̅̅̅̅� +  ̅b̅̅̅𝑎̅̅̅̅̅ +…+  ̅b̅̅̅𝑎̅̅̅̅̅̅ 
1   1 2   2 n   𝑛 1   1 2   2 n   𝑛 

 

= �̅� 𝑎̿̿̿ + ̅�̅̅�𝑎̿̿̿ + …+ ̅�̅̅�𝑎̿̿̿ = a1 �̅�  + a2 ̅�̅̅� +…+ an𝑏̅̅̅ = ‹α,β›. 
1   1 2   2 𝑛   𝑛 1 2 𝑛 

 

(2) ‹α,α› = a1 ̅�̅�1̅ + a2 ̅�̅�2̅ +…+ an𝑎̅̅�̅�  = |a1|2 + |a2|2 +…+ |an|2 

If α≠0 then at least one of a1, a2,…, an is non zero complex number . 
 

So ‹α,α› = |a1|2 + |a2|2 +…+ |an|2 > 0. 

(3) aα+bβ = a(a1,a2,…, an)+b(b1,b2,…, bn) 

= ( aa1+bb1, aa2+bb2,…, aan+bbn ) 
 

‹aα+bβ,γ› = (aa1+bb1) �̅�1 + (aa2+bb2) �̅�2,…,(aan+bbn) 𝑐̅̅�̅� 

= (aa1�̅�1+ aa2�̅�2+…+ aan𝑐̅̅�̅�)+ (bb1�̅�1+ bb2�̅�2+…+ bbn𝑐̅̅�̅�) 

= a(a1�̅�1+ a2�̅�2+…+ an𝑐̅̅�̅�)+ b(b1�̅�1+ b2�̅�2+…+ bn𝑐̅̅�̅�) 

= a‹α,γ›+b‹β,γ› 
Therefore the product ‹α,β› = a1 �̅� + a2 ̅𝑏̅̅ +…+ an ̅�̅̅� is an inner product on Vn(C). 

1 2 𝑛 

 

Therefore Vn(C) or Cn(C) is the unitary space. 

 

 
Let V(C) be the vector space of all continuous complex valued functions on the 
closed interval [0,1]. For f,g ϵ V if ‹f,g› = 

space. 

Solution : 

∫
𝟏 
𝒇(𝒕)𝒈̅̅̅(̅�̅̅�) , then V is an inner product 



 
 

 
 

NORM OR LENGTH OF A VECTOR 

DEFINITION : Let V be an inner product space over the field F. The narm (length) 

of α ϵ V denoted by ‖ α ‖ is defined as the positive square root of ‹α,α›. 
 

Norm or length of α ϵ V = ‖ α ‖ = √(α, α) => ‖ α ‖2 = ‹α,α›. 

NOTE : 1. For α ϵ V , ‹α,α› is non- negative real number and hence the norm of α 

is always non- negative real number. 
 

2. α = 0  ‖ α ‖ = 0 

EXAMPLE : 1. In the inner product space V2(R) = R2(R);If α = (a,b) ϵ V2 

then ‖ α ‖ = ‖(a,b)‖ = √𝑎2 + 𝑏2 = √‹α, α› . 

2. In the inner product space V3(R) = R3(R);If α = (a,b,c) ϵ V3 
 

then ‖ α ‖ = ‖(a,b,c)‖ = √𝑎2 + 𝑏2 + 𝑐2 = √‹α, α› . 

3. In the inner product space Vn(R) = Rn(R);If α = (a1,a2,…,an) ϵ 

Vn then ‖ α ‖ = ‖( a1,a2,…,an)‖ = √|a1|
2+|a2|

2+…+|an|
2 = √‹α, α› . 

 

 

THEOREM : In an inner product space V(F) (1) ‖ α ‖ > 0 if α ≠ 𝟎 and 

(2) ‖a α ‖ = |a|‖ α ‖ where 0, a ϵ F and 𝟎, α ϵ V. 

Solution : (1) If α ≠ 0 then ‹α, α› > 0. 

 

‖ α ‖ = √‹α, α› > 0 . for any α ϵ V , ‖ α ‖ ≥ 0. 

(2) By the definition of norm , ‖ a α ‖2 = ‹aα, aα› 

= a‹α, aα› 
 

= a 𝑎‹α, α› 



 
 

› 

= |a|2 ‖ α ‖2 

= (|a| ‖ α ‖ )2 
 

Therefore ‖a α ‖ = |a|‖ α ‖ where 0, a ϵ F and 0, α ϵ V. 
 

NOTE : If α ϵ V and α ≠ 0 by the above theorem ‖ α ‖ > 0. Since ‖ α ‖ (> 0) ϵ F and 
F is a field , there exists 1 

‖ α ‖ 

ϵ F such that ‖ α ‖ 1 

‖ α ‖ 

= 1. Now for 1 

‖ α ‖ 

ϵ F and 

1 

α ϵ V we have 
‖ α ‖ 

1 

α ϵ V , such that 
‖ α ‖ 

1 

α , 
‖ α ‖ 

1 

α = 
‖ α ‖ 

(
̅̅̅1̅̅̅̅
) ‹α, α›

 
‖ α ‖ 

 
    1 1 

= ( ) ( ) ‖ α ‖2 = 1 
‖ α ‖ ‖ α ‖ 

 

 
 

Hence α ϵ V and α ≠ 0 , 
1 

‖ α ‖ 

α ϵ V is a vector of length 1. 

 

DEFINITION : Let V(F) be an inner product space. α ϵ V is called a unit vector if 
 

‖ α ‖ = 1. If α ϵ V then 1 

 

 

‖ α ‖ 

α ϵ V is unit vector. 

 

Example : (1) In the inner product space R2 , i = (1,0) , j = (0,1) are unit vectors. 

(2) In the inner product space R3 with standard inner product 

i = (1,0,0) , j = (0,1,0) and k = (0,0,1) are vectors of length 1. 

 
 

THEOREM : Cauchy-Schwarz’s inequality 
 

In an inner product space V(F) , |‹α,β›| ≤ ‖ α ‖ ‖ β ‖ for all α , β ϵ V. 

Proof : Case (1). Let α = 0. Then ‹α,β› = ‹0,β› = 0 and ‖ α ‖2 = ‹α, α› = ‹0, 0› = 0. 

Therefore |‹α,β›| = 0 and ‖ α ‖ ‖ β ‖ = 0. 

‹ 



 
 

Therefore |‹α,β›| = ‖ α ‖ ‖ β ‖. 
 

 
 

Case (2). Let α ≠ 0. Then ‖ α ‖ > 0 so that 
1 

‖ α ‖ 

> 0. 



 
 

‹β,α› 

Take γ ϵ V so that γ = β - 
‖ α ‖ 2 α. 

 
‹β,α› ‹β,α› 

Now ‹γ, γ›   =   ‹ β - 
‖ α ‖ 2  α , β - 

‖ α ‖ 2 α › 

 
  

‹ β,α › ‹β,α› ‹β,α› ‹ β,α › 

= ‹β,β› - 
‖ α ‖ 2    ‹β,α› - 

‖ α ‖ 2 ‹α,β› + 
‖ α ‖ 2

 
‖ α ‖ 2   ‹α,α› 

 
  

= ‖β‖2 - 
‹β,α› ‹β,α› ‹β,α› ‹α,β› ‹β,α›  ‹β,α› 

- + 
‖ α ‖ 2 ‖ α ‖ 2 ‖ α ‖ 2 

 
 

= ‖β‖2   - 
‹β,α› ‹α,β› 

‖ α ‖ 2 

= ‖β‖2 - 
‹α,β› ‹α,β› 

‖ α ‖ 2 

 

But by the definition of the norm ; ‹γ, γ› ≥ 0 
 

Therefore ‖β‖2 - 
‹α,β› ‹α,β› 

≥ 0 

‖ α ‖ 2 

 

 ‖β‖2 ≥ 
|‹α,β›| 2 

‖ α ‖ 2 

 
‖ β ‖2 ‖ α ‖2 ≥ |‹α,β›|2 

 
( ‖ β ‖ ‖ α ‖ ) 2 ≥ |‹α,β›|2 

Therefore ‖ β ‖ ‖ α ‖ ≥ |‹α,β›| as ‖ β ‖ ‖ α ‖ and |‹α,β›|are non-negative. 

Hence |‹α,β›| ≤ ‖ α ‖ ‖ β ‖ . 

‹β,α› ‹β,α› 
  

NOTE : For γ ϵ V , ‹γ, γ› = 0 => γ = 0 => β - 
‖ α ‖ 2 α = 0 => β = 

‖ α ‖ 2 α 

 
β vector = scalar multiple of the vector α 

 
α , β are linearly dependent. 



 
 

Hence α , β are linearly dependent vectors of V  |‹α,β›| = ‖ α ‖ ‖ β ‖ . 

 

 
THEOREM : ( Triangle inequality ) 

 

In an inner product space V(F) , ‖ α + β ‖ ≤ ‖ α ‖ + ‖ β ‖ for all α , β ϵ V. 

Proof : By the definition of norm , ‖α+β‖2 = ‹ α+β , α+β › 



 
 

= ‹α,α› + ‹α,β› +‹β,α› +‹β,β› 
 

= ‖ α ‖2 + ‹α,β› + ‹α, β› + ‖ β ‖2 

= ‖ α ‖2 + 2 Re ‹α,β› + ‖ β ‖2 

≤ ‖ α ‖2 + 2 | ‹α,β› | + ‖ β ‖2 

≤ ‖ α ‖2 + 2 ‖ α ‖ ‖ β ‖ + ‖ β ‖2 

≤ ( ‖ α ‖ + ‖ β ‖ )2 

Therefore ‖α+β‖2 ≤ ( ‖ α ‖ + ‖ β ‖ ) 

As both ‖α+β‖ and ‖ α ‖  + ‖ β ‖ are non-negative we have  ‖α+β‖ ≤ ‖ α ‖ + ‖ β ‖. 
 

 
THEOREM : ( Parallelogram law ) 

If α , β are two vectors in an inner product space V(F) then 

 

‖ α - β ‖2 + ‖ α + β ‖2 = 2 ( ‖ α ‖2 + ‖ β ‖2 ) 

Proof : ‖α-β‖2 = ‹α-β , α-β› 

= ‹α,α› - ‹α,β› - ‹β,α› +‹β,β› 

= ‖ α ‖2 - ‹α,β› - ‹β, α› + ‖ β ‖2 

‖α+β‖2 = ‹α+β , α+β› = ‹α,α› + ‹α,β› +‹β,α› +‹β,β› = ‖ α ‖2 + ‹α,β› + ‹β, α› + ‖ β ‖2 

Therefore ‖α-β‖2 + ‖α+β‖2 = 2 ‖ α ‖2 + 2 ‖ β ‖2 = 2 ( ‖ α ‖2 + ‖ β ‖2 ) 

 

NORMED VECTOR SPACE AND DISTANCE 

DEFINITION : Let V(F) be an inner product space in which norm of a vector α ϵ V is 

defined as ‖ α ‖ = √‹α, α› . The inner product space with this definition of norm is 

called a normed vector space if the following conditions are true : 
 



 
 

(i) ‖ α ‖ ≥ 0 and ‖ α ‖ = 0  α = 0 



 
 

(ii) ‖ a α ‖ = |a| ‖ α ‖ and 

(iii) ‖α+β‖ ≤ ‖ α ‖ + ‖ β ‖ for all α , β ϵ V , a ϵ F 

As the above three conditions are true in every inner product space , every inner 

product space is a normed vector space. 

DEFINITION : Let α , β be two vectors in an inner product space V(F). The distance 

between the vectors α , β denoted by d‹α,β› is defined as ‖α-β‖. 

NOTE : (1) If α , β ϵ V then d‹α,β› = ‖α-β‖ 
 

 d [‹α,β›]2 = ‖α-β‖2 = ‹ α-β , α-β › 

(2) d‹α,β› is a non-negative real number. 

 

 
THEOREM : If α,β,γ ϵ V(F) an inner product space then (1) d (α,β) ≥ 0 and 

d (α,β) = 0  α = β (2) d (α,β) = d (β,α) and (3) d (α,β) + d (β,γ) ≥ d (α,γ). 

Proof : (1) By the definition, d‹α,β› = ‖α-β‖ ≥ 0 since norm of a vector is a 

non-negative real number. 

d‹α,β› = 0  ‖α-β‖ = 0  ‖α-β‖2 = 0  ‹ α-β , α-β › = 0  α-β = 0 i.e., α = β 

(2) d‹α,β› = ‖α-β‖ = ‖ (-1)(β- α) ‖ = |-1| ‖ β- α ‖ = 1 ‖ β- α ‖ = d ‹β, α›. 

(3) d ‹α,β› + d ‹β,γ› = ‖α-β‖ + ‖ β-γ ‖ ≥ ‖α-β + β-γ ‖ By triangle inequality 

≥ ‖α-γ‖ = d ‹α,γ›. 
 

NOTE : (1) In an inner product space V(F) the distance function d : V→F ,defined 

as d‹α,β› = ‖α-β‖ for all α , β ϵ V is satisfying the properties (1),(2),(3) of the 

metric space. 

(2) For α,β,γ ϵ V ; d ‹α+γ , β+γ› = ‖ α+γ-β-γ ‖ = ‖α-γ‖ = d ‹α,γ›. 



 
 

PROBLEMS 
 

1. If α = (2,1,1+i) is a vector in C3 with standard inner product find ‖α‖ 

and the unit vector of α. 

Solution : ‖ α ‖2 = ‹α,α› = (2)(2̅) + 1(1̅) + (1+i)( ̅1̅̅+̅̅̅𝑖) 

= (2)(2) + 1(1) + (1+i)(1-i) 

= 4 + 1 +2 = 7. 
 

Unit vector of α = 1 

‖ α ‖ 

1 

α = (2,1,1+i). 
√7 

 

2. If α = (4,1,8),β = (1,0,-1) are two vectors in R3 find the angle between α 

and β. 
 

Solution : ‖ α ‖ = √42 + 12 + 82 = √81 = 9 and 

 

‖ β ‖ = √12 + 02 + (−3)2 =√10 
 

‹α,β› = (4)(1)+(1)(0)+(8)(-3) = -20. 
 

If θ = angle between α and β then cos θ = |‹α,β›| 

 
 

‖ α ‖ ‖ β ‖ 

|−20| 

=    
9(√10 ) 

20 

=    
9(√10 ) 

2 

= √10. 
9 

 
 

 

3. If α,β are two vectors in an inner product space , then α,β are linearly 

dependent if and only if |‹α,β›| = ‖ α ‖ ‖ β ‖. 

Solution : Let α,β be linearly dependent. 

Then either α = 0 or β = 0 or α = aβ where ‘a’ is a scalar. 

When α = 0 : ‹α,β› = ‹0,β› = 0 and ‖ α ‖ = 0. 

When β = 0 :  ‹α,β› = ‹α, 0 › =  ̅‹̅0̅,̅α̅̅› = 0 and  ‖ β ‖ = 0. 

When α = aβ : ‹α,β› = ‹aβ,β› = a ‹β,β› = a ‖ β ‖2 and ‖ α ‖ = ‖ aβ ‖ = |a| ‖β‖ 



 
 

Therefore |‹α,β›|= |a| ‖β‖2 = (|a| ‖β‖) (‖β‖) = ‖ α ‖ ‖β‖. 

Conversely , let |‹α,β›|= ‖ α ‖ ‖β‖. 



 
 

When α = 0 the vectors α,β be linearly dependent. 

When α ≠ 0 ; we have ‖ α ‖ > 0. 

‹β,α› 

Consider the vector γ = β - 
‖ α ‖ 2 α. 

 
‹β,α› ‹β,α› 

Now ‹γ, γ›   =   ‹ β - 
‖ α ‖ 2  α , β - 

‖ α ‖ 2 α › 

 
  

‹ β,α › ‹β,α› ‹β,α› ‹ β,α › 

= ‹β,β› - 
‖ α ‖ 2    ‹β,α› - 

‖ α ‖ 2 ‹α,β› + 
‖ α ‖ 2

 
‖ α ‖ 2   ‹α,α› 

 
  

= ‖β‖2 - 
‹β,α› ‹β,α› ‹β,α› ‹α,β› ‹β,α›  ‹β,α› 

- + 
‖ α ‖ 2 ‖ α ‖ 2 ‖ α ‖ 2 

 
 

= ‖β‖2   - 
‹β,α› ‹α,β› 

‖ α ‖ 2 

= ‖β‖2 - 
‹α,β› ‹α,β› 

‖ α ‖ 2 

 

=  ‖β‖2 - 
|‹α,β›| 2 

‖ α ‖ 2 

=  ‖β‖2 - 
‖ α ‖2 ‖β‖2 

‖ α ‖ 2 

= 0. 

 
 

Therefore ‹γ, γ› = 0 => γ = 0 
 

 β - 
‹β,α› 

‖ α ‖ 2 

 β =  
‹β,α› 

‖ α ‖ 2 

α = 0 

α = 0 

 
β = aα where a = 

‹β,α›
 

‖ α ‖ 2 

is a scalar. 

 

Therefore α,β be linearly dependent. 
 

 



 
 

4. Two vectors α,β in an unitary space V(C) are such that ‹α,β› = 0 iff 

‖aα+bβ‖2 = |a|2 ‖ α ‖2 + |b|2‖ β ‖2 for all a,b ϵ C. 

Solution : Let  ‹α,β› = 0. Then ̅‹̅α̅̅, ̅β̅̅› = 0. 

‖aα+bβ‖2 = ‹ aα+bβ , aα+bβ › = a ‹α, aα+bβ › + b ‹β, aα+bβ › 

= a[ �̅� ‹α,α› + �̅� ‹α,β›] + b[�̅� ‹β,α› + �̅� ‹β,β›] 

= a�̅� ‹α,α› + a�̅� ‹α,β› +b�̅� ‹β,α› + b�̅� ‹β,β› 
 

 

 



 
 

= |a2|‖ α ‖2 + a�̅� ‹α,β› +b�̅� ̅‹̅α̅̅, ̅β̅̅› + |b2|‖ β ‖2 
 

 

= |a2|‖ α ‖2 + 0 + 0 + |b2|‖ β ‖2 

= |a2|‖ α ‖2 + |b2|‖ β ‖2 

→ (1) 

 

Conversely, Let ‖aα+bβ‖2 = |a|2 ‖ α ‖2 + |b|2‖ β ‖2 for all a,b ϵ C. 
 

Using (1) we have 

|a2|‖ α ‖2 + a�̅� ‹α,β› +b�̅�  ‹̅̅α̅̅, ̅β̅̅› 

 
 

+ |b2|‖ β ‖2 = |a2|‖ α ‖2 + |b2|‖ β ‖2 
 

 a�̅� ‹α,β› +b�̅� ̅‹̅α̅̅, ̅β̅̅› = 0 → (2) 
 

Take   a = 1 , b = 1 so that  �̅� = 1 , �̅� = 1 

Then (2) : (1)(1) ‹α,β› + (1)(1) ̅‹̅α̅̅, ̅β̅̅› = 0 

 ‹α,β› + ̅‹̅α̅̅, ̅β̅̅›   = 0 

 2 Re ‹α,β› = 0 

 Re ‹α,β› = 0 

Take   a = i , b = 1 so that  �̅� = -i , �̅� = 1 
 

Then (2) : i ‹α,β› - i ̅‹̅α̅̅, ̅β̅̅› = 0 
 

 i [‹α,β› - ̅‹̅α̅̅, ̅β̅̅› 

 ‹α,β› - ̅‹̅α̅̅, ̅β̅̅› 

 2 Im ‹α,β› = 

0 

] = 0 

= 0 

 

Thus we have Re ‹α,β› = 0 and Im ‹α,β› = 0. 
 

Hence ‹α,β› = 0. 
 

 
5. If u,v are two vectors in a complex inner product space with standard inner 

product then prove that 

4‹u,v› = ‖ u+v ‖2 - ‖ u-v ‖2 + i ‖ u+iv ‖2 - i ‖ u-iv ‖2. 



1 
 

Solution : ‖u+ v‖2 = ‹u+v , u+v› = ‹u,u› + ‹u,v› + ‹v,u› + ‹v,v› 

= ‖ u ‖2 + ‹u,v› + ‹v, u› + ‖ v ‖2 → (1) 

‖u-v‖2 = ‹u-v , u-v› = ‹u,u› - ‹u,v› - ‹v,u› + ‹v,v› 

= ‖ u ‖2 - ‹u,v› - ‹v, u› + ‖ v ‖2 → (2) 

‖u+iv‖2 = ‹u+iv , u+iv› = ‹u,u› + �̅� ‹u,v› + i‹v,u› + i 𝑖‹ ̅ v,v› 

= ‖ u ‖2 - i‹u,v› +i ‹v, u› + ‖ v 

‖2 i ‖u+iv‖2 = i‖ u ‖2 + ‹u,v› - ‹v, u› + i‖ v ‖2 → 

(3) 

‖u-iv‖2 = ‹u-iv , u-iv› = ‹u,u› - �̅� ‹u,v› - i‹v,u› + i�̅� ‹v,v› 

= ‖ u ‖2 + i‹u,v› - 𝑖‹v, u› + ‖ v ‖2 

i ‖u-iv‖2 = i‖ u ‖2 - ‹u,v› + ‹v, u› + i‖ v ‖2 → (4) 

From (1),(2),(3) and (4) : ‖ u+v ‖2 - ‖ u-v ‖2 + i ‖ u+iv ‖2 - i ‖ u-iv ‖2 

= {2‹u,v› + 2‹v,u›} + {2‹u,v› - 2‹v,u›} 
 

= 4 ‹u,v› 
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