

D.N.R.COLLEGE (AUTONOMOUS): BHIMAVARAM

M.Sc COMPUTER SCIENCE DEPARTMENT

Object Oriented Software Engineering

 Presented by

 K.SUPARNA

 E-CONTENT

II M.Sc(Computer Science)&MCA

UNIT- I

 Introduction to Object Oriented Software Engineering: Nature of the Software, Types of Software,

Software Engineering Activities, Software Quality

Introduction to Object Orientation: Data Abstraction, Inheritance & Polymorphism, Reusability in

Software Engineering, Examples: Postal Codes, Geometric Points.

Requirements Engineering: Domain Analysis, Problem Definition and Scope, Types of Requirements,

Techniques for Gathering and Analyzing Requirements, Requirement Documents, Reviewing Requirements,

Case Studies: GPS based Automobile Navigation System, Simple Chat Instant Messaging System.

UNIT- II

Unified Modeling Language & Use Case Modeling: Introduction to UML, Modeling

Concepts, Types of UML Diagrams with Examples; User-Centred Design, Characteristics of Users,

Developing Use Case Models Of Systems, Use Case Diagram, Use Case Descriptions, The Basics of User

Interface Design, Usability Principles.

Class Design and Class Diagrams: Essentials of UML Class Diagrams, Associations And Multiplicity,

Generalization, Instance Diagrams, Advanced Features of Class Diagrams,

Process of Developing Class Diagrams, Interaction and Behavioral Diagrams: Interaction Diagrams, State

Diagrams, Activity Diagrams, Component and Deployment Diagrams.

UNIT- III

Software Design and Architecture: Design Process, Principles Leading to Good Design, Techniques for

Making Good Design Decisions, Good Design Document, Software Architecture, Architectural Patterns: The

Multilayer, Client-Server, Broker, Transaction Processing, Pipe & Filter And MVC Architectural Patterns.

Design Patterns: Abstraction-Occurrence, General Hierarchical, Play-Role, Singleton, Observer, Delegation,

Adaptor, Façade, Immutable, Read-Only Interface and Proxy Patterns.

UNIT- IV

Software Testing: Effective and Efficient Testing, Defects in Ordinary Algorithms, Numerical Algorithms,

Timing and Co-ordination, Stress and Unusual Situations, Testing Strategies for Large Systems.

Software Project Management: Introduction to Software Project Management, Activities of Software

Project Management, Software Engineering Teams, Software Cost Estimation,

Project Scheduling, Tracking And Monitoring.

Software Process Models: Waterfall Model, The Phased Released Model, The Spiral Model, Evolutionary

Model, The Concurrent Engineering Model, Rational Unified Process.

UNIT- I

Introduction to Object Oriented Software Engineering:

Object-oriented software engineering (commonly known by acronym OOSE) is an object-modeling language

and methodology.

An object-modeling language is a standardized set of symbols used to model a software system using an

object-oriented framework.

A modeling language is usually associated with a methodology for object-oriented development. The modeling

language defines the elements of the model.

E.g., that a model has classes, methods, object properties, etc. The methodology defines the steps developers

and users need to take to develop and maintain a software system. Steps such as Define requirements, Develop

code, and Test system.

Methodology is the systematic, theoretical analysis of the methods applied to a field of study. It comprises the

theoretical analysis of the body of methods and principles associated with a branch of knowledge.

The term software engineering is the product of two words, software, and engineering. The software is a

collection of integrated programs.

Software subsists of carefully-organized instructions and code written by developers on any of various

particular computer languages. Computer programs and related documentation such as requirements, design

models and user manuals.

Engineering is the application of scientific and practical knowledge to invent, design, build, maintain, and

improve frameworks, processes, etc.

Define software process.

Software process is defined as the structured set of activities that are required to develop the software system.

What are the fundamental activities of a software process?

1. Specification.

2. Design and implementation.

3. Validation.

4. Evolution

What is System Engineering?

System Engineering means designing, implementing, deploying and operating systems which include hardware

,software and people.

What is requirement engineering?

Requirement engineering is the process of establishing the services that the customer requires from the system

and the constraints under which it operates and is developed.

What is Software Engineering?

Software Engineering is an engineering branch related to the evolution of software product using well-defined

scientific principles, techniques, and procedures. The result of software engineering is an effective and reliable

software product.

Why is Software Engineering required?

Software Engineering is required due to the following reasons:

 To manage Large software

 For more Scalability

 Cost Management

 To manage the dynamic nature of software

 For better quality Management

Need of Software Engineering

Huge Programming: It is simpler to manufacture a wall than to a house or building, similarly, as the measure

of programming become extensive engineering has to step to give it a scientific process.

Adaptability: If the software procedure were not based on scientific and engineering ideas, it would be simpler

to re-create new software than to scale an existing one.

Cost: As the hardware industry has demonstrated its skills and huge manufacturing has let down the cost of

computer and electronic hardware. But the cost of programming remains high if the proper process is not

adapted.

Dynamic Nature: The continually growing and adapting nature of programming hugely depends upon the

environment in which the client works. If the quality of the software is continually changing, new upgrades

need to be done in the existing one.

Quality Management: Better procedure of software development provides a better and quality software

product.

Characteristics of a good software engineer

The features that good software engineers should possess are as follows:

 Exposure to systematic methods, i.e., familiarity with software engineering principles.

 Good technical knowledge of the project range (Domain knowledge).

 Good programming abilities.

 Good communication skills. These skills comprise of oral, written, and interpersonal skills.

 High motivation.

 Sound knowledge of fundamentals of computer science.

 Intelligence.

 Ability to work in a team

 Discipline, etc.

Importance of Software Engineering

The importance of Software engineering is as follows:

1. Reduces complexity: Big software is always complicated and challenging to progress. Software engineering

has a great solution to reduce the complication of any project. Software engineering divides big problems into

various small issues. And then start solving each small issue one by one. All these small problems are solved

independently to each other.

2. To minimize software cost: Software needs a lot of hard work and software engineers are highly paid experts.

A lot of manpower is required to develop software with a large number of codes. But in software engineering,

programmers project everything and decrease all those things that are not needed. In turn, the cost for

software productions becomes less as compared to any software that does not use software engineering

method.

3. To decrease time: Anything that is not made according to the project always wastes time. And if you are

making great software, then you may need to run many codes to get the definitive running code. This is a very

time-consuming procedure, and if it is not well handled, then this can take a lot of time. So if you are making

your software according to the software engineering method, then it will decrease a lot of time.

4. Handling big projects: Big projects are not done in a couple of days, and they need lots of patience,

planning, and management. And to invest six and seven months of any company, it requires heaps of planning,

direction, testing, and maintenance. No one can say that he has given four months of a company to the task,

and the project is still in its first stage. Because the company has provided many resources to the plan and it

should be completed. So to handle a big project without any problem, the company has to go for a software

engineering method.

5. Reliable software: Software should be secure, means if you have delivered the software, then it should work

for at least its given time or subscription. And if any bugs come in the software, the company is responsible for

solving all these bugs. Because in software engineering, testing and maintenance are given, so there is no

worry of its reliability.

6. Effectiveness: Effectiveness comes if anything has made according to the standards. Software standards are

the big target of companies to make it more effective. So Software becomes more effective in the act with the

help of software engineering.

NATURE OF SOFTWARE: The nature of the software medium has many consequences for systems

engineering (SE) of software-intensive systems.

These four properties are:

1. complexity,

2. conformity,

3. changeability,

4. invisibility.

 Software and software projects are unique for the following reasons:

 Software has no physical properties;

 Software is the product of intellect-intensive teamwork;

 Estimation and planning for software projects is characterized by a high degree of uncertainty, which can be

at best partially mitigated by best practices;

 Risk management for software projects is predominantly process-oriented;

 Software alone is useless, as it is always a part of a larger system; and

 Software is the most frequently changed element of software intensive systems.

TYPES OF THESOFTWARE

Software, which is abbreviated as SW or S/W, is a set of programs that enables the hardware to perform a

specific task. All the programs that run the computer are software. The software can be of three types: system

software, application software, and programming software.

System Software: The system software is the main software that runs the computer. When you turn on the

computer, it activates the hardware and controls and coordinates their functioning. The application programs

are also controlled by system software.

Some other examples of system software include:

 Operating System:

o BIOS.

o An assembler

2) Application Software:

Application software is a set of programs designed to perform a specific task. It does not control the working

of a computer as it is designed for end-users. A computer can run without application software. Application

software can be easily installed or uninstalled as required. It can be a single program or a collection of small

programs. Microsoft Office.

Suite, Adobe Photoshop, and any other software like payroll software or income tax software are application

software. As we know, they are designed to perform specific tasks. Accordingly, they can be of different

types such as:

1. Word Processing Software.

2. Spreadsheet Software.

3. Multimedia Software.

4. Enterprise Software.

3) Programming Software:

It is a set or collection of tools that help developers in writing other software or programs. It assists them in

creating, debugging, and maintaining software or programs or applications. We can say that these are

facilitator software that helps translate programming language such as Java, C++, Python, etc., into machine

language code. So, it is not used by end-users. For example, compilers, linkers, debuggers, interpreters, text

editors, etc. This software is also called a programming tool or software development tool.

Some examples of programming software include:

1. Eclipse: It is a java language editor.

2. Coda: It is a programming language editor for Mac.

3. Notepad++: It is an open-source editor for windows.

4. Sublime text: It is a cross-platform code editor for Linux, Mac, and Windows.

1. Networking and Web Applications Software – Networking Software provides the required support

necessary for computers to interact with each other and with data storage facilities. The networking software

is also used when software is running on a network of computers (such as the World Wide Web). It includes

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/python-tutorial

all network management software, server software, security and encryption software, and software to

develop web-based applications like HTML, PHP, XML, etc.

2. Embedded Software – This type of software is embedded into the hardware normally in the Read-Only

Memory (ROM) as a part of a large system and is used to support certain functionality under the control

conditions. Examples are software used in instrumentation and control applications like washing machines,

satellites, microwaves, etc.

3. Reservation Software – A Reservation system is primarily used to store and retrieve information and

perform transactions related to air travel, car rental, hotels, or other activities. They also provide access to

bus and railway reservations, although these are not always integrated with the main system. These are also

used to relay computerized information for users in the hotel industry, making a reservation and ensuring

that the hotel is not overbooked.

4. Business Software – This category of software is used to support business applications and is the most

widely used category of software. Examples are software for inventory management, accounts, banking,

hospitals, schools, stock markets, etc.

5. Entertainment Software – Education and entertainment software provides a powerful tool for educational

agencies, especially those that deal with educating young children. There is a wide range of entertainment

software such as computer games, educational games, translation software, mapping software, etc.

6. Artificial Intelligence Software – Software like expert systems, decision support systems, pattern

recognition software, artificial neural networks, etc. come under this category. They involve complex

problems which are not affected by complex computations using non-numerical algorithms.

7. Scientific Software – Scientific and engineering software satisfies the needs of a scientific or engineering

user to perform enterprise-specific tasks. Such software is written for specific applications using principles,

techniques, and formulae specific to that field. Examples are software like MATLAB, AUTOCAD,

PSPICE, ORCAD, etc.

8. Utilities Software – The programs coming under this category perform specific tasks and are different from

other software in terms of size, cost, and complexity. Examples are anti-virus software, voice recognition

software, compression programs, etc.

9. Document Management Software – Document Management Software is used to track, manage and store

documents in order to reduce the paperwork. Such systems are capable of keeping a record of the various

versions created and modified by different users (history tracking). They commonly provide storage,

versioning, metadata, security, as well as indexing and retrieval capabilities.

Software Engineering Activities:

Software Development Life Cycle, SDLC for short, is a well-defined, structured sequence of stages in software

engineering to develop the intended software product.

SDLC Activities:- SDLC provides a series of steps to be followed to design and develop a software product

efficiently. SDLC framework includes the following steps:

Communication: This is the first step where the user initiates the request for a desired software product. He

contacts the service provider and tries to negotiate the terms. He submits his request to the service providing

organization in writing.

Requirement Gathering: This step onwards the software development team works to carry on the project. The

team holds discussions with various stakeholders from problem domain and tries to bring out as much

information as possible on their requirements. The requirements are contemplated and segregated into user

requirements, system requirements and functional requirements. The requirements are collected using a number

of practices as given -

 studying the existing or obsolete system and software,

 conducting interviews of users and developers,

 referring to the database or

 Collecting answers from the questionnaires.

Feasibility Study: After requirement gathering, the team comes up with a rough plan of software process. At

this step the team analyzes if software can be made to fulfill all requirements of the user and if there is any

possibility of software being no more useful. It is found out, if the project is financially, practically and

technologically feasible for the organization to take up. There are many algorithms available, which help the

developers to conclude the feasibility of a software project.

System Analysis: At this step the developers decide a roadmap of their plan and try to bring up the best

software model suitable for the project. System analysis includes Understanding of software product limitations,

learning system related problems or changes to be done in existing systems beforehand, identifying and

addressing the impact of project on organization and personnel etc. The project team analyzes the scope of the

project and plans the schedule and resources accordingly.

Software Design: Next step is to bring down whole knowledge of requirements and analysis on the desk and

design the software product. The inputs from users and information gathered in requirement gathering phase are

the inputs of this step. The output of this step comes in the form of two designs; logical design and physical

design. Engineers produce meta-data and data dictionaries, logical diagrams, data-flow diagrams and in some

cases pseudo codes.

Coding: This step is also known as programming phase. The implementation of software design starts in terms

of writing program code in the suitable programming language and developing error-free executable programs

efficiently.

Testing: An estimate says that 50% of whole software development process should be tested. Errors may ruin

the software from critical level to its own removal. Software testing is done while coding by the developers and

thorough testing is conducted by testing experts at various levels of code such as module testing, program

testing, product testing, in-house testing and testing the product at user’s end. Early discovery of errors and

their remedy is the key to reliable software.

Integration: Software may need to be integrated with the libraries, databases and other program(s). This stage

of SDLC is involved in the integration of software with outer world entities.

Implementation: This means installing the software on user machines. At times, software needs post-

installation configurations at user end. Software is tested for portability and adaptability and integration related

issues are solved during implementation.

Operation and Maintenance: This phase confirms the software operation in terms of more efficiency and less

errors. If required, the users are trained on, or aided with the documentation on how to operate the software and

how to keep the software operational. The software is maintained timely by updating the code according to the

changes taking place in user end environment or technology. This phase may face challenges from hidden bugs

and real-world unidentified problems.

Disposition: As time elapses, the software may decline on the performance front. It may go completely

obsolete or may need intense up gradation. Hence a pressing need to eliminate a major portion of the system

arises. This phase includes archiving data and required software components, closing down the system,

planning disposition activity and terminating system at appropriate end-of-system time.

Introduction to Object Orientation: Object-Oriented Design

In the object-oriented design method, the system is viewed as a collection of objects (i.e., entities). The state is

distributed among the objects, and each object handles its state data. For example, in a Library Automation

Software, each library representative may be a separate object with its data and functions to operate on these

data. The tasks defined for one purpose cannot refer or change data of other objects. Objects have their internal

data which represent their state. Similar objects create a class. In other words, each object is a member of some

class. Classes may inherit features from the super class.

The different terms related to object design are:

1. Objects: All entities involved in the solution design are known as objects. For example, person, banks,

company, and users are considered as objects. Every entity has some attributes associated with it and has some

methods to perform on the attributes.

2. Classes: A class is a generalized description of an object. An object is an instance of a class. A class defines all

the attributes, which an object can have and methods, which represents the functionality of the object.

3. Messages: Objects communicate by message passing. Messages consist of the integrity of the target object, the

name of the requested operation, and any other action needed to perform the function. Messages are often

implemented as procedure or function calls.

4. Abstraction In object-oriented design, complexity is handled using abstraction. Abstraction is the removal of

the irrelevant and the amplification of the essentials.

5. Encapsulation: Encapsulation is also called an information hiding concept. The data and operations are linked

to a single unit. Encapsulation not only bundles essential information of an object together but also restricts

access to the data and methods from the outside world.

6. Inheritance: OOD allows similar classes to stack up in a hierarchical manner where the lower or sub-classes

can import, implement, and re-use allowed variables and functions from their immediate super classes. This

property of OOD is called an inheritance. This makes it easier to define a specific class and to create

generalized classes from specific ones.

7. Polymorphism: OOD languages provide a mechanism where methods performing similar tasks but vary in

arguments, can be assigned the same name. This is known as polymorphism, which allows a single interface is

performing functions for different types. Depending upon how the service is invoked, the respective portion of

the code gets executed.

REUSABILITY IN SOFTWARE ENGINEERING:

Reuse: building on the work and experience of others.

The following are some of the types of reuse practiced by software engineers, in increasing order according to

the potential amount of work that can be saved by the reuse.

Reuse of expertise: Software engineers who have many years of experience working on projects can often save

considerable time when it comes to developing new systems because they do not need to re- think many issues:

their past experience tells them what needs to be done. If such people write articles describing their experiences,

this can help others to do better engineering work.

Reuse of standard designs and algorithms. There are thousands of algorithms and other aspects of designs

described in various books, standards documents and articles. These represent a tremendous wealth for the

software designer, since all he or she needs to do is to implement them if they are appropriate to the current

task.

Reuse of libraries of classes or procedures, or of powerful commands built into languages and operating

systems. Libraries and commands represent implemented algorithms, data structures and other facilities.

Software developers always do this kind of reuse to some extent since all programming languages come with

some basic libraries.

Reuse of frameworks. Frameworks are libraries containing the structure of entire applications or subsystems.

To complete the application or subsystem, you merely need to fill in certain missing details. A framework can

be written in any programming language.

Reuse of complete applications. You can take complete applications and add a small amount of extra software

that makes the applications behave in special ways the client wants.

Example: POSTALCODES:

The example is divided into three elements. The first element is a hierarchy representing postal codes of

different countries. The second element is a new exception class. The third element is the postal test class that

allows the user to enter postal codes and test the facilities of the postal code hierarchy.

The postal code hierarchy:

The following are some design decisions you should study in postal code and its subclasses:

Postal code is declared as abstract, meaning that no instance can be created.

Two of its operations, validate and get country, are abstract, meaning that they must be given concrete

implementations in subclasses.

The operation validate is protected, and is called by the constructor. It's concrete

implementations in each subclass will throw a postal code exception if the format of the code is invalid.

All the instance variables are declared private. All other classes, including

subclasses, can only access them using methods. This helps to improve encapsulation.

There is a to string method, as should be provided in most java classes. There are

three examples of subclasses of postal code. Each of these implements the two abstract operations. For example,

the validate method of one subclass,

Canadian postal code, ensures that the format is XNX NXN, where N is a number and X is a letter; the first

letter is also taken from a restricted set. The other implementations of validate ensure that US postal codes have

an all- numeric format, while British postal codes adhere to their more complex alphanumeric format.

The postal code Exception class:

Postal Code Exception illustrates the concept of the user- defined exception class. Instances of this class are

thrown when an error is found while validating a postal code.

A class that manipulates postal codes could choose to handle such exceptions in any way it wishes.

The user interface class Postal Test:

The user interface class, Postal Test, has only a static main method and one private static helper method called

get Input. The code prompts the user for input and then attempts to create an instance of one of the subclasses of

Postal Code. If a Postal Code Exception is thrown, it tries to create an instance of other subclasses until none

remain. Then it prints out information about the result.

It would be possible to put all the code from Postal Test into Postal Code- the main method in Postal

Code would then simply be used to test the class.

GEOMETRIC POINTS

The classes described in this section represent points on a 2- dimensional plane. From mathematics, we know

that to represent a point on a plane, you can use X and y coordinates, which are called Cartesian coordinates.

Alternatively, you can use polar coordinates, represented by a radius(often called rho) and an angle(often

called theta). In the code we have provided, you can interchangeably work with a given point as Cartesian

coordinates or polar coordinates.

 Point CP. Point CP Test

 Get X (). Main ()

 get Y()

 get Rho()

 get Theta()

Convert Storage To Cartesian ()

Convert Storage To Polar ()

 To String ()

 Classes for representing points using both Cartesian and polar coordinates. Only the operations are shown

Java already has classes for representing geometric points. Take a few moments to look at classes Point2D and

point in the java documentation. We will call the point class presented here Point CP; it's main distinguishing

feature from the built- in java classes is that it can handle both Cartesian and polar coordinates. We also provide

a class called Point CP Test which, like Postal Test, simply provides a user interface for testing. The public

methods of both classes are shown in figure.

Class Point CP contains two private instances variables that can store X and y, or else rho and theta. No matter

which storage format is used, all four possible parameters can be computed. Users of the class can also call

methods Convert Storage To Polar or Convert Storage To Cartesian in order to explicitly convert the internal

storage of an instance to the alternative format.

Requirements Engineering

Domain Analysis:

The process by which a software engineer learns about the domain to better understand the problem.

The domain is the general field of business or technology in which the clients will use the software.

A domain expert is a person who has a deep knowledge of the domain.

Benefits of performing domain analysis:

1. Faster development- you will be able to communicate with the stakeholders more effectively, hence you

will be able to establish requirements more rapidly.

2. Better system- knowing the subtleties of the domain will help ensure that the solutions you adopt will

more effectively solve the customers problem.

3. Anticipation of extensions- armed with domain knowledge, you will obtain insights into emerging

trends and you will notice opportunities for future development.

Domain analysis document:

1. Introduction: name of the domain and give the motivation for performing the analysis.

2. Glossary: describe the meanings of all terms used in the domain that are either not part of everyday language

or else have special meanings.

3. General knowledge about the domain: summarize important facts or rules that are widely known by the

domain experts. Such knowledge includes scientific principles, business processes, analysis techniques and how

any technology works.

4. Customers and users: describe who will or might buy the software, and in what industrial sectors they

operate.

5. The environment: describe the equipment and systems used.

6. Tasks and procedures currently performed: make a list of what the various people do as they go about

their work.

7. Competing software: describe what software is available to assist the users and customers, including

software that is already in use and software on the market. Discuss it's advantages and disadvantages.

8. Similarities to other domains: understanding what is generic versus what is specific will help you to create

software that might be more reusable or more widely marketable.

PROBLEM DEFINITION AND SCOPE:

 A problem can be expressed as difficulty the users or customers are facing (OR) as an opportunity that will

result in some benefit such as improved productivity or sales.

 The solution to the problem normally will entail developing software.

Defining the scope

Narrow the scope by defining a more precise problem List all the things you might imagine the system doing.

 Exclude some of these things if too broad

 Determine high- level goals if too narrow

 Example: A university registration system

 Initial list of problems with very broad scope:

 Browsing courses, registering, fee payment, room allocation, exam scheduling.

 Narrowed scope: browsing courses, registering, fee payment

 Scope of another system: room allocation, exam scheduling.

In the university registration example you could consider a students goal to be ' completing the registration

process'. However, you can see that the students higher level goal might be, ' obtaining their degree in the

shortest reasonable time while taking courses that they find most interest and fulfilling'. This new goal sheds a

different light on the problem; you might consider adding features to the system that would not otherwise have

occurred to you, such as actively proposing courses based on an analysis of the students academic and personal-

interest profiles.

REQUIREMENTS:

It is a statement describing either

 An aspect of what the proposed system must do, or a constraint on the systems development.

 In either case it must contribute in some way towards adequately solving the customers problem;

 The set of requirements as a whole represents a negotiated agreement among the stakeholders.

A collection of requirements is a requirements document.

TYPES OF REQUIREMENTS:

1. Functional requirements. Describes what system should do.

Functional requirements describe what the system should do; in other words, they describe the services provided

for the users and for other systems.

The functional requirements should include

1. Everything that a user of the system would need to know regarding what the system does, and

2. Everything that would concern any other system that has to interface to this system.

The functional requirements can be further categorized as follows:

1. What inputs the system should accept

2. What outputs the system should produce

3. What data the system should store that other systems might use

4. What computations the system should perform

5. The timing and synchronization of the above

2.Non functional requirements:

Quality requirements- Constraints on the design to meet specified levels of quality.

Platform requirements- Constraints on the environment and technology of the system

Process requirements.-Constraints on the project plan and development methods.

Quality requirements

a. Quality requirements ensure the system possesses quality attributes such as usability, efficiency, reliability,

maintainability and reusability.

b. The following are some of the main categories of quality requirements:

c. Response time: for systems that process a lot of data or use a network extensively, you should require that the

system gives result or feedback to the user in a certain minimum time.

d. Throughput: computations or transactions per minute.

e. Resource usage: for systems that use non trivial amounts of such resources as memory and network

bandwidth, you should specify the maximum amount of these resources that the system will consume.

f. Reliability: reliability is measured as the average amount of time between failures or the probability of a

failure in a given period.

g. Availability: availability measures the amount of time that a server is running and available to respond to users.

h. Recovery from failure: they state that if the hardware or software crashes, or the power fails, then the system

will be able to recover within a certain amount of time, and with a certain minimal loss of data.

i. Allowances for maintainability and enhancement: in order to ensure that the system can be adapted in the

future, you should describe changes that are anticipated for subsequent releases.

j. Allowances for reusability: it is desirable in many cases to specify that a certain percentage of the

system,e.g.40% , measured in terms of lines of code, must be designed generically so that it can be reused.

Platform requirements

1. This type of requirements constraints the environment and technology of the system:

2. Computing platform: it is normally important to make it clear what hardware

and operating system the software must be able to work on. Such requirements specify the least powerful

platforms and declare that it must work on anything more recent or more powerful.

3. Technology to be used: common examples are to specify the programming language or database system. Such

requirements are normally stated to ensure that all systems in an organization use the same technology- this

reduces the need to train people in different technologies.

Process requirements:

The final type of requirements contains the project plan and development methods:

Development process to be used: in order to ensure quality, some requirements documents specify that certain

processes be followed. A reference should be made to other documents that describe the process.

Cost and delivery date: These are important constraints. However, they are usually not placed in the

requirements document, but are found in the contract for the system or are left to a separate project plan

document.

Techniques For Gathering And Analysis Requirements

You can gather requirements from the same sources of information as you used for domain analysis: i.e. from

the various stakeholders, from other software systems, and from any documentation that might be available.

1.Observation: Taking a notebook and shadowing important potential users as they do their work, writing

down everything they do.

You can also ask users to talk as they work, explaining what they are doing. You can videotape the session so

that you can analyze it in more detail later.

2.Interviewing:

1. It is a widely used technique. Conduct a series of interviews.

2. Ask about specific details such as maximum and minimums, whether there are any exceptions to rules and what

possible changes might be anticipated.

3. Ask about the stakeholders vision for the future. This question may elicit innovative ideas and suggest what

flexibility should be built into the system.

4. If a customer or user presents concrete ideas for their view of the system, ask if they have any alternative ideas.

5. Ask what would be a minimally acceptable solution to the problem.

6. Ask for other sources of information. The stakeholder you are interviewing may have interesting documents or

may know someone with useful knowledge.

7. Have the interviewee draw diagrams. The diagram could show such things as

8. The flow of information, the chain of command, how some technology works.

3.Brainstorming

1. Brainstorming is an effective way to gather information from a group of people.

2. The general idea is that the group sits around a table and discusses some topic with the goal of generating

ideas.

3. The following is a suggested approach to organizing and running an effective.

 Brainstorming session:

1. Call a meeting with representation from all stakeholders. Effective brainstorming session can be run

with five to 20 people.

 Appoint an experienced moderator (also known as a facilitator)- that is, someone who knows how to run

 brainstorming meeting and will lead the process. The moderator may participate in the discussion if he or

 she wishes.

2. Arrange the attendees around the periphery of a table and give them plenty of paper to work with.

i. Decide on a trigger question. This is a key step in the process. A trigger question is one for which the

 participants can provide simple one line answers that are more than just numbers or yes or no

 responses.

ii. Ask each participant to follow these instructions:

iii. Think of an answer to the trigger question, no matter how trivial or questionable the answer is

Write the answer down in one or two lines on a sheet of paper, one idea per sheet.

1. Pass the paper to the neighbor on your left to simulate his or her thoughts

2. Look at the answers passed from your neighbor to the right and pass these on to your left as well. Use the ideas

you have read to simulate your own ideas.

3. Continue step 5 until ideas stop flowing or a fixed time(5-15 minutes) passes.

4. Moving around the table, ask everybody to read out one of the ideas on the sheets that happen to be In front of

them.

5. After a fixed time period, or after all ideas have been recorded on the flip-Chart, the group may take a series of

votes to prioritize them.

6. The concept of passing ideas clockwise around the table.

Prototyping:

1. The simplest kind: paper prototype.

2. A set of pictures of the system that are shown to users in sequence to explain what would happen.

3. The most common: a mock- up of the system' s UI

4. Written in a rapid prototyping language

5. Does not normally perform any computations, access any databases or interact with any other systems.

6. May prototype a particular aspect of the system.

TYPES OF REQUIREMENTS DOCUMENTS

To perform good software engineering, it is always appropriate to write down requirements. The level of

detail of the requirements can, however, vary significantly from project to project. At one extreme, there are

documents that informally outline the requirements using a few paragraphs or simple diagrams. At the other

extreme, there are specifications that contain thousands of pages of intricate detail.

Requirements documents for large systems are normally arranged in a hierarchy:

Level of detail required in a requirements document

a. The size of the system: A large system will need more detailed requirements for several reasons. First, there

is simply more to say. Second, the system will need to be divided into subsystems so that different teams can

work on each part.

b. The need to interface to other systems: Even a small system will need to have well- described requirements

if other systems or subsystems are going to use its services or communicate with it.

c. The target audience: The requirements must be written at a high enough level so that the potential users can

read them.

d. The contractual arrangements for development: If you are arranging a contract by which a third party will

develop software for you, then you will have to specify the requirements with considerable precision.

e. The stage in requirements gathering: At an early stage in requirements gathering, it is important not to

write large volumes of precise and detailed requirements.

f. The level of experience with the domain and the technology: If you are developing software in a well

known domain and using well known technology, then you

 should be able to procedure a complete requirements document before starting to design the system.

g.The cost incurred if the requirements are faulty. Any system that, if it fails, the environment must be

precisely specified.

REVIEWING REQUIREMENTS:

Each individual requirement should be carefully reviewed. In order to be acceptable, a requirement should:

1. Have benefits that outweigh the costs of development: Cost- benefit analysis is an important

 skill in software engineering. You sum, in financial terms, the benefits of the requirement and

 compare this to the sum of the costs.

2. Be important for the solution of the current problem. Many ideas might be useful to implement, and

might have benefits that outweigh their costs. One of the most important rules in software engineering is

the 80-20 rule, which says that 80 % of the users problem can often be solved with 20 % of the work. You

should initially consider producing only that first 20 % of the system. The 80-20 rule is also called the

Pareto principle.

3. Be expressed using a clear and consistent notation. Each requirement should be expressed using

language that the customers can understand and should be consistent with the other requirements.

Requirements are normally expressed in a natural language such as English.

4. Be unambiguous. It is typical to find that an English sentence can have more than one interpretation.

5. Be logically consistent. You should check consistency with any standards, with other requirements in the

document, with higher level requirements and with the requirements for other subsystems.

6. Lead to a system of sufficient quality. A requirement should contribute to a system that is sufficiently

usable, safe, efficient, reliable and maintainable.

7. Be realistic with a variable resources. A requirement is realistic if the development team has the

expertise and technology to implement it on the required platform within the budget and time available.

8. Be verifiable. The requirements document will not only be the basis for a systems design, but also for

testing the system. There must be some way that the system can be tested so as to clearly conclude

whether or not the requirement has been correctly implemented.

9. Be interested uniquely identifiable. It is important to be able to refer to each individual requirement.

This is necessary in requirements review meetings so that people can indicate which requirement they

want to discuss. It is also necessary in design documents to be able to say which requirement is being

implemented by a given aspect of the design, a quality called traceability. In some documents, each

requirement is given a unique number.

10. The document should be sufficiently complete. Requirements document should have sections

covering the following types of information.

a. Problem: provide a succinct description of the problem the system is solving.

b. Background information: Give information that will help readers understand the

requirements.

c. Environment and system models: provide the context in which the system runs and a

global overview of the system or subsystem.

d. Functional requirements: Describe the services provided to the user and to other systems.

e. Non functional requirements: describe any constraints that must be imposed on the

design of the system.

Case Studies:

Requirements specifications for high assurance secure systems are rare in the open literature. This

paper presents a case study in the development of a requirements document for a multilevel secure

system. The system is secure, yet combines popular commercial components with specialized high

assurance ones. Functional and non-functional requirements pertinent to security are discussed. A

multi-dimensional threat model is presented. The threat model accounts for the developmental and

operational phases of system evolution and for each phase accounts for both physical and non-

physical threats.

GPS based Automobile Navigation System:

The following example requirements document is for an embedded system that will be

installed in special purpose hardware in cars.

Requirements for GANA software

1. Problem. GANA software will help drivers navigate by giving them directions to their

destination.

2. Background information. See domain analysis document.

3. Environment and system models. GANA software is to run on special GANA hardware,

the hardware provides the following to the software:

a) GPS position information

b) a wireless internet connection to a map database

c) position of a trackball

d) a colour 10 cm by 10 cm LCD screen

e) six buttons at the bottom of the screen and

f) Input from the cars other systems containing data about speed and Turing of the steering

wheel. This requirements document describes the software only.

4. Functional requirements.

1. The system uses GPS information to calculate which map to display. The system also integrates

information about the cars speed and history of turns made in order to refine it's accuracy about

the vehicles location

2. The system has two main interaction modes: in setup mode, the user consults maps and specifies

the destination; in navigation mode, the system assists the user to navigate to the destination.

3. Setup mode: When the system is on, and the vehicle is stationary, it enters setup mode. If the

vehicle is moving, the system enters navigation mode. In setup mode, the system displays a map.

The default map is in 1: 25000 scale and is centered on the users current position. At this scale,

the map covers a square with km side.

 When the users current position is within the visible part of the map, the system

always indicates it with a red arrow. The arrow points in the direction the user is heading.

 The system also displays in orange the shortest route from the current position to the

center of the map. It will not be possible to display the entire route if the current position is not

displayed.

 When the user manipulates the trackball, the screen scrolls the map in the direction of

rotation of the trackball, as if the user were grabbing the map.

 The LCD screen displays the labels Zoom out, Zoom In , Go current, Go destination,

Set Destination and Navigate above the six buttons. The button works as follows:

 Zoom in and zoom out displays new maps. The scale of the map appears at the top right of the

screen. There may be a delay retrieving a map, in which case the system displays the message.

 Retrieving map. If the map or network is unavailable for any reason, the system displays:

sorry map not available near the top of the screen and continues to display the previous map.

 When the user presses Zoom in , the map scale is doubled so that a smaller region is

displayed, with more in detail.

 When the user presses Zoom out the map scale is divided by 2 so that a larger region is

displayed, with less local detail..

 When the user presses set destination, the location at the center of the screen is set as the

destination. The shortest route from the current position to the destination is highlighted in red

and is adjusted as the car moves.

 The shortest route to the set destination is shown on the top of the shortest route to the center

of the screen (orange), and hence has precedence.

 When the user presses Go current, the map jumps so that it is centered of the current location.

 When the user presses Go destination, the map jumps so that it is centered over the

destination. If no destination has been set, the destination defaults to the current location.

 When the user presses navigate or the vehicle starts moving, the system enters navigation

mode described below.

4. Navigation mode:

 A detailed map is never displayed in navigation mode since the user would not be able to

 concentrate on driving while looking at the map.

 If no destination has been set, the system just displays the name of the current highway or street

 and municipality in large type in addition, if a destination has been set, the system displays the

 following in as large a size as possible:

1. An arrow pointing up if the driver should drive starlight ahead, a left arrow if the driver should

turn left, a right arrow if the driver should turn right and a U- turn symbol of the driver should

turn around.

 The system displays the labels speak now, volume up, volume down, guide on, guide off and

 setup above the six buttons. The buttons works as follows:

2. ‘Speak now’ produces a computer generated voice, reading the instructions that are on display.

Every time the user presses the button, any reading in progress is canceled and the instructions

are immediately read again starting from the beginning.

3. ‘Volume up ‘and ‘volume down ‘adjust sound output.

4. ‘Guide on’ causes a computer generated voice to automatically read the instructions one minute

in advance of any required driver action, such as exiting the highway, being needed.

5. ‘Guide off’ cancels this function; the user would have to read the screen or press speak now. In

situations where navigational action is required more frequently than once a minute, the voice

reads the next instruction as soon as the system detects that the driver has responded to the

previous instruction.

6. Setup’ switches to setup mode if the car is stationary. If the car is not stationary, the setup

button is heated out and is inactive.

If the driver does not respond as expected to the instructions, and takes a different route, the

system immediately calculates a new route.

5. Quality requirements

1. The system will be robust in the case of failure of the internet connection or failure to

receive the GPS signal, maintaining whatever service it can.

2. The system will be designed in a flexible way such that changes in wireless internet or GPS

technology can be incorporated in future releases.

3. The system will be designed anticipating incorporation of input from an inertial navigation

unit that would take over in cases where GPS signals fail.

UNIT-I

The UML stands for Unified modeling language, is a standardized general-purpose visual

modeling language in the field of Software Engineering. It is used for specifying, visualizing,

constructing, and documenting the primary artifacts of the software system. It helps in

designing and characterizing, especially those software systems that incorporate the concept

of Object orientation. It describes the working of both the software and hardware systems.

UML was created by the Object Management Group (OMG) and UML 1.0 specification

draft was proposed to the OMG in January 1997.

Characteristics of UML

The UML has the following features:

o It is a generalized modeling language.

o It is distinct from other programming languages like C++, Python, etc.

o It is interrelated to object-oriented analysis and design.

o It is used to visualize the workflow of the system.

o It is a pictorial language, used to generate powerful modeling artifacts.

Goals of UML:- A picture is worth a thousand words, this idiom absolutely fits describing

UML. Object-oriented concepts were introduced much earlier than UML. At that point of

time, there were no standard methodologies to organize and consolidate the object-oriented

development. It was then that UML came into picture.

There are a number of goals for developing UML but the most important is to define

some general purpose modeling language, which all modelers can use and it also needs to be

made simple to understand and use.

UML diagrams are not only made for developers but also for business users, common

people, and anybody interested to understand the system. The system can be a software or

non-software system. Thus it must be clear that UML is not a development method rather it

accompanies with processes to make it a successful system.

In conclusion, the goal of UML can be defined as a simple modeling mechanism to

model all possible practical systems in today’s complex environment.

Modeling Concepts:

Unified Modeling Language (UML) Models represent systems at different levels of detail.

Some models describe a system from a higher, more abstract level, while other models

provide greater detail. UML models contain model elements, such as actors, use cases,

classes, and packages, and one or more diagrams that show a specific perspective of a

system. A model can also contain other, more detailed models.

You create and manage models using modeling projects in the Project Explorer view. The

contents of a modeling project are organized into three types of logical folders: diagrams,

models, and profiles. This structure displays the logical containment of the UML model

elements, regardless of where they are stored physically. The models in a modeling project

are displayed under the Models folder, or node. These nodes are not the physical model

files, which have the .emx as a file name extension, but are the root model elements of the

models. Similarly, the corresponding diagrams and profiles are displayed under the

Diagrams folder and Profiles folder respectively.

You can use modeling diagrams to capture system use cases in a use-case model during the

requirements gathering phase, you define the application domain in an analysis model

during the system analysis phase, and you refine the application model in a design model

during the detailed design phase.

You can use models to do the following things:

 Visually represent a system that you want to build

 Communicate your vision of a system to customers and colleagues

 Develop and test the architecture of a system

 Use the UML diagrams to direct code generation

UML-Building Blocks

UML is composed of three main building blocks, i.e., things, relationships, and diagrams.

Building blocks generate one complete UML model diagram by rotating around several

different blocks. It plays an essential role in developing UML diagrams. The basic UML

building blocks are enlisted below:

1. Things

2. Relationships

3. Diagrams

1. Things:

Anything that is a real world entity or object is termed as things. It can be

divided into several different categories:

1. Structural things

2. Behavioral things

3. Grouping things

4. Annotational things

1. Structural things: Nouns that depicts the static behavior of a model is termed as

structural things. They display the physical and conceptual components. They include class,

object, interface, node, collaboration, component, and a use case.

Class: A Class is a set of identical things that outlines the functionality and properties of an

object. It also represents the abstract class whose functionalities are not defined. Its notation is

as follows;

Object: An individual that describes the behavior and the functions of a system. The notation

of the object is similar to that of the class; the only difference is that the object name is always

underlined and its notation is given below;

Interface: A set of operations that describes the functionality of a class, which is

implemented whenever an interface is implemented.

Collaboration: It represents the interaction between things that is done to meet the goal. It is

symbolized as a dotted ellipse with its name written inside it.

Use case: Use case is the core concept of object-oriented modeling. It portrays a set of actions

executed by a system to achieve the goal.

Actor: It comes under the use case diagrams. It is an object that interacts with the system, for

example, a user.

Component: It represents the physical part of the system.

Node: A physical element that exists at run time.

2.Behavioral Things

They are the verbs that encompass the dynamic parts of a model. It depicts the behavior of a

system. They involve state machine, activity diagram, interaction diagram, grouping things,

annotation things

State Machine: It defines a sequence of states that an entity goes through in the software

development lifecycle. It keeps a record of several distinct states of a system component.

Activity Diagram: It portrays all the activities accomplished by different entities of a system.

It is represented the same as that of a state machine diagram. It consists of an initial state,

final state, a decision box, and an action notation.

Interaction Diagram: It is used to envision the flow of messages between several

components in a system.

3.Grouping Things

It is a method that together binds the elements of the UML model. In UML, the package is the

only thing, which is used for grouping.

Package: Package is the only thing that is available for grouping behavioral and structural

things.

4.Annotation Things

It is a mechanism that captures the remarks, descriptions, and comments of UML model

elements. In UML, a note is the only Annotational thing.

Note: It is used to attach the constraints, comments, and rules to the elements of the model. It

is a kind of yellow sticky note.

2.Relationships:

In UML diagrams, relationships are used to link several things. It is a connection between

structural, behavioral, or grouping things. There are four types of relationships given below:

1. Association

2. Dependency

3. Generalization

4. Realization

1.Association:

Association relationship is a structural relationship in which different objects are linked

within the system. It exhibits a binary relationship between the objects representing an

activity. It depicts the relationship between objects, such as a teacher, can be associated with

multiple teachers.

It is represented by a line between the classes followed by an arrow that navigates the

direction, and when the arrow is on both sides, it is then called a bidirectional association. We

can specify the multiplicity of an association by adding the adornments on the line that will

denote the association.

Example:

1) A single teacher has multiple students.

2) A single student can associate with many teachers.

The composition and aggregation are two subsets of association. In both of the cases, the

object of one class is owned by the object of another class; the only difference is that in

composition, the child does not exist independently of its parent, whereas in aggregation, the

child is not dependent on its parent i.e., standalone. An aggregation is a special form of

association, and composition is the special form of aggregation.

Aggregation:

Aggregation is a subset of association, is a collection of different things. It represents has a

relationship. It is more specific than an association. It describes a part-whole or part-of

relationship. It is a binary association, i.e., it only involves two classes. It is a kind of

relationship in which the child is independent of its parent.

For example:

Here we are considering a car and a wheel example. A car cannot move without a wheel. But

the wheel can be independently used with the bike, scooter, cycle, or any other vehicle. The

wheel object can exist without the car object, which proves to be an aggregation relationship.

Composition:

The composition is a part of aggregation, and it portrays the whole-part relationship. It depicts

dependency between a composite (parent) and its parts (children), which means that if the

composite is discarded, so will its parts get deleted. It exists between similar objects.

As you can see from the example given below, the composition association relationship

connects the Person class with Brain class, Heart class, and Legs class. If the person is

destroyed, the brain, heart, and legs will also get discarded.

UML- Association:

Association is the semantic relationship between classes that shows how one instance is

connected or merged with others in a system. The objects are combined either logically or

physically.

Reflexive Association:

In the reflexive associations, the links are between the objects of the same classes. In other

words, it can be said that the reflexive association consists of the same class at both ends. An

object can also be termed as an instance.

Directed Association:

The directed association is concerned with the direction of flow inside association classes.

The flow of association can be shown by employing a directed association. The directed

association between two classes is represented by a line with an arrowhead, which indicates

the navigation direction. The flow of association from one class to another is always in one

direction.

It can be said that there is an association between a person and the company. The person

works for the company. Here the person works for the company, and not the company works

for a person.

2.UML-Dependency

Dependency depicts how various things within a system are dependent on each other. In UML,

a dependency relationship is the kind of relationship in which a client (one element) is

dependent on the supplier (another element). It is used in class diagrams, component

diagrams, deployment diagrams, and use-case diagrams, which indicates that a change to

the supplier necessitates a change to the client. An example is given below:

Dependency: Dependency is a kind of relationship in which a change in target element

affects the source element, or simply we can say the source element is dependent on the target

element. It is one of the most important notations in UML. It depicts the dependency from one

entity to another.

It is denoted by a dotted line followed by an arrow at one side as shown below,

UML-Generalization:

In UML modeling, a generalization relationship is a relationship that implements the concept

of object orientation called inheritance. The generalization relationship occurs between two

entities or objects, such that one entity is the parent, and the other one is the child. The child

inherits the functionality of its parent and can access as well as update it.

It is denoted by a straight line followed by an empty arrowhead at one side.

Realization: It is a semantic kind of relationship between two things, where one defines the

behavior to be carried out, and the other one implements the mentioned behavior. It exists in

interfaces.

It is denoted by a dotted line with an empty arrowhead at one side.

TYPES OF UML DIAGRAMS

The diagrams are the graphical implementation of the models that incorporate symbols and

text. Each symbol has a different meaning in the context of the UML diagram. And each

diagram many sets of a different dimension, perspective, and view of the system.

UML diagrams are classified into three categories that are given below:

1. Structural Diagram

2. Behavioral Diagram

3. Interaction Diagram

1. Structural Diagrams:- The structural diagrams represent the static aspect of the system.

These static aspects represent those parts of a diagram, which forms the main structure and

are therefore stable.

These static parts are represented by classes, interfaces, objects, components, and nodes.

The four structural diagrams are −

i. Class diagram

ii. Object diagram

iii. Component diagram

iv. .Deployment diagram

i. Class Diagram:- Class diagrams are the most common diagrams used in UML. Class

diagram consists of classes, interfaces, associations, and collaboration. Class diagrams

basically represent the object-oriented view of a system, which is static in nature.

Active class is used in a class diagram to represent the concurrency of the system.

Class diagram represents the object orientation of a system. Hence, it is generally used for

development purpose. This is the most widely used diagram at the time of system

construction.

ii. Object Diagram:- Object diagrams can be described as an instance of class diagram.

Thus, these diagrams are more close to real-life scenarios where we implement a system.

Object diagrams are a set of objects and their relationship is just like class diagrams. They

also represent the static view of the system.

The usage of object diagrams is similar to class diagrams but they are used to build prototype

of a system from a practical perspective.

iii. Component Diagram:- Component diagrams represent a set of components and their

relationships. These components consist of classes, interfaces, or collaborations. Component

diagrams represent the implementation view of a system.

During the design phase, software artifacts (classes, interfaces, etc.) of a system are arranged

in different groups depending upon their relationship. Now, these groups are known as

components.

Finally, it can be said component diagrams are used to visualize the implementation.

iv.Deployment Diagram:- Deployment diagrams are a set of nodes and their

relationships. These nodes are physical entities where the components are deployed.

Deployment diagrams are used for visualizing the deployment view of a system. This is

generally used by the deployment team.

Note −Component diagrams are dependent upon the classes, interfaces, etc. which are part of

class/object diagram. Again, the deployment diagram is dependent upon the components,

which are used to make component diagrams.

2. Behavioral Diagram: Any system can have two aspects, static and dynamic. So, a model

is considered as complete when both the aspects are fully covered.

Behavioral diagrams basically capture the dynamic aspect of a system. Dynamic aspect can be

further described as the changing/moving parts of a system.

UML has the following five types of behavioral diagrams.

 i.Use case diagram

ii. Statechart diagram

iii.Activity diagram

i. Use Case Diagram:-Use case diagrams are a set of use cases, actors, and their

relationships. They represent the use case view of a system.

A use case represents a particular functionality of a system. Hence, use case diagram is used to

describe the relationships among the functionalities and their internal/external controllers.

These controllers are known as actors.

ii.Statechart Diagram:- Any real-time system is expected to be reacted by some kind of

internal/external events. These events are responsible for state change of the system.

Statechart diagram is used to represent the event driven state change of a system. It basically

describes the state change of a class, interface, etc.

State chart diagram is used to visualize the reaction of a system by internal/external

factors.

iii.Activity Diagram:- Activity diagram describes the flow of control in a system. It consists

of activities and links. The flow can be sequential, concurrent, or branched.

Activities are nothing but the functions of a system. Numbers of activity diagrams are

prepared to capture the entire flow in a system.

Activity diagrams are used to visualize the flow of controls in a system. This is

prepared to have an idea of how the system will work when executed.

3.Interaction diagram:

It is a subset of behavioral diagrams. It depicts the interaction between two objects and the

data flow between them. Following are the several interaction diagrams in UML:

o Sequence diagram.

o Collaboration diagram.

i.Sequence Diagram:- A sequence diagram is an interaction diagram. From the name, it is

clear that the diagram deals with some sequences, which are the sequence of messages

flowing from one object to another.

Interaction among the components of a system is very important from implementation and

execution perspective. Sequence diagram is used to visualize the sequence of calls in a system

to perform a specific functionality.

ii.Collaboration Diagram:- Collaboration diagram is another form of interaction diagram. It

represents the structural organization of a system and the messages sent/received. Structural

organization consists of objects and links.

The purpose of collaboration diagram is similar to sequence diagram. However, the specific

purpose of collaboration diagram is to visualize the organization of objects and their

interaction.

USER-CENTERED DESIGN:

User-centered design (UCD) is an iterative design process in which designers focus on the

users and their needs in each phase of the design process. In UCD, design teams involve users

throughout the design process via a variety of research and design techniques, to create highly

usable and accessible products for them. In user- centered design, designers use a mixture of

investigative methods and tools (e.g., surveys and interviews) and generative ones (e.g.,

brainstorming) to develop an understanding of user needs. Generally, each iteration of the

UCD approach involves four distinct phases. First, as designers working in teams, we try to

understand the context in which users may use a system. Then, we identify and specify the

users’ requirements. A design phase follows, in which the design team develops solutions.

The team then proceeds to an evaluation phase. Here, you assess the outcomes of the

evaluation against the users’ context and requirements, to check how well a design is

performing. More specifically, you see how close it is to a level that matches the users’

specific context and satisfies all of their relevant needs. From here, your team makes further

iterations of these four phases, and you continue until the evaluation results are satisfactory.

CHARACTERISTICS OF USERS

Software engineers must develop an understanding of the users

• Goals for using the system

• Potential patterns of use

• Demographics

• Knowledge of the domain and of computers

• Physical ability

• Psychological traits and emotional feelings

Developing Use Case Models of Systems:

The Use-case model is defined as a model which is used to show how users interact with

the system in order to solve a problem. As such, the use case model defines the user's

objective, the interactions between the system and the user, and the system's behavior

required to meet these objectives.

Various model elements are contained in use-case model, such as actors, use cases, and the

https://www.interaction-design.org/literature/topics/brainstorming

association between them.

We use a use-case diagram to graphically portray a subset of the model in order to make the

communication simpler. There will regularly be a numerous use-case diagram which is

related to the given model, each demonstrating a subset of the model components related to a

specific purpose. A similar model component might be appearing on a few use-case diagrams;

however, each use-case should be consistent. If, in order to handle the use-case model, tools

are used then this consistency restriction is automated so that any variations to the component

of the model (changing the name, for instance) will be reflected automatically on each use-

case diagram, which shows that component.

Packages may include a use-case model, which is used to organize the model to simplify the

analysis, planning, navigation, communication, development and maintenance.

Various use-case models are textual and the text captured in the use-case specifications,

which are linked with the element of every use-case model. The flow of events of the use case

is described with the help of these specifications.

The use-case model acts as an integrated thread in the development of the entire system. The

use-case model is used like the main specification of the system functional requirements as

the basis for design and analysis, as the basis for user documentation, as the basis of defining

test cases, and as an input to iteration planning.

Origin of Use-Case:-

Nowadays, use case modeling is frequently connected with UML, in spite of the fact that it

has been presented before UML existed. Its short history is:

 Ivar Jacobson, in the year 1986, originally formulated textual and visual modeling methods to

specify use cases.

 And in the year 1992, his co-authored book named Object-Oriented Software Engineering - A

Use Case Driven Approach, assisted with promoting the strategy for catching functional

requirements, particularly in software development.

Components of Basic Model:-

There are various components of the basic model:

1. Actor

2. Use Case

3. Associations

1.Actor:- Usually, actors are people involved with the system defined on the basis of their

roles. An actor can be anything such as human or another external system.

2.Use Case:- The use case defines how actors use a system to accomplish a specific objective.

The use cases are generally introduced by the user to meet the objectives of the activities and

variants involved in the achievement of the goal.

3.Associations:- Associations are another component of the basic model. It is used to define

the associations among actors and use cases they contribute in. This association is called

communicates-association.

Advanced Model Components:-

There are various components of the advanced model:

1. Subject

2. Use-Case Package

3. Generalizations

4. Dependencies

1.Subject:- The subject component is used to represent the boundary of the system of

interest.

2.Use-Case Package:- We use the model component in order to structure the use case

model to make simpler the analysis, planning, navigation, and communication. Suppose there

are various actors or use cases. In that case, we can also use use-case packages inorder to

further structure the use-case model in much the similar way we use directories or folders to

organize the information on our hard-disk.

For various reasons, we divide the use-case model into the use-case packages, containing:

 To help parallel development by partitioning the problem into bite-sized parts.

 To improve communication with various stakeholders by making packaging

containing actors, use cases and related to the specific stakeholder.

3.Generalizations:- Generalizations mean the association between the actors in order to

help re-use of common properties.

4.Dependencies:- In UML, various types of dependencies are defined between use

cases. In particular, <<include>> and <<extend>>.

We use <<include>> dependency to comprise shared behavior from an included use case

into a base use case to use common behavior.

We use <<extend>> dependency to include optional behavior from an extended

use- case into an extended use case.

USE CASE DIAGRAM

A use case diagram is used to represent the dynamic behavior of a system. It encapsulates the

system's functionality by incorporating use cases, actors, and their relationships. It models the

tasks, services, and functions required by a system/subsystem of an application. It depicts the

high-level functionality of a system and also tells how the user handles a system.

Purpose of Use Case Diagrams:

The main purpose of a use case diagram is to portray the dynamic aspect of a system. It

accumulates the system's requirement, which includes both internal as well as external

influences. It invokes persons, use cases, and several things that invoke the actors and

elements accountable for the implementation of use case diagrams. It represents how an entity

from the external environment can interact with a part of the system.

Following are the purposes of a use case diagram given below:

1. It gathers the system's needs.

2. It depicts the external view of the system.

3. It recognizes the internal as well as external factors that influence the system.

4. It represents the interaction between the actors.

How to draw a Use Case diagram?

It is essential to analyze the whole system before starting with drawing a use case diagram,

and then the system's functionalities are found. And once every single functionality is

identified, they are then transformed into the use cases to be used in the use case diagram.

After that, we will enlist the actors that will interact with the system. The actors are the person

or a thing that invokes the functionality of a system. It may be a system or a private entity,

such that it requires an entity to be pertinent to the functionalities of the system to which it is

going to interact.

Once both the actors and use cases are enlisted, the relation between the actor and use case/

system is inspected. It identifies the no of times an actor communicates with the system.

Basically, an actor can interact multiple times with a use case or system at a particular

instance of time.

Following are some rules that must be followed while drawing a use case diagram:

1. A pertinent and meaningful name should be assigned to the actor or a use case of a system.

2. The communication of an actor with a use case must be defined in an understandable way.

3. Specified notations to be used as and when required.

4. The most significant interactions should be represented among the multiple no of

interactions between the use case and actors.

Example of a Use Case Diagram

A use case diagram depicting the Online Shopping website is given below.

Here the Web Customer actor makes use of any online shopping website to purchase online.

The top-level uses are as follows; View Items, Make Purchase, Checkout, Client Register.

The View Items use case is utilized by the customer who searches and view products. The

Client Register use case allows the customer to register itself with the website for availing

gift vouchers, coupons, or getting a private sale invitation. It is to be noted that the Checkout

is an included use case, which is part of Making Purchase, and it is not available by itself.

View Items is further extended by several use cases such as; Search Items, Browse Items,

View Recommended Items, Add to Shopping Cart, Add to Wish list. All of these extended

use cases provide some functions to customers, which allows them to search for an item. The

View Items is further extended by several use cases such as; Search Items, Browse Items,

View Recommended Items, Add to Shopping Cart, Add to Wish list. All of these extended

use cases provide some functions to customers, which allows them to search for an item.

Both View Recommended Item and Add to Wish List include the Customer Authentication

use case, as they necessitate authenticated customers, and simultaneously item can be added

to the shopping cart without any user authentication.

Similarly, the Checkout use case also includes the following use cases, as shown below. It

requires an authenticated Web Customer, which can be done by login page, user

authentication cookie ("Remember me"), or Single Sign-On (SSO). SSO needs an external

identity provider's participation, while Web site authentication service is utilized in all these

use cases.

The Checkout use case involves Payment use case that can be done either by the credit card

and external credit payment services or with PayPal.

THE BASICS OF USER INTERFACE DESIGN

The visual part of a computer application or operating system through which a client interacts

with a computer or software. It determines how commands are given to the computer or the

program and how data is displayed on the screen.

Types of User Interface

There are two main types of User Interface:

o Text-Based User Interface or Command Line Interface

o Graphical User Interface (GUI)

Text-Based User Interface: This method relies primarily on the keyboard. A typical example

of this is UNIX.

Advantages:

o Many and easier to customizations options.

o Typically capable of more important tasks.

Disadvantages:

o Relies heavily on recall rather than recognition.

o Navigation is often more difficult.

Graphical User Interface (GUI): GUI relies much more heavily on the mouse. A typical

example of this type of interface is any versions of the Windows operating systems.

Advantages:

o Less expert knowledge is required to use it.

o Easier to Navigate and can look through folders quickly in a guess and check manner.

o The user may switch quickly from one task to another and can interact with several

different applications.

Disadvantages:

o Typically decreased options.

o Usually less customizable. Not easy to use one button for tons of different variations.

User Interface Design Activities:-

There are a number of activities performed for designing user interface. The process

of GUI design and implementation is alike SDLC. Any model can be used for GUI

implementation among Waterfall, Iterative or Spiral Model.

A model used for GUI design and development should fulfill these GUI specific steps.

 GUI Requirement Gathering.

 User Analysis.

 Task Analysis

 GUI Design & implementation.

 Testing .

USABILITY PRINCIPLES

A well designed user interface is comprehensible and controllable, helping users to complete

their work successfully and efficiently, and to feel competent and satisfied. Effective user

interfaces are designed based on principles of human interface design. The principles listed

below are consolidated from a wide range of published sources (Constantine & Lockwood,

1999; Cooper & Reimann, 2003; Gerhardt-Powals, 1996; Lidwell, Holden & Butler, 2003;

Nielsen, 1994; Schneiderman, 1998; Tognazzini, 2003) and are based on a long history of

human-computer interaction research, cognitive psychology, and design best practices.

Usefulness

Value: The system should provide necessary utilities and address the real needs of users.

Relevance: The information and functions provided to the user should be relevant to the user's

task and context.

Consistency

Consistency and standards: Follow appropriate standards/conventions for the platform and

the suite of products. Within an application (or a suite of applications), make sure that actions,

terminology, and commands are used consistently.

https://www.usabilitybok.org/glossary/19#term402
https://www.usabilitybok.org/glossary/19#term378
https://www.usabilitybok.org/glossary/19#term428

Real-world conventions: Use commonly understood concepts, terms and metaphors, follow

real-world conventions (when appropriate), and present information in a natural and logical

order.

Simplicity

Simplicity: Reduce clutter and eliminate any unnecessary or irrelevant elements.

Visibility: Keep the most commonly used options for a task visible (and the other options

easily accessible).

Self-evidency: Design a system to be usable without instruction by the appropriate target user

of the system: if appropriate, by a member of the general public or by a user who has the

appropriate subject-matter knowledge but no prior experience with the system. Display data in

a manner that is clear and obvious to the appropriate user.

Communication

Feedback: Provide appropriate, clear, and timely feedback to the user so that he sees the

results of his actions and knows what is going on with the system.

Structure: Use organization to reinforce meaning. Put related things together, and keep

unrelated things separate.

Sequencing: Organize groups of actions with a beginning, middle, and end, so that users

know where they are, when they are done, and have the satisfaction of accomplishment.

Help and documentation: Ensure that any instructions are concise and focused on

supporting the user's task.

Error Prevention and Handling

Forgiveness: Allow reasonable variations in input. Prevent the user from making serious

errors whenever possible, and ask for user confirmation before allowing a potentially

destructive action.

Error recovery: Provide clear, plain-language messages to describe the problem and suggest

a solution to help users recover from any errors.

Undo and redo: Provide "emergency exits" to allow users to abandon an unwanted action.

The ability to reverse actions relieves anxiety and encourages user exploration of unfamiliar

options.

Efficiency

Efficacy: (For frequent use) Accommodate a user’s continuous advancement in knowledge

and skill. Do not impede efficient use by a skilled, experienced user.

Shortcuts: (For frequent use) Allow experienced users to work more quickly by providing

abbreviations, function keys, macros, or other accelerators, and allowing customization or

tailoring of frequent actions.

User control: (For experienced users) Make users the initiators of actions rather than the

responders to increase the users’ sense that they are in charge of the system.

Workload Reduction

Supportive automation: Make the user’s work easier, simpler, faster, or more fun.

Automate unwanted workload.

Reduce memory load: Keep displays brief and simple, consolidate and summarize data, and

present new information with meaningful aids to interpretation. Do not require the user to

remember information. Allow recognition rather than recall.

Free cognitive resources for high-level tasks: Eliminate mental calculations, estimations,

comparisons, and unnecessary thinking. Reduce uncertainty.

Usability Judgment

It depends: There will often be tradeoffs involved in design, and the situation, sound

judgment, experience should guide how those tradeoffs are weighed.

A foolish consistency...: There are times when it makes sense to bend or violate some of the

principles or guidelines, but make sure that the violation is intentional and appropriate.

Class Design and Class Diagrams

A Class is a blueprint that is used to create Object. The Class defines what object can do.

What is Class Diagram?

UML CLASS DIAGRAM gives an overview of a software system by displaying

classes, attributes, operations, and their relationships. This Diagram includes the class

name, attributes, and operation in separate designated compartments.

Class Diagram defines the types of objects in the system and the different types of

relationships that exist among them. It gives a high-level view of an application. This

modeling method can run with almost all Object-Oriented Methods. A class can refer

to another class. A class can have its objects or may inherit from other classes.

Class Diagram helps construct the code for the software application development.

ESSENTIAL ELEMENTS OF A UML CLASS DIAGRAM

Essential elements of UML class diagram are:

1. Class Name

2. Attributes

3. Operations

Class Name

The name of the class is only needed in the graphical representation of the class. It appears in

the topmost compartment. A class is the blueprint of an object which can share the same

relationships, attributes, operations, & semantics. The class is rendered as a rectangle,

including its name, attributes, and operations in seperate compartments.

Following rules must be taken care of while representing a class:

1. A class name should always start with a capital letter.

2. A class name should always be in the center of the first compartment.

3. A class name should always be written in bold format.

4. An abstract class name should be written in italics format.

Attrbutes:

An attribute is named property of a class which describes the object being modeled. In the

class diagram, this component is placed just below the name-compartment.

A derived attribute is computed from other attributes. For example, an age of the student can

be easily computed from his/her birth date.

Attributes characteristics

 The attributes are generally written along with the visibility factor.

 Public, private, protected and package are the four visibilities which are

denoted by +, -, #, or ~ signs respectively.

 Visibility describes the accessibility of an attribute of aclass.

 Attributes must have a meaningful name that describes the use of it in a class.

Relationships

There are mainly three kinds of relationships in UML:

1. Dependencies

2. Generalizations

3. Associations

Dependency

A dependency means the relation between two or more classes in which a change in one may

force changes in the other. However, it will always create a weaker relationship. Dependency

indicates that one class depends on another.

In the following example, Student has a dependency on College

GENERALIZATION:

A generalization helps to connect a subclass to its superclass. A sub-class is inherited from its

superclass. Generalization relationship can't be used to model interface implementation. Class

diagram allows inheriting from multiple superclasses.

In this example, the class Student is generalized from Person Class.

ASSOCIATION:

This kind of relationship represents static relationships between classes A and B. For

example; an employee works for an organization.

Here are some rules for Association:

 Association is mostly verb or a verb phrase or noun or noun phrase.

 It should be named to indicate the role played by the class attached at the

end of the association path.

 Mandatory for reflexive associations

In this example, the relationship between student and college is shown which are studies.

MULTIPLICITY

A multiplicity is a factor associated with an attribute. It specifies how many instances of

attributes are created when a class is initialized. If a multiplicity is not specified, by default

one is considered as a default multiplicity.

Let's say that that there are 100 students in one college. The college can have multiple

students.

Aggregation

Aggregation is a special type of association that models a whole- part relationship

between aggregate and its parts.

For example, the class college is made up of one or more student. In aggregation, the

contained classes are never totally dependent on the lifecycle of the container. Here, the

college class will remain even if the student is not available.

Composition:

The composition is a special type of aggregation which denotes strong ownership between

two classes when one class is a part of another class.

For example, if college is composed of classes student. The college could contain many

students, while each student belongs to only one college. So, if college is not functioning all

the students also removed.

INTERACTION DIAGRAMS: From the term Interaction, it is clear that the diagram is used

to describe some type of interactions among the different elements in the model. This

interaction is a part of dynamic behavior of the system.

This interactive behaviour is represented in UML by two diagrams known as Sequence

diagram and Collaboration diagram. The basic purpose of both the diagrams are similar.

Sequence diagram emphasizes on time sequence of messages and collaboration diagram

emphasizes on the structural organization of the objects that send and receive messages.

Following are two interaction diagrams modeling the order management system. The first

diagram is a sequence diagram and the second is a collaboration diagram

1. The Sequence Diagram:- The sequence diagram has four objects (Customer,

Order, SpecialOrder and NormalOrder).

The following diagram shows the message sequence for SpecialOrder object and the same

can be used in case of NormalOrder object. It is important to understand the time sequence of

message flows. The message flow is nothing but a method call of an object.

The first call is sendOrder () which is a method of Order object. The next call is

confirm () which is a method of SpecialOrder object and the last call is Dispatch () which

is a method of SpecialOrder object. The following diagram mainly describes the method calls

from one object to another, and this is also the actual scenario when the system is running.

2. The Collaboration Diagram:- The second interaction diagram is the collaboration

diagram. It shows the object organization as seen in the following diagram. In the

collaboration diagram, the method call sequence is indicated by some numbering

technique. The number indicates how the methods are called one after another. We

have taken the same order management system to describe the collaboration diagram.

Method calls are similar to that of a sequence diagram. However, difference being the

sequence diagram does not describe the object organization, whereas the collaboration

diagram shows the object organization.

To choose between these two diagrams, emphasis is placed on the type of requirement. If the

time sequence is important, then the sequence diagram is used. If organization is required,

then collaboration diagram is used.

Purpose of Interaction Diagrams:

The purpose of interaction diagrams is to visualize the interactive behavior of the system.

Visualizing the interaction is a difficult task. Hence, the solution is to use different types of

models to capture the different aspects of the interaction.

Sequence and collaboration diagrams are used to capture the dynamic nature but from a

different angle.

The purpose of interaction diagram is −

 To capture the dynamic behaviour of a system.

 To describe the message flow in the system.

 To describe the structural organization of the objects.

 To describe the interaction among objects.

UML STATE MACHINE DIAGRAM

The state machine diagram is also called the Statechart or State Transition diagram, which

shows the order of states underwent by an object within the system. It captures the software

system's behavior. It models the behavior of a class, a subsystem, a package, and a complete

system.

It tends out to be an efficient way of modeling the interactions and collaborations in the

external entities and the system. It models event-based systems to handle the state of an

object. It also defines several distinct states of a component within the system. Each

object/component has a specific state.

Following are the types of a state machine diagram that are given below:

1. Behavioral state machine

The behavioral state machine diagram records the behavior of an object within the system. It

depicts an implementation of a particular entity. It models the behavior of the system.

2. Protocol state machine

It captures the behavior of the protocol. The protocol state machine depicts the change in the

state of the protocol and parallel changes within the system. But it does not portray the

implementation of a particular component.

Notation of a State Machine Diagram

Following are the notations of a state machine diagram enlisted below:

a. Initial state: It defines the initial state (beginning) of a system, and it is represented by a

black filled circle.

b. Final state: It represents the final state (end) of a system. It is denoted by a filled circle

present within a circle.

c. Decision box: It is of diamond shape that represents the decisions to be made on the basis

of an evaluated guard.

d. Transition: A change of control from one state to another due to the occurrence of some

event is termed as a transition. It is represented by an arrow labeled with an event due to

which the change has ensued.

e. State box: It depicts the conditions or circumstances of a particular object of a class at a

specific point of time. A rectangle with round corners is used to represent the state box.

ACTIVITY DIAGRAMS

Activity diagram is another important diagram in UML to describe the dynamic aspects of

the system.

Activity diagram is basically a flowchart to represent the flow from one activity to another

activity. The activity can be described as an operation of the system.

The control flow is drawn from one operation to another. This flow can be sequential,

branched, or concurrent. Activity diagrams deal with all type of flow control by using

different elements such as fork, join, etc.

Purpose of Activity Diagrams

The basic purposes of activity diagrams is similar to other four diagrams. It captures the

dynamic behavior of the system. Other four diagrams are used to show the message flow from

one object to another but activity diagram is used to show message flow from one activity to

another.

Activity is a particular operation of the system. Activity diagrams are not only used for

visualizing the dynamic nature of a system, but they are also used to construct the executable

system by using forward and reverse engineering techniques. The only missing thing in the

activity diagram is the message part.

It does not show any message flow from one activity to another. Activity diagram is

sometimes considered as the flowchart. Although the diagrams look like a flowchart, they are

not. It shows different flows such as parallel, branched, concurrent, and single.

The purpose of an activity diagram can be described as −

 Draw the activity flow of a system.

 Describe the sequence from one activity to another.

 Describe the parallel, branched and concurrent flow of the system Following are the rules

that are to be followed for drawing an activity diagram:

1. A meaningful name should be given to each and every activity.

2. Identify all of the constraints.

3. Acknowledge the activity associations.

Notation of an Activity diagram

Activity diagram constitutes following notations:

Initial State: It depicts the initial stage or beginning of the set of actions.

Final State: It is the stage where all the control flows and object flows end.

Decision Box: It makes sure that the control flow or object flow will follow only one path.

Action Box: It represents the set of actions that are to be performed.

UML COMPONENT DIAGRAM

A component diagram is used to break down a large object-oriented system into the smaller

components, so as to make them more manageable. It models the physical view of a system

such as executables, files, libraries, etc. that resides within the node.

It visualizes the relationships as well as the organization between the components present in

the system. It helps in forming an executable system. A component is a single unit of the

system, which is replaceable and executable. The implementation details of a component are

hidden, and it necessitates an interface to execute a function. It is like a black box whose

behavior is explained by the provided and required interfaces.

Notation of a Component Diagram

a) A component

b) A node

Purpose of a Component Diagram

Since it is a special kind of a UML diagram, it holds distinct purposes. It describes all the

individual components that are used to make the functionalities, but not the functionalities of

the system. It visualizes the physical components inside the system. The components can be a

library, packages, files, etc.

The component diagram also describes the static view of a system, which includes the

organization of components at a particular instant. The collection of component diagrams

represents a whole system.

The main purpose of the component diagram are enlisted below:

1. It envisions each component of a system.

2. It constructs the executable by incorporating forward and reverse engineering.

3. It depicts the relationships and organization of components.

When to use a Component Diagram?

It represents various physical components of a system at runtime. It is helpful in visualizing

the structure and the organization of a system. It describes how individual components can

together form a single system. Following are some reasons, which tells when to use

component diagram:

1. To divide a single system into multiple components according to the functionality.

2. To represent the component organization of the system.

DEPLOYMENT DIAGRAM

Deployment diagrams are used to visualize the topology of the physical components of a

system, where the software components are deployed.

Deployment diagrams are used to describe the static deployment view of a system.

Deployment diagrams consist of nodes and their relationship

Purpose of Deployment Diagram

The main purpose of the deployment diagram is to represent how software is installed on the

hardware component. It depicts in what manner a software interacts with hardware to perform

its execution.

Both the deployment diagram and the component diagram are closely interrelated to each

other as they focus on software and hardware components. The component diagram

represents the components of a system, whereas the deployment diagram describes how they

are actually deployed on the hardware.

The deployment diagram does not focus on the logical components of the system, but it put

its attention on the hardware topology.

Following are the purposes of deployment diagram enlisted below:

1. To envision the hardware topology of the system.

2. To represent the hardware components on which the software components are installed.

3. To describe the processing of nodes at the runtime.

Symbol and notation of Deployment diagram

The deployment diagram consists of the following notations:

1. A component

2. An artifact

3. An interface

4. A node

Deployment diagrams can be used for the followings:

1. To model the network and hardware topology of a system.

2. To model the distributed networks and systems.

3. Implement forwarding and reverse engineering processes.

4. To model the hardware details for a client/server system.

5. For modeling the embedded system.

UNIT-3

Software Design and Architecture

Software Design (or) Design process:

Software design is a mechanism to transform user requirements into some suitable form, which

helps the programmer in software coding and implementation. It deals with representing the

client's requirement, as described in SRS (Software Requirement Specification) document, into a

form, i.e., easily implementable using programming language.

The software design phase is the first step in SDLC (Software Design Life Cycle), which moves

the concentration from the problem domain to the solution domain. In software design, we

consider the system to be a set of components or modules with clearly defined behaviors &

boundaries.

Software Design Levels:- Software design yields three levels of results:

 Architectural Design - The architectural design is the highest abstract version of the system. It

identifies the software as a system with many components interacting with each other. At this

level, the designers get the idea of proposed solution domain.

 High-level Design- The high-level design breaks the ‘single entity-multiple component’ concept

of architectural design into less-abstracted view of sub-systems and modules and depicts their

interaction with each other. High-level design focuses on how the system along with all of its

components can be implemented in forms of modules. It recognizes modular structure of each sub-

system and their relation and interaction among each other.

 Detailed Design- Detailed design deals with the implementation part of what is seen as a system

and its sub-systems in the previous two designs. It is more detailed towards modules and their

implementations. It defines logical structure of each module and their interfaces to communicate

with other modules.

Objectives of Software Design

Following are the purposes of Software design:

1. Correctness: Software design should be correct as per requirement.

2. Completeness: The design should have all components like data structures, modules, and

 external interfaces, etc.

3. Efficiency: Resources should be used efficiently by the program.

4. Flexibility: Able to modify on changing needs.

5. Consistency: There should not be any inconsistency in the design.

6. Maintainability: The design should be so simple so that it can be easily maintainable by other

 designers.

Principles Leading to Good Design:

Many principles are employed to organize, coordinate, classify, and set up software design’s

structural components. Software Designs become some of the most convenient designs when the

following principles are applied. They help to generate remarkable User Experiences and

customer loyalty.

The principles of a good software design are:

1. Modularity

2. Coupling

3. Abstraction

4. Anticipation of change

5. Simplicity

6. Sufficiency and completeness

Modularity:-Dividing a large software project into smaller portions/modules is known as

modularity. It is the key to scalable and maintainable software design. The project is divided into

various components and work on one component is done at once. It becomes easy to test each

component due to modularity. It also makes integrating new features more accessible.

Advantages of Modularity:

o It allows large programs to be written by several or different people.

o It provides more checkpoints to measure progress.

o It provides a framework for complete testing, more accessible to test.

o It produced the well designed and more readable program.

Disadvantages of Modularity:

o Execution time maybe, but not certainly, longer.

o Storage size perhaps, but is not certainly, increased.

o Compilation and loading time may be longer.

o Inter-module communication problems may be increased.

1. Coupling:- Coupling refers to the extent of interdependence between software modules and

how closely two modules are connected. Low coupling is a feature of good design. With low

coupling, changes can be made in each module individually, without changing the other modules.

Coupling: It measures the relative interdependence among modules.

Module Coupling:

In software engineering, the coupling is the degree of interdependence between software modules.

Two modules that are tightly coupled are strongly dependent on each other. However, two

modules that are loosely coupled are not dependent on each other. Uncoupled modules

have no interdependence at all within them.

The various types of coupling techniques are shown in fig:

A good design is the one that has low coupling. Coupling is measured by the number of relations

between the modules. That is, the coupling increases as the number of calls between modules

increase or the amount of shared data is large. Thus, it can be said that a design with high coupling

will have more errors.

Cohesion: It measures the relative function strength of a module.

Module Cohesion:

In computer programming, cohesion defines to the degree to which the elements of a module

belong together. Thus, cohesion measures the strength of relationships between pieces of

functionality within a given module. For example, in highly cohesive systems, functionality is

strongly related.

Cohesion is an ordinal type of measurement and is generally described as "high cohesion" or "low

cohesion."

Coupling Cohesion

Coupling is also called Inter-Module Binding. Cohesion is also called Intra- Module

Binding.

Coupling shows the relationships between modules. Cohesion shows the relationship within the

module.

Coupling shows the

relative independence between the modules.

Cohesion shows the module's

relative functional

strength.

While creating, you should aim for low coupling, i.e.,

dependency among modules should be less.

While creating you should aim for high cohesion,

i.e., a cohesive component/ module focuses on a

single function (i.e., single-mindedness) with little

interaction with other modules of the system.

In coupling, modules are linked to the other modules. In cohesion, the module focuses on a single thing.

2. Abstraction:- The process of identifying the essential behavior by separating it from its

implementation and removing irrelevant details is known as Abstraction. The inability to separate

essential behavior from its implementation will lead to unnecessary coupling.

3. Anticipation of Change:- The demands of software keep on changing, resulting in

continuous changes in requirements as well. Building a good software design consists of its

ability to accommodate and adjust to change comfortably.

4. Simplicity:- The aim of good software design is simplicity. Each task has its own module,

which can be utilized and modified independently. It makes the code easy to use and minimizes

the number of setbacks.

5. Sufficiency and Completeness:- A good software design ensures the sufficiency and

completeness of the software concerning the established requirements. It makes sure

that the software has been adequately and wholly built.

TECHNIQUES FOR MAKING GOOD DESIGN DECISIONS

Using priorities and objectives to decide among alternatives

 Step 1: List and describe the alternatives for the design decision.

 Step 2: List the advantages and disadvantages of each alternative with respect to your

 objectives and priorities.

 Step 3: Determine whether any of the alternatives prevents you from meeting one or more of

the objectives.

 Step 4 : Choose the alternative that helps you to best meet your objectives.

 Step 5: Adjust priorities for subsequent decision making.

Example priorities and objectives:

Imagine a system has the following objectives, starting with top priority:

 Security: Encryption must not be breakable within 100 hours of computing time on a 400Mhz

Intel processor, using known cryptanalysis techniques.

 Maintainability: No specific objective.

 CPU efficiency: Must respond to the user within one second when running on a 400 MHz intel

 processor.

 Network bandwidth efficiency: Must not require transmission of more than 8KB of data per

 transaction.

 Memory efficiency: Must not consume over 20MB of RAM.

 Portability: Must be able to run on Windows 98,NT 4 and ME as well as Linux.

Using cost-benefit analysis to choose among alternatives

 To estimate the costs add up:

 The incremental cost of doing the software engineering work, including ongoing maintenance.

 The incremental costs of any development technology required.

 The incremental costs that end-users and product support personnel will experience.

 To estimate the benefits, add up:

 The incremental software engineering time saved.

 The incremental benefits measured in terms of either increased sales or else financial benefit to

 users.

WRITING A GOOD DESIGN DOCUMENT

Design document is an aid to make better designs.

 They force you to be explicit and consider the important issues before starting

implementation.

 They allow a group of people to review the design and therefore to improve it.

 Design documents as a means of communication. To those who will be implementing the

 design.

 To those who will need, in the future, to modify the design.

 To those who need to create systems or subsystems that interface with the system being

 designed.

Structure of design document:

A. Purpose: What system or part of the system this design document describes. Make reference

 to the requirements that are being implemented by this design.

B. General priorities: Describe the priorities used to guide the design process.

C. Outline of the design: Give a high level description of the design that allows the reader to

 quickly get a general feeling for it.

D. Major design issues: Discuss the important issues that had to be resolved.

E. Other details of the design: Give any other details the reader may want to know that have

 not yet been mentioned.

SOFTWARE ARCHITECTURE

Software Architecture typically refers to the bigger structures of a software system, and it deals

with how multiple software processes cooperate to carry out their tasks. Software Design refers to

the smaller structures and it deals with the internal design of a single software process.

The architecture of a system describes its major components, their relationships (structures), and

how they interact with each other. Software architecture and design includes several contributory

factors such as Business strategy, quality attributes, human dynamics, design, and IT environment.

We can segregate Software Architecture and Design into two distinct phases: Software

Architecture and Software Design. In Architecture, nonfunctional decisions are cast and separated

by the functional requirements. In Design, functional requirements are accomplished.

Software Architecture:

Architecture serves as a blueprint for a system. It provides an abstraction to manage the system

complexity and establish a communication and coordination mechanism among components.

1. It defines a structured solution to meet all the technical and operational requirements, while

optimizing the common quality attributes like performance and security.

2. Further, it involves a set of significant decisions about the organization related to software

development and each of these decisions can have a considerable impact on quality,

maintainability, performance, and the overall success of the final product. These decisions

comprise of –

1. Selection of structural elements and their interfaces by which the system is composed.

2. Behavior as specified in collaborations among those elements.

3. Composition of these structural and behavioral elements into large subsystem.

4. Architectural decisions align with business objectives.

5. Architectural styles guide the organization.

Software Design:

Software design provides a design plan that describes the elements of a system, how they fit, and

work together to fulfill the requirement of the system. The objectives of having a design plan are

as follows −

1. To negotiate system requirements, and to set expectations with customers, marketing, and

 management personnel.

2. Act as a blueprint during the development process.

3. Guide the implementation tasks, including detailed design, coding, integration, and testing.

 It comes before the detailed design, coding, integration, and testing and after the domain

 analysis, requirements analysis, and risk analysis.

Goals of Architecture

The primary goal of the architecture is to identify requirements that affect the structure of the

application. A well-laid architecture reduces the business risks associated with

building a technical solution and builds a bridge between business and technical requirements.

Some of the other goals are as follows −

1. Expose the structure of the system, but hide its implementation details.

2. Realize all the use-cases and scenarios.

3. Try to address the requirements of various stakeholders.

4. Handle both functional and quality requirements.

5. Reduce the goal of ownership and improve the organization’s market position.

6. Improve quality and functionality offered by the system.

7. Improve external confidence in either the organization or system.

Limitations:

1. Lack of tools and standardized ways to represent architecture.

2. Lack of analysis methods to predict whether architecture will result in an implementation

 that meets the requirements.

3. Lack of awareness of the importance of architectural design to software development.

4. Lack of understanding of the role of software architect and poor communication among

 stakeholders.

5. Lack of understanding of the design process, design experience and evaluation of design.

ARCHITECTURAL PATTERNS

The architectural pattern shows how a solution can be used to solve a reoccurring problem. In

another word, it reflects how a code or components interact with each other. Moreover, the

architectural pattern is describing the architectural style of our system and provides solutions for

the issues in our architectural style. Personally, I prefer to define architectural patterns as a way

to implement our architectural style.

1. MULTI-LAYER ARCHITECTURAL PATTERNS:

The layered pattern is probably one of the most well-known software architecture patterns. Many

developers use it, without really knowing its name. The idea is to split up your code into “layers”,

where each layer has a certain responsibility and provides a service to a higher layer.

There isn’t a predefined number of layers, but these are the ones you see most often:

1. Presentation or UI layer

2. Application layer

3. Business or domain layer

4. Persistence or data access layer

5. Database layer

The idea is that the user initiates a piece of code in the presentation layer by performing some

action (e.g. clicking a button). The presentation layer then calls the underlying layer,

i.e. the application layer. Then we go into the business layer and finally, the persistence layer

stores everything in the database. So higher layers are dependent upon and make calls to the lower

layers.

You will see variations of this, depending on the complexity of the applications. Some applications

might omit the application layer, while others add a caching layer. It’s even possible to merge two

layers into one.

Advantages

 Most developers are familiar with this pattern.

 It provides an easy way of writing a well-organized and testable application.

Disadvantages

 It tends to lead to monolithic applications that are hard to split up afterward.

 Developers often find themselves writing a lot of code to pass through the different layers,

without adding any value in these layers. If all you are doing is writing a simple CRUD

application, the layered pattern might be overkill for you.

2.THE CLIENT-SERVER PATTERN:

A Client-Server Architecture consists of two types of components: clients and servers. A server

component perpetually listens for requests from client components. When a request is received, the

server processes the request, and then sends a response back to the client. Servers may be further

classified as stateless or stateful. Clients of a stateful server may make composite requests that

consist of multiple atomic requests. This enables a more conversational or transactional

interactions between client and server. To accomplish this, a stateful server keeps a record of the

requests from each current client. This record is called a session.

In order to simultaneously process requests from multiple clients, a server often uses the Master-

Slave Pattern. In this case the Master perpetually listens for client requests. When a request is

received, the master creates a slave to processes the request, and then resumes listening.

Meanwhile, the slave performs all subsequent communication with the client.

Here is a simple component diagram showing a server component that implements operations

specified in a Services interface, and a client component that depends on these services.

https://blog.ndepend.com/unit-tests-desirable-codebase-properties/

3. THE BROKER ARCHITECTURAL PATTERN:

Transparently distribute aspects of the software system to different nodes.

1. An object can call method of another object without knowing that this object is remotely

located.

2. COBRA is a well known open standard that allows you to build this kind of architecture.

4. THE TRANSACTION- PROCESSING ARCHITECTURAL PATTERN:

A process reads a series of inputs one by one.

1. Each input describes a transaction- a command that typically some change to the data stored

 by the system.

2. There is a transaction dispatcher component that decides what to do with each transaction.

3. This dispatches a procedure call or message to one of a series of component that will handle

 the transaction.

THE PIPE AND FILTER ARCHITECTURAL PATTERN:

A stream of data , in a relatively simple format, is passed through a series of processes

1.Each of which transforms it in some way.

2.Data is constantly fed into the pipeline.

3.The processes work concurrently.

4.The architecture is very flexible.

- Almost all the components could be removed.

- Components could be replaced.

- New components could be inserted.

- Certain components could be reordered.

5. THE MODEL-VIEW-CONTROLLER(MVC) ARCHITECTURAL PATTERN:

An architectural pattern used to separate the user interface layer from other parts of the system.

1. The model contains the underlying classes whose instances are to be viewed and manipulated.

2. The view contains objects used to render the appearance of the data from the model in the

user interface.

3. The controller contains the objects that control and handle the users interaction with the view

 and the model.

4. The observable design pattern is normally used to separate the model from the view.

Advantages

 Multiple developers can work simultaneously on the model, controller and views.

 MVC enables logical grouping of related actions on a controller together. The views for a

 specific model are also grouped together.

 Models can have multiple views.

Design Patterns

Design patterns are used to represent some of the best practices adapted by experienced object-

oriented software developers. A design pattern systematically names, motivates, and explains a

general design that addresses a recurring design problem in object-oriented systems. It describes

the problem, the solution, when to apply the solution, and its consequences. It also gives

implementation hints and examples.

Usage of Design Pattern

Design Patterns have two main usages in software development.

Common platform for developers

Design patterns provide a standard terminology and are specific to particular scenario. For

example, a singleton design pattern signifies use of single object so all developers familiar with

single design pattern will make use of single object and they can tell each other that program is

following a singleton pattern.

Best Practices

Design patterns have been evolved over a long period of time and they provide best solutions to

certain problems faced during software development. Learning these patterns helps unexperienced

developers to learn software design in an easy and faster way.

Types of Design Patterns

As per the design pattern reference book Design Patterns - Elements of Reusable Object-

Oriented Software , there are 23 design patterns which can be classified in three categories:

Creational, Structural and Behavioral patterns. We'll also discuss another category of design

pattern: J2EE design patterns.

S.N. Pattern & Description

1 Creational Patterns

These design patterns provide a way to create objects while hiding the creation logic, rather than

instantiating objects directly using new operator. This gives program more flexibility in deciding which

objects need to be created for a given use case.

2 Structural Patterns

These design patterns concern class and object composition. Concept of inheritance is used to compose

interfaces and define ways to compose objects to obtain new functionalities.

3 Behavioral Patterns

These design patterns are specifically concerned with communication between objects.

4 J2EE Patterns

These design patterns are specifically concerned with the presentation tier. These patterns are identified

by Sun Java Center.

1. THE ABSTRACTION-OCCURRENCE PATTERN

• Context:

1. Often in a domain model you find a set of related objects (occurrences).

2. The members of such a set share common information

3. But also differ from each other in important ways.

• Problem:

1.What is the best way to represent such sets of occurrences in a class diagram?

• Forces:

1. You want to represent the members of each set of occurrences without duplicating the common

information

 Solution:

 Create an <Abstraction> class that contains the data that is common to all the members of

a set of occurrences. Then create an

<<occurrence>> class representing the occurrences of this abstraction. Connect these classes with

a one-to-many association.

Antipatterns: Solutions that are inferior or do not work in this context.

Square variant or related Patterns: patterns that are similar to this pattern.

Refereneces: This pattern is a generalization of the Title-Item pattern of Eriksson and Penker.

2. THE GENERAL HIERARCHY PATTERN

• Context:

1.Objects in a hierarchy can have one or more objects above them (superiors), and one or more

 objects below them (subordinates).

2. Some objects cannot have any subordinates.

• Problem:

1.How do you represent a hierarchy of objects, in which some objects cannot have subordinates?

• Forces:

1.You want a flexible way of representing the hierarchy that prevents certain objects from having

 subordinates.

2.All the objects have many common properties and operations.

• Solution:

 Antipattern:

References: The composite pattern is one of the ‘Gang of Four ‘ Patterns.

3. THE PLAYER-ROLE PATTERN

• Context:

1.A role is a particular set of properties associated with an object in a particular context.

2. An object may play different roles in different contexts.

• Problem:

1.How do you best model players and roles so that a player can change roles or possess multiple

roles?

• Forces:

1.It is desirable to improve encapsulation by capturing the information associated with each

separate role in a class.

2.You want to avoid multiple inheritance.

3. You cannot allow an instance to change class.

• Solution:

Example:

 Antipatterns:

• Merge all the properties and behaviours into a single «Player» class and not have «Role»

 classes at all.

• Create roles as subclasses of the «Player» class.

4. THE SINGLETON PATTERN

• Context:

— It is very common to find classes for which only one instance should exist (singleton)

• Problem:

— How do you ensure that it is never possible to create more than one instance of a singleton

class?

• Forces:

— The use of a public constructor cannot guarantee that no more than one instance will be

created.

— The singleton instance must also be accessible to all classes that require it

 Solution:

5. THE OBSERVER PATTERN

• Context:

1.When an association is created between two classes, the code for the classes becomes

inseparable.

2. If you want to reuse one class, then you also have to reuse the other.

• Problem:

1. How do you reduce the interconnection between classes, especially between classes that belong

to different modules or subsystems?

• Forces:

1.You want to maximize the flexibility of the system to thegreatest extent possible

• Solution:

Antipatterns:

• Connect an observer directly to an observable so that they both have references to each other.

• Make the observers subclasses of the observable.

6. THE DELEGATION PATTERN

• Context:

1. You are designing a method in a class

2. You realize that another class has a method which provides the required service

3.Inheritance is not appropriate

4.E.g. because the isa rule does not apply

• Problem:

1.How can you most effectively make use of a method that already exists in the other class?

• Forces:

1.You want to minimize development cost by reusing methods

• Solution:

Example:

7. THE ADAPTER PATTERN

• Context:

1. You are building an inheritance hierarchy and want to incorporate it into an existing class.

2.The reused class is also often already part of its own inheritance hierarchy.

• Problem:

1.How to obtain the power of polymorphism when reusing a class whose methods have the same

 function but not the same signature as the other methods in the hierarchy?

• Forces:

1.You do not have access to multiple inheritance or you do not want to use it.

• Solution:

Example:

8. THE FAÇADE PATTERN

• Context:

1. Often, an application contains several complex packages.

2.A programmer working with such packages has to manipulate many different classes

• Problem:

1.How do you simplify the view that programmers have of a complex package?

• Forces:

1.It is hard for a programmer to understand and use an entire subsystem

2.If several different application classes call methods of the complex package, then any

modifications made to the package will necessitate a complete review of all these classes.

• Solution:

9. THE IMMUTABLE PATTERN

• Context:

1.An immutable object is an object that has a state that never changes after creation

• Problem:

1.How do you create a class whose instances are immutable?

• Forces:

1.There must be no loopholes that would allow ‘illegal’ modification of an immutable object

• Solution:

1.Ensure that the constructor of the immutable class is the only place where the values of instance

variables are set or modified.

2.Instance methods which access properties must not have side effects.

3.If a method that would otherwise modify an instance variable is required, then it has to return a

new instance of the class.

10. THE READ-ONLY INTERFACE PATTERN

• Context:

1.You sometimes want certain privileged classes to be able to modify attributes of objects that are

otherwise immutable

• Problem:

1.How do you create a situation where some classes see a class as read-only whereas others are

able to make modifications?

• Forces:

1.Restricting access by using the public, protected and private keywords is not adequately

 selective.

2.Making access public makes it public for both reading and writing

Solution:

Example:

11.THE PROXY PATTERN

Context:

• Often, it is time-consuming and complicated to create instances of a class (heavyweight

classes).

• There is a time delay and a complex mechanism involved in creating the object in memory

Problem:

• How to reduce the need to create instances of a heavyweight class?

Forces:

• We want all the objects in a domain model to be available for programs to use when they

execute a system’s various responsibilities.

• It is also important for many objects to persist from run to run of the same program

Solution:

12.The Factory Pattern:

• Context:

1. A reusable framework needs to create objecs; however the classof the created objects depends

on the application.

• Problem:

1.How do you enable a programmer to add new application-specific class into a system built on

such a framework?

• Forces:

1.We want to have the framework create and work with application- specific classes that the

framework does not yet know about.

• Solution:

1.The framework delegates the creation of application-specific classes to a specialized class, the

Factory.

2.The Factory is a generic interface defined in the framework.

3.The factory interface declares a method whose purpose is to create some subclass of a generic

class.

UNIT IV

Basic Definitions:

 A Failure is an unacceptable behaviour exhibited by a system.

 A defect is a flaw in any aspect of the system including the requirements, the design and

the code, that contributes, or may potentially contribute, to the occurrence of one or more

failures. A defect is also known as a fault.

 An error is a slip-up or inappropriate decision by a software developer that leads to the

introduction of a defect into the system.

EFFECTIVE AND EFFICIENT TESTING:

 Software testing can be stated as the process of verifying and validating that a software or

application is bug free, meets the technical requirements as guided by it’s design and

development and meets the user requirements effectively and efficiently with handling all the

exceptional and boundary cases.

 The process of software testing aims not only at finding faults in the existing software but also at

finding measures to improve the software in terms of efficiency, accuracy and usability. It

mainly aims at measuring specification, functionality and performance of a software program or

application

 To test effectively, you must use a strategy that uncovers as many defects possible.

 To test efficiently, you must find the largest possible number of defects using the fewest possible

tests. An effective and efficient testing strategy is often called a high-yield strategy.

Software testing can be divided into two steps:

1. Verification: it refers to the set of tasks that ensure that software correctly implements

a specific function.

2. Validation: it refers to a different set of tasks that ensure that the software that has been

built is traceable to customer requirements.

Different techniques of Software Testing:

Black-Box Testing

 The technique of testing without having any knowledge of the interior workings of the

application is called black-box testing. The tester is oblivious to the system architecture and does

not have access to the source code.

 Typically, while performing a black-box test, a tester will interact with the system's user

interface by providing inputs and examining outputs without knowing how and where the inputs

are worked upon.The following table lists the advantages and disadvantages of black-box testing.

Advantages Disadvantages

Well suited and efficient for large code

segments.

Limited coverage, since

only a selected number of

test scenarios is actually

performed.

Code access is not required. Inefficient testing, due to

the fact that the tester only

has limited knowledge

about an application.

Clearly separates

 user's perspective

 from the developer's perspective

through visibly defined roles.

Blind coverage, since the

tester cannot target specific

code segments or error

prone areas.

Large numbers of moderately skilled testers

can test the application with no knowledge of

implementation, programming language, or

operating systems.

The test cases are difficult

to design.

White-Box Testing

 White-box testing is the detailed investigation of internal logic and structure of the code. White-

box testing is also called glass testing or open-box testing. In order to perform white-box

testing on an application, a tester needs to know the internal workings of the code.

 The tester needs to have a look inside the source code and find out which unit/chunk of the code

is behaving inappropriately.

The following table lists the advantages and disadvantages of white-box testing.

Advantages Disadvantages

As the tester has knowledge of the

source code, it becomes very easy

to find out which type of data can

help in testing the application

effectively.

Due to the fact that a skilled tester is

needed to perform white-box testing,

the costs are increased.

It helps in optimizing the code. Sometimes it is impossible to look

into every nook and corner to find out

hidden errors that

 may create problems, as many paths

will go untested.

Extra lines of code can be removed

which can bring in hidden defects.

It is difficult to maintain white-box

testing, as it requires specialized tools

like code analyzers and debugging

tools.

Due to the tester's knowledge about

the code, maximum coverage is

attained during test scenario

writing.

DEFECTS IN ORDINARY ALGORITHMS:

1. Incorrect logical conditions:

Defect: The logical conditions that govern looping and if-then-else statements are wrongly

formulated.

Testing Strategy:

 Use equivalence class and boundary testing.

 Consider as an input each variable used in a rule or logical condition.

2. Performing a calculation in the wrong part of a control construct:

Defect: The program performs an action when it should not, or does not perform an action when

it should. These are typically caused by inappropriately excluding the action from or including

the action in, a loop or if-then-else construct.

Testing Strategy:

 Design tests that execute each loop zero times, exactly once, and more than once.

3. Non Terminating a loop or recursion:

Defect: A loop or a recursion does not always terminate, that is ,it is ‘infinite’.

Testing Strategy:

 Although the programmer should have analyzed all loops or recursions to ensure they reach a

terminating case.

4. Not setting up the correct preconditions for an algorithm:

Defect: When specifying an algorithm, one specifies preconditions that state what must be true

before the algorithm should be executed. A defect would exist if a program proceeds to do its

work, even when the preconditions are not satisfied.

Testing Strategy: Run test cases in which each precondition is not satisfied. Preferably its input

values are just beyond what the algorithm can accept.

5. Not handling null conditions:

Defect: A null condition is a situation where there normally exists one or more data items to

process, but sometimes there are none. It is a defect when a program behaves abnormally when a

null condition is encountered. In these situations, the program should ‘do nothing, gracefully’.

Testing Strategy: Determine all possible null conditions and run test cases that would highlight

any in appropriate behaviour.

6. Not handling singleton or n0on-singleton conditions:

Defect: A singleton condition is like a null condition. It occurs when there is normally more than

one of something, but sometimes there is only one. A non- singleton condition is the inverse

there is almost always one of something, but occasionally there can be more than one. Defects

occur when the unusual case is not properly handled.

Testing Strategy: Brainstorm to determine unusual conditions and run appropriate tests.

7. Off-by-one errors:

Defect: A program inappropriately adds or subtracts 1, or inappropriately loops one too many

times or one too few times. This is particularly common type of defect.

Testing Strategy: Develop boundary tests in which you verify that the program computes the

correct numerical answer, or performs the correct number of iterations.

8. Operator precedence errors:

Defect: An operator precedence error occurs when a programmer omits needed parentheses, or

puts parentheses in the wrong place. Operator precedence errors are often extremely obvious, but

can occasionally lie hidden until special conditions arise.

Testing Strategy: In software that computes formulae, run tests that anticipate defects.

DEFECTS IN NUMERICAL ALGORITHMS

Assuming a floating point value will be exactly equal to some other value

Defect: If you perform an arithmetic calculation on a floating point value, then the result will

very rarely be computed exactly. To test equality, you should always test if it is within a small

range around that value.

Testing strategies: Standard boundary testing should detect this type of defect.

DEFECTS IN TIMING AND COORDINATION

Timing and co-ordination defects arise in situations involving some form of concurrency. They

occur when several threads or processes interact in inappropriate ways. The three most important

kinds of timing and co-ordination defects are deadlocks, livelocks and critical races.

Deadlock and livelock

Defects: A deadlock is a situation where two or more threads or processes are stopped, waiting

for each other to do something before either can proceed. Since neither can do anything, they

permanently stop each other from proceeding. Vehicles waiting to move in one direction hold up

vehicles waiting to travel in other directions; however, each set of vehicles is ultimately delaying

itself. Everybody therefore waits indefinitely.

Twoexamples of gridlock: a form of deadlock

A deadlock situation in software

Livelock is similar to deadlock, in the sense that the system is stuck in a particular behavior that It

cannot getout of.The difference is as follows : where as in deadlock the system is normally hung, with

nothing going on, in livelock, the system can do some computations, but it can never get out of a

limited set of states.

Livelock in traffic (left) andsoftware (right)

Testing Strategies: Deadlocks and livelocks tend to occur as a result of unusual combinations of

conditions that are hard to anticipate or reproduce. It is often most effective to use inspection to

detect such defects, rather than testing alone. Whether testing or inspecting, a person with a

D

E

C F

A B

O: P:

lock

lock

waiting
to lock P:

B:Thread

waiting

A:Thread

background in real-time systems should be employed – such a person can apply his or her knowledge

and experience to best anticipate timing and co-ordination defects.

If its cost is justifiable, glass-box testing is one of the best ways to uncover these defects, since you

can actually study the progress of the various threads.

Critical races

Defect: A critical race is a defect in which one thread or process can sometimes experience a

failure because another thread or process interferes with the ‘normal’ sequence of events. The defect

is not that the other thread tries to do something, but that the system allows interference to occur.

Critical races are often simply called ‘race conditions’, although the word ‘critical’ should be used to

distinguish a defect from a race that has no bad consequences.

Testing Strategies: Testing for critical races is done using the same strategies as testing for

deadlocks and livelocks. Once again, inspection is often a better solution.

It is particularlyhardtotestforcriticalracesusingblack-boxtestingalone, since you often do not

know the extent of the concurrency going on inside the system, and you cannot always manipulate the

various threads to cause race conditions.

DEFECTS IN HANDLING STRESS AND UNUSAL SITUATIONS

The defects discussed in this section are encountered only when a system is being heavily used,

or forced to its limits in some other way. These defects represent a lack of robustness. To test for

such defects you must run the system intensively, supply it with a very large amount of input, run

many copies of it, run it on a computer or network that is busy running other systems, and run it in

atypical environments.

 Insufficient throughput or response time on minimal configurations

Defect: A minimally configured platform is one that barely conforms to the environment specified

in the requirements. It has exactly the minimum amount of memory and disk space specified, the

slowest CPU, the oldest permitted release of the operating system and other support software, as

well as the slowest allowed network connection.

It is a defect if, when the system is tested on a minimal configuration, its throughput or response

time fails to meet requirements.

Testing Stragies: Perform testing using minimally configured platforms. For extra reliability, you

could test the system in an environment that has a configuration that is worse than the minimum. In

set

get

B:Thread Data: A:Thread

such conditions, it should report that it could not run properly.

 Incompatibility with specific configurations of hardware or software

Defect:It is extremely common for a system to work properly with certain configurations of

hardware, operating systems and external libraries, but fail if it is run using other configurations.

Testing Strategies: Extensively execute the system with a wide variety of configurations that might been

countered by users. By a ‘configuration’ we mean a particular combination of hardware, operating

system and other software.

 Defects in handling peak loads or missing resources

Defect: If a computer becomes short of resources such as memory, disk space or network

bandwidth, then programs cannot be expected to continue running normally. However, it is a defect

if the system does not gracefully handle such situations. Other types of shortage of resources

include missing files or data, lack of permission to perform certain operations, inability to start new

threads, or running out of space in a fixed size data structure.

No matter what the cause, the program being tested should report the problem in such away

that the user will understand. It should then either wait for the problem to be resolved, terminate

gracefully or deal with the situation in some other sensible way.

Testing Strategy: In any of these cases, the tester has to deny the program under test the

resources it normally uses, by employing such methods as deleting files, concurrently running other

resource-hungry programs, making less memory available, or disconnecting the system from the

network. The tester can also run a very large number of copies of the program being tested, all at the

same time. To do this effectively, you have to write a special program called a load generator that

constantly provides input to the system. Load generators are available commercially.

 Inappropriate management of resources

Defect: A program does not manage resources effectively if it uses certain resources but does not

make them available to other programs when it no longer needs them.

Testing Strategy: Run the program intensively over a long period of time in such a way that it uses many

resources, relinquishes them and then uses them again repeatedly.

 Defects in the process of recovering from a crash

Defect: Any system will undergo a sudden failure if its hardware fails, or if its power is turned

off. When this occurs, It is a defect if the system is left in an unstable state and hence is unable to

recover fully once the power is restored or the hardware repaired. It is also a defect if a system does

not correctly deal with the crashes of related systems.

Testing Strategy: An approach for testing for defects in the recovery process is to kill either your

program or the programs with which it communicates, at various times during execution. You could also

try turning the power off; however, operating systems themselves are often intolerant of doing

that.

STRATEGIES FOR TESTING LARGE SYSTEMS

 Integration testing: big bang versus incremental approaches

 Testing how the parts of a system or subsystem work together is commonly called integration

testing. It can be contrasted with unit testing, which is testing an individual module or component in

isolation.

 The simplest approach to integration testing is big bang testing. In this approach, you take the

entire integrated system and test it all at once. This strategy can be satisfactory when testing a

small system; however, when a failure occurs while testing a larger system, it may be hard to tell

in which subsystem a defect lies. A better integration testing strategy in most cases is incremental

testing.

 In this approach, you first test each individual subsystem in isolation, and then continue testing

as you integrate more and more sub systems. The big advantage of incremental testing is that when

you encounter a failure, you can find the defect more easily.

 Incremental testing can be performed horizontally or vertically, depending on the architecture of the

system. Horizontal testing can be used when the system is divided into separate sub-applications,

such as ‘adding new products’ and ‘selling products’; you simply test each sub-application in isolation.

However, for any sub- application that is complex, it is necessary to divide it up vertically into

layers.

There are several strategies for vertical incremental testing: top-down, bottom-up and sandwich.

Top-down testing

 In top-down testing, you start by testing only the user interface, with the underlying functionality

simulated by stubs. Stubs are pieces of code that have the same interface(i.e. API) as the lower-level

layers, but which do not perform any real computations or manipulate any real data. Any call to a

stub will typically immediately return with a fixed default value.

 If a defect is detected while performing top-down testing, the tester can be reasonably confident

that the defect is in the layer that calls the stubs. It could also be in the stubs, but that is less

likely since stubs are so simple. The big drawback to top-down testing is the cost of writing the

stubs.

Bottom-up testing

 To perform bottom-up testing, you start by testing the very lowest levels of the software. This might

include a database layer, a network layer, a layer that performs some algorithmic computation, or

a set of utilities of some kind.

 You need drivers to test the lower layers of software. Drivers are simple programs designed

specifically for testing; they make calls to the lower layers. Driversinbottom-

uptestinghaveasimilarroletostubsintop-downtesting, and are time-consuming to write.

Sandwich testing

 Sandwich testing is a hybrid between bottom-up and top-down testing – it is

sometimesthereforecalledmixedtesting.Atypicalapproachtosandwichtestingis to test the user interface

in isolation, using stubs, and also to test the very lowest- level functions, using drivers.

 Then, when the complete system is integrated, only the middle layer remains on which to perform the

final set of tests. For many systems, sandwich testing will be the most effective form of

integration testing.

The test–fix–test cycle and regression testing

 When a failure occurs during testing or after deployment, most organizations follow a carefully

planned process. Each failure report is entered into a failure tracking system. It is then is screened

and assigned a priority. It is often too expensive to fix every defect, therefore low-priority failures

might be put on a known bugs list that is included with the software’s release notes.

 When a decision is made to resolve a failure, somebody is assigned to investigate it, track down

the defect or defects that caused it, and fix those defects. Finally a new version of the system is

created, ready to be tested again.

 THE RIPPLE EFFORT: Unfortunately, there is a high probability that efforts to remove

defects will actually add new ones – either because the maintainer tries to fix problems without

fully understanding the ramifications of the changes, or because he or she makes ordinary human

errors. This phenomenon is known as the ripple effect, because new defects caused by erroneous

fixes of other defects tend to spread through a system like a ripple. The system regresses into a

more and more failure-prone state.

 You can minimize the ripple effect by applying a very disciplined approach to the process of fixing

defects.

 However, experience shows that the ripple effect will still persist if you do not have an appropriate

testing strategy.

 After making any change, you must therefore not only re-run the test case that led to the detection of the

defect, but you must also re-test the rest of the system’s functionality. This latter process is called

regression testing.

 It is normally far too expensive to re-run every single test case whenever a change is made to

software, so regression testing involves running a subset of the original test cases. The regression tests

are carefully selected to cover as much of the system as possible.

Deciding when to stop testing

 You might imagine that you should go on re-testing software until all the test cases have passed.

Unfortunately, this is not a practical approach.

 However, it is also a poor strategy to stop testing merely because you have run out of time or money.

This will result in a poor-quality system. You should, instead, establish a set of criteria like the

following to decide when testing should be considered complete:

 All of the level 1 test cases must have been successfully executed.

 Certain predefined percentages of level 2 and level 3 test cases must have been executed

successfully.

 The targets must have been achieved and then maintained for at least two cycles of ‘builds’. A

build involves compiling and integrating all the components of the software, incorporating any changes

since the last build.

The roles of people involved in testing

 Testing is an intellectual exercise that is just as challenging and creative as design. All software

engineers should develop their testing skills, although some have a particular talent for testing and may

specialize in it.

 In a software development organization, the first pass of unit and integration testing is often called

developer testing. This is preliminary testing performed by the software developers who do the

design and programming. Organizations should then employ an independent testing group that runs

the complete set of test cases, seeking defects left by the developers.

Testing performed by users and clients: alpha, beta and acceptance

 Alpha testing is testing performed by users and clients, under the supervision of the software

development team. The development team normally invites some users to work with the software and

to watch for problems that they encounter.

 Beta testing is testing performed by the user or client in their normal work environment. It ncan

be initiated either at the request of the software developers, or at the request of users who want to try

the system out. Beta testers are selected from the potential user population and given a pre-release

version of the software.

 Acceptance testing, like alpha and beta testing, is performed by users and customers. However,

the customers do it on their own initiative – to decide whether software is of sufficient quality to

purchase. Many large organizations also perform acceptance testing before they will pay a developer

they have contracted to develop custom software for them. Other organizations use acceptance testing

in order to choose between several competing generic products.

Software Project Management

What is Project?

A project is a group of tasks that need to complete to reach a clear result. A project also defines

as a set of inputs and outputs which are required to achieve a goal. Projects can vary from simple

to difficult and can be operated by one person or a hundred.

Projects usually described and approved by a project manager or team executive. They go beyond

their expectations and objects, and it's up to the team to handle logistics and complete the project

on time. For good project development, some teams split the project into specific tasks so they

can manage responsibility and utilize team strengths.

What is software project management?

Software project management is an art and discipline of planning and supervising software

projects. It is a sub-discipline of software project management in which software projects

planned, implemented, monitored and controlled.

It is a procedure of managing, allocating and timing resources to develop computer software that

fulfills requirements.

In software Project Management, the client and the developers need to know the length, period

and cost of the project.

Prerequisite of software project management?

There are three needs for software project management. These are:

1. Time

2. Cost

3. Quality

It is an essential part of the software organization to deliver a quality product, keeping the cost

within the client?s budget and deliver the project as per schedule. There are various factors, both

external and internal, which may impact this triple factor. Any of three-factor can severely affect

the other two.

Project Manager

A project manager is a character who has the overall responsibility for the planning, design,

execution, monitoring, controlling and closure of a project. A project manager represents an

essential role in the achievement of the projects.

A project manager is a character who is responsible for giving decisions, both large and small

projects. The project manager is used to manage the risk and minimize uncertainty. Every

decision the project manager makes must directly profit their project.

Role of a Project Manager:

1. Leader: A project manager must lead his team and should provide them direction to make

them understand what is expected from all of them.

2. Medium: The Project manager is a medium between his clients and his team. He must

coordinate and transfer all the appropriate information from the clients to his team and report to

the senior management.

3. Mentor:He should be there to guide his team at each step and make sure that the team has

an attachment. He provides a recommendation to his team and points them in the right direction.

Responsibilities of a Project Manager:

1. Managing risks and issues.

2. Create the project team and assigns tasks to several team members.

3. Activity planning and sequencing.

4. Monitoring and reporting progress.

5. Modifies the project plan to deal with the situation.

ACTIVITIES OF SOFTWARE PROJECT MANAGEMENT:

Software Project Management consists of many activities, that includes planning of the project,

deciding the scope of product, estimation of cost in different terms, scheduling of tasks, etc.

The list of activities are as follows:

1. Project planning and Tracking

2. Project Resource Management

3. Scope Management

4. Estimation Management

5. Project Risk Management

6. Scheduling Management

7. Project Communication Management

8. Configuration Management

Now we will discuss all these activities -

1. Project Planning: It is a set of multiple processes, or we can say that it a task that performed

before the construction of the product starts.

2. Scope Management: It describes the scope of the project. Scope management is important

because it clearly defines what would do and what would not. Scope Management create the

project to contain restricted and quantitative tasks, which may merely be documented and

successively avoids price and time overrun.

3. Estimation management: This is not only about cost estimation because whenever we start to

develop software, but we also figure out their size(line of code), efforts, time as well as cost.

If we talk about the size, then Line of code depends upon user or software requirement.

If we talk about effort, we should know about the size of the software, because based on the size

we can quickly estimate how big team required to produce the software.

If we talk about time, when size and efforts are estimated, the time required to develop the

software can easily determine.

And if we talk about cost, it includes all the elements such as:

o Size of software

o Quality

o Hardware

o Communication

o Training

o Additional Software and tools

o Skilled manpower

4. Scheduling Management: Scheduling Management in software refers to all the activities to

complete in the specified order and within time slotted to each activity. Project managers define

multiple tasks and arrange them keeping various factors in mind.

For scheduling, it is compulsory -

o Find out multiple tasks and correlate them.

o Divide time into units.

o Assign the respective number of work-units for every job.

o Calculate the total time from start to finish.

o Break down the project into modules.

5. Project Resource Management: In software Development, all the elements are referred to as

resources for the project. It can be a human resource, productive tools, and libraries.

Resource management includes:

o Create a project team and assign responsibilities to every team member

o Developing a resource plan is derived from the project plan.

o Adjustment of resources.

6. Project Risk Management: Risk management consists of all the activities like identification,

analyzing and preparing the plan for predictable and unpredictable risk in the project.

Several points show the risks in the project:

o The Experienced team leaves the project, and the new team joins it.

o Changes in requirement.

o Change in technologies and the environment.

o Market competition.

7. Project Communication Management: Communication is an essential factor in the success

of the project. It is a bridge between client, organization, team members and as well as other

stakeholders of the project such as hardware suppliers.

From the planning to closure, communication plays a vital role. In all the phases, communication

must be clear and understood. Miscommunication can create a big blunder in the project.

8. Project Configuration Management: Configuration management is about to control the

changes in software like requirements, design, and development of the product.

The Primary goal is to increase productivity with fewer errors.

Some reasons show the need for configuration management:

o Several people work on software that is continually update.

o Help to build coordination among suppliers.

o Changes in requirement, budget, schedule need to accommodate.

o Software should run on multiple systems.

Tasks perform in Configuration management:

o Identification

o Baseline

o Change Control

o Configuration Status Accounting

o Configuration Audits and Reviews.

o People involved in Configuration Management:

Software Engineering Teams

Software engineering is a human process.Choosing appropriate people for a team, and assigning

roles and responsibilities to the team members, is therefore an important project management skill.

(a) Egoless (b)Chiefprogrammer (c) Strict hierachy

 In the egoless approach, decisions are made by consensus; this can lead to more creative

solutions, since group members spontaneously get together to solve problems when they

arise.Ingeneral, the egoless approach is mostsuited to difficult projects with many technical

challenges. . However, it is dependent on the personalities of the individuals, and hence is more likely

to run into trouble if personal conflicts arise. Also, the assumption that everybody is equal is often

wrong when a team is composed of people whose levels of skill and knowledge vary widely.

 The hierarchical approach is reminiscent of the military, or large bureaucratic

organizations. It is suitable for large projects with a strict schedule and where everybody is well

trained and has a well-defined role. However, since everybody is responsible only for their own work,

problems may go unnoticed.

 The ‘chief programmer team’ is a model that is midway between egoless and hierarchical. It works

very much like the surgical team in an operating room. The chief programmer leads and guides the

project; however, he or she consults with, and relies on, individual specialists. As with the egoless

approach, everybody’s goal is the success of the project.

Choosing an effective size for a team

We have already discussed the fact that you should divide a system into subsystems. Each

subsystem is then assigned to a team; the various teams have to co-ordinate their work. For a given

estimated development effort in person-months there is an optimal team size. Doubling the size of

a team will not have the development time. Making subsystems, and hence teams, too large or too

small tends to make the development more complex and lead to designs that have higher coupling.

Subsystems and teams should be sized such that the total amount of required knowledge and

exchange of information is reduced – each team needs to understand only the overall software

architecture, the details of its own subsystem, plus the interfaces to related subsystems.

Skills needed on a team

The following are some of the more common roles found on a development team:

■ Architect. This person is responsible for leading the decision making about the architecture,

and maintaining the architectural model.

■ Project manager. Responsible for doing the project management tasks described in this

chapter. Even in an egoless team, somebody has to be the custodian of the cost estimates and the

schedule.

■ Configuration management and build specialist. This person ensures that, as changes are

made, no new problems are introduced. Every one relies on builds as the baselines for quality

assurance and subsequent development. This person also makes sure that documentation for each

change is properly updated.

■ User interface specialist. Although everybody should interact with users, this person has the

particular responsibility to make sure that usability is kept at the fore front of the design process.

■ Technology specialist. Such a person has specialized knowledge and expertise in a technology such

as databases, networking, operating systems etc.

■ Hardware and third-party software specialist. This person makes sure that the

development team has appropriate types of hardware and third-party software on which to develop

and test the software. This person will install and perform acceptance testing on any reusable

components the team plans to use.

■ User documentation specialist. This person, who should have a technical writing

background, ensures that online help and user manuals are well written.

■ Tester. Even though there should be an independent test group, the

developmentgroupmayhaveapersonwhoisresponsibleforthefirststageoftesting.

SOFTWARE COST ESTIMATION

For any new software project, it is necessary to know how much it will cost to develop and how

much development time will it take. These estimates are needed before development is initiated,

but how is this done? Several estimation procedures have been developed and are having the

following attributes in common.

1. Project scope must be established in advanced.

2. Software metrics are used as a support from which evaluation is made.

3. The project is broken into small PCs which are estimated individually. To achieve true cost &

schedule estimate, several option arise.

4. Delay estimation

5. Used symbol decomposition techniques to generate project cost and schedule estimates.

6. Acquire one or more automated estimation tools.

Uses of Cost Estimation

1. During the planning stage, one needs to choose how many engineers arerequired for the project

and to develop a schedule.

2. In monitoring the project's progress, one needs to access whether the project is progressing

according to the procedure and takes corrective action, if necessary.

Principles of effective cost estimation

Cost estimation is no difficult, as witnessed by the large number of projects that are completed

behind schedule and over budget, or are not completed at all. There are several key principles that

can help you to make better estimates.

Cost Estimation Principle 1: Divide and conquer

To make a better estimate, you should divide the project up into individual subsystems, and then

divide each subsystem further into the activities that will be required to develop it. Next, you make a

series of detailed estimates for each individual activity, and sum the results to arrive at the grand total

estimate for the project.

Cost Estimation Principle 2: Include all activities when making estimates

when asked to estimate the cost of a new feature for Simple Chat, a beginner might focus primarily in

the amount of time required to write the requirements document and the code. However, the time

required for all development activities must be taken into account, including prototyping, design,

inspecting, testing, debugging, writing user documentation and deployment.

Cost Estimation Principle 3:Base your estimates on past experience combined with what you can observe of the

current project

There are two general strategies for using past experience. The first is to base your estimates purely

on the person a judgment of experts with in your team. Such people will have worked on other projects

and can extrapolate their experience to the current project. The second strategy is to use algorithmic

models that have been developed in the software industry as a whole by analyzing a wide range of

development projects. They take into account various aspects of a project’s size and complexity, and

provide formulas to compute anticipated cost.

The algorithmic models allow you to systematically base your estimate of development effort on an

estimate of some other factor that you can measure, or that is easier to estimate. Project managers

base their estimates on factors such as the following:

■ The number of use cases.

■ The number of distinct requirements.

■ The number of classes in the domain model.

■ The number of widgets in the prototype user interface.

■ An estimate of the number of lines of code.

A typical algorithmic model uses a formula such as the following:

E = a + bNc

In this formula, E is the effort estimate and N is the estimate or measure being used as the basis

for them effort estimate. The values a, b and care obtained by extensive analysis of past projects,

and determinations of the differences that will effect the current project.

Figure11.7showstheeffectoftypicalvaluesofthe c parameter used by one of the best-known

algorithmic cost estimation models, COCOMO II (COnstructive COst Model, version II).

COCOMO II computes effort, in person-months, from an estimate of size, measured in lines of

code.

Another important algorithmic method is Function Point Analysis. In this approach, and several

related approaches, you count features of the requirements and use these to compute an estimate of

the system’s size. You can then apply COCOMO to the size estimates.

The basic equation used by approaches like Function Point Analysis is:

S = W1F1 + W2F2+W3F3 +…

The Fi represent counts of features of the requirements such as number of

inputs, number of tables in the database, number of use cases etc. These counts are multiplied by

weights (the Wi values) calculated using industry-wide experience. The results are summed to

produce a system size, S.

Cost Estimation Principle4: Besure to account for differences when extrapolating from other projects

Although experience from other projects can be a good guide, there are often many subtle

differences between projects. You have to consider carefully the effect of differences such as the

following when making an estimate for a new project:

■ Different software developers. People differ dramatically in their skill and experience

levels; as killed programmer can be up to ten times as productive as a less skilled programmer. In

projects with only a few people, this can therefore significantly influence the accuracy of estimates.

■ Different development processes and maturity levels. Teams that haveskilled management and a

mature development methodology that includes such things as quality assurance, risk management

and iterative development will be able to work more efficiently than organizations that follow an

ad-hoc approach.

 Different types of customers and users. Project teams that have good access to and rapport

with both their customers and users can often proceed faster than organizations lacking these

advantages. In the latter case, delays are caused by slowor poor decision making. Projects that have a

single user or customer will often also proceed faster than projects with many users and customers.

Not only does it take time to negotiate decisions when many people are involved, but the resulting

compromises may be difficult to develop efficiently.

■ Different schedule demands. Ironically, if a project team is under intense pressure to

deliver software by a certain date they may cut corners and make mistakes that actually end up

delaying them. On the other hand, a certain amount of deadline pressure can have a positive

effect.

■ Different technology. The effort required can be affected by changes in hardware, other

software systems with which your system must interact, database management systems, operating

systems and programming languages. For example, if you change to a new programming

language, that language can take considerable time to learn. Also, some languages are known to be less

productive than others. Forexample, programming in assembler is unproductive because it takes many

statements to express a given computation, and furthermore the complexity of assembler gives

rise to more bugs. Programming in C or C++ is likely to result in faster development. Using Java or

C# is likely to decrease development time still further.

■ Different technical complexity of the requirements. Some systems are intrinsically more

complex than others, because they require greater reliability, are distributed, or for many other

reasons.

■ Different domains. A team embarking on a project in a domain in which it has not worked

before will un doubted take more time than a team that has been working in the same domain for

years.

■ Different levels of requirement stability. Some projects are easier to define in advance. On

the other hand, some projects must proceed in an exploratory fashion since the requirements will not

be clearly known until prototyping is complete. The total effort will thus vary substantially. Also,

some domains are more prone to changes in requirements than others.

Cost Estimation Principle 5: Anticipate the worst case and plan for contingencies

you might have difficulty deciding on the requirements; there might be unexpected technical

challenges in the design process; or somebody might quit or not perform up to expectations.

One way to plan for contingencies is to prioritize all the use cases according to their benefit to the

customer. Another important thing to do is to build enough ‘cushion’ into yourcost estimate so as to

account for typical delays. One way to do this is as follows. For every detailed estimate, make an

‘optimistic’ (O) estimate, a ‘likely’ (L) estimate and a ‘pessimistic’ (P) estimate. Your O estimate

suggests the minimum time you reasonably think the activity might take. Your L estimate accounts

for what you think would be a typical number of things going wrong. Your P estimate suggests what

you think the activity would consume if many difficulties were experienced. You then add up the

O estimates, the L estimates and the P estimates separately to arrive a global estimates of the best-

case, typical-case and worst-case cost for the project.

Cost Estimation Principle 6: Combine multiple independent estimates

Use several different techniques and compare the results. If there are discrepancies, you can analyze

your calculations to discover what factors are causing the differences. A well-respected approach

to making multiple estimates is the Delphi technique. To use this technique, several individuals

initially make cost estimates in private.

Principle 7: Revise and refine estimates as work progresses

 As you add detail

 As the requirements change

 As the risk management process uncovers problems

PROJECT SCHEDULING

Project Scheduling in a project refers to roadmap of all activities to be done with specified

order and within time slot allotted to each activity. Project managers tend to define various tasks,

and project milestones and arrange them keeping various factors in mind. They look for tasks lie

in critical path in the schedule, which are necessary to complete in specific manner (because of

task interdependency) and strictly within the time allocated. Arrangement of tasks which lies

out of critical path are less likely to impact over all schedule of the project.

For scheduling a project, it is necessary to -

 Break down the project tasks into smaller, manageable form

 Find out various tasks and correlate them

 Estimate time frame required for each task

 Divide time into work-units

 Assign adequate number of work-units for each task

 Calculate total time required for the project from start to finish

PROJECT EXECUTION & MONITORING

In this phase, the tasks described in project plans are executed according to their schedules.

Execution needs monitoring in order to check whether everything is going according to the

plan. Monitoring is observing to check the probability of risk and taking measures to address the

risk or report the status of various tasks.

These measures include -

 Activity Monitoring - All activities scheduled within some task can be monitored on day-to-day

basis. When all activities in a task are completed, it is considered as complete.

 Status Reports - The reports contain status of activities and tasks completed within a given time

frame, generally a week. Status can be marked as finished, pending or work-in-progress etc.

 Milestones Checklist - Every project is divided into multiple phases where major tasks are

performed (milestones) based on the phases of SDLC. This milestone checklist is prepared once

every few weeks and reports the status of milestones.

Project Management Tools

The risk and uncertainty rises multifold with respect to the size of the project, even when the

project is developed according to set methodologies.

There are tools available, which aid for effective project management. A few are described -

Gantt Chart

Gantt charts was devised by Henry Gantt (1917). It represents project schedule with respect to

time periods. It is a horizontal bar chart with bars representing activities and time scheduled for

the project activities.

PERT Chart

PERT (Program Evaluation & Review Technique) chart is a tool that depicts project as network

diagram. It is capable of graphically representing main events of project in both parallel and

consecutive way. Events, which occur one after another, show dependency of the later event over

the previous one.

Events are shown as numbered nodes. They are connected by labeled arrows depicting sequence

of tasks in the project.

Resource Histogram

This is a graphical tool that contains bar or chart representing number of resources (usually

skilled staff) required over time for a project event (or phase). Resource Histogram is an

effective tool for staff planning and coordination.

Critical Path Analysis

This tools is useful in recognizing interdependent tasks in the project. It also helps to find out the

shortest path or critical path to complete the project successfully. Like PERT diagram, each

event is allotted a specific time frame. This tool shows dependency of event assuming an event

can proceed to next only if the previous one is completed.

Software Processes

A software process is the set of activities and associated outcome that produce a software

product. Software engineers mostly carry out these activities. These are four key process

activities, which are common to all software processes. These activities are:

1. Software specifications: The functionality of the software and constraints on its operation must

be defined.

2. Software development: The software to meet the requirement must be produced.

3. Software validation: The software must be validated to ensure that it does what the customer

wants.

4. Software evolution: The software must evolve to meet changing client needs.

The Software Process Model

A software process model is a specified definition of a software process, which is presented

from a particular perspective. Models, by their nature, are a simplification, so a software process

model is an abstraction of the actual process, which is being described. Process models may

contain activities, which are part of the software process, software product, and the roles of

people involved in software engineering. Some examples of the types of software process

models that may be produced are:

1. A workflow model: This shows the series of activities in the process along with their inputs,

outputs and dependencies. The activities in this model perform human actions.

2. 2. A dataflow or activity model: This represents the process as a set of activities, each of which

carries out some data transformations. It shows how the input to the process, such as a

specification is converted to an output such as a design. The activities here may be at a lower

level than activities in a workflow model. They may perform transformations carried out by

people or by computers.

3. 3. A role/action model: This means the roles of the people involved in the software process and

the activities for which they are responsible.

There are several various general models or paradigms of software development:

1. The waterfall approach: This takes the above activities and produces them as separate process

phases such as requirements specification, software design, implementation, testing, and so on.

After each stage is defined, it is "signed off" and development goes onto the following stage.

2. Evolutionary development: This method interleaves the activities of specification, development,

and validation. An initial system is rapidly developed from a very abstract specification.

3. Formal transformation: This method is based on producing a formal mathematical system

specification and transforming this specification, using mathematical methods to a program.

These transformations are 'correctness preserving.' This means that you can be sure that the

developed programs meet its specification.

4. System assembly from reusable components: This method assumes the parts of the system

already exist. The system development process target on integrating these parts rather than

developing them from scratch.

SDLC MODELS

Software Development life cycle (SDLC) is a spiritual model used in project management that

defines the stages include in an information system development project, from an initial

feasibility study to the maintenance of the completed application.

There are different software development life cycle models specify and design, which are

followed during the software development phase. These models are also called "Software

Development Process Models." Each process model follows a series of phase unique to its type

to ensure success in the step of software development.

Here, are some important phases of SDLC life cycle:

The Waterfall Model was the first Process Model to be introduced. It is also referred to as a

linear-sequential life cycle model. It is very simple to understand and use. In a waterfall

model, each phase must be completed before the next phase can begin and there is no

overlapping in the phases.

The Waterfall model is the earliest SDLC approach that was used for software development.

WATERFALL MODEL - Design

Waterfall approach was first SDLC Model to be used widely in Software Engineering to ensure

success of the project. In "The Waterfall" approach, the whole process of software development

is divided into separate phases. In this Waterfall model, typically, the outcome of one phase acts

as the input for the next phase sequentially.

The following illustration is a representation of the different phases of the Waterfall Model.

The sequential phases in Waterfall model are −

 Requirement Gathering and analysis − All possible requirements of the system to be

developed are captured in this phase and documented in a requirement specification document.

 System Design − The requirement specifications from first phase are studied in this phase and

the system design is prepared. This system design helps in specifying hardware and system

requirements and helps in defining the overall system architecture.

 Implementation − With inputs from the system design, the system is first developed in small

programs called units, which are integrated in the next phase. Each unit is developed and tested

for its functionality, which is referred to as Unit Testing.

 Integration and Testing − All the units developed in the implementation phase are integrated

into a system after testing of each unit. Post integration the entire system is tested for any faults

and failures.

 Deployment of system − Once the functional and non-functional testing is done; the product is

deployed in the customer environment or released into the market.

 Maintenance − There are some issues which come up in the client environment. To fix those

issues, patches are released. Also to enhance the product some better versions are released.

Maintenance is done to deliver these changes in the customer environment.

Waterfall Model - Application

 Requirements are very well documented, clear and fixed.

 Product definition is stable.

 Technology is understood and is not dynamic.

 There are no ambiguous requirements.

 Ample resources with required expertise are available to support the product.

 The project is short.

Some of the major advantages of the Waterfall Model are as follows −

 Simple and easy to understand and use

 Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a

review process.

 Phases are processed and completed one at a time.

 Works well for smaller projects where requirements are very well understood.

 Clearly defined stages.

 Well understood milestones.

 Easy to arrange tasks.

 Process and results are well documented.

The major disadvantages of the Waterfall Model are as follows −

 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of changing. So,

risk and uncertainty is high with this process model.

 It is difficult to measure progress within stages.

 Cannot accommodate changing requirements.

 Adjusting scope during the life cycle can end a project.

SPIRAL MODEL

The spiral model, initially proposed by Boehm, is an evolutionary software process model that

couples the iterative feature of prototyping with the controlled and systematic aspects of the

linear sequential model. It implements the potential for rapid development of new versions of the

software. Using the spiral model, the software is developed in a series of incremental releases.

During the early iterations, the additional release may be a paper model or prototype. During

later iterations, more and more complete versions of the engineered system are produced.

The Spiral Model is shown in fig:

Each cycle in the spiral is divided into four parts:

Objective setting: Each cycle in the spiral starts with the identification of purpose for that cycle,

the various alternatives that are possible for achieving the targets, and the constraints that exists.

Risk Assessment and reduction: The next phase in the cycle is to calculate these various

alternatives based on the goals and constraints. The focus of evaluation in this stage is located on

the risk perception for the project.

Development and validation: The next phase is to develop strategies that resolve uncertainties

and risks. This process may include activities such as benchmarking, simulation, and

prototyping.

Planning: Finally, the next step is planned. The project is reviewed, and a choice made whether

to continue with a further period of the spiral.

When to use Spiral Model?

o When deliverance is required to be frequent.

o When the project is large

o When requirements are unclear and complex

o When changes may require at any time

o Large and high budget projects

Advantages

o High amount of risk analysis

o Useful for large and mission-critical projects.

Disadvantages

o Can be a costly model to use.

o Risk analysis needed highly particular expertise

o Doesn't work well for smaller projects.

PHASE RELEASE MODEL

It introduces the notion of incremental development.

 After requirements gathering and planning, the project should be broken into separate

subprojects, or phases.

 Each phase can be released to customers when ready.

 Parts of the system will be available earlier than when using a strict waterfall approach.

 However, it continues to suggest that all requirements be finalized at the start of development.

EVOLUTIONARY MODEL

Evolutionary model is a combination of Iterative and Incremental model of software

development life cycle. t is better for software products that have their feature sets redefined

during development because of user feedback and other factors. The Evolutionary development

model divides the development cycle into smaller, incremental waterfall models in which users are

able to get access to the product at the end of each cycle.

Feedback is provided by the users on the product for the planning stage of the next cycle and the

development team responds, often by changing the product, plan or process. Therefore, the

software product evolves with time.

All the models have the disadvantage that the duration of time from start of the project to the

delivery time of a solution is very high. Evolutionary model solves this problem in a different

approach.

https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-incremental-process-model/

Evolutionary model suggests breaking down of work into smaller chunks, prioritizing them and then

delivering those chunks to the customer one by one.

Application of Evolutionary Model:

1. It is used in large projects where you can easily find modules for incremental implementation.

Evolutionary model is commonly used when the customer wants to start using the core features

instead of waiting for the full software.

2. Evolutionary model is also used in object oriented software development because the system can

be easily portioned into units in terms of objects.

Advantages:

 In evolutionary model, a user gets a chance to experiment partially developed system.

 It reduces the error because the core modules get tested thoroughly.

Disadvantages:

 Sometimes it is hard to divide the problem into several versions that would be acceptable to the

customer which can be incrementally implemented and delivered.

CONCURRENT ENGINEERING MODEL

It explicitly accounts for the divide and conquer principle.

 Each team works on its own component, typically following a spiral or evolutionary approach.

 There has to be some initial planning, and periodic integration.

RUP AND ITS PHASES

Rational Unified Process (RUP) is a software development process for object-oriented models.

It is also known as the Unified Process Model. It is created by Rational corporation and is

designed and documented using UML (Unified Modeling Language). This process is included in

IBM Rational Method Composer (RMC) product. IBM (International Business Machine

Corporation) allows us to customize, design, and personalize the unified process.

RUP is proposed by Ivar Jacobson, Grady Bootch, and James Rambaugh. Some characteristics

of RUP include use-case driven, Iterative (repetition of the process), and Incremental (increase in

value) by nature, delivered online using web technology, can be customized or tailored in

modular and electronic form, etc. RUP reduces unexpected development costs and prevents

wastage of resources.

Phases of RUP :

There are total five phases of life cycle of RUP:

1. Inception –

 Communication and planning are main.

 Identifies Scope of the project using use-case model allowing managers to estimate costs and time

required.

 Customers requirements are identified and then it becomes easy to make a plan of the project.

 Project plan, Project goal, risks, use-case model, Project description, are made.

 Project is checked against the milestone criteria and if it couldn’t pass these criteria then project

can be either cancelled or redesigned.

2. Elaboration –

 Planning and modeling are main.

 Detailed evaluation, development plan is carried out and diminish the risks.

 Revise or redefine use-case model (approx. 80%), business case, risks.

 Again, checked against milestone criteria and if it couldn’t pass these criteria then again project

can be cancelled or redesigned.

 Executable architecture baseline.

3. Construction –

 Project is developed and completed.

 System or source code is created and then testing is done.

 Coding takes place.

4. Transition –

 Final project is released to public.

 Transit the project from development into production.

 Update project documentation.

 Beta testing is conducted.

 Defects are removed from project based on feedback from public.

5. Production –

 Final phase of the model.

 Project is maintained and updated accordingly.

	Introduction to Object Oriented Software Engineering:
	Characteristics of a good software engineer
	Importance of Software Engineering
	The importance of Software engineering is as follows:
	These four properties are:

	TYPES OF THESOFTWARE
	2) Application Software:
	1. Word Processing Software.
	2. Spreadsheet Software.
	3. Multimedia Software.
	4. Enterprise Software.
	3) Programming Software:
	Some examples of programming software include:
	Software Engineering Activities:

	Introduction to Object Orientation: Object-Oriented Design
	The different terms related to object design are:

	REUSABILITY IN SOFTWARE ENGINEERING:
	Example: POSTALCODES:
	The postal code hierarchy:
	The postal code Exception class:
	The user interface class Postal Test:
	Point CP. Point CP Test

	Requirements Engineering
	Domain Analysis:
	Benefits of performing domain analysis:
	Domain analysis document:
	Defining the scope
	REQUIREMENTS:
	TYPES OF REQUIREMENTS:
	2.Non functional requirements:
	Quality requirements
	Platform requirements
	Process requirements:

	Techniques For Gathering And Analysis Requirements
	2.Interviewing:
	3.Brainstorming
	1. Brainstorming is an effective way to gather information from a group of people.
	Prototyping:
	Requirements documents for large systems are normally arranged in a hierarchy:
	should be able to procedure a complete requirements document before starting to design the system.
	g.The cost incurred if the requirements are faulty. Any system that, if it fails, the environment must be precisely specified.
	Case Studies:

	GPS based Automobile Navigation System:
	4. Functional requirements.
	4. Navigation mode:
	5. Quality requirements

	Characteristics of UML
	Modeling Concepts:
	UML-Building Blocks
	1. Things:
	2.Relationships:
	1.Association:
	Composition:
	UML- Association:
	Reflexive Association:
	Directed Association:
	2.UML-Dependency
	UML-Generalization:

	TYPES OF UML DIAGRAMS
	Developing Use Case Models of Systems:
	Origin of Use-Case:-
	Components of Basic Model:-

	USE CASE DIAGRAM
	Purpose of Use Case Diagrams:
	How to draw a Use Case diagram?
	Example of a Use Case Diagram
	THE BASICS OF USER INTERFACE DESIGN
	Types of User Interface
	User Interface Design Activities:-
	Usefulness
	Consistency
	Simplicity
	Communication
	Error Prevention and Handling
	Efficiency
	Workload Reduction
	Usability Judgment

	Class Design and Class Diagrams
	What is Class Diagram?
	Class Name
	Attrbutes:
	Relationships
	Dependency
	Aggregation
	Composition:
	Purpose of Interaction Diagrams:
	1. Behavioral state machine
	2. Protocol state machine
	Notation of a State Machine Diagram
	Purpose of Activity Diagrams
	Notation of an Activity diagram
	Notation of a Component Diagram
	Purpose of a Component Diagram
	When to use a Component Diagram?
	Purpose of Deployment Diagram
	Symbol and notation of Deployment diagram

	Software Design and Architecture
	Principles Leading to Good Design:
	Advantages of Modularity:
	Disadvantages of Modularity:
	The various types of coupling techniques are shown in fig:
	Example priorities and objectives:
	Using cost-benefit analysis to choose among alternatives
	WRITING A GOOD DESIGN DOCUMENT
	Structure of design document:

	SOFTWARE ARCHITECTURE
	Software Architecture:
	Software Design:
	Goals of Architecture
	Limitations:

	ARCHITECTURAL PATTERNS
	Advantages
	Disadvantages
	Advantages (1)

	Design Patterns
	Usage of Design Pattern
	Common platform for developers
	Best Practices
	Types of Design Patterns
	• Context:
	• Problem:
	• Forces:
	2. THE GENERAL HIERARCHY PATTERN
	• Context:
	• Problem:
	• Forces:
	• Solution:

	3. THE PLAYER-ROLE PATTERN
	• Context:
	• Problem:
	• Forces:

	4. THE SINGLETON PATTERN
	• Context:
	• Problem:
	• Forces:

	5. THE OBSERVER PATTERN
	• Context:
	• Problem:
	• Forces:

	6. THE DELEGATION PATTERN
	• Context:
	• Problem:
	• Forces:

	7. THE ADAPTER PATTERN
	• Context:
	• Problem:
	• Forces:

	8. THE FAÇADE PATTERN
	• Context:
	• Problem:
	• Forces:

	9. THE IMMUTABLE PATTERN
	• Context:
	• Problem:
	• Forces:
	• Solution:

	10. THE READ-ONLY INTERFACE PATTERN
	• Context:
	• Problem:
	• Forces:

	11.THE PROXY PATTERN
	Context:
	Problem:
	Forces:
	• Context:
	• Problem:
	• Forces:
	• Solution:

	UNIT IV
	Basic Definitions:
	Software testing can be divided into two steps:
	Different techniques of Software Testing:
	White-Box Testing
	Testing Strategy:
	2. Performing a calculation in the wrong part of a control construct:
	Testing Strategy: (1)
	3. Non Terminating a loop or recursion:
	Testing Strategy: (2)
	4. Not setting up the correct preconditions for an algorithm:
	5. Not handling null conditions:
	6. Not handling singleton or n0on-singleton conditions:
	7. Off-by-one errors:
	8. Operator precedence errors:
	Deadlock and livelock
	Twoexamples of gridlock: a form of deadlock
	Livelock in traffic (left) andsoftware (right)
	 Insufficient throughput or response time on minimal configurations
	 Incompatibility with specific configurations of hardware or software
	 Defects in handling peak loads or missing resources
	 Inappropriate management of resources
	 Defects in the process of recovering from a crash

	STRATEGIES FOR TESTING LARGE SYSTEMS
	 Integration testing: big bang versus incremental approaches
	Top-down testing
	Bottom-up testing
	Sandwich testing
	The test–fix–test cycle and regression testing
	Deciding when to stop testing
	The roles of people involved in testing
	Testing performed by users and clients: alpha, beta and acceptance

	Software Project Management
	What is Project?
	What is software project management?
	Prerequisite of software project management?
	Project Manager
	Role of a Project Manager:
	Responsibilities of a Project Manager:
	The list of activities are as follows:
	For scheduling, it is compulsory -
	Some reasons show the need for configuration management:
	Tasks perform in Configuration management:

	Software Engineering Teams
	Choosing an effective size for a team
	Skills needed on a team
	Uses of Cost Estimation
	Principles of effective cost estimation
	Cost Estimation Principle 1: Divide and conquer
	Cost Estimation Principle 2: Include all activities when making estimates
	Cost Estimation Principle 3:Base your estimates on past experience combined with what you can observe of the current project
	Cost Estimation Principle4: Besure to account for differences when extrapolating from other projects
	Cost Estimation Principle 5: Anticipate the worst case and plan for contingencies
	Cost Estimation Principle 6: Combine multiple independent estimates
	Principle 7: Revise and refine estimates as work progresses
	Project Management Tools
	Gantt Chart
	PERT Chart
	Resource Histogram
	The Software Process Model
	Here, are some important phases of SDLC life cycle:
	WATERFALL MODEL - Design
	Waterfall Model - Application
	Some of the major advantages of the Waterfall Model are as follows −
	The major disadvantages of the Waterfall Model are as follows −
	The Spiral Model is shown in fig:
	When to use Spiral Model?
	Advantages
	Disadvantages

	PHASE RELEASE MODEL
	Application of Evolutionary Model:
	Advantages:
	Disadvantages:
	1. Inception –
	2. Elaboration –
	3. Construction –
	4. Transition –
	5. Production –

