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Definition:

Endomorphism:A homomorphism of a group G into itself is calledendomorphism

Automorphism:

An isomorphism from a group G onto itself is called an “Automorphism”.
The set of all automorphisms of G is denoted by AUT(G).

Inner automorphism:

let G be a group and a€G the automorphism fa: G—G defined by fi(X) =axa-1 for
all X€G is called an” inner automorphism of G” and It is denoted by In(G)

In (G) = {fa/a€G}

Outer automorphism:

An automorphism which is not inner is called an “outerautomorphism”

statement: The set AUT(G) of all Automorphism of a group G is a group under
composition of mappings and IN(G)AAUT(G)Moreover G/Z(G) =IN (G)

proof:step (1):Given that G is a group

Consider AUT (G) = {f/f: G—G is an Automorphism}

claim:AUT (G) forms a group with respective toComposition of mappings.
Clearly, IEAUT (G)

AUT (G) #p<SSc a symmetric group

~gofEAUT (G)

ii) Let f€ AUT(G)

=1:G—G is an automorphism

=f1:G—G is a bijective

f!:G—G is a homomorphism:Now f[f1(x).f1(y)]=f[F*(x)].f[f(y)]




= 1(x).1(y)

=xy

=T (x).F(y)] =xy
£1(x).F(y) =F1(xy)

f1:G—G is an automorphism
~f1 € AUT(G)

~AUT(G) < SG

Hence AUT (G) forms a group with respective to Composition of mappings.

step (2):IN (G) AAUT (G):We know that f,: G—G defined byfy(X) = axa™, V x€G is
an automorphism of G.

Now IN (G) = {f./a€G}

Di)IN(G)<AUT(G) : let f,, f, € IN(G),x€G

1) Let f, g€ AUT (G)
=1:G—G is an automorphism andg:G—G is also anautomorphism.
=gof:G—G Is bijective

o0f:G—G is homomorphism:

Let x,y€EG
[gof (xy)] =g [f (xy)]

=g [f(x) f(y)]
=g [f()] g [f(y)]
= (goD)(x). (goH)(y)

~gof:G—G is an automorphism

Now (fa.fo)(X)=Fa(fo (X))




= fa(bxb™)

=a(bxb-1)a?

=abxb?a

=abx(ab)*

=fan(X)

~ (fa.fb)(x)=fab(x) Vx€G
=>fa.fh= fa € IN (G)
=T,.1€ IN(G)

ii) Let fa € IN(G)
=a€G

=al€G

=f..1€ IN(G)

Now fa.fa1 =faaa=fe
a(f)t = € IN (G)

= (fa)* € IN (G)

~IN (G) <AUT(G)

2) IN (G) is Normal in AUT (G):Let fa € IN (G) and f€ AUT (G)

Aim: f.f.f1 € IN (G)
Letx€G

Now [f.f..F2](x) = F{f.[F*(X)]}
=fla.f(x).a]

= f(a).f(f1(x)).f(a?)

=c.X.c! where ¢ = f(a) € G




= f(x)

A[FRFX) = f¥ X €G
SffFL = f.€ IN (G)
=>f.f.fL€IN (G)
~IN(G) A AUT(G)

step (3): G/Z (G) = IN (G):We know that Z (G)={a € G/ax =xa V x € G}

Define a mapping : G — IN (G) by® (a) =1, ,Va€G
Clearly, ¢ is well defined

@ is onto:Let f, € IN (G)

=a € GA also ¢ (a) = fa

~every element in IN(G) has per-image in G

® is a homomorphism:Leta, b€ G

Now, ¢ (a b) = fap=Fa.fo=0b (2).¢ (b)

~($:G—IN(G) is an onto homomorphism

By fundamental theorem of homomorphism,

We have G/kerd = IN (G)

Finally, to prove that kerdp = Z (G):

Nowkerd = {a € G /d(a) = an identity element in G}
={a € G/t =fe}

={a € G /fa(x) = f(X), V x € G}
={a€G/axal=exel, V x € G}

={a€G/axal=x,Vx€G}




={a€ G/ax=xa, VX € G}=Z (G)

~G/Z (G) = IN(G)

problem :Let G be a group and a€G.The mapping fa : G—G is defined by
fa(x) = axa® ,V x € G is anautomorphism of G

solution: Given thatG isa groupanda € G

Define a mapping f.: G>G by fi(x) = axalVx € G
claim:f, € AUT (G)

fais one-one:let x,y € G

Let, fa(x) = fa(y)

axal=ayal

X=y

foisonto:lety€G

Then we getalya €G

Now fi(a'lya) = a(atya)a™

= aalyaat

=eye=y

~Every element in co domain has pre-image inDomain.

f.: G>Gis a homomorphism:Letx,y € G

Now fa(xy) = axa™
=ax(a'a)ya™
=(axa?)(aya?)

=fa(x)-fa(y)




~fa(xy) = fa(x).faly)

~fa: G>Gis an automorphism
~f€ AUT(G)

Conjugacy and G-sets:

Definition:Let G be a group and X is a set. Then G is said to “act on X”. If 3 a
mapping ¢ : GxX — X with ¢(a,x)=a*x such that I) a*(b*x) = ab*x

) e*x=x,Va,b€G,x€X.
The mapping ¢ is called “the action of G on X”.X is said to be a “G - set”

Example (1):Let G be a group and a €G we defined a*x = axa™ fora € G, x €
GThen show that G is a G-set.

solution: Let G be a group and G be a set.
claim:Gis a G — set.

Define ¢: GxG — G by ¢ (a, X) = a*x = axa™!
Leta, b€G

i)a*(b*x) =a*(bxb?)

=a (bxb™) a?

=abx (ab)*

=ab*x

~a*(b*x) = ab*x

ii) e*x =exel= exe= x

SEFX =X

~GisaG —set.




Examle(2) :Let G be a group and H<G then the set G/H of all left cosets ina G is a
G — set by definding a*xH = axH ,va € G, xH € G/H.

solution:Let G be a group and H<G

We know that G/H = {xH/x€G}

claim: G/H is a G — set.

Define ¢: G x G/H — G/H by ¢(a,xH)=a*xH = axHVa € G, xH € G/H
Leta, b € G, xH € G/H

1) a*(b*xH) = a*(bxH)

= abxH
=ab*xH

~a*(b*xH) = ab*xH
i) e*xH = exH=xH
~e*XH = xH
~G/Hisa G —set.

Theorem :Let g be a group and let x be a set.if x is a g — set, then the action of g
on x induces a homomorphism ¢ : g —sxany homomorphism ¢ : g — sx induces an
action of g onto x

proof:Let G be a group and let X be a set
I.  Suppose that X is a G — set
Foranya € G,
Define a mapping fa : X—X by fi(X) = ax ,Vx€X
Clearly, fa is one — one and onto
~fa is bijective

~fa € Sx




Define a mapping ¢: G — Sx by ¢(a) = f3,Va€G
Let,x€X

Now (fa.f) (X) = fa(fa(X))

= fa(bx)

=a(bx)

=(ab)x

=fan(X)

ofafp = fap

¢ is homomorphism:Leta ,b € G

Now ¢ (ab) = fap=Fa.fo= ¢ (a).9(b)
~@(ab) = ¢(a).¢(b)

INLet ¢ :G —Sx be a homomorphism
claim: X isa G — set

Definea * x = [p(a)] (x) Va € G, x € X
Leta,b€G,x€X

) a*(b*x) =a*(e(b)(x)= [¢(a)] (p(b)(x))
=[9(2). ¢ (b)](x)

= [o(ab)](x)

= ab *x

= a*(b *x)=ab *x

1) e*x=[o(e)(®)]=fe(x)= ex =X
Se*X =X

~XisaG—set




State and Prove Cavley’s theorem

statement:let g be a group then g is an isomorphic into the symmetric group Sc
proof :let G be a group and G be a set .
by known theorem , Gisa G —set.

by known result,3 a homomorphism ¢ : G — S defined by[p(a)](x) = ax, V X €
Gcelaim :G = Sg

@ is one — one :i.e., it is enough to show that Ker ¢ = {e}

Now Ker ¢ = {a € G /p(a) =1}
={a€ G/ [(@)]x) =1(x),x€ G}
={a€G/ax=x}
={a€G/ax=ex}
={a€G/a=¢}

= {e}

~ Ker ¢ = {e}

~( 1S one- One

~¢: G — SG is an into isomorphism
~ G=SG

Hence proved.

Theorem :let “G”be a group and H<G of finite index “n” then there is a
homomorhism ¢:G— S, such that Ker ¢ = Nx€G xHx™?

proof: Let H<G of finite index n .
~ |G/H| = n also Sgn~ S

by known theorem , G/H isa G —set .
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=3Ja homomorphism ¢:G — Sg/n defined by [@(a)](xH) = axHVxEG
we get , 3 a homomorphism ¢ : G — S, defined by [¢(a)](xH) = axHY x€ G
claim:Now Ker={a € G/ ¢ (a) =1}

={a€G/[¢9(a)] (xH)

= I(xH) ,v€ G/H}

={a€G/axH=xH,Vx€G}

={a€G/a(xHx?1) = (xHx!) ,Vvx€G}

={a€G/a€xHxt VXx€G}

= Nxeg XHx!

Ker ¢ = NyegXH X1

Hence 3 a homomorphism ¢ : G — Sy such thatKer ¢ = NyegXH x? .
Note (1):|G| = Z.ecO(G)/O(N(a)) is called the “class equation of G”.
Note (2):|G| = Z.ecO(G)/O(N(a))

—%.620(G)/O(N(2))+ZagzO(G)/O(N(a))
= %.20(G)/O(G)+ ZaezO(G)O(N(a))
« |G| = |Z| + Zagz O (G)/O (N ().

Note (3):If |G| = p", where p is prime then Z # {e} (or) G hasNon-trivial center.

Note (4):G is abelian © Z2=G

Result :show that every group of order p? isabelian.
Proof:let g be a group 3 o(g) = p?

claim:G is abelian

I.e., it is enough to show that Z = G

We know that Z = {a € G/ax = xa Vx €G}
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By know result, Z <G, G is finite.
By Lagrange’s theorem O(Z) /O(G)
=0 (2)/P?

=0 (Z) = 1 (or) O(Z) = P (or) O(Z) = P?
) Since O (G) = P2

By known result, Z # {e}

=0 (Z) > 1

~0@2)#1

i) LetO(Z2)=P
Leta€GDag”Z

We know that N(a) < G also Z SN(a)
=0(N(a))/0(G)

= O(N(a))/p2

= O(N(a)) = p2

= O(N(a)) = O(G)

= N@) =G

=a€Z

Which is contradictionto a ¢ Z
~0(@Z)#p

=~ 0(2)=p2=0(G)

Z=G

G is abelian.
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STATE AND PROVE BURNSIDE THEOREM:

statement:let G be a finite group acting on a finite set xthen the number k of
orbit in x under G is K = 1/|G| Zge G [Xg|

proof:Define, S ={(g, X) € GxX /gx = x}
“ [S] = Xg| = G|
S|=2gecXg | = Zxex|Cx - 1)
We know that, |Gx| = |G|/ |G«

=|Gx | = |G|/ |GX|

=Zxex [Gx = Zxex|G|/ [GX|

= |G| Zxex1/|GX|

= |G| ZaecZxecal /|G|

Where C contains exactly one element from each orbit.
=|G|Z.e c[1/|Gal + 1/|Ga| +--- (|Ga| times)]
=|GlZaec|Ga|/ |Ga

=|GZaec(2)

=|Gl. K

Yeex|Gx | =G| K

K= 1/|G| Zx e x|Gx |

~K=V|G] Zgea|xg |

Hence proved.

SOLVABLE GROUP:

Definition :solvable group:

A group G is said to be “solvable” if G ) = {e} for some integer k.
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Theorem:Every homomorphic image of a solvable group is solvable.
proof:let G be a solvable group
I.e., G (k) = {e} for some integer k
Let : G—>G™* be a homomorphism
Let G* be the homomorphic image of G under ¢
claim: G* is solvable
Now, (G*)®= o(GY)

=0 (e)
= {e*}

~G* is solvable.
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Theorem:let Hy,Hy,---H, be a family of subgroups of a group G&

let H=Hy,H,,---H, if Hi A H &H; N (H1 ---Hi.1Hi.+1---H;)) =(e)for 1<i< n then show
thatH;xH,x---xH, = H.

Proof:Suppose thatHi,H,,---H, be a family of subgroups ofa group G &
H = Hi.Ho.---H, Hi AH&H; N (H; ---Hi1 Hi+1---Hy) =(e)—>(1)
Claim:H;xH;x---x Hp = H.

Let x € Hj, y € H;

By (1), Hi NH; = {e}

=Xy = YX ---—(2)

Define a mapping ¢:HixHzXx---x Hy—H by

O(X1,X2,--=,Xn)=X1.X2.---. XnV Xi € Hi— (3)

1)@ is homomorphism:

Now,@[(X1,X2,--=Xn). (Y1,Y2,=-,Yn)] =@[(X1y1,X2Y2,-- XnYn)]
= X1Y1.X2Y2.-==.XnYn

By using equation(2),we get

=[X1.X2.=Xn] [y1.Y2.=-.Yn]

= @(X1,X2,==, Xn)P(Y1,Y2,--=,Yn)

~¢ is homomorphism

ii) © is one — One:

To prove that ker ¢ = {e}
Let (X1,X2,---,%Xn) € ker ¢
O(X1,X2,---,Xn) = €
X1.X2.---.Xp =€

X1X1 Xz %0 = X1 e
X2.===. Xn= X1t

Since x;71€ H; also x;7€ Hy--- Hj




=x1€ HiN(Hz---Hy)

=>xl=e

=X1=¢€

Similarly, we get xo=e,---, Xp.=€

=(X1,X2,---,%n) =(e,€,---,€)

~ker ¢ = {e}

- 1S one — One

Clearly, ¢ is onto

¢:HixH2X---X Hh—H is isomorphism HixH»X---x Hn = H.
FIRST SYLOW THEOREM:

Statement:Let G be a finite group and let p be prime. If p™/O(G) but p™O(G)
then G has a subgroup of order p™

Proof: Given that G be a finite group and let p be prime.

If p™/O(G) but p™1O(G)

Claim: G has a subgroup of order p™

To prove this result by induction on O(G) .

Case(i):If O(G) = 1 then the result is true

Case(ii): Assume that the result is true for all finite abelian groups whose
orders< O(G)

Case(l): suppose that G has a proper subgroup H 3 p™/O(H)
Clearly, HcG

=0(H)<O(G)

By induction hypothesis, H has a subgroup T of order pm
l.e., T<H and O(T) = p™

+“T<H<G

T<G,O(T)=p"




=~ G has a subgroup T of order p™

CASE(11):suppose that G cannot have a proper subgroup H 3 p™/O(G)

i.e.,, 3 p™O(H)

Claim:G has a subgroup of order pm
By class equation in G,

we have |G| = |Z| + Zagz O(G)/O(N(a))
= |Z] = |G| - ZagzO(G)/O(N(a)) —(1)
Here p/p™ and p™/O(G)

= p/O(G) —--(2)

Clearly, N@) < G

=p™tO(N(a))

=p"/[O(G)/O(N(a))]

= P/ 24¢20(G)/O(N(a))

=P/ ZagzO(G)/O(N(a)) ---(3)

From (2) & (3)

P/ [IG] - ZaezO(G)/O(N(a))]

=pl Z| by (1)

By Cauchy’s theorem for abelian groups 3 an element b€Z3bP=¢

e, O(b)=p

Let B =<b>Dbe a cyclic subgroup Of G
Clearly, O(B) =O(b) =p

Since b € Z

=><b>AG

=B AG

G/B ={xB/x € G}




Let G= G/B

=0(G) = O(G/B) =0(G)/O(B)
=p™.n/p

=p™1.n

O(G) =p™i.n

p™1/0(G),also p™O(G)

Since O(G) = O(G)/O(B) < O(G)

By induction hypothesis,

G has a subgroup p of order p™?!

i.e, p<G, O(P) =pm!

Consider the set p={x€G/xB €p}

P < G also, we have p =~ P/B

=0(P) = O(P/B)

=0(p) = O(P)/O(B)

=0(p) = O(p)-O(B)

=pmhp

O(p) = p"

~3IP<G30(p)=p"

Hence , G has a subgroup of order p™
Hence , the result is holds for G by using induction .

Definition: let A,B be two subgroups of a group G. A&B are said to be conjugate
if A =xBx? for some x € G

STATE AND PROVE SECOND SYLOW THEOREM:

Statement: Let G be a finite group and p be prime, p"/O(G) but p™*O(G) then any
two subgroups of order p" are conjugate.

Proof: Assume that,A<G,B<G 30(A)=p",0(B)=p"

5




Claim:A & B are conjugate

i.e., it is enough to show that A = xBx* for some x € G
If possible suppose that A = xBxvx € G
=>ANxBx1=pCA

=>ANxBx!cA

=0(ANxBx1)<O(A)

Let O(ANxBx1)=p™ where m<n

We know that,0(AXB)=0(A)O(B)/O(A NxBx™)
=p".p"/p"

=p* (1)

Since m<n

=n>m

= n-m>0

= Nn-m>1

= n+(n-m)>n+1

= 2n-m >n+1

=21 Mm>pn+l

SpTHic p2rm

:pn+1/p2n-m

=>p"/Z0(AXB)

= P™Y/O(G)

Which is a contraction to p"+O(G)

Our assumption is wrong

A = xBx* for some x€G

Hence, A & B are conjugate.
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DEEINITIONS:

Ring:Let R be a non-empty set and +, .be two binary operations in R then the
algebraic structure (R,+, .) is said to be RING if (R,+) is a commutative group

(R, .)is a semi-group Distributive laws.

Commutative Ring: In a ring (R,+, .) ifa.b = b.a for a,b € R then we say that R is

commutative ring.

Field: let R be a commutative ring with unity elements if every non-zero element

of R is invertible under multiplication then R is a field.

Right Ideal:let R be a ring and U #@<R we say that U is a right ideal in R. If
ab€U=ab€eU

in)a€Ur€R=ar€U.

Left Ideal:let R be aring and U # @SR we say that U is a left ideal in R. If
HabEU=ab€eU

in)a€U,r€ER=ra€U

Ideal:let R be a ring and U #@<R we say that U is an ideal in R. If
i)abEU>ab€eU

i1)a€U ,r€R =arra€ U.

Trivial&Non-Trivial Ideals:In aring R, the ideals {0} and R are called
trivial(or)improperideals in R and all other ideals of R are called non-
trivial(or)proper ideals of R.

Problem:Let R be a ring and a € R then show that aR={ax/x€R}is a right ideal
of R
Solution: Given that R is a ring and a € R also aR={ax/x€R}

Claim:aR is a right ideal of R.




Clearly, 0 € R
~0=a.0€R

=0 € aR

=aR #pcR

1) Let x,y € R

=x=ap, y=aq for some p,q € R
Now, x-y = ap-aq
=a(p-q)

x-y=a.t where t=p-q €R
Here at€aR

=>X-y € aR

1) Let x € aR, k€ R
Now xk = (ap)k

=a(pk)

xk = az where z=pk € R
Here az € R

=xk € R

~aR is a right ideal of R.

Theorem:Let R be a commutative ring with unity. Suppose R has no non-trivial
ideals then show that R is a field.

Proof:Given that R is a commutative ring with unity
Suppose that R has no non-trivial ideals.

=The any ideals of R are {0} and R itself.




Claim:R is a field

Let 0#Aa€R

Then by known result,The set aR={ax/x€R} is an ideal in R.
Here a#0€R =aR # {0}

By the hyothesis,we get aR=R.

Since 1€R

=1€aR

= 1=ax for some x€ER

=ax=1 for some x€ER

=x€R 1s the multiplicative inverse of a in R.

~.every non-zero element in R has multiplicative inverse in R.
Hence R is a field.

Definitions:

1) Homomorphism:Let (R,R"be groups. Amappinge: R—R'is calleda
homomorphism. Ifp(a).(b)=¢(ab),Va,bER.

1) Monomorphism:Ife is one-one then ¢ is calledMonomorphism of R.

11i) Epimorphism:Ifp is onto then ¢ is calledepimorphism of R.

Iv) Isomorphism:Ife is homomorphism andbijection then ¢ is calledisomorphism
of R onto R”’.

V)Endomorphism: A homomorphism of R intoitself is called anendomorphism of
R.

Vi)Automorphism:An endomorphism of R which is both one-one&onto is
calledan automorphism.




Vii)Kernelof Homomorphism:If f:R—S is a ring homomorphism then the kernel
of fisdenoted by “kerf”(or)I(f)(or)f-1(0) and is defined askerf={x€R/f(x)=0"}

where 0’€S is the zeroelement.

State And Prove Fundamental Theorem Of Homomorphism:

Statement:let f be a homomorphism of a ring R into a ring Swith kernel then
R/N =Im(f).

Proof: let f:R—S is a ringhomomorphism

Let N=kerf

By known result,kerf is an ideal of R

=N is an ideal of R

=>R/N={x+N/x€R} isa quotient ring

We know that,Im(f)={f(x)/x€R}

Claim: R/N ~Im(f)

Define @:R/N—Im(f) by ¢(x+N)=f(x),Vx€ER

ois well-defined&one-one:

Let x,y€ER
=x+N,y+NER/N

Let x+N=y+N
ox-yENe X-yEkerf
<f(x-y)=0
<f(x)-f(y)=0
=f(x)=f(y)
So(xtN)=p(y+N)




@ is onto: let TE€EImf

=T=f(x) for some x€ER

Since x€ER

x+N € R/N

By def @,p(x+N)=f(x)=T

~.Every element in Imf haspre-element in R/N.

¢ is a homomorphism:Let x,y€ER

=x+N,y+NER/N

D) [AN)HY+N)[=o[(x+y)+N]
=f(x+y)

= f()+1(y)

=o(xN)*+o(y+N)
)@[(x+N).(y+N)]=@[(xy)+N]
=f(xy)= f(x).f(y)
=(xtN).(y+N)

~@:R/N—Im(f) is anisomorphism.
~Jan isomorphism ¢ fromR/N into Im(f).
~R/N~Imf.

Definitons:

Maximal lIdeal: An ideal M#R is said to be maximal in R if an ideal U of R
sMcUCcR theneither U=M(or)U=R.

Co-Maximal:Two ideals A,B in any ring R are called co-maximal if A+B=R




Prime Ideal:An ideal P inaring R is called a prime ideal if A,B are ideals in R
such that ABSP thenA<P(or)BCP .

Theorem:If R is a non-zero ring with unity 1 and 1 is an ideal in R 3I#R, then 3 a
maximal ideal M of R 3 ICM.

Proof: Given that R is a non-zero ring with unity 1 & I#R is an ideal of R.
Claim:3 a maximal ideal M of R sISM.
Let S={J/Jis an ideal of R& IC], J#R}
Clearly, (S, ) is a poset

Let C beachaininS

Put T=Uxiecki

First to prove that T is an ideal of R

Let x,y€T and r€ER

X,y €Uxie cKi

x€ki ,y€k;j for some ki, ki€C

Since k;,ki€C and C is a chain in S.
kick;(or) ki<ki

Assume that kick;

~X,y€kj and also r€R, k; is an ideal of R
=X-y €k;j and xr,rx€k;

=X-y € Ukieckiand Xr,rxUxie cKi

=X-y € T and xr,rx€T

= T is an ideal of R also kiSUxie cki=T

=T is an ideal of R and ki€ T for ki€C




=T is an upper bound of C

Next to prove that TES:

I.e., to prove that T is an ideal of R and IST, T#R.
Since ki€CcS

=ki€S

=k; is an ideal of R and I<ki,ki #R.

Since ICk;

= 1S Ukie cKi

= |CT

if T=R then 1€T

=1CUxiecKi

= 1€ k; for some ki€C

=ki=R

which is a contradiction to kj#ZR

~ T#R

~ T€S

Every chain in S has an upper bound in S,
By Zorn’s lemma S has a maximal element say M
1.e., MES

I.e., M is an ideal of R and IEM, M#R
Finally, to prove that M is maximal in R.

Let N be an ideal of R aMcCUCR.




To prove that N=M(or)N=R

Suppose that NAM

Claim: N=R

Let N#ARN€S

N isa maximal in S

Which is a contradiction to M ismaximal in S

~Our assumption N#R is wrong

~N=R

~.M is a maximal ideal of R such thaticM

Hence, 3 a maximal ideal M of R IEM

Definition: An ideal A inaring R is called Nilpotent if A"=(0) for some n € Z*
Example:i)In the ring R=2/(4), A={0,2} is Nilpotent ideal because A?=2.2=4=(0).
i) Every zero ideal is a Nilpotent ideal.

Note: Every element in a Nilpotent ideal is a Nilpotent ideal.

Example: we know that A={0,2} is an Nilpotent ideal in a ring R=2/(4).

Since 0,2 € A

0.1=0,2.2=4=0in R

0,2 are Nilpotent elements.

Definition:An ideal A inaring R is called a Nill ideal if each element of A is
Nilpotent

Example:A={0,2} is a Nill ideal in a ring R=2Z/(4).
Problem: Show that A & B are Nilpotent ideals there sum A+B is Nilpotent ideal.

Solution:Given that




Claim: A+B is Nilpotent ideal.

I.e., it is enough to show that (A+B)"=0
(A+B)"=nceA"B%+nc AT B +--- +nc APBN
=0+ A™BH+--- +ncA%B"

=nA"A1B+---+ncAB"

=0+0+---+0
=(0)
~(A+B)"=(0)

-~ A+B is Nilpotent ideal.

Zorn’s Lemma:A partially ordered set is a system of a non-empty set S & a
relation Usually denoted by < such that the following conditions are satisfied
Va,b,c €S

1) a<b and b<a = a=b
i) a<a
i)  a<b and b<c = a<c

A chain C in a poset (S,<)is a subset of S for every a,b € C either a<b(or)b<a. An
element u € S is an upper bound of C if a<u for every a€C,an element m€S is a
maximal element of a poset (S,<)if m<a, a€ S implies m=a.
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Definition: A commutative integral domain R with unity is called UNIQUE
FACTORIZATION DOMAIN if it satisfies the following conditions.

) Every non-unit of R is a finite product of irreducible factors.
i)  Every irreducible element is prime.

Definition: A non zero element “a” of an integral domain R with unity is called an
IRREDUCIBLE ELEMENT. If

) a is not a unit,
i) a=bc for b,c €R. = either b is a unit(or)c is a unit.

Definition: A non zero element P of an integral domain R with unity is called a
“PRIME ELEMENT” if

) P is not a unit
i) if P/ab then P/a(or)P/b for a,b€R.

Principal Ideal Domain: A commutative integral domain R with unity is a
principal ideal domain if each ideal in R is of the form (a)=aR, a€R.

Theorem: Every PID is a UFD.
Proof: let R be a PID

Every ideal inR isaP.l

Claim:R isa UFD

I.e., it is enough to show that

1) Every non-unit of R is a finite product of irreducible factors.

i) Every irreducible element is prime.

Step:1) In this step to show that Every ascending chain of ideals of R is finite
In this step to show that Every ascending chain of ideals of R is finite.
Suppose that I;cl,clscl,c --- (1) be an ascending chain of ideals of R.

Let I=Ujl;

| is an ideal of R: clearly, | #¢p SR

Let a,b€ |




=a,b€Ul;

=a,b€l;

=a-b€l; for somei
=a-b€Ul

=a-b€l

Let a€l;,b€l; for iz

By (1), i€lj(or) lj<li
=a,b€l;

=a-b€ |;

=a-b€u |; =l

ii) Let a€l, x€R

=a€ |; for some i, x €R
=ax, Xa € |;

=ax, xa €U |; =I
Clearly, a€<a>=I=U |
~lis anideal of R
Since R is PID

Then I=<a> for some a € R
=a€ | for some |
=><a>C |;

~l=<a>C |; Cj;:1C U=l

~chain (1) is finite.

STEP:2) To prove that each element a€R is a product of finite number of

irreducible elements




If aisirreducible then it is clear
Let a=bc,

Where neither b nor cis not a unit. If both b &c are product of irreducible
elements then the result is true

Suppose that b cannot be written as product of irreducible elements

Let b=xy where neither x nory is not a unit.

If both x & y are product of irreducible elements then the result is true.

If not,continuing the above process finally we get an ascending chain of ideals of R
i.e., <a>C<b>------

This chain is not stationary

Which is contradiction to step(1)

If both b &c are product of irreducible elements. Each element a€R is a product of
finite number of irreducible elements.

Step:3) Finally to prove that every irreducible element is prime.
Let a€R be an irreducible element

Since R is a PID then by known result a is prime.

By step(1),step(2) & step(3)

we conclude that R is a UFD.

Definitions:

Principal Ideal Domain: A commutative integral domain R_with unity is a
principal ideal_domain if each ideal in R is of the_form (a)=aR, a€R.

Eucliden Domain: A commutative integral domain R with unity is A Euclidean
domain if3 a function ¢: R—Z is satisfying the following conditions:

) If a,b € R*=R-{0} and b/a, then ¢(b)<p(a)
i)  For all a,b€ER,b#0,3q,r€E 3a=bqg+r with @(r)<ep(b)

Example: i) Every field is a Euclidean domain




i) The ring of integers Z is a Euclidean domain if ¢(n)=|n|, n€Z .
Theorem: Every Euclidean domain is a PID.

Proof: let R be Euclidean domain Ja function ¢:R—Z is Satisfying the following
conditions:

) If a, b € R*=R-{0} and b/a, then @(b)<p(a)
1)  For all a,b€R,b#0,3q,r€E 3a=bq+r with @(r)<e(b)

Claim: Ris aPID.

Let | # (0) be an ideal inR
=3Ix€13x£0

Now we have 1/x Vx#0€I

=>0(1)<p(x) Vx#0€I

Define o(I)={o(x)/x#0€I}

Clearly, ¢(1) is a lower bound of ¢(I)
Clearly, o(I)#¢ € Z+

¢(I) has a least element

=3 d €| 3 ¢(d) is least element in ¢(I)
Claim: I=<d>

Clearly, <d>cl

To prove that lc<d>

Leta€ | cR, also dOIcR

By division algorithm in R,

g, r € R aa=dqg+r ----(1) with ¢(r)<op(d)
If r20€R Then r=a-dq €I

=r€l

=0(r) €¢(I) also ¢(r)<e(d)

=(r) is the least element in @(I)




Which is contradiction to ¢(d) is the least element in o(I)
~r=0

From (1) a=dq €<d>

=lc<d>

~l=<d>isaPlinR

~Every ideal inR is a PI

~RisaPID

Hence every Euclidean domain has a PID.

Definitions:

Eucliden Domain: A commutative integral domain R with unity is A Euclidean
domain if Ja function :R—Z is Satisfying the following conditions:

) If 4, b € R*=R-{0} and b/a, then @(b)<p(a)
i)  For all a,b€ER,b#0,3q,r€E 3 a=bq+r with ¢(r)<¢(b)

Example: i) Every field is a Euclidean domain
i) The ring of integers Z is a Euclidean domain if ¢(n)=|n|, n€Z.

Principal Ideal Domain: A commutative integral domain R with unity is a
principal ideal domain if each ideal in R is of the form (a)=aR, a€R.

Definition: A commutative integral domain R with unity is called “Unique
Factorization Domain” if it satisfies the following conditions.

) Every non-unit of R is a finite product of irreducible factors.
i)  Every irreducible element is prime.

Theorem: Every Euclidean domain is a UFD.

Proof: PART:1) Let R be Euclidean domain3 a function ¢:R—->Z is Satisfying the
following conditions:

i) If a, b € R*=R-{0} and b/a, then ¢(b)<d(a)
ii) For all a,b€R,b20,3q,r€E 3 a=bg+r with ¢(r)<d(b)

Claim: R is a PID.




Let 12(0) be an ideal in R

=3Ix€15x#0

Now we have 1/x Vxz0€l ¢(1)<dp(x) Vx=0€l
Define ¢(1)={d(x)/x=20€I}

Clearly, (1) is a lower bound of ¢(l)
Clearly, ¢(l)zd < Z*

¢(l) has a least element

=3 d€l a¢(d) is least element in ¢(l)
Claim: |=<d>

Clearly, <d>cl

To prove that Ic<d>

Let a€l CR, also d#0€IcR

By division algorithm in R,

g, r €R 3 a=dqg+r ----(1) with ¢(r)<d(d)
If r#0€R then r=a-dqg€l

=>ré€l

=(r) €6(1) also d(r)<d(d)

=a¢(r) is the least element in ¢(l)

Which is contradiction to ¢(d) is the least element in ¢§(l)

~r=0

From (1) a=dg€<d>
=lc<d>
~l=<d>isaPlinR

~Every idealin R is a PI




~RisaPID

Hence every Euclidean domain has a PID.
Part:2) Let R be a PID
EveryidealinRisaP.l

Claim: Risa UFD

i.e., it is enough to show that every non-unit of R is a finite product of irreducible
factors.

Every irreducible element is prime.

STEP:1) In this step to show that Every ascending chain of ideals of R is finite.
Suppose that I;cl,clz;cl,c --—> (1) be an ascending chain of ideals of R.
Let 1=Uj1l;

| is an ideal of R: clearly, | #¢ €R

Let a,b€ |

=a, b€Vl

=a,b€l;

=a-b€l; for some i

=a-b€Ul

=a-bél

Let a€l;,b€l; for iz

By (1), li€lj(or) lj<li

=a,b€l;

=a-b€ |,

=a-b€u [; =

ii) Let a€l, x€R

=a€ |; for some i, x €R




=ax, Xxa € |;

=ax, xa €U |; =I

Clearly, a€<a>=I=U |
~lisanideal of R

Since Ris PID

Then I=<a> for some a € R
=a€ |; for some |

=<a>C |

~l=<a>C |i C|i+1CU|n=I

~chain (1) is finite.

STEP:2) To prove that each element a€R is a product of finite number of
irreducible elements

If ais irreducible then it is clear
Let a=bc,

Where neither b nor c is not a unit. If both b &c are product of irreducible
elements then the result is true

Suppose that b cannot be written as product of irreducible elements

Let b=xy where neither x nory is not a unit.

If both x & y are product of irreducible elements then the result is true.

If not,continuing the above process finally we get an ascending chain of ideals of R
i.e., <a>C<b>------

This chain is not stationary

Which is contradiction to step(1)




If both b &c are product of irreducible elements. Each element a€R is a product of
finite number of irreducible elements.

Step:3) Finally to prove that every irreducible element is prime.
Let a€R be an irreducible element

Since R is a PID then by known result a is prime.

By step(1),step(2) & step(3)

we conclude that R is a UFD.

By part(1) & part(2),

Every Euclidean domain is a UFD.

Definitions: Content Of A Polynomial:

Let f(x)=ap+aix+ax*+---+anx" be a polynomial over a UFD in R.

Then the content of f(x) is denoted by c(f) and is defined as c(f)=(ag,a1,---,an) .
Example: f(x)=2x2-4x+8=0

~C(f)=(2,-4,8)=2.

Primitive Polynomial:

Let f(X)= ap+aix+ax>+---+apx" be a polynomial over a UFD in R.
f(x) is said to be primitive if c(f)=1 (or) a unit.

I.e., (ag,a1,---,an)=1.

Example: f(x)=3x?-5x+7

Here,(3,-5,7)=1

~f(x) is primitive.

Note: let R be a UFD. Every non-zero f(x) of R[x] can be written as f(x)=g.f1(X)
where g=c(f) and fi(x) is primitive.

Example: f(x)=x*+1€R[x]
c(f)=1=g
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~1(x)=0.f(x)

Theorem: If R is a UFD then the product of two primitive Polynomials in R[X] is
again a primitive polynomial in R[X].

Proof: let f(X)= agtaix+ax>+---+amx™
g(X)= bot+bix+byx?+---+abnx" be two primitive polynomials in R[x]

Let h(x)=f(x)g(x)

=Co+tCiX+---+CminX™™"
Claim: h(x) is primitive.
If possible suppose that h(x) is not primitive in R[X].
=3a prime element of R 3 p/c; Vi
Since f(x) is primitive then pta; where a; is the first coefficient of f(x).
Since g(x) is primitive then ptb; where b is the first coefficient of g(x).
Let cisj = the coefficient of xi+j of h(x).

=aibj+(ai-1bj+1+ai20j+2+---a0bj+i) +(@i+1bj1+air2bjo+---+ai+jbo)
= aibj =Ci+j-{( ai-1bj+1+ai20jr2+---200j+i)+( @i+1Dj-1H8i+2Dj2+---+ai+j00) }—(1)
Since p/ao,p/ai,p/az,---plan
Then p/ ai.1bj+1+ai-20j+2+---80Dj+i
Since p/bj.1,p/bj.2,~--p/bo
Then p/ aj+1bj1+ai+20j2+---+ai+jboalso p/cis;
from (1), we get
P/RHS of (1)
=p/aib;
=pl/a; (or) p/bj
Which is contradiction to pta; and ptb;
~0ur assumption h(x) is not primitive is wrongh(x) is primitive.
Hence the product of two primitive polynomials in R[X] is primitive.

11




