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VECTOR SPACES

Internal Composition: Let A be any set. If axb€A Va,beA and axb is unique then * is
said to be an internal composition in the set A

External composition: Let V and F be any two sets. If aca€V, VaeF and YaeV and
aca is unique, then o is said to be an external composition in V over F.

Vector Space: Let (F,+,.) be a field. The elements of F will be called scalars. Let V be
a non-empty set whose elements will be called vectors. Then V is a vector space
over the field F, if it satisfies the following properties.

i) a+BeV for all a,BeV

ii) a+PB=P+a for all a,BeV

i) a+(B+y)=(a+B)+y for all a,B,yeV

iv) 3 an element 0€V such that a+6=a for all aeV

v) To every vector aeV there exists a vector —aeV such that a+(-a)=0
vi) aaeV for all aeF,aeV

vii) a(a+B)=aa+aP for all aeF, a,BeV

viii) (a+b)a=aa+ba for all a,beF and aeV

ix) (ab)a=a(ba) for all a,beF and aeV

X) lo-a for all aeV

Example: Show that a field K can be regarded as a vector space over any subfield F
of K

Solution: K is the set of vectors.

Since K is a field, (K,+) is an abelian group.

The elements of the subfield F are scalars.

Since K is a field, aae€K, VaeF, Va eK and a, a €K

If 1 is the unity element of K, 1 is the unity element of F
(i) a(a+P)=aa+aP, V a€F and V a€K, since K is field

(i) (a+b)a=aa+ba V a,beF and V aeK, since K is field

(il)  (ab)a=a(ba) V a,beF and V aeK, since K is field



(iv) la=aq,VaekK

Hence K(F) is a vector space

Theorem : Let (F, +, - ) be a field. Let V(F) = {(a1, az, ..., an): ai, az, ..., ane F}.
Then V,(F) is a vector space with respect to internal composition defined by o + 3 =
(a1 + by, a2+ by, ..., an+ by) and external composition by ao = (aas, aay, ... , aap)
wherea e F, a = (ai, az, ..., an), B = (b1, ba, ..., bn) €Vn(F).

Proof: Let o = (a1, @z, ..., an), p = (b1, b2, ..., bn), y = (C1, Ca,...,Cn)eVn(F), a, beF
V. (F)is closed under Vector addition:

Leta, Be V. Thena+ B ={(ar+ by, a2+ bz, ..., an+ by) €Viu(F) }

+ IS associative:

Leta, B, ye V. Then (a+ B) +y=(ar + by, a2+ bz, ..., an+ by) + (C1, C2, ..., Cn)
=(a, + by +c,a, + by, + ¢y, ...,ay, + b, +cp)

=(a; + by + ¢cy,a, + b, + ¢y, ...,a, + b, + c,) by associative law in F.

= (8.1, az, ..., an) + (b1 +Cy, bo+ Co, ..., bpt Cn) =a+ (B + y)

0=(0.0, ..., 0) is Zero element:

Clearly 0= (0, 0, ..., 0) eV (F).

Let aeVn(F).

Thena+0=(a1+0,a+0,...,a,+0) =(a, a, ..., an) = o

—o = (—a1, —ay, ..., —ay) IS the additive inverse of a.:

Let ae Vn(F). Clearly —a=(-a1, —az, ...,—an) €Vn(F) and
a+(—a)=(a+—a,a+—2a,...,apn+—2a,)=(0,0,...,00=0

+ IS commutative:

Let a, B, ye Va(F).

Thena+ B =(@r+by,a2+by,...,an+tby)=(b1+a, bptax,....,bptan)=f+a
& (Vn(F), +) is an abelian group.

Vi(F) is closed under scalar multiplication: Leta € F, a.e V. Then
ao. = a(a, az, ..., an) = (@ ay, aay, ..., aan) is an unique element of Vy(F) VaeF,aeV

Toshow a(a+PB)=aa+aB: LetaeF, a, e V. Then
a(a+pB)=a(@+by,atby,...,an+bhy) =(@ar+ab,aax+ab,,...,aa,+ahy
=(aa,aa,...,aan) +(abs,aby ...,aby) =a(ay az, ..., an) +a(b, by, ..., by)




—aa+ap.

Toshow (a+b)a=aa+ba: Letab € F, ae Va(F).
Then(a+b)a=(a+b)(ay,a ..., an) = (a + bay,a + ba,, ...,a + ba,)
=(aap+baj,aa+baz,...,aa+bap)

=(aaj,aay...,aay +(baj,bay ...,bay) =a(as, az, ..., an) tb (az, a2, ..., ay) =aa
+ ba

To show a(ba) = (ab)a. : Leta, b € F, ae V,(F). Then

a(bo) = a(b as, b ay, ..., ban) = (abay, aba,, ...,aba,) =(%a1,%a2, ,%an)
=ab(as, az, ..., an)= (ab)a

To show that 1o= a: Let aaeVn(F)

Thenl o= 1(8.1, daz, ..., an) = (1 di, 1 az, ..., 1 an) = (8.1, az, ..., an) =

Hence V,(F) is a vector space.

Example: Prove that the set of all polynomials in an indeterminate x over a field F is
a vector space

Solution: Let F[x] be the set of all polynomials over F
Let f(x)=ag + a;x + a,x? + -+, g(x)=by + byx + byx? + ---€F[x] and ceF

f(x)+g(x)=(ay + by) + (a; + by)x + (a, + by)x?* + ---€F[x]
Let f(x)=ag + a;x + ayx? + -+, g(x)=by + byx + byx? + -, h(X)=cy + c1x +
cyx?% + - € F[x]

[f(x)+g(x)]+h(x)=[(ay + by) + (a; + b))x + (ay + by)x? + -] +(co + c1x +
Cox? + )

=[(ag + bo) + col + [(ay + by) + c1]x + [(az + by) + cp]x? + -

=lag + (bo + co)] + [ar + (by + c)]x + [az + (b + c3)]x? + -

= (ap + a;x + ayx? + ) +[(bg + co) + (b1 + c)x + (b, + c)x% + -]
=f(x)+[g(x)+h(x)]

Therefore + is associative in F[x]

f(x)+0(x)=(ay + 0) + (a; + 0)x + (a, + 0)x% + -+ = ag + a;x + a,x? + ---=f(x)
Similarly 0(x)+f(x)=f(x)

Therefore 0(x) is the additive identity in F[x]

Let f(x)=ag + a;x + a,x? + -+ €F[x]



(-f)(X)=(—ap) + (—ay)x + (—az)x? + -+ €F[x]
f)+-x)=lao + (~ap)] + [as + (—ap)]x + [ay + (—az)]x® + -
=0+ 0x + 0x? + ---= 0(x)

Similarly (-f)(x)+f(x)= 0(x)

=~ (-)(x) is the additive inverse of f(x) in F[x]

f(x) + g(x)=(aq + by) + (a; + by)x + (a, + by)x? + -
=(by + ap) + (by + a))x + (by + ay)x? + - = g(x) + f(x)

~ + is commutative in F[x]

alf(x)+g(x)]=al(ao + bo) + (a; + by)x + (az + bp)x? + -]

= a(ag + by) + a(a; + by)x + ala, + by)x* +...

=(aay + aby) + (aa; + aby)x + (aa, + ab,)x? +...

=laag + aa;x + aayx? + ---] + [aby + ab;x + ab,x? + ---] =af(x)+ag(x)
= a[f(x)+g(x)]= af(x)+ag(x)

(a+b)f(x)=(a+b)( ag + a;x + ayx? + -+ =(a+b)
ap + (a + b)a;x + (a + b)ayx? + -+

=(aag + bay) + (aa; + ba,)x + (aa, + bay)x? +...

=laag + aa;x + aayx? + ---] + [bay + ba;x + bayx? + ---] =af(x)+bf(x)
~(a+b)f(x)= af(x)+bf(x)

(ab)f(x)= (ab)ay + (ab)a,x + (ab)a,x? + -

=a(bay) + a(bay)x + a(bay)x? + -

=a[bay + ba;x + ba,x? + ---]=a[bf(x)]

~(ab)f(x)= a[bf(x)]

1f(x)=1ag + la;x + la,x? + ---=f(x)

~F[x] is a vector space over F

Example: Show that the set V of all matrices with their elements as real numbers is
a vector space over the field F of real numbers with respect to addition of matrices
as addition of vectors and multiplication of matrices by a scalar as scalar
multiplication.



Solution: Let V = {[aij]mxn: a;; € R}. Let A= [aij]mxn: B = [bij]mxn'

C = [Cij]mxn € V where aij, bij! Cij ER

Addition of matrices “+” is internal composition: Let A, B € V.

Now A + B = [aij]mxn+ [bij]mxn = [aij + bij]mxn € V since aij + bUER

“+” is associative: Let A, B, C € V.

Then (A + B) +C= [ai]’ + bij]mxn + [Cij]mxn = [(aij + bl]) + Cij]mxn =
[aij + (bl] + Cij)]mxn = [aij]mxn + [bl] + Cij]mxn =A+ (B + C)
~(A+B)+C=A+(B+C).

0O = [0],,,«+ is the zero element:

Clearly LetA e V. ThenA+0= [aij + O]mxn = [aif]mxn =A
0 = [0],,,xn is the zero element.

— Ais the negative of A:

LetA € V.Then—A= [—aij]mxne Vand A+ (-A) = [a;; + (—a;))] = [0]pmxn=0

mxn

~ —A s the negative of A

“+” is commutative:

LetA,B e V.
Now A +B = [aij]mxn+ [bij]mxn = [aij + bij]m)(n = [bu + aij]m)(n =B+A

Scalar multiplication is an external composition:

letaeFandA e V.

aA=[a al-j] L€ Vsinceaa;;e F

mxX

(a(A+B)=aA+aBVaecFABeV:

letae FandA,B € V.

a(A+B) = a[aij + bij]anz [a a;; +a bij]mxn - [a aij]mxn+ [a bij]mxn =aA
+aB



(i) (a+b)A=aA+bAVabeFAcV:

(@a+b)A=(a+b) [aij]mxn = [(a + D) aij]mxn - [a aij]mxn + [b aij]mxn maA+
bA

(iii) a(bA)=(ab)A Va,beFAcV:

Leta,beFand A € V. Then a(bA) = a[b aij]mxn = [a(baij)]mxn =
[(ab)aij]mxn=(ab)A

(iv)IA=AVAEeV:

Let A € V. Then 1A = [1 aij]mxn= [aij]mxn =A

~ Vis a vector space over F

Properties of vector spaces:

Let V(F) be a vector space and 0 be the zero vector of V. Then
i) a0=0 for all aeF

ii) oa=0 for alloeV

i) a(-a)=-(aa)

iv) (-a)a=-(aa)

v) a(a-B)=aa-ap

vi) ao=0 implies a=0 or a=0

Proof: (i) ad=a(0+0)=a6+ad

Therefore 6+a0=a0+a0=>0=a0

(i))0a=(0+0)a=0a+0a 0+00=0a+0a=06=0a
(iii)a[o+(-a)]=aa+a(-a)=>ao=aa+a(-a)

=o0=aa+a(-a) 2a(-a)=-(a a)

(iv)[a+(-a)]a=ao+(-a)a=0a=aa+(-a)a=0=aa+(-a)a
=(-a)a=-(aa)

(Ma(a-B)=ala+(-B)]=aa+a(-B) =aa+[-(aP)]=aa-a



Vector subspace: Let V be a vector space over the field F and let WEV. Then W is
called a subspace of V if W itself is a vector space over F with respect to the
operations of vector addition and scalar multiplication in V

Theorem: The necessary and sufficient condition for a nonempty subset W of a
vector space V(F) to be a subspace of V is that W is closed under vector addition and
scalar multiplication in V Proof:
Necessary condition

If W itself is a vector space over F with respect to vector addition and scalar
multiplication in V, then W must closed with respect to these compositions.

Sufficient Condition

Suppose W is a nonempty subset of Vand W is closed under vector addition and
scalar multiplication in V.

Let xeW. If 1€F, then -1€F. -
1leExeW=(-1)xeW=-(1x)eW=-xeW

x€W,-xe W=x+(-x)eEW=0eW

X,y,ZzEW, WCV=xy,zeV= (x+y) +z=x+(y+2)
X,yEW, WEV=x yeVox+y=y+x

a, 0eF x,xeW=ax+0xeW=axeW
a,beFx,yeV=a(x+y)=ax+ay,

(a+b)x=ax+bx,(ab)x=a(bx),1x=x
~W is a vector space and hence W is a subspace of V(F)

Theorem: The necessary and sufficient condition for a nonempty subset W of a
vector space V(F) to be a subspace of V is a,beF and x,yeW ax+byeW

Proof: Necessary condition

Suppose W is a subspace of a vector space V(F)

Let a,beF, x,yeW

acFxeW=axeW

beFyeW=byeW (- W is closed under scalar multiplication)
axeWbyeW=ax+byeW (W is closed under vector addition)



~ a,beF x,yeW=ax+byeW

Sufficient condition: Suppose that W is a nonempty subset of V such that a,beF,
x,yeW=ax+byeW

1leEx,yeW=1x+1yeW=x+yeW

0eF, xeW=0x4+0xeW=0eW

-1,0eE xeW=(-1)x+0xeW= -xeW

Let x,y,zeW

X,y,ZEW, WCV=xy,zeV= (x+y) +z=x+(y+2)
x,yeW, WCV=x,yeVox+y=y+x

a, 0eF, xeW=ax+0xeW=axeW

a,beFx,yeV=a(x+y)=ax+ay, (a+b)x=ax+bx, (ab)x=a(bx), 1x=x
~W is a vector space and hence W is a subspace of V(F)

Example: The set W of ordered triads (x,y,0) where x,yeF is a subspace of V5(F)

Solution: Let a,BeW where a=(xy,y;,0), B=(x;,y, 0) for some x; y; x, y, €F.
Let a,beF, aa+bB=a(x;,y;1,0)+b(x,, y,,0) =
(axq1,ayq,0) + (bxy, by,, 0) = (axq + bx,, ay, + by,, 0)€eF

Hence W is a subspace of V/5(F)

Example: Prove that the set of all solutions (a,b,c) of the equation a+b+2c=0is a
subspace of the vector space V3 (R)

Solution: Let W={(a,b,c): a,b,ceR and a+b+2c=0}
Leta = (aq,by,c1), B = (ay, by, c) EW
Thenay + by +2c; =0anda, + b, + 2¢, =0

If a,b€ R, then aa+bB=a(a,, by, c1)+b(a,, by, cy)
=(aaq, aby, acy)+(ba,, bb,, bc,)

=(aa; + ba,,ab, + bb,,ac, + bc,)

Now (aay + ba,) + (ab, + bb,) + 2(ac, + bc,)
=a(a, + by + 2¢4)+b(a, + by + 2¢,)=a.0+b.0=0
aa+bBEW



Hence W is a subspace of the vector space V5(R)

Example: Let R be the field of real numbers and W={(x,y,z)/x.y,z are rational
numbers}. Is W a subspace of V5(R)?

Solution: Let a=(2,3,4)eW, a=V7¢€R

aa=v7(2,3,4)=(2V7,3V7,4V7)¢W

Hence W is not a subspace of V3 (R)

Example: Show that W={(a,2b,3c):a,b,ceR} is a subspace of V;(R)
Solution: Let x = (a4, 2by, 3¢4), ¥ = (a,,2b,,3c,) € Wand a,b eR

ax+by=a( a,, 2b;, 3¢,)+b(a,, 2b,, 3¢,) =(aaq, 2abq, 3acq)+
(ba,, 2bb,,3bc,)

=(aa, + ba,, 2ab; + 2bb,,3ac; + 3bcy)
=(aa, + ba,, 2(aby; + bby),3(acy + bcy))e W
~ W is a subspace of V5(R)

Example:lf a; a, as are fixed elements of a field F, then the set W of all ordered
triads (x; x, x3) of elements of F such that a;x; + a, x,+a3x3=0is a subspace of
V3(F).

Solution: Let a= (x; X, x3) and B=(y1 y, y3) €W where x; x, x3,y1 Y, V3 € F
Then a;x; + a; x,+azx3=0, a;y; + a, y,+azy3;=0

If a,beF, then aa+bB= a (x x, x3) + b (y1, ¥, y3)

= (axy,ax, axz) + (by; by, bys) =(axy + by, ax, + by, ax; +bys)

Now a;(ax; + by,) + a,(ax, + by,) + as(ax; +bys;) =a(a,x; +
a, x,+asx3)+b(a,;y; + a, y,+azy3;)=a0+b0=0

~aa+bfB=(ax; + by, ax, + by, axs +by;) EW
Hence W is a subspace of V5(F)

Theorem:The intersection of any two subspaces W, and W, of a vector space V(F) is
a subspace of V(F)

Proof: Since 6eW; andW, W, N W, # @
Let a, feW; N W, and a,beF aceW, N W, = aeW,and ae W,,



PeW, N W, = feW,and e W,
Since W, is a subspace, a,b € Fand a,3 € W; = aa + b3 € W;
Similarly W,is a subspace, a,b e Fand o, € W, = aa + b3 € W,
Thus a,beF, a, feW; N W, = aa + bB e W, N W,
Hence W, N W, is a subspace of V(F)
Note: The union of two subspaces of V(F) may not be a subspace of V(F)

Example: If R be the field of real numbers, then W;={(0,0,z): zeR} and W,={(0,y,0):
yeR} are two subspaces of /5(R)

(0,0,2)e W; and (0,3,0)e W,
~(0,0,2) and (0,3,0) eW; U W,
But (0,0,2)+(0,3,0)=(0,3,2) ¢ W; U W,
Hence W; U W, is not a subspace of V3(R)
Theorem: The union of two subspaces is a subspace iff one is contained in the other.
Proof: Let W;and W, be two subspaces of a vector space V(F)
Suppose W; U W, is a subspace of V
If possible suppose that W; €W, and W, W,
Wy, €W, =>3IxeW,axe&W,
W, €W, =>3yeW,syeW,
xeW; yeW, =sx,yeW; U W, =x+yeW; U W,=>x+yeW, orx+y e W,

If x+yeW, then xeW,, x+yeW,;=>y=( x+y)-xeW; If
x+yeW, then yeW,, x+yeW,=x=( x+y)-yeW,

It is a contradiction

~W; € W, orW, € W;. Conversely
suppose that W; € W, orW, € W,

If W, € W, then W; U W,=W, is a subspace of V
If W, € W, then W; U W,=W] is a subspace of V
~ W5 U Wsis a subspace of V



Smallest subspace containing any subset of V(F): Let V(F) be a vector space and S
be any subset of V. If U is a subspace of V containing S and is itself contained in
every subspace of V containing S, then U is called the smallest subspace of V
containing S.

The smallest subspace of V containing S is also called the subspace of V
generated or spanned by S and denote it by {S}

Linear combination of vectors: Let V(F) be a vector space. If a4, a5, ..., a,€V, then
any vector o= a,aq + aya, + -+ a,a, where a4, a,, ..., a,€F is called a linear
combination of the vectors a4, a5, ..., a,

Linear span: Let V(F) be a vector space and S be any non-empty subset of V. Then
the linear span of S is the set of all linear combinations of finite sets of
elements of S and is denoted by L(S).

Example: Express the vector x=(1,-2,5) as a linear combination of the vectors
x1=(1llll)l x2=(11213)1 X3=(2,'1,1)

Solution: Let x=ax; +bx,+cx; =(1,-2,5)=a(1,1,1)+b(1,2,3)+c(2,-1,1)
=(1,-2,5)=(a+b+2c,a+2b-c,a+3b+c)

=a+b+2c=1, a+2b-c=-2, a+3b+c=5

Solving these equations, we get a=-6,b=3,c=2

S X=-6x1+3x,+2x3
THEOREM: The linear span L(S) of any subset S of a vector space V(F) is a subspace
of V generated by S ie., L(S)={S}

Proof: Let a,B€S

Then a=a,a; + aya, + -+ + a,,,a,, and B=b B + by, B, + -+ + b, By,

If a,beF then aa+bB=a(a,a; + aya, + - + a,a,)+b(b1 1 + by + -+ by )
=a(ayaq) +a(azay) + -+ a(@mam)+b(bi 1) + b(b2B2) + -+ + b(byfBrn)
=(aay)a; + (aax)a; + -+ (aay)apm+(bby) By + (bby) B, + -+ + (bby)BreL(S)
Thus a,beF and a,BeL(S)=aa+bBeL(S)

Hence L(S) is a subspace of V(F)

If a, €Sthen a, = 1la,=a, € L(S)=>ScCL(S)



~ L(S) is a subspace of V and S is contained in L(S)

If W is any subspace of V containing S, then each element of L(S) belongs to W
because W is closed under vector addition and scalar multiplication. Therefore
L(S) will be contained in W. Hence L(S)={S}

Linear sum of two subspaces: Let W; andl/, be the two subspaces of the vector
space V(F). Then the linear sum of the subspaces W;and W, denoted by W, + W, is
the set of allsums @ ; + @, suchthata; e W;,a; € W, .

Thus W1+W2 ={a1+ a, a1€W1,a2€W2}

Theorem: If W, and W, are subspaces of the vector space V(F), then (i) W; + W, is
a subspace of V(F)  (ii) L(W; U Wy)=W,; + W,

Proof: Let a,fe W; + W,
Then o= a; + a, and B =B, + B, where a,, f,€W; and a,, B,eW,
If a,beF, then ao+bp = a(a; + ay) + b(B; + B2)

=(aa; + bBy) + (aaz + bp;) Since
W,is a subspace, aa; + bB; € W;. Similarly aa, + b, € W,

o a(x+b[3=(a0(1 + bﬁl) + (aaz + bﬁz)ewl + Wz
Hence W; + W, is a subspace of V(F)

(i1) Since oeW,, if «; € W;we can write a; = a; +0€e W, + W, =
W, Wy + W, . Similarly W, € W, + W,

~WyuW, cw, + W,
Hence W, + W, is a subspace of V containing W; U W,
Leta=a; + f; e W, + W,. Thena; e W, €W, = ay, L e W, UW,

Also a; + f1=1a; + 15;=>a; + [; is a linear combination of a finite number of
elements a;, i e W, UW, = a;+ f; € LW, UW,)

'.'Wl + WZ g L(Wl U Wz)

L(W; U W,) is the smallest subspace containing W; U W, and W; + W,is a
subspace containing W, UW, = L(W; UW,) © W; + W,

Hencer + WZ = L(Wl U Wz)



Example: If S,T are subsets of V(F), then

(i) S€ T= L(S)SL(T) (ii) L(SUT)=L(S)+L(T)

(iii) S is a subspace of V& L(S)=S (iv) L(L(S))=L(S)

Solution:(i) Let ae L(S)

Then a=a a; + aya, + -+ + a,a, where aq,ay, ..., a,€ S and aq, a,, ..., a,€F
A,y ..., A, €S5,SET= aq,ay,..,0,€T

aq,ay, ..., an€F, aq, ay, ..., 0n€T=>a1a1 + aya, + -+ a,a, € L(T) >ae L(T)
~ L(S)EL(T)

(ii) Let a€L(SUT)

Thena=a,a; + a,a; + -+ @y + by By + byfy + -+ by B, where
{ay, az, ..., am, B1, Bz, .-, Bplis a finite subset of SUT such that {a4, @y, ..., @ }€S

and {81, By, .., By JET G ¥
A,y + -+ Ay Ay EL(S) and b1 ,81 + b2,32 + -+ bp:Bp EL(T)

~0eL(S)+L(T) and L(SUT)S L(S)+L(T)
Let yeL(S)+L(T)

Then y=p+68 where BeL(S) and 6€L(T). Now
B will be a linear combination of a finite number of elements of S and & will be a
linear combination of a finite number of elements of T

=[+8 will be a linear combination of a finite number of elements of SUT

~ B+6€L(SUT) and L(S)+L(T)< L(SUT)

Hence L(SUT)=L(S)+L(T)

(iii) Suppose S is a subspace of V

Let ae L(S)

Then a=a;a; + aya, + -+ + a,a, where a;,a,, ...,a,€ Sand aq, a,, ..., a,€F

Since S is a subspace of V, it is closed with respect to scalar multiplication and vector
addition.

~a€eL(S)=aeS and L(S)ES
Also SCL(S), we have L(S)=S



Conversely suppose that L(S)=S

Since L(S) is a subspace of V and S=L(S), S is also a subspace of V
(iv) Let a€L(S). Then a=1aeL(L(S))

~ L(S)<€ L(L(S))

Let aeL(L(S)). Then a= a,a; + aya, + -+ a,a, where a4, ay, ..., 2, €L(S) and
a, a,, ...,anGF

ai, Ay, ..., &, €L(S) and L(S) is a subspace of V=
>a,a1 + aza, + -+ aya,€L(S)=>aeL(S)

~L(L(S))EL(S) and hence L(L(S))=L(S)

Linear Dependence: Let V(F) be a vector space. A finite set {a4, a5, ..., a, }of vectors
of V is said to be linearly dependent if there exist scalars a4, a,, ..., a, €F not all zero
such that a;, a4 + aya, + a,a,=0

Linear independence: Let V(F) be a vector space. A Finite set {a4, a3, ..., &, } of
vectors of V is said to be linearly independent if every relation of the form
a,a, + aa, + a,a,= 0> a,=0,a,=0,...,a,=0

Example: Show that the three vectors (1,1,-1), (2,-3,5) and (-2,1,4) of R3 are linearly
independent.

Solution: Let a,b,c be the real numbers such that
a(1,1,‘1)+b(2,‘3,5)+€(‘2,1,4)=(0,0,0)
=(a+2b-2c, a-3b+c, -a+5b+4¢)=(0,0,0)

= a+2b-2c=0 (1)
a-3b+c=0 72—
a+5b+4c=0 (3)

Multiplying (2) by 2 and adding to (1), we get 3a-4b=0 (4)
Multiplying (1) by 2 and adding to (3), we get a+9b=0  (5)
Multiplying (5) by 3 and subtracting by (4), we get -31b=0 or b=0
Putting b=0 in (5) we get a=0



Putting a=0, b=0in (1), we get c=0

Thus a=0,b=0,c=0 is the only solution of the above equations
~a(1,1,-1)+b(2,-3,5)+c(-2,1,4)=(0,0,0)=a=0,b=0,c=0

Hence the given vectors of R are linearly independent.

Example: Show that the system of vectors (1,3,2), (1,-7,-8), (2,1,-1) of V5(R) is
linearly dependent.

Solution: Suppose a(1,3,2) + b(1,-7,-8) + ¢(2,1,-1) = (0,0,0)
= (a+b+2c, 3a-7b+c, 2a-8b-c) = (0,0,0)
= atb+2c=0 (1)
3a-7b+c=0 (2)
2a-8b-c=0 (3)
Multiplying (2) by 2, we get 6a-14b+2c=0 (4)
Subtracting (1) from (2), 5a-15b = 0= a=3b
Adding (2) and (3), 5a-15b =0= a=3b
Put b=1, then a=3
Putting these values in (1), c=-2
~3(1,3,2) + 1(1,-7,-8) - 2(2,1,-1) = (0,0,0)
Hence the given vectors are linearly dependent.

Example: Show that the vectors (1,1,2,4), (2,-1,-5,2), (1,-1,-4,0) and (2,1,1,6) are
linearly dependent in R*

Solution: Let (1,1,2,4)=a(2,-1,-5,2)+b(1,-1,-4,0)+c(2,1,1,6)
Then 2a+b+2c=1 (1)
-a-b+c=1 (2)
-5a-4b+c=2 (3)
2a+0b+6c=4 (4)
Adding (1) and (2), we get a+3c=2. Putting c=0, then a=2



Putting a=2,c=0in (1), we get b=-3

~ (1,1,2,4)=2(2,-1,-5,2)-3(1,-1,-4,0)+0(2,1,1,6)

= 1(1,1,2,4)- 2(2,-1,-5,2)+3(1,-1,-4,0)-0(2,1,1,6)=(0,0,0,0)
= The given vectors are linearly dependent in R*

Example: Show that the set of vectors {(1,2,0),(0,3,1),(-1,0,1)} in V5(R) is linearly
independent.

Solution: Let a,b,c be the real numbers such that
a(11210)+b(01311)+c('11011)=(OIO;O)

(a-c,2a+3b,b+c)=(0,0,0)
=a-c=0,2a+3b=0,b+c=0

These equations will have a non-zero solution if the coefficient matrix is less
than 3, the number of unknowns a,b,c. If the rank is 3, then a=0, b=0, c=0
will be the only solution.

1 0 -1
The coefficient matrix A=[2 3 0
0 1 1

|A]=1(3-0)-2(0+1)=1#0 and Rank A=3

Hence the zero solution a=0,b=0,c=0 is the only solution and the given system is
linearly independent

Example: Find whether the vectors (-1,2,1), (3,0,-1), (-5,4,3) in V3(R) are linearly
independent or not.

Solution: Let a,b,c be scalars such that
a(-1,2,1)+b(3,0,-1)+c(-5,4,3)=(0,0,0)
=(-a+3b-5c,2a+0b+4c,a-b+3¢)=(0,0,0)
= -a+3b-5c=0,2a+0b+4c=0,a-b+3c=0

-1 3 =5
The coefficient matrix is A==| 2 0 4
1 -1 3

|A|=-1(0+4)-2(9-5)+1(12-0)=0



~. Rank<3 and the given system of equations will possess a non-zero solution.

Hence the given vectors are linearly dependent in R*

Example: If a,B,y are linearly independent vectors of V(R), show that a+j, B+y, y+a

are also linearly independent
Solution: Let a,b,ceR
a(o+B)+b(B+y)+c(y+a)=0 = (a+c)a+(a+b)B+(b+c)y=0

a,B,y are linearly independent=a+0b+c=0, a+b+0c=0, Oa+b+c=0

1 0 1
The coefficient matrix A= |1 1 0]
0 1 1

Rank of A = 3 which is equal to the number of unknowns

=a=0, b=0, c=0 is the only solution of the given equations

~a+B,B+y,y+a are also linearly independent

Example: Is the Vector (2,-5,3) in the subspace of R3 spanned by the vectors
312)1 (21_41_1)1(11_517)?

Solution: Let a=(2,-5,3), a; = (1, —3,2), @,=(2,-4,-1), a3=(1,-5,7)
Leta=ay aq + a, a, + as a3, where aq,a,,a3 €R

(2,-5,3)=a4 (1,-3,2) + a, (2,—4,—-1) + a3 (1,-5,7)

= (2,-5,3)=(aq +2a, + a3,-3a, —4a, —5a3,2a, —a, +7 ay)

=a,; +2a, + az; = 2, (1)

-3a, —4a, —5a3 =-5 (2)

2a;,—a, +7a3=3 (3)

Multiplying (1) by 3 and adding to (2), we get 2a, — 2 az=1=>a, —a3=1/2

Multiplying (1) by 2 and subtracting from (3) ,we get —5a, + 5 a; = —1
—az=1/5 (5)

From (4) and (5), the above equations are inconsistent

~ a cannot be expressed as a linear combination of the vectors a4, @,, a3

(1r'

(4)

=a,



Hence the vector (2,-5,3) is not in the subspace of R3 spanned by the vectors  (1,-
3)2)1 (21_41_1)1(1;_517)

Theorem: Every superset of a linearly dependent set of vectors is Linearly
dependent.
Proof: Let S={a4, a5, ..., @, } be a linearly dependent set of vectors

Then there exists scalars a4, a,, ..., a,€F, not all zero such that

a,aq +aza, + -+ a,a,=06 ..(1)

Let S'={a;, a3, ..., Ay, B1, B2, -, Pr} DE @ superset of S.

Then from (1) a;a4 + ayay + -+ apa, + 06, + 06, +---+ 05,=0
Here all the scalars are not zero, we have S'is linearly dependent
Hence any superset of a linearly dependent set is linearly dependent

Theorem: Every non-empty subset of a linearly independent set of vectors is linearly
independent.

Proof: Let S={ay, a3, ..., @} be a linearly dependent set of vectors
Consider the subset {a;, @5, ..., @} } where 1<ksm.
Now a,aq + a,a, + -+ + a;, ;=0

>a,a, + aa, + -+ agap + 0ay + 0ayyq + -+ 0a,,=0
=a,=0,a,=0,...a;,=0 (Since Sis L.l)

Hence the subset {a4, a5, ..., @i} is Linearly independent

Theorem: Let V(F) be a vector space and S={a4, a5, ..., @y} is a finite subset of non
zero vectors of V(F). Then S is linearly independent iff some vector a €S, 2<k<n can
be expressed as a linear combination of its preceding vectors

Proof: Suppose S={a, a5, ..., a,} is linearly dependent.
Then there exists a4, a,, ..., a,€F, not all zero such that
a,ay +aa, + -+ a,a,=0

Let k be the greatest suffix of a for which a;#26

Then a iy + aya, + -+ apay + 0ayyq + -+ 0a,,=0



>a,aq + aa, + -+ aaR=0
Suppose k=1 then a;a;=0
But a;=0=a4,=0 which contradicts that each element of S is a non- zero vector.
Hence k>1, ie.,2<ksn
Also apap=-a101 — Ay — *** — Ap_10k_1
S (aga)=a; " (- a0y — G, — -+ — Q1 Ap_q)
ar=(-a;pta)a; + (—agtay)a, + -+ (—agtag_1)ag_1
= Linear combination of preceding vectors

Conversely suppose that some a,€S can be expressible as a linear combination of

preceding vectors

“Ap=bia; + bya, + -+ b,_qa, 4

=bia; + bya, + -+ by_qa,_1 + (—1)a,=0
=>{aq, ay, ..., ap}is Linearly dependent

Hence the superset S={a4, a5, ..., A won s ay,} is Linearly dependent



Basis of vector space

Finite dimensional vector spaces
Basis extension

Coordinates

Dimension of a vector space
Dimension of a subspace



e Quotient space and dimension of quotient space

Basis of a vector space: A subset S of a vector space V(F) is said to be a
basis of V(F), if (i) S consists of linearly independent vectors (ii)L(S)=V

Example: A system S consisting of n vectors

e;=(1,0,0,...,0),e,=(0,1,0,...,0),...e,=(0,0,...,0,1) is a basis of V;,, over the
field F.

Solution: Suppose S={ey, e, ..., e,}

Let a4, ay, ..., a,€F then a,e; + a,e, + -+ a,€,=0
=a,(1,0,0,...,0) + a,(0,1,0,...,0) + --- + a, (0,0, ...,0,1) =0
=(aq, a, ...a,) =(0,0,...,00=a; = 0,a, =0,..,a, =0
=the given vectors are linearly independent

Let a=(a4, a, ... a,)€V,(F)



a=(a,,a, ...a,) =a4(1,0,0,...,0) + a,(0,1,0, ...,0) + --- +
a,(0,0, ...,0,1)=a,e, + aye; + -+ + a, e,=linear combination of
elements of the set S=aeL(S)

~ V. (F)SL(S). We have L(S)< V,,(F)

~V,=L(S) and hence S is a basis of V,,(F)

Notel: The basis S={e;, e, ..., e, }is called standard basis of 1, (F)
Note2: The standard basis of V, (F) is {(1,0),(0,1)}

Note3: The standard basis of V5 (F) is {(1,0,0),(0,1,0),(0,0,1)}

Example: Show that the infinite set S={1,x,x2, x3, ..., x™ ...} is a basis of
the vector space F[x] of all polynomials over the field F

Solution:Let S'= {x™1,x™2, ... ,x™n } be any finite subset of S having n
vectors where m,, m, ... m,, are some non-negative integers.

Let a4, a,, ..., a, €F be scalars such that
a; x™ + a,x™2 + -+ + a,, x"™n=0(zero polynomial)
=»a; =0,a,=0,..,a,=0

Thus every finite subset of S is linearly independent and hence S is
linearly independent.

Let f(x)=a, + a;x + a,x? + --- +a,xt be a polynomial of degree t
Then f(x)=ay1 + a;x + a,x? + - +a,x*t

Hence S is a basis of F[x]



Example: Show that the vectors (1,2,1), (2,1,0), ( 1,-1,2) form a basis of
R3

Solution: Since the set {(1,0,0), (0,1,0), (0,0,1)} forms a basis of R3,
dimR3=3

Let S={(1,2,1), (2,1,0), (1,-1,2)}

Consider a(1,2,1)+b(2,1,0)+c(1,-1,2)=(0,0,0)
=(a+2b+c, 2a+b-c, a+2¢)=(0,0,0)

a+2b+c=0 (1)

2ath-c=0  (2)

a+2c=0 (3)

Multiplying (2) by 2, we get 4a+2b-2c=0 (4)

Subtracting (4) from (1) we get -3a+3c=0= -a+c=0 (5)
Adding (3) and (5), 3c=0=c=0

Put c=0 in (3) we get a=0 and put c=0,a=0 in (1), we get b=0

=~ S is linearly independent and hence it forms a basis for R>
Example: Determine whether or not the following vectors form a basis of

R3:

(1,1,2), (1,2,5), (5,3,4)

Solution: We know that dim R3=3

We havea,(1,1,2) + a,(1,2,5) + a5(5,3,4) = (0,0,0)

=(a, + a, + 5as, a; + 2a, + 3as,2a, + 5a, + 4a3) =(0,0,0)



-'-al + az + 5a3=0 (1)
a, + 2a2 + 3a3=0 (2)
2a1 + Saz + 4a3=0 (3)

Subtracting (2) from (1), we get - a, + 2a3=0
Multiplying (1) by 2, we get 2a, + 2a, + 10a3=0
Subtracting (5) from (3), we get 3 a, — 6a3=0=a, — 2a;=0

ﬁaz == 2a3
putting a, = 2a; in (1), we geta, = —7ay
putasz=1,wegeta, =2 and a; = —7

~ ay=-7,a, = 2 and a; = 1 is a non-zero solution of the above
equations.

Hence the given set is linearly dependent and it does not form a basis
of R3

Finite Dimensional Vector Space: The vector space V(F) is said to be finite
dimensional or finitely generated if there exists a finite subset S of V such
that V= L(S)

Example: The vector space V, (F) of n-tuples is a finite dimensional vector
space.

The vector space F[x] of all polynomials over a field F is not finite
dimensional.

Note: A vector space which is not finitely generated is called an infinite
dimensional space.

The vector space F[x] of all polynomials over a field F is infinite
dimensional

Theorem: There exists a basis for each finite dimensional vector space.

Proof: Let VV(F) be a finite dimensional vector space.



Let S={a;, ay, ..., @, } be afinite subset of V such that L(S)=V
Suppose S does not contain 6
If Sis linearly independent, then S itself is a basis of V.

If S is linearly dependent, then Ja; €S which can be expressed as a linear
combination of the preceding vectors a4, @y, ..., a;_1

If we omit this vector a; € S, then the set S’ of m-1 vectors
Ay, Ay ooy Aj_q, Ajyq, -, Ay also generates Ve, V=L(S')

If aeV, then L(S)=V =a can be written as a linear combination of
(p) Ay ey oeny Ay

Let a=a ¢y + aya, + -+ a;_q0; 1 +a; @; +a; 1 Ajpq + 0+ Ay

But a; can be expressed as a linear combination of ay, a; ..., a;_4

Let C{i=b1a1 + bzaz + -+ bi_lai_l

-'-OL=a1(X1 + -4 ai_lai_l + ai (blal + bzaz + -+ bi_lai_l) +
Aj41Aipq T+ Aoy

Thus o 1s expressed as a linear combination of the vectors
A, A, ey Xim 1) Xt 1) ey A

~a€V=0a can be expressed as a linear combination of the vectors in S’
Thus L(S')=V

If S* is linearly independent, then S'will be a basis of V. If S'is linearly
dependent, then proceeding as above we shall get a new set of n-2
vectors which generates V.

Continuing this process, we shall after finite number of steps, obtain a
linearly independent subset of S which generates V and hence a basis
of V.

Theorem: Let V(F) be a finite dimensional vector space and
S={a,y, ay, ..., a,;} be a linearly independent subset of V. Then either S
itself a basis of V or S can be extended to form a basis of V.



Proof:S={a4, a5, ..., @), } is a linearly independent subset of V

Since V(F) is finite dimensional, it has a finite basis say B

Let B={B1, B2, -, Bn }
Consider the set S;={ay, &y, ..., Xy, B1, B2s ooes P}
Then L(S;)=V

Each a can be expressed as a linear combination of B’s since B is a basis of
V=S, s linearly dependent.

Hence some vector in S;can be expressed as a linear combination of
its preceding vectors.

This vector cannot be any of s, since S is linearly independent.  So
this vector must be some f;

Consider S={aty, @y, ..., @, B, o) Bi1, Biv1 s Bn}=51-{Bi}
Then L(Sz) - L(51)=V

If S, is linearly independent, then S, forms a basis of V and it is the
extended set.

If S, is linearly dependent, then continue this procedure till we get S, € S
such that Sy, is linearly independent.

2L(S,) = L(S)=V

Hence S, will be extended set of S forming a basis of V

Definition: Let S={a;, a,, ..., a,} be the basis of a vector space over V
Let B=a;a; + aya, + -+ a,a, €V, where a4, a,, ..., a,, € F then the
scalars {a,, a,, ..., a, (F). } are called the coordinates.

Example: Show that the set {(1,0,0),(1,1,0),(1,1,1)} is a basis of C3(C).
Hence find the coordinates of the vector (3+4i,61,3+7i) in C3(C)

Solution: Let S={(1,0,0),(1,1,0),(1,1,1)}



1 0 0 100
A=|1 1 0|R,—R,R;—R,|0 1 0
11 1 0 0 1

~ Rank A=3 and the given set of vectors is linearly independent.
Let z=(a,b,c)e C3
(a,b,c)=p(1,0,0)+q(1,1,0)+r(1,1,1)=(p+q+1,q+r, 1)
=a=p+q+r, b=q+r, c=r= r=c, q=b-c, p=a-b

. z=(a-b)(1,0,0)+(b-c)(1,1,0)+c(1,1,0)eL(S)

= Sis a basis of C3 If
(a,b,c)=(3+4i,6i,3+7i), then p= a-b=3+4i-6i=3-2i, g=b-
c=6i-3-7i=-3-i and r=c=3+7i - 3-2i,

-3-1, 3+7i are the coordinates of the given vector.

Dimension of a vector space:

The number of elements in any basis of a finite dimensional vector space
V(F) is called the dimension of the vector space V(F) and is denoted
by dimV

Example: Let V be the vector space of all 2x2 matrices over the field F.
Prove that V has dimension 4 by exhibiting a basis for VV which has 4
elements.

.1 0] [0 1 [0 0 _[0 071
Sol: a= [0 0], B [0 ol 7 [1 0] and o [0 1] InV

wperaraody Sesl) Hodd G} 2

a bl _[0 O O () () A
=>[C d] = [0 o] =a=0,b=0,c=0,d=0
=~ S={a,B,y,0} is linearly independent

a b]. . a b]_
If [c d] is any vector in V, then [c d]_ ao+bp+cy+do



=~ L(S)=V and hence S is a basis of V
dimV=4

Theorem: If V(F) is a finite dimensional vector space, then any two bases
of V have the same number of elements

Proof: Let S,,, and §,, be the two bases of V(F) where
Sm =1, @z, ..., i}, Sp={B1, B2, -+, Bn}

~S, and S,, are linearly independent subsets of V

(i) Consider S,,, as the basis of V and S,, as linearly independent
=L(S5,,)=V and n(S,,;)=m

~S,, can be extended to be a basis of V=n<m

(ii) Consider S,, as the basis of V and §,, as linearly independent
=L(5,)=V and n(S,,)=n

~S,, can be extended to be a basis of V=>m<n

But both §,,, and S,, are bases of V.

~n<m and m<n= m=n

Hence any two bases of V have the same number of elements.

Ex: For the vector space V5, the set S;={(1,0,0),(0,1,0),(0,0,1)} and
S,={(1,0,0),(1,1,0),(1,1,1)} are clearly bases and contain the same
number of elements

Theorem: Each set of (n+1) or more vectors of a finite dimensional vector
space V(F) of dimension n is linearly dependent

Proof: Let V(F) be a finite dimensional vector space of dimension n. Let
S be a linearly independent subset of V containing n+1 or more vectors.
Then S will form a part of a basis of V. Thus
we shall get a basis of V containing more than n vectors. But every
basis of V will contain exactly n vectors. Hence our



assumption is wrong. ~IfS
contains n+1 or more vectors, then S must be linearly dependent.

Theorem: Let V be a vector space which is spanned by a finite set of
vectors 1, 55, ..., Bm. Then any linearly independent set of vectors in V is
finite and contains no more than m vectors.

Proof: Let S={ 1,2, .-, Bm } Since
L(S)=V, V has a finite basis and dim V < m. ~. Every
subset S'of V which contains more than m vectors is linearly dependent.

Hence the theorem is proved.

Theorem: If a set S of n vectors of a finite dimensional vector space V(F)
of dimension n generates V(F), then S is a basis of V

Proof: Let V(F) be a finite dimensional vector space of dimension n. Let
S={a;, ay, ..., a,} be a subset of V such that L(S)=V. If
Sis linearly independent, then S will form a basis of V.
If S is not linearly independent, then there will exist a proper subset

of S which will form a basis of V. Thus
we shall get a basis of V containing less than n elements.  But every
basis of V. must contain exactly n elements. ~ S cannot

be linearly dependent and hence S must be a basis of V

Theorem: If V(F) is a finite dimensional vector space of dimension n, then
any set of linearly independent vectors in V forms a basis of V.

Proof: Let {aq, a5, ..., @, } be a linearly independent subset of a finite
dimensional vector space V(F) of dimension n. If
S is not a basis of V, then it can be extended to form a basis of V. Thus
we shall get a basis of V containing more than n vectors.  But every
basis of V. must contain exactly n vectors. ~Our
assumption is wrong and S must be a basis of V

Dimension of a subspace:



Theorem: Let V(F) be a finite dimensional vector space of dimension n
and W be the subspace of V. Then W is a finite dimensional vector
space with dim W<n.

Proof: dim V = n= each (n+1) or more vectors of V form a linearly
dependent set.

W is a subspace of V(F)=each set of (n+1) vectors in W is a subset of
V and hence linearly dependent.

Thus any linearly independent set of vectors in W can contain at the
most n vectors.

LetS ={a,, a5, ..., a,, } be the largest linearly independent subset of W,
where m<n

Now we shall prove that S is the basis of W.
For any BeW, consider §;= {aq, a5, ..., @y, B}

Since S is the largest set of linearly independent vectors, S;is linearly
dependent.

~3a4, a,, ..., ay,, b € Fnot all zero such that
a0, +aya, + -+ apa,+bp=0

Letb=0, then a;a; + aya, + -+ a,a,, =0=>a; =0,a, =
0,..,a,, = 0= 5 is linearly independent which is a contradiction.

~b#0.Then3d b~1eF3bb~1=1

a,a; + a,a, + -+ aa,+bp=0=bB=—a,ay —a,a, — - — a,, Ay,
=>B=(-b"ta)a; + (-b7tay)a, + -+ (b ta,)a,

== a linear combination of elements of S=[€L(S)

Also S is linearly independent and hence S is the basis of W

~ W is a finite dimensional vector space with dim W<n.



Theorem: If W;,W, are two subspaces of a finite dimensional vector
space V(F) then dim(W; + W, )=dimW, +dimW,-dim(W; N W5)

Proof: let dim(W; N W;)=k and S={y;1 ¥, V3, ..., ¥k} be a basis of (W; N

W)

Then SC€ W;and S€ W,

Since S is linearly independent and S€ I/},

S can be extended to form a basis of W;.

Let {y1 V2 ) Vi @1, O3, ..., O, } bE @ basis of W)

Then dimW;=k+m

Similarly let {y; v2 ..., Yk, B1, B2, .-, B¢} be a basis of W,

Then dimW,=k+t

dimW;+dimW,-dim(W; N W, )=k+m+t

Let S1={y1 V2, ) Vi X1, A2, oo, Ay, P1, B, .., B} be @ basis of Wy + W,

Let c,yq + oy + -+ Y + a1 + aya, + -+ apna, + by
byfBz + -+ + by =0

=by 1+ by, + -+ b fe=-(C1y1 + oYy + o+ kY + ayap + azan +
e + amam) E W1 ﬂ WZ
by B1 + byfy + -+ befr=d vy + dyy, + o+ di vk

=by B1+ Dy + -+ by — diys —day, — - —diyr =0
But B4, B2, ..., Bt Y1.Y2, -, Yk are linearly independent vectors.
Therefore b =0,b, =0,...,b; =0

C1Y1 + CoYy + -+ Vi + 1 + aya, + -+ aa,,=0=>c; = 0,¢, =
0..,c=0a=0a=0,..,a,=0

Since y1 ¥z, -\ Vi» A1, A3, ..., Ay are linearly independent, ¢; = 0,¢, =
o..,c=0a=0a=0,..,a,=0b,=0b,=0,..,b, =0

Therefore S; is linearly independent.

Now we show that L(S;)=W; + W,



Since W; + W, is a subspace of V and each element of S W, +
Ww,, L(S;) € W, + W,

Let aelV; + W,. Then
a=some element of W;+some element of W,

= a linear combination of elements of basis of W, + a linear combination
of elements of basis of W,

=a linear combination of elements of S;

s a€ L(S;) and W, + W, L(S;)

~L(Sy) = W + W,

=~ §; is a basisof W, + W, and dim(W; + W,)= k+m+t

Hence the theorem.
Example: Let W, and W, be two subspaces of R* given by

W, ={(a,b,c,d):b — 2c +d = 0}, W,={(a,b,c,d):a=d, b=2c}. Find the
basis and dimension of (i) W; (ii) W, (iii) W; n W, and hence find
dim(W; + W,)

Solution: Given W; = {(a, b,c,d):b — 2c + d = 0}

Let (a,b,c,d)elW; then
(a,b,c,d)=(a,2c-d,c,d)=a(1,0,0,0)+c(0,2,1,0)+d(0,-1,0,1)

~ (a,b,c,d)=linear combination of linearly independent set
{(1,0,0,0),(0,2,1,0),(0,-1,0,1)} which form a basis of W;.

s dimW;=3

(ii) Given W,={(a,b,c,d):a=d, b=2c}

Let (a,b,c,d)eW, then (a,b,c,d)=(d,2¢,c,d)=d(1,0,0,1)+c(0,2,1,0)
~ (a,b,c,d)=linear combination of linearly independent set
{(1,0,0,1),(0,2,1,0)} which form a basis of W,.

s dimW,=2



(iii) W, n W, ={(a,b,c,d):b-2c+d=0, a=d, b=2c}

Now b-2c+d=0, a=d, b=2c = b=2c, a=0, d=0

=~ (a,b,c,d)=(0,2¢,c,0)=c(0,2,1,0)

~ Basisof W; N W, = (0,2,1,0)= dim(W; N W,)=1

dim(W; + Wy)=dimW, + dimW,- dim(W; N W,)=3+2-1=4

Let W be any subspace of a vector space V(F). Let a€V. Then the set
W+a = {y+a: yeW} is called a right coset of W in V generated by a.

Similarly the set a+W = {a+y: yeW} is called a left coset of Win V
generated by a.

Let V/W denote the set of all cosets of W in V i.e.,
V/W = {W+a: aeV}

Quotient space: If W is any subspace of a vector space V(F), then the set

V/W of all cosets W+a where ae€V, is a vector space over F for addition
and scalar multiplication compositions defined as follows:

(W+a)+(W+B) = W+(a+B), Va,feV and a(W+a) = W+aaq, a€ F, aeV. The
vector space V/W is called the Quotient space of V

Theorem: If W is a subspace of a finite dimensional vector space V(F),
then dim V/W =dim V —dim W.

Proof: Let m be the dimension of the subspace W of the vector space
V(F).

Let S ={aq, @y, ..., A, } be a basis of W.

Since S is a linearly independent subset of V, it can be extended to form a
basis of V.

Let S’ = {ay, @y, ..., A, B1, B2, ..., B} be a basis of V



Then dim V = m+l

s dimV—-dim W = (m+[) - m=[

Now we shall prove that dim V/W=I

Suppose S;={W + B, W + S,,..., W + 5;}

Now we prove that S; is a basis of V/W

Leta,(W+ B) +a,(W +B,) + - +aq (W + B;)=W
=>(W+a )+ W +afr)+-+ W+ aqf)=W

= W+(a,6, + a,0, + -+ q;6)=W+0

=11+ afr+ -+ afi €W

=a,f, +a,p, +--+aqf; =bia; + bya, + -+ by,

=a.f; +a,f, +--+aqf; — bia; — bya, — -+ — by, =0

= a,=0,a,=0,.. ;=0 (B, Ly ..., 0%, Ay, ..., Ay, are L)
~ §; is linearly independent.

Now we show that L(S;) = V/W.

Let W+a e V/W

a=c;aq + 0y + -+ Uy +d 1 +dy By + -+ di

=y +df; +d,0, + -+ d;f;,wherey = ciay + ca, + -+ ¢ty EW
W+a=W+(y + dif + dyf5, + -+ dify)

=(W+y) +d By + dyf, + -+ di B =W
+(dyBy +dyfy + -+ diBr) =(W +
dif) + (W +dyB) + -+ (W +diBr) =d;(W+B,) +

dy(W+B2) + -+ dy(W + )

Thus any element W+a of V/W can be expressed as a linear
combination of S;.

« V/W =L(S,)



=~ S;is a basis of V/W and dim V/W =1

Hence the theorem.

e Linear Transformations

e Linear operators

e Properties of Linear Transformations

e Sum and product of Linear Transformations
e Algebra of Linear operators

e Range and null space of Linear Transformation



e Rank and Nullity of Linear Transformation

e Rank — Nullity theorem

LINEAR TRANSFORMATION

Definition: Let U(F) and V(F) be two vector spaces over the same field F. A linear
transformation from U into V is a function T from U into V such that
T(aa+bB)=aT(a)+bT(B) for all a,f€U and a,beF

Zero Transformation: Let U(F) and V(F) be two vector spaces. The function T from U
into V defined by T(a)=06 for all a€U is a linear transformation from U into V. It is
called zero transformation

Identity operator:: Let V(F) be a vector space. The function | from V into V defined
by I(a)=a for all a€V is a linear transformation from V into V. The transformation
[ is called identity operator on V

Negative of a linear Transformation: Let U(F) and V(F) be two vector spaces. Let T
be a linear transformation from U into V. The correspondence -T defined by (-
T)(a)= -[T(a)] for all aeU is a linear transformation from U into V. The linear
transformation -T is called the negative of the linear transformation T.

Properties of linear transformations:

Theorem: Let T be a linear transformation from a vector space U(F) into V(F).
Then

(i) T(6)=0, where 0 on the left hand side is zero of U and 0 on the right hand side
is zero vector of V

ii) T(-a)=-T(a) , for all aeU
(i) T(a-B)=T(a)-T(PB), for all a,BeU



ivVT(a1ay + azay + -+ a,a,) = a1T(ay) + a;T(az) + -+ a,T(ay)
Where a4, a3, ..., a,€U, a4,a,, ..., a,€F

Proof: Let a€U then T(a)eV

T(a)+ 0=T(a)=T(a+ 0)=T(a)+T(0)=0=T(0)

(i) T[a+(-a)]=T(a)+T(-a)

But T[a+(-a)]|=T(0)=0€V

Therefore T(a)+T(-a)=0 and T(-a)=-T(a)

(iii) T(a-B)= Tlo+(-B)]=T(a)+T(-B)= T(a)+[-T(B)]= T(ax)-T(P)

(iv) We prove this by using mathematical induction.
We know that T(a;aq)=a,T (1) Suppose
Ta oy + azay + -+ ap 1y 1) =y T(a1) + a;T(az) + -+ ap_1T (A1)

Then T(aia; + aza; + -+ + apan)

=Tlla1a; + azay + -+ + ap_1a,_1)+anay,]

=T(aya; + a0, + -+ ap_gtn_1)+ T(ayay)
=la;T(a1) + axT(az) + -+ + ap_1T(an-1)] + anT(ay)
=a;T(a1) + apT(az) + -+ an_1T(an-1) + anT(an)

Example: The function T: V3(R) — V,(R) defined as T(a,b,c)=(a,b) V a,b,ceRisa
linear transformation from V3(R) — V,(R).

Solution: Let a« = (a4, by, 1), B = (ay, by, cy) € V5(R)
T(aa+bB)=T[a(ay, by, c1) + b(az, by, c3)]

=Tlaa, + ba,,ab; + bb,,acy + bcy]

=(aa; + bay,ab; + bb,)

=(aaq, aby) + (ba,, bb,)

=a(ay, by) + b(ay, by)

=aT(aq, by, c1) + bT(ay, by, cy)

=aT(a) + bT(B)

Therefore Tis a linear transformation



Example: Describe explicitly the linear transformation T:R>—R? such that
T(2,3)=(4,5) and T(1,0)=(0,0)

Solution: Let S ={(2,3),(1,0)}
a(2,3)+b(1,0)=0=>(2a+b,3a) = (0,0)=2a+b=0, 3a=0= a=0, b=0
~ Sis linearly independent

Let (x,y)€ R?

3x-2y
3

(xy) = a(2,3)+b(1,0)=(2a+b,3a)= 2a+b=x, 3a=y = a=§, b=

= L(S) = R?

3x—
3

3x—-2y

T(xy)="T|2(2.3) + ==

3x—-2y (0,0): (4y 5_y)

3 3’3

@W0)|=2T(23) +

2T(1,0) =2(45) +

Example: Find T(x,y,z) where T: R3 — R is defined by T(1,1,1) =3, T(0,1,-2) =1,
T(0,0,1)=-2

Solution: Let S= {(1,1,1),(0,1,-2),(0,0,1)}

Leta(1,1,1)+b(0,1,-2)+c(0,0,1)=06=(a,a+b,a-2b+c)=(0,0,0)=>a=0,a+b=0, a-
2b+c=0=a=0,b=0,c=0

~ Sis linearly independent
Let (x,y,z) €R3

(xy,z)=a(1,1,1)+b(0,1,-2)+c(0,0,1)=(a,a+b,a-2b+c) =a=x,
a+b=y, a-2b+c=z=a=x, b=y-x, c=z+2y-3x

~L(S)=R?

T(xy,z)=T[x(1,1,1)+(y-x)(0,1,-2)+(z+2y-3x)(0,0,1)]
=xT(1,1,1)+(y-x)T(0,1,-2)+(z+2y-3x)T(0,0,1) =x(3)+(y-
x)(1)+(z+2y-3x)(-2)=8x-3y-2z



Let T, and T, be two linear transformations from U(F) into V(F).
Then their sum T ;+ T, is defined by (T1+ T,)(a) =T(a) + T,(a),Va € U

Theorem: Let U(F) and V(F) be two vector spaces. Let T ; and T, be two linear
transformations from U into V. Then the mapping T 1+ T, defined by

(T 1+ T3)(a) =T 1(a) + T,(a), Va € U is alinear transformation.
(T1+ T))(a) =T,(a) + T,(ax),Va €U

Ti(x)eVand To(a) e V=T (a) + To(a) €V

Let a,beF and o ,feU

Then (T,+ T,)(aa + bB) =T ,(aa + bB) + T,(aa + bB)=aT,(a) + b T;(B)+ a
To(a) + b Ty(B)=a[T1(a) + To(a)]+b[T1(B) + T,(B)]

=a(T 1+ T3) () +b(T 1+ T2) ()
~ T1+ T, is a linear transformation from U into V

Let T:U(F)—V(F) be a linear
transformation and a€F. Then the function aT defined by (aT)(a)=aT(a) VaeU is a
linear transformation.

Example: Let T: V3(R) — V,(R) and H: V3(R) — V,(R) be the two linear
transformations defined by T(x,y,z)=(x-y,y+z) and H(x,y,z)=(2x,y-z)

Find (i) H+T (ii) aH

Solution: (i) (H+T)(x,y,z) = H(x,y,z) + T(x,y,z) = (2%, y-z) + (x-y, y+z)= (3x-y,2y)
(i) (aH)(x,y,z) = aH(x,y,z)= a(2x, y-z) = (2ax, ay-az)

Product of Linear Transformations:

Theorem: Let U(F), V(F) and W(F) are three vector spaces and T:V->W and H:U-V

are two linear transformations . Then the composite function TH defined by
(TH)(a)=T[H(a)] = T[H(a)] Ve €U is a linear transformation from U into W.



Proof: aeU= H(a)eV

H(a)eV= T[H(a)]eW = (TH) (ax)eW
~ TH is a mapping from U into W
Let a,beF, a,3€U.

Then (TH)[aa+bB]= T[H(aa+bB)]= T[aH(a)+b H(B)] =
a(TH)(c)+b(TH)(B)

~ TH is a linear transformation from U into W:

Example: Let T:R3—R? and H:R3—R? be defined by T(x,y,z) = (3%, y+z) and
H(x,y,z)= (2x-z, y). Compute (i) T+H (ii) 4T-5H (iii) TH (iv) HT

Solution: (T+H)(x,y,z) = T(x,y,z) + H(x,y,z) = (3%, y+2)+(2x-7,y) =(5x-z,
2y+7z)

(ii) (4T-5H)(xy,2)=4T(x,y,2)-5H(x,y,2)=4(3%, y+2)-5(2x-2,y) =(2x+5z, -
y+4z)

(iii) TH and HT are not defined because R(T) is not equal to domain of H and
vice versa.

Algebra of Linear operators:

Let A,B,C be linear operators on a vector space V(F). Let 0 be the zero operator
and I be the identity operator on V. Then (i) AO=0A=0 (ii) AI=IA=A (iii)
A(B+C)= AB+AC (iv) (A+B)C=AC+BC (v) A(BC)=(AB)C

Range of a linear transformation: Let U(F) and V(F) be two vector spaces and T be a
linear transformation from U into V. Then the range of T written as R(T) is the set of
all vectors B in V such that B=T(a), for some a in U.

Range (T)={T(a)eV:aeU}

Theorem: If U(F) and V(F) are two vector spaces and T is a linear transformation
from U into V, then range of T is a subspace of V.

Proof: 5eU =T(6)= 0€R(T)

~ R(T) is a non-empty subset of V



Let B, B, € R(T). Then there exists a,, a, € Usuch that T( ;) = S, T(
ay) = B,

Let a,beF . a
Bi+bf, =aT(a;) +bT(ay) =T (aa; + bay)

Since U is a vector space, a a; + ba, €U

T(@aa, + bay)=ap; + bf,eR(T)

~ R(T) is a subspace of V

Null space of a linear transformation: Let U(F) and V(F) be two vector spaces and T
be a linear transformation from U into V. Then the null space of T written as N(T) is
the set of all a in U such that T(a)=0 (zero vector of V)

N(T)={aeU: T(a)= 0}

Theorem: If U(F) and V(F) are two vector spaces and T is a linear transformation
from U into V then the kernel of T or null space of T is a subspace of U.

Proof : Let N(T) = {a€U:T(a)= 0€V}

Since T(6)= 6eV,therefore at least 0eN(T)

Thus N(T) is a non-empty subset of U.

Let o1,02€N(T) Then T(a1)= 6 and T(oz)= 0

Let a, beF. Then a ai+ b az €U and T(a a1+ b az)=a T(a1)+b T(az)
=a 6+b 6= 0+ 6= 0€V

Therefore a a1+ b aze N(T)

Thus a,be F and a1,02eN(T)= a a1+ b a2 eN(T)

Therefore N(T) is a sub space of U.

Rank and nullity of a linear transformation: Let T be a linear transformation from a
vector space U(F) into V(F) with U as finite dimensional. The rank of T denoted by
p(T) is the dimension of the range of T ie., p(T) =dim R(T)

The nullity of T denoted by v(T) is the dimension of the null space of T ie.,
v(T) =dimN(T)

Theorem: Let U and V be vector spaces over the field F and T be a linear
transformation from U into V. Suppose U is finite dimensional then



p(T) + v(T)=dimU

Proof: Let N be the null space of T. Then N
is a subspace of U. Since U is finite
dimensional , N is finite dimensional. Let dim N=k and let

{1, a5 ...,a;} beabasisof N

Since {aq, a; ..., ay } is a linearly independent subset of U, we can extend it to form a
basis of U. Let dim
U=nand {ay, ay ..., ¥k, Ax 41, ---, Ay }be a basis of U

T(a1), T(az) ..., T(ax), T(ak+1),--, T (a)€R(T)
To Prove That {T(ak+1), T(@k+2), .., T(an)} is a basis of R(T)
(i) First we shall prove that T (ay4+1), T (@k42), .., T (a;,) span R(T)

Let BeR(T). Then FaeU such that T(a)=}. aeU=3
a;,a, ...,ay, € Fsuchthata = a,a1 + aya, + -+ a,a,

= T(a) =T(a1a1 + aya, + -+ a,a,)
=>B=a;T(a1) + -+ apT(ay) + a1 T (ag41) + -+ ayT(ay)

=B= ag1T (@ks1) + Api2T(Apy2) + -+ anT(ay) -~
T(ak+1), T(@g42), .., T (ay) span R(T)

(ii) Now we prove that T(ay41), T(ak42), ..., T(a;,) are linearly independent
Let Cx41, Ck42s -+-» Cn € F such that ¢ 1 T(ag4q) + -+ c,T(ay) =0
=T(Crr1ks1 + -+ Cry) =0

= Cpp1Qx41 + -+ cra, € N(T)
ick+1ak+1 + -+ Cnan=b1a1 + -+ bkak

=bya; + -+ by — Cpy1Qp41 = — Cppy =0

Sby == b = Cppy == 6y = 0

=>T(ak4+1), -, T (a;,) are linearly independent and form a basis of R(T)
Rank T=dim R(T)=n-k

Hence rank (T)+nullity(T)=(n-k)+k=n=dim U

Example: Show that the mapping T:V,(R) — V3(R) defined as



T(a,b)= (a+b,a-b,b) is a linear transformation from V,(R) — V3(R). Find the
range,rank, null space and nullity of T

Solution: Let @ = (ay,b,), B = (ay, by) € V,(R)

T(a)=T(ay,b;) = T(ay + by, a4 — by, b;) and

T(B)=T (az, by) = T(ay + by, a; — by, b;)

Let a,beR. Then aa+bBe V, (R)

T(aa+bB)=Tla(ay, by) + b(az, b,)]

=T (aa, + ba,,ab; + bb,)

=(aaq + ba, + ab; + bb,,aa, + ba, — ab; — bb,,ab; + bb,)
=(a(a; + by) + b(a, + b,),a(a; — by) + b(a, — by),ab; + bb,)
=a(ay + b;,ay — by, by) + b(a, + by, a, — by, by)

=aT(a)+bT(B)

Hence T is a linear transformation from V, (R) — V5(R)

Now {(1,0),(0,1)}is a basis for V,(R)

We have T(1,0)=(1+0,1-0,0)=(1,1,0) and T(0,1)=(0+1,0-1,1)=(1,-1,1)
The vectors T (1,0), T(0,1) Span the range of T.

Thus the range of T is the sub space of V5(R) spanned by the vectors (1,1,0), (1,-
1,1).

Now the vectors (1,1,0), (1,-1,1)e V5(R) are L.I because if x,y € R ,then
x(1,1,0)+y(1,-1,1) = (0,0,0)

=(x+yx-yy)=(0,0,0) = x+y=0, x-y=0, y=0 = x=0,y=0

Therefore the vectors (1,1,0), (1,-1,1) form a basis for range of T
Hence rank T = dim of range of T =2

Nullity of T=dim of V,(R) -rank T=2-2=0

Therefore null space of T must be the zero sub space of V,(R) .
Otherwise, (a,b) € null space of T

= T(a,b)=(0,0,0)



=(a+b,a-b,b)=(0,0,0) = a+b=0, a-b=0, b=0 = a=0,b=0
Therefore (0,0) is the only element of V,(R) which belongs to null space of T.

Therefore null space of T is the zero sub space of V,(R) .

Example: If T: V4(R) = V3(R) is a linear transformation defined by

T(a, b, ¢, d) = (a-b+c+d , a+2c-d , a+b+3c-3d) fora, b, c, d € R, verify that p(T) +
I(T) = dim V4(R).

Solution :let S={(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0, 1)} be the basis
set of V4(R).

. The transformation T on B willbe T(1,0,0,0)=(1,1,1),
T(Olllolo)z(-lloll)l
T(OIOI1IO)=(1I2I3)IT(OIOIOI1)=(1I-1I-3)'

letS1={(1,1,1),(-1,0,1),(1,2,3),(1,-1,-3) }

Now we verify whether S; is Linearly independent or not,. If not, we find the least
1 1 1
. . . : -1 0 1
Linearly independent set by forming the matrix, S1 = 1 2 3
1 -1 -3

Applying R+ R1, R3-R1, Rs- R

1 1 1
0 1 2
g 1 2
0 -2 —4

Again applying R4+ 2R3, R3—R;



oS O O K
SO R P
SO N -

~. The non-zero rows of vectors {(1,1,1),(0,1, 2)}
constitute the linearly independent set forming the basis of R(T)
= dim R(T) =2
Basis for null space of T
Leta=(a,b,c, d) €VsR)
o € N(T)= T(a) = 0
=T (a,b,c,d) =0 where6=(0,0,0) € Vs(R)
= (a-b+c+d , a+2c-d, a+b+3c-3d) = (0,0, 0)
= a-b+c+d =0; a+2c-d =0; a+b+3c-3d=0

We have to solve these fora, b, c,d.

1 -1 1 1
Co-efficient matrix = [1 0 2 —1]
1 1 3 -3

Applying R,-R1, R3-R1.
1 -1 1 1
=10 1 1 -2
0 2 2 -4
Again applying R3- 2R, , the echelon form is
1 -1 1 1
=10 1 1 -2
O 0 0 o
Therefore the equivalent systems of equations are

a-b+c+d =0, b+c-2d=0



= b=2d-c,a=d-2c

The number of free variables is 2 namely c, d and the values of a, b depend on
these .

And hence nullity of T = dim N(T) = 2.

Choosing c=1,d=0,weget a=-2,b=-1

Therefore (a,b,c,d)=(-2,-1,1,0)

Choosing c¢c=0,d=1, weget a=1,b=2

Therefore (a,b,c,d)=(1,2,0,1)

Therefore {(-2,-1,1,0), (1,2,0, 1)} constitute a basis of N(T)

. dim R(T) + dim N(T) =2 +2 = 4 = dim V4(R)

Example: Find the null space, range, rank and nullity of the transformation T: R2 >
R3 defined by T (x, y) = (x+y, X-y, y) .

Solution : Given that the transformation T: R2 = R3 defined by
T(x,y)=(x+y,xy,y).

To find the null space, range, rank and nullity of the given transformation.
Null Space and Nullity of T:

Let o = (x,y) € R2then a € N(T)= T(a) = 0

ie, T(x,y)=(0,0,0)

= (x+y, x-y,y)=(0,0,0)

=>x+ty=0,xy=0,y=0

=>x=0,y=0

~a=(0,0)=0€R?



Thus the null space of T consists of only zero vector of R?

~ nullity of T = dim N(T) =0

Range and Rank of T':

Range Space of T = {€ R?: T(a) = 3 for a€ R?}

=~ The range space consists of all vectors of the type (x+y, x-y, y)
for all(x,y) € R? .

By rank nullity theorem , dim R(T) + dim N(T) = dim R?

= dimR(T) +0=2

= dim R(T) = rankof T = 2

Example : Verify Rank - nullity theorem for the linear transformation
T:R3 > R3defined by T (x, y, z) = (x-y, 2y+z , x+y+2) .

Solution : Given that T: R® > R3defined by T (x,y, z) = (x-y, 2y+z, x+y+z) is a linear
transformation .

We know that dimension of R3=3 > (1)

Let a = (x,y,z) € R3

if a € N(T) then T(a) =0

=>T(x,y,z)=0

= (x-y, 2y+z, x+y+z)=(0, 0, 0)

Comparing the components, x-y=0; 2y+z=0; x+y+z=0
Taking y =k we get x =k and z = -2k
~(x,y,z)=(k,k,-2k)=k(1,1,-2)

Thus every element in N(T) is generated by the vector (1, 1, -2)



Thus dim N(T) =1 - (2)
Again T(x,y,z)=(xvy, 2y+z, x+y+z)
From this T(1,0,0)=(1,0,1),T(0,1,0)=(-1,2,1), and

T(0,0,1)=(0,1,1)

1 0 1
letS={(1,0,1),(-1,2,1),0,1,1)}andletA=|—-1 2 1]
0O 1 1
1 0 1
R.+R; gives ~[0 2 2]
0 1 1
1 0 1
R./2 gives ~[O 1 1]
0 1 1
1 0 1
Rs- R, gives ~ [O 1 1]
0O 0 O

Thus the set {(1,0,0) (0, 1, 1)} consists the basis of R(T) i.e., the range of T
Thus, dim R(T) =2 > (3)

Substituting (1) , (2), (3) in rank — nullity theorem , rank + nullity = dimension
>1+2=3

This verifies the theorem.



UNIT - 4

CHARACTERISTIC VECTOR AND CHARACTERISTIC VALUE OF A
LINEAR OPERATOR:

DEFINITION: Let T be a linear operator on a finite dimensional vector
space V(F). A non-zero vector a€V is called a characteristic vector of T
if there exists a scalar ¢ such that T(a)= ca. The scalar c is called
characteristic value of T corresponding to a characteristic vector a.

Each non-zero vector is called a characteristic vector of T
corresponding to a characteristic value c.

CHARACTERISTIC VECTORS AND CHARACTERISTIC VALUES OF A
MATRIX:

DEFINITION: Any non- zero vector X is said to be a characteristic
vector of a square matrix A if there exists a scalar A such that AX = AX.

Here A can be an X n matrix and X can be an X 1 matrix.

Then A is said to be a characteristic value of the matrix A
corresponding to a characteristic vector X. Also X is said to be
characteristic vector corresponding to the characteristic value A of the
matrix A.

If X is a Characteristic vector of a matrix A, X cannot corresponded to
more than one characteristic value of A.

Let the characteristic vector X of A correspond to two distinct
characteristic values A1,A2 then AX = A1X and AX = A2X.

Therefore A1 X =22 X =>(A1-A2) X=0 =A1-A2 =0 =>M =X

Similarly, if a is a characteristic value of T then a cannot corresponded
to more than one characteristic value of T.



CHARACTERISTIC POLYNOMIAL, CHARACTERISTIC EQUATION OF A
SQUARE MATRIX:

DEFINITION: Let A = [ajj]nxn and A any indeterminate scalar . The
matrix A- Al is called the characteristic matrix of A , where I is the unit
matrix of order n.

Also| A-Al| =
a;; — A aqz A1n
azq ayy — A Aon
an1 An2 Apn — A

is a polynomial in A of degree n , is called the characteristic polynomial
of A.

It is denoted by f(A1). The equation | A- Al |=0 is called the
characteristic equation of A EXAMPLE: The characteristic polynomial

1 0 5
of the matrix A=|0 2 6|isdet(A-Al)
3 1 4

1-2 0 5

0 2—A 6

3 1 4 — A
Note: A scalar A is a characteristic root of a square matrix A if and only
if| A- Al |= 0.

ie., = A3+ 72A%472A-28

Theorem: The characteristic vectors corresponding to distinct
characteristic roots of a matrix are linearly independent.

Proof: Let A be a square matrix.



Let X1, X2,....Xm be characteristic vectors of A corresponding to
respective distinct characteristic roots A1, A2,....Am.

Then AX; = Ai Xifori=1,2,..m - (1)

Now we prove that the set of vectors { X1, X2,...., Xm} IS
linearly independent. Since x1# 0, the set { X1} is L.I

If{ X1, Xz,....Xm} is linearly dependent, then we can choose r (r<m)
such that { X1, Xz2,...., X} is linearly independent and { X1, Xz,.... Xr,
Xr+1 } is linearly dependent

Hence we can choose scalars ki, kz2,.... ke, ke+1 not all zeros such that
ki X1 + k2 Xo+...4+ke Xr + kr+1 Xrt1 = 0 = (2)

= A(k1 X1 + k2 Xot ot keXe + ko1 Xes1 )= A(D)

=k1 (AX1) + ko (AX2) +...4+ ke (AXr) + kr+1(A Xr+1)=10

= ki (A1X1) + k2 (A2X2) +...4+ ke (AXr) + Ket1(Ar+1 Xr41 )= 0 = (3)
(3) - Ar+1 (2)= k1 (A1- Ar+1) X1+t ke (A A1) Xi= 0 = (4)

Since { X1, X2,...,Xr} is linearly independent and A1, Az, ....,A r+1 are
distinct, we have k1 =0, ...., kr=0.

Putting k1 =0, ...,kr=0 in (2),we obtain kr+1 Xr+1= 0 But Xr+1 # 0. So,
kr+1 =0

Thus (2) — kl =0, . kr=0 ) kr+1 - 0

But this contradicts our assumption that the scalars ki1, kz2,....Kr, Kr+1
are all not zeros .

Hence our assumption that {X1, Xz,.....Xm} is linearly dependent is
wrong .

~ {X1, X2,....,Xm} , which corresponding to distinct characteristic roots
of a matrix A are linearly independent .



Note: Distinct characteristic vectors of T corresponding to distinct
characteristic values of T are linearly independent.

CHARACTERISTIC POLYNOMIAL OF A LINEAR OPERATOR:

DEFINITION: Let T be a linear operator onan n-dimensional vector
space V with ordered basis . We define the characteristic polynomial
f(A) of T to be the characteristic polynomial of A = [T]j i.e, f(A) = det

(T-AI) = det (A-AD)
The equation det(T-Al) =0 is called the characteristic equation of T

Example:Prove that the square matrices A and A" have the same
characteristic values.

Solution: If A is any scalar, then (A-Al)' = A™-AI' = A'-Al
= | (A-AD)' | =] A- Al |

= | A-Al| =] A-Al|
S|A-A =0 |A-A| =0

i.e., Ais a characteristic value of A © A is a characteristic value of A'.

Example: Show that 0 is a characteristic root of a matrix if and only if
the matrix is singular.

Solution: 0 is a characteristic value of A

& A = 0 satisfies the equation | A-Al [ =0
& |A-01|=0

< |Al=0

& Ais singular.



NOTE:
A is a characteristic root of a non -singular matrix. A#0.
At least one characteristic root of every singular matrix is zero

EXAMPLE: T is a linear operator on a finite dimensional vector space
V(F) . Show that T is not invertible iff 0 is a characteristic value of T.

Solution: Let T be not invertible ie., T is singular Therefore, there
exists a non- zero vector o in V such that

Toa = 0= 0Oa.

Therefore 0 is a characteristic value of T Conversely
suppose 0 is a characteristic value of T.

Then there exists a non- zero vector « in V such that Ta = Oa.
= Ta =0 = T is singular = T is not invertible .

EXAMPLE: If A1, A2,....,.An are the characteristic values of a n-rowed
square matrix A and Kk is a scalar, show that kA1, kAz,....,, KA, are the
characteristic values of kA

Solution: Let k+0.

Now |kA- AKI |= |[k(A- AD) |=Kk| A- AT |

= |KA- (AK)] |=0 & | A- Al | =0

i.e., kA is a characteristic values of kA < A is a characteristic value of A.

Thus kA1, kA2, ....,, KAn are the characteristic values of kKA if A1, A2,....,An
are the characteristic values of A.

Example: Find the eigen roots and the corresponding eigen vectors of
the matrix

r=l3



Solution: The characteristic equation of Ais | A- Al | =0

1-2A 4

3 270

=
= (A+2)(A-5) = 0

Hence the eigen roots of A are -2, 5.
Case 1: Let A = -2.

Eigen vectors X corresponding to the eigen root -2 are given by
(-2)DX =0

ie., [1 J3r ’ 2 i 2] [iccﬂ - [8]

e 54l fal =l

ReRe= il ][] = [l

= 3x1 + 4x2 =0
Let x2 =k, then x1 = -4k/3

=~ Eigen vectors corresponding to the eigen root -2 are given by

—4
k [ /3] where Kk is a non-zero parameter.
1

—4
Clearly, the subspace generated by [ /3]
1

is a one dimensional characteristic space of R?

(A-



Case 2: Let A =5.
Eigen vectors X corresponding to the eigen root 5 are given by

(A-51)X =0
e, [5 5lL) =10

Rz~ Rz+( 2) Ry [_04 3] [2] = [8]

=>-4x1+4x2=0
Letx =kthenxi =k

=~ Eigen vectors corresponding to the eigen root 5 are given by k[ﬂ
where k is a non-zero parameter. Clearly
the subspace generated by[ﬂ is a one dimensional characteristic
space of R?

Example: Find the characteristic roots and the corresponding
characteristic vectors

8 -6 2
of the matrix A=|—-6 7 —4
2 -4 3

Solution: The characteristic equation of Ais | A- Al | =0

8— A -6 2
-6 7—A -4
2 —4 3-A

= =0

= (8 — N)[21-10A+22-16]+6[-18+6A+8]+2[24-14+2A]= 0



= - 134+101%-5A4+81%-80A+40-60+36A+20+41 =0

= -13+181%-451 =0

=A(A-3)(A-15)=0

=>A=0,3,15

=~ The characteristic roots of Aare 0, 3, 15

Case 1: LetA = 0.

Characteristic vectors corresponding to the characteristic root 0 are

given by
(A-0DX=0=

8 —6 21*
[—6 7  —=4||*X2|=0
2 —4 3 11X3

2 -4 3[*
—6 7 —4[[*2[=0

8 -6 210Ix3

Rz Ry

2 —4
R3_)3R3+4‘R2 ,R2_>R2 +3R1 0 _5
0 10

R; > R; +2R,

3 X1
5 ] [le =0
—101LX3



2 —4 31[*1
[0 i 5] H “o
0 0 O0lbxs

= 2x1'4xZ+3.X3 =0 f '5x2+5x3 =0

Let x3 = k therefore x,=kand 2 x; = ki.e, x; =k/2

~.Characteristic vectors corresponding to the characteristic root 0 are
given by

1/2
k [ 1 ] where k is a non zero parameter
1

Similarly , by considering characteristic equations (A-3)X =0, (A-
15DX =0

-1 2

We get characteristic vectors k; [—1 / 2] , ks [—2] for non-zero
1

1
parameters ki1 , kz respectively corresponding to the characteristic

roots 3, 15.

MATRIC POLYNOMIAL

DEFINITION: An expression of the form F(x)
= Ao+A1x+A2 x°+...4Am x™, Am#0,where Ao,A1,Az,...Am are matrices
each of order nXn over a field F, is called a matric polynomial of
degree m.



The matrices themselves are matric polynomials of zero degree.
EQUALITY OF MATRIC POLYNOMIALS

DEFINITION : Two matric polynomials are equal if and only if the
coefficients of like powers of x are the same.

ADDITION AND MULTIPICATION OF POLYNOMIALS

Let G(X) = Aot+Aix+A2x?+...+Am x™and H(x)
= Bo+Bix+B2x?+...4+Bix* We

define : if m>k then G(x)+H(x)=(Ao+Bo)+(A1+B1)x+...+ (Ax+ Bx) x*
+ Ak+1 X4+ Amx™ similarly we

have G(x)+H(x) where m=k and m<k.

Also G(x)H(x)=A0Bo+(AoB1+A1Bo)x
+(AoB2+A1B1+A2B0)x 2+ ...+ AkBmx < +™

The degree of the product of two matric polynomials is less than or
equal to the sum of their degrees

CAYLEY - HAMILTON THEOREM (MATRICES)

THEOREM: Every square matrix satisfies its characteristic equation .
Proof: Let A = [ajj]uxn

The characteristic equation of A is det (A-Al) = f(4)

a11 - A alz aln
— a21 azz - )\ azn
anl anz nan ann - A,

= (D" [A,+a1 4,1 +az A,_,+... +an] where ai’s € F

Let adj (A-Al) = Bo A" 1+4+B1A" 2 + ....4+Bn-2A1+Bn.1 where Bo, B1
are n-rowed square matrices

Bn-l

.....



Now (A-Al) adj (A-AI) = det (A-AD) I

= (A-A1)(Bo A" 14+B1 A" 2+ ... +Bn2 A4+Bn1) = (—1)" [A"+a1
A 14a, A2

Comparing coefficients of like powers of A, we obtain
-Bo=(—-1D"I,

ABo-Bi=(—D"a1l,

ABi-B2=(—1D)" az1,

Bn-1 = (_1)71 dn I .

Premultiplying the above equations successively by A™, A" 1, ..]I
and adding,

we obtain

0=(—-D"A"+ (—D" a1 A" ! + (—D)"aA" 2 +....+ (—1)" an |
> (D[A"+a1 AV + a2 A" 4 anl]=0

S A" +ar AVt a2 A"+t anl=0

= A satisfies its characteristic equation.

A satisfies its characteristic equation

S>(—D"[AM a1 A" P+ a A2+ L4 anl]=0

SA"+ar AV a2 A"+t anl=0

SA [A"tai AV a2 AV i+t anl]=0=2a, A7 =-A""1-q
AV %2 .q, 1

> A =(-1/an) [A" 1 +a1A"% + - + an1 ]
CAYLEY - HAMILTON THEOREM (LINEAR OPERATOR)



THEOREM: T is a linear operator on a vector space V(F) of dimension
n.

If f(x) is the characteristic polynomial of T, then f(T) = 0 (zero
operator ). i.e.,, T satisfies its characteristic equation.

Example: Verify cayley ~-Hamilton Theorem when T is a linear
operator defined by T(a,b)=(a+2b,-2a+Db).

Solution: Let 3 ={e1,ez}

T(e1)=T(1,0)=(14+2(0),-2(1)+0)=(1,-2) and T(e2)=
T(0,1)=(2,1)
_ 1 2

Thus A=[T]g = 9 1

Let A be an nXn matrix and let f(t) be the characteristic polynomial of
A. Then f(A)=0, the nXn zero matrix.
The characteristic polynomial of T is f(T) = det (A-Al

_J1-=2 2 |_q2.
)= _y 1_/1—/1 2A+5

Now f(T) =T? -2T+5

Given T(a,b) = (a+2b,-2a+b)
Therefore T2 (a,b) = T(a+2b,-2a+b)

= (a+2b+2(-2a+b),-2(a+2b)-2a+b)
= (a+2b-4a+2b,-2a-4b-2a+b)
= (-3a+4b,-4a-3b)

2T (a,b) = (2a+4b,-4a+2b), 51
=5 (ab) = (5a,5b)

T2 -2T+51 = (-3a+4b-2a-4b+5a,-4a-3b+4a-2b+5b) = (0,0) = To

Thus T satisfies its characteristic equation.



f(A) = A2 -2A+5T -3 A I+ A+

5 o —2 4 -3
[o (5)2[0 0]:0

Example: Using Cayley-Hamilton theorem, find the inverse of the

1 2 3
matrix A=12 -1 4 ]
3 1 -1
Solution:
1 2 3
GivenA=|2 -1 4 ]
3 1 -1
The characteristic equation of Ais |A-Al | =0
1—-A 2 3
e,| 2 —-1—-2 4 =0
3 1 —-1-2

= (1-)[(1+ A2)-4]-2[(1421)-12]+3[2+3(1+A)] =0

= A3+ 22-181-40=0

Since every square matrix satisfies its characteristic equation,
we have 4% + 4% -18A-401 =0

Multiplying with A~1 on both sides A2 +A-181 =40 A~

= A7l =1/40[A% +A-18]]



14 3 8
we have Az = [12 9 —2]
2 4 14
14 3 8 1 2 3 18 0 O
thereforeA‘1=4iO{[12 9 =-21+12 -1 4]—[0 18 0”
2 4 14 3 1 -1 0O 0 18

L -3 5 11
Al=—I14 -10 2

“ls 5 s

UNIT-5

INNER PRODUCT SPACES

DEFINITION: Let V(F) be a vector space where F is a field of real numbers or the



field of complex numbers. The vector space V(F)is said to be an inner product
space if there is defined for any two vectors a,BeV an element <a,B» € F such that
(1). B> = B,

(2). <o,a> > 0 (zero element in F) for (1736
(3). <aatbP,y> = aca,y> + b<B,y> forany a.,p,y e Vanda,b e F.

A function f:VxV-F satisfying the above properties is called an inner product.
If f is the inner product function then f«a,B> = <a,B>» or (a,B) for all a,BeV

From the definition it is clear that a vector space V over F endowed with a specific
inner product is an inner product space.

If F =R the field of real numbers then V(F) is called Euclidean space or Real inner
product space.

If F = C the field of complex numbers then V(F) is called Unitary space or Complex
inner product space.

An inner product space having only zero vector is called zero space or nullspace.

If V(F) is an inner product space then V(F) is a vector space. A sub space W(F) of
the vector space V(F) is also inner product space with the same inner product as
in V(F).

PROBLEMS:
If a = (ay,aza3),B = (by,bs,bs) are the elements of a vector space R?® ,then
<a,B> = aib; + a;b, + asbs defines an inner product on R3.

Solution : Let a = (a1,a2,a3),B = (b1,b2,b3) and y = (cy,cz,c3) € R3.



Then ag,az,as,bi,by,bs,c1,c5,c3 €R.

(1). <a,B> = a1b; +azby+aszbs = bijas+baztbsas = B, = B, o .
(2). <a,00 = aja1 +azar+asas = a2 +ay>+as’
If o = (a,a2,a3) # (0,0,0) then at least one of aj,a,asis not zero.
So, «a,a» = a;°+a,>+az? > 0.
(3). Fora,b e Fand a,B,y € R® we have
aa+bp = a(ay,az,as)+b(by,by,bs) = (aa;+ bb; , aax+ bb,, aas+ bbs)
<aa+bf,y> = (aa1+ bbi)cy + (aax+ bby)c, + (aas+ bbs)cs
= (@aiC1+ aayCy+ aascs) + (bbici+ bbacy+ bbscs)
= a(a1€1 +a2c+ascs) + b(bicy +byco+bscs)
=a«w,y> b B,y
Therefore the product <a,B» = a;b; +aby+asbs is an inner product on
the vector space R3.
Hence R3 is an inner product space with the above inner product

and R3(R) is real inner product space.

NOTE : The inner product of a and B namely , <a,B> = aib; +a;b,+asbs is Called the
dot product of a and B and denoted by a.p . This is Called the standard inner
product in R3.

If a = (aj,az,..., an),p = (b1,bz,..., by) are the elements of a vector space V,(C)

where C is the field of complex numbers, then «a,> = a1b + azb +..,+ anb =

Z" a;b; defines an inner product on V,(C).
i=1



Solution : Let a,b e Cand a,B,y € V., so that a =(a,ay,..., an),B = (b1,ba,..., bn),
Y = (c1,Ca,..., Cn) Where a’s, b’s and ¢’s are complex numbers.

(1)W=W—bi- E&2+ tn n n 11 22 n n

= barb ...+ Ir a1 b+ ap b+..+ ank «o,Bo.
11 22 n n 1 2

(2) <a,a> = a7 Gt az G+...+ ang= |a1|% + |a2]? +..+ |an]?
If a#0 then at least one of a4, ay,..., an is non zero complex number .

So«a,a» = |ar|?2+ |az|%+..+ |an|?>0.
(3) aa+bp = a(ay,az,..., an)+b(by,by,..., by)

= ( aay+bby, aa,+bby,..., aa,+bb, )
<aa+bB,y> = (aar+bb1)G + (aa+bb,)6,...,(aan+bb,) g
= (aarG+ aaz6+...+ aang+ (bbig+ bb;g+...+ bbag
= a(arg+ az6+...+ angt b(b1ig+ bsg+...+ bog

= ac,y+beB,yr

Therefore the product <a,B> = a1 b +a, b +..+ a,pis an inner product on V,(C).
1 2 n

Therefore V,(C) or C"(C) is the unitary space.

Let V(C) be the vector space of all continuous complex valued functions on the

closed interval [0,1]. For f,g € V if «f,g> = flf(t)_@ then V is an inner product
0 ’

space.

Solution :



NORM OR LENGTH OF A VECTOR

DEFINITION : Let V be an inner product space over the field F. The narm (length)
of a €V denoted by || a || is defined as the positive square root of <a,a.

Norm or lengthof a eV = || a | = V(a, &) => || a ||? = <o, 00.

NOTE : 1. For a € V, «a,a» is non- negative real number and hence the norm of a
is always non- negative real number.

2.a=0< [|a]=0
EXAMPLE : 1. In the inner product space V,(R) = R?(R);If a = (a,b) €V,
then || a| = [I(a,b)ll = Va2 + b2 =&, o .

2. In the inner product space V3(R) = R3(R);If o = (a,b,c) € V3

then |||l = |I(a,b,c)ll = Va2 + b2 + 2 = Ve, o .

3. In the inner product space Vy(R) = R"(R);If o = (a1,a2,...,an) €

Viothen | ol =1l( aay,....an)l = V]arP+[az2+. . .+lanf = Ve oo -

THEOREM : In an inner product space V(F) (1) || a|| >0 if a # 0 and
(2) la o I = |a|l I where 0, a € F and 0, oeV.
Solution : (1) If a # 0 then «a, > > 0.
lall =+, >0.foranyaeV,|al>0.
(2) By the definition of norm, || a a ||> = «@a, aw>
= aca, ao

= a a«a,



=lal* |||l
=(lal flall)?
Therefore Jlaa||=]al|l o] whereO,a€Fand O_,aeV.

NOTE: IfaeVanda# 0 by the above theorem || a || > 0. Since |[a || (>0) € F and

Fis afield, there exists ! €F suchthat ||a] ' =1.Nowfor ! €Fand
|O( (04 |O(|
1 1 1 1 =
o €V we have a €V, such that ¢ a, )= (|0(||’O(>
Il el Il ol Il o]l Il all
1 1
= ( ) ( Ylal?=1
Il el Il el

1 o €Visavectorof length 1.

Mol

HenceaeVanda:tO_,

DEFINITION : Let V(F) be an inner product space. a € V is called a unit vector if

|al|=1.faeVthen 1 aeVisunitvector.

Il el

Example : (1) In the inner product space R?,i=(1,0),j=(0,1) are unit vectors.
(2) In the inner product space R3 with standard inner product

i=(1,0,0),j=(0,1,0) and k=(0,0,1) are vectors of length 1.

THEOREM : Cauchy-Schwarz’s inequality

In an inner product space V(F), |<a,B>| <|la]l || B || foralla, B eV.

Proof : Case (1). Let a = 0. Then «a,B> = <0, =0 and || a || = <o, o = <0, 0> = 0.

Therefore |«a,B>| =0and || a]l || B = 0.



Therefore [<a,B>| = [l ol I BII.

Case (2). Leta # 0. Then || o]l >0 sothat

Mol

>0.



B,

Takeersothatv=B-”anza.

3,00 B,

Now «y,y» = ¢B- oz, B- a0

<B,a> B, B B>

«B,B» - B, - o,PB> + oL, o
B Il ol 2 B, el 2 B lell2 flall? ™

"[3"2 ) B, B B w,P> B, B,

- +
el ? Il el Il ol 2

”B”Z ) <B,00 <a, B> _ ||[3||2 ) B> <«a,Pr
el el ?

But by the definition of the norm; «y,y» 20

Therefore ||B]|? - @b 50
a2

2

= IpR> el

p | o] ?

IBI2 1al? > |co,pP
o (IB1Tal)? > [apf

Therefore || B || |||l = [<o,B>| as||B || || o || and |<a,B>|are non-negative.

Hence [«,B| <[lafllIBIl.

<B,(X> (B,a>

NOTE : For VEVI(VIV)=0=> y=0 =>B-"a”2a=0=>[3=“a“2a

B vector = scalar multiple of the vector o

o @ B are linearly dependent.



Hence a, 3 are linearly dependent vectorsof V& |<a,B>| = |[a] |IB]l.

THEOREM : ( Triangle inequality )
In an inner product space V(F), ||a+B|l<|la]l+]|IB || foralla, B eV.

Proof : By the definition of norm, ||a+B||? = < a+B , oa+B >



= a0 + <o, P> +<B,a +<B,p>

= |+ B+, B+ [IBI?

= llal?+2Re <o,pr+ || B I
S lall?+2 ] wpr |+ IBIP
SlallP+2 flall BN+ NBI°
<(lall+1IBI?

Therefore [lo+B|I> < (lacll + [IB1I)
As both [la+B|l and [[a ]l + || B || are non-negative we have [la+B|| < || o[+ B -

THEOREM : ( Parallelogram law )

If o, B are two vectors in an inner product space V(F) then

la-BI+Na+Bl*=2(al®*+IBI*)

Proof : ||ja-B||> = «a-B, a-p>

o, - <a,PBr - (B,a +<B,B»

Focll? - a,Br- <o+ [IBI?

lo+B]? = ca+B , a+B> = <a,a> + <a,B> +<B,00 +<B,B> = || o ||> + <o, + <B, > + || B |I?

Therefore [la-B|I* + [lo+Bl> =2 o[+ 2 I BIP =2 (N l?+ 11 BI*)

NORMED VECTOR SPACE AND DISTANCE

DEFINITION : Let V(F) be an inner product space in which norm of a vector a € V is
defined as || o || = V<&, o> . The inner product space with this definition of norm is
called a normed vector space if the following conditions are true :



(i) |a]l20and [|a||=0 © a=0



(i) laal=a laland
(i) la+pl < lal+Iplforalla,BeV, acF

As the above three conditions are true in every inner product space , every inner
product space is a normed vector space.

DEFINITION : Let a, B be two vectors in an inner product space V(F). The distance
between the vectors a, B denoted by d«a,B> is defined as ||a-B||.

NOTE : (1) If a, B € V then d<a,B> = ||ja-B||
= d [«a,p]? = lo-pl2= ca-B, a-P>

(2) d«a,p> is a non-negative real number.

THEOREM : If a,B,y € V(F) an inner product space then (1) d (a,) 2 0 and
d(a,p)=0~ a=p (2)d(a,p)=d(B,a)and (3)d(a,p)+d(B,y)2d/(a,y).
Proof : (1) By the definition, d«a,B> = ||a-B|| = 0 since norm of a vector is a
non-negative real number.
d«o,p>=0 < ||a-B||=0 < |la-Bl?=0<¢ <a-B,a-p>=0 a-p=0 ie.,a=PB
(2) dea,B> = [la-Bll = | (-1)(B- o) | = [-1] | B- [l = L[| B- o [| = d ¢B, aw>.
(3) d «a,p> + d B,y> = la-Bl + 1 B-y I > la-p + B-y | By triangle inequality
2 [lo-yll = d <a,y>.

NOTE : (1) Inaninner product space V(F) the distance function d : V->F ,defined

as d«o,B> = ||a-B|| for all a, B € V is satisfying the properties (1),(2),(3) of the
metric space.

(2) For a,B,y eV ; d<a+y, B+y> = || a+y-B-y || = |la-y|| = d <a,y>.



PROBLEMS

1. If a=(2,1,1+i) is a vector in C3 with standard inner product find lal
andthe unit vector of a.
Solution : || a |I? = <a,a» = (2)(+ 11 + (1+i){HD)
=(2)(2) + 1(1) + (2+i)(1-i)

=4+1+2=7.
Unitvectorofa= 1 1
o=—1(2,1,1+)
Tall 7

2. If a =(4,1,8),8 = (1,0,-1) are two vectors in R? find the angle between a
and B.

Solution : || a || = V42 + 12 + 82 =v/81=9and

I1Bll=v12+ 02+ (=3)2=V10

«a,B> =(4)(1)+(1)(0)+(8)(-3) = -20.

If © = angle between a and B thencos 8= |« |=20] 20 2

Tl 1el 20T 96D

VT0.

9

3. If a,p are two vectors in an inner product space, then o, are linearly
dependent if and only if |<o,B>]| = || || || B II-

Solution : Let a,B be linearly dependent.
Then eithera=0or B=0_0r a=af where ‘@’ is a scalar.
Whena=0:«a,B>=«0,f>=0and ||a| =0.
When B =0: «a,p>=<a, 0> =<_6(x= Oand ||B| =0.

Whena=aB: B =<B,p=apBp =allpl>and|all=lapl=1lal Bl



Therefore [«a,B>|= |al [IBII* = (lal 1B (IBI) =1l eIl NIBII-

Conversely, let |«a,B>|= [ a |l [IBIl-



When a = 0 the vectors o,B be linearly dependent.

When a # 0 ; we have || a|| > 0.

B,

Consider the vectory =3 - a.

llall 2
B, 00 B,

Now «y,v» = (B~ =ma, B-mma)

<B,a> B, B B>

«B,B» - B, - o,PB> + oL, o
B ll ol 2 B, el 2 B leall2 flafl? ™

B B <P «a,B> B, B,
Igl? - —==

- +
el ? Il el Il ol 2
_ 2 B, w,pr 2 @Pr o
= IBlI* - —— = [BI*-
el el ?

=gl - [Pt o pyp- TP IRl =o.

el 2 el 2

Therefore <y, y>=0 => y=0

B, o0 _
= - oa=0
B (04 2
B a= 0
= =
B (04 Z
B> .
B=ao wherea= is a scalar.
= E

Therefore a,B be linearly dependent.



4. Two vectors a,B in an unitary space V(C) are such that «a,» = 0 iff
lac+bB||*> = |a]> || e [[> + |b]?]| B |I* for all a,b € C.
Solution : Let <a,B> = 0. Then «gB = 0.

lac+bB||?> = < aa+bB , ac+bB » =a <a, aa+bB » + b B, aa+bp >
= a[wa,a + ka,p>] + b[ap,a> + KB,B]

= aoa,0 + aka, By +baB,o + bxB,B>



= |a?||| a|? + aka,B> +ba B+ b2 B
~ (1)

=[a[lal>+0+0+ L[ B
= [a[[la|?+ [L?[I B

Conversely, Let |laa+bB||? = |a|?|| a||>+ |b|?|| B ||* for all a,b € C.

Using (1) we have

|a?||| o ||2 + alxa, B> +Bagp + b2 BIP= [a|lla*+ [B*[]| B II?
= aka,p +ba B =0 >(2)
Take a=1,b=1sothat =1, k1
Then (2) : (1)(1) <a,B> + (1)(1) «9B=0

= <, +_@[3 =0
= 2Re «w,p =0
= Re <, =0

Take a=i,b=1sothat a=-i,b=1
Then (2) :i<a,B>-i “gB=0
= i [«a,p> -_5[3 1=0
= <0,B> -_6[3 =0

= 2Im«<a,p =
0

Thus we have Re <a,f>=0and Im «a,B> = 0.

Hence <a,B> = 0.

5. If u,v are two vectors in a complex inner product space with standardinner
product then prove that
4cu, v = || utv |]Z- |l u-v |2+ i || u+iv]|?-i ]| u-iv||%



Solution :

[lu+ V|]2 = <utv, u+v> = <cu,w +<u,v + v,ud + V,\»
= ullP+ww+ wv,w+| v > (1)

[lu-v]|? = <u-v, u-v> = cu,uw - <u,v> - <V,w> + <V,\»
= ull?- v -ww+]vI? > (2)

[lu+iv]|? = cutiv, u+ivy =<u,ud + T,V + v, +i i< v,\»
= ulP-icuw +iwv,w+| v
17 lutivi® =il u [P + cuv - v, w + il v [P

(3)
[lu-iv]]? = <u-iv, u-iv>y = ,w - Ty, - iKv,us + il v,
= [Tull?+iuw - iov,w + | v ?

iflu-iv|[Z =il u|l? - cuw + v, w +i|| v|[? > (4)

From (1),(2),(3) and (4) « | u+v [> - | u-v > + i || utiv 12§ || u-iv |1

={2¢u,v» + 2¢<v,w} + {2<u,v» - 2¢v,w}

=4 <u,wm




	PROBLEMS:
	If α = (a1,a2,…, an),β = (b1,b2,…, bn) are the elements of a vector space Vn(C) where C is the field of complex numbers, then ‹α,β› = a1̅𝒃̅̅ + a2̅𝒃̅̅ +…+ an̅𝒃̅̅̅ =
	Let V(C) be the vector space of all continuous complex valued functions on the
	Solution :
	NORM OR LENGTH OF A VECTOR
	THEOREM : In an inner product space V(F) (1) ‖ α ‖ > 0 if α ≠ 𝟎 and
	THEOREM : Cauchy-Schwarz’s inequality
	THEOREM : ( Triangle inequality )
	THEOREM : ( Parallelogram law )
	NORMED VECTOR SPACE AND DISTANCE
	THEOREM : If α,β,γ ϵ V(F) an inner product space then (1) d (α,β) ≥ 0 and
	PROBLEMS
	2. If α = (4,1,8),β = (1,0,-1) are two vectors in R3 find the angle between α and β.
	3. If α,β are two vectors in an inner product space , then α,β are linearly dependent if and only if |‹α,β›| = ‖ α ‖ ‖ β ‖.
	4. Two vectors α,β in an unitary space V(C) are such that ‹α,β› = 0 iff
	5. If u,v are two vectors in a complex inner product space with standard inner product then prove that

