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Definition: 

Endomorphism:A homomorphism of a group G into itself is calledendomorphism 

Automorphism: 

An isomorphism from a group G onto itself is called an “Automorphism”. 

The set of all automorphisms of G is denoted by AUT(G). 

Inner automorphism: 

let G be a group and a€G the automorphism fa: G→G defined by fa(x) =axa-1 for 

all x€G is called an” inner automorphism of G” and It is denoted by In(G) 

In (G) = {fa/a€G} 

Outer automorphism: 

An automorphism which is not inner is called an “outerautomorphism” 

statement:The set AUT(G) of all Automorphism of a group G is a group under 

composition of mappings and IN(G)∆AUT(G)Moreover G/Z(G) ≈IN (G) 

proof:step (1):Given that G is a group 

Consider AUT (G) = {f/f: G→G is an Automorphism} 

claim:AUT (G) forms a group with respective toComposition of mappings. 

Clearly, I€AUT (G) 

AUT (G) ≠ф⊆SG a symmetric group 

∴gοf€AUT (G) 

ii) Let f € AUT(G) 

⇒f:G→G is an automorphism 

⇒f -1 : G→G is a bijective 

f-1 :G→G is a homomorphism:Now f[f-1(x).f-1(y)]=f[f-1(x)].f[f-1(y)] 
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= I(x).I(y) 

=xy 

⇒f[f-1(x).f-1(y)] =xy 

f-1(x).f-1(y) =f-1(xy) 

f-1 :G→G is an automorphism 

∴f-1 € AUT(G) 

∴AUT(G) < SG 

Hence AUT (G) forms a group with respective to Composition of mappings. 

step (2):IN (G) ∆AUT (G):We know that fa: G→G defined byfa(x) = axa-1, ∀ x€G is 

an automorphism of G. 

Now IN (G) = {fa/a€G} 

I)i)IN(G)<AUT(G) : let fa,fb € IN(G),x€G 

i) Let f, g € AUT (G) 

⇒f:G→G is an automorphism andg:G→G is also anautomorphism. 

⇒gοf:G→G is bijective 

gοf:G→G is homomorphism: 

Let x,y€G 

[gοf (xy)] =g [f (xy)] 

=g [f(x) f(y)] 

=g [f(x)] g [f(y)] 

= (gοf)(x). (gοf)(y) 

∴gof:G→G is an automorphism 

Now (fa.fb)(x)=fa(fb(x)) 
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= fa(bxb-1) 

=a(bxb-1)a-1 

=abxb-1a-1 

=abx(ab)-1 

=fab(x) 

∴ (fa.fb)(x)=fab(x) ∀x€G 

⇒fa.fb= fab € IN (G) 

⇒fa.fb€ IN(G) 

ii) Let fa € IN(G) 

⇒a € G 

⇒a-1 € G 

⇒fa-1 € IN(G) 

Now fa.fa-1 =faa-1=fe 

∴(fa)
-1 = fa-1 € IN (G) 

⇒ (fa)-1 € IN (G) 

∴IN (G) <AUT(G) 

2) IN (G) is Normal in AUT (G):Let fa € IN (G) and f € AUT (G) 

Aim: f.fa.f
-1 € IN (G) 

Let x € G 

Now [f.fa.f
-1](x) = f{fa[f

-1(x)]} 

=f[a.f-1(x).a-1] 

= f(a).f(f-1(x)).f(a-1) 

=c.x.c-1 where c = f(a) € G 
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= fc(x) 

∴[f.fa.f
-1](X) = fc∀ x € G 

⇒f.fa.f
-1 = fc € IN (G) 

⇒f.fa.f
-1 € IN (G) 

∴IN(G) ∆ AUT(G) 

step (3): G/Z (G) ≈ IN (G):We know that Z (G)={a € G/ax =xa ∀ x € G} 

Define a mapping ф: G → IN (G) byФ (a) = fa ,∀ a € G 

Clearly, ф is well defined 

Ф is onto:Let fa € IN (G) 

⇒a € GA also ф (a) = fa 

∴every element in IN(G) has per-image in G 

Ф is a homomorphism:Let a, b € G 

Now, ф (a b) = fab=fa.fb=ф (a).ф (b) 

∴ф:G→IN(G) is an onto homomorphism 

By fundamental theorem of homomorphism, 

We have G/kerф ≈ IN (G) 

Finally, to prove that kerф = Z (G): 

Nowkerф = {a € G /ф(a) = an identity element in G} 

={a € G / fa =fe} 

={a € G /fa(x) = fe(x), ∀ x € G} 

={a € G / axa-1 = exe-1, ∀ x € G} 

= {a € G / axa-1 = x, ∀ x € G} 
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={a € G / ax = xa, ∀ x € G}=Z (G) 

∴G/Z (G) ≈ IN(G) 

problem :Let G be a group and a€G.The mapping fa : G→G is defined by 

fa(x) = axa-1 ,∀ x € G is anautomorphism of G 

solution: Given thatG is a group and a € G 

Define a mapping fa : G→G by fa(x) = axa-1∀ x € G 

claim:fa € AUT (G) 

fais one-one:Let x,y € G 

Let, fa(x) = fa(y) 

axa-1 = aya-1 

x = y 

fa is onto :Let y € G 

Then we get a-1ya € G 

Now fa(a-1ya) =  a(a-1 ya)a-1 

= aa-1yaa-1 

=eye=y 

∴Every element in co domain has pre-image inDomain. 

fa : G→G is a homomorphism:Let x, y € G 

Now fa(xy) = axa-1 

=ax(a-1a)ya-1 

=(axa-1)(aya-1) 

=fa(x).fa(y) 
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∴fa(xy) = fa(x).fa(y) 

∴fa : G→G is an automorphism 

∴fa€ AUT(G) 

Conjugacy and G-sets: 

Definition:Let G be a group and X is a set. Then G is said to “act on X”. If ∃ a 

mapping φ : GxX → X with φ(a,x)=a*x such that I) a*(b*x) = ab*x 

II) e*x = x ,∀a ,b € G , x € X. 

The mapping φ is called “the action of G on X”.X is said to be a “G - set” 

Example (1):Let G be a group and a €G we defined a*x = axa-1 for a € G, x € 

GThen show that G is a G-set. 

solution: Let G be a group and G be a set. 

claim:G is a G – set. 

Define φ: GxG → G by φ (a, x) = a*x = axa-1 

Let a, b € G 

i)a*(b*x) =a*(bxb-1) 

=a (bxb-1) a-1 

=abx (ab)-1 

=ab*x 

∴a*(b*x) = ab*x 

ii) e*x =exe-1= exe= x 

∴e*x = x 

∴ G is a G – set. 
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Examle(2) :Let G be a group and H<G then the set G/H of all left cosets in a G is a 

G – set by definding a*xH = axH ,∀a € G, xH € G/H. 

solution:Let G be a group and H<G 

We know that G/H = {xH/x€G} 

claim: G/H is a G – set. 

Define φ: G x G/H → G/H by φ(a,xH)=a*xH = axH∀a € G, xH € G/H 

Let a, b € G, xH € G/H 

i) a*(b*xH) = a*(bxH) 

 = abxH 

=ab*xH 

∴a*(b*xH) = ab*xH 

ii) e*xH = exH=xH 

∴e*xH = xH 

∴G/H is a G – set. 

Theorem :Let g be a group and let x be a set.if x is a g – set, then the action of g 

on x induces a homomorphism φ : g →sxany homomorphism φ : g → sx induces an 

action of g onto x  

proof:Let G be a group and let X be a set 

I. Suppose that X is a G – set 

For any a € G , 

Define a mapping fa : X→X by fa(x) = ax ,∀x€X 

Clearly, fa is one – one and onto 

∴fa is bijective 

∴fa € Sx 
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Define a mapping φ: G → Sx by φ(a) = fa,∀a€G 

Let , x € X 

Now (fa.fb) (x) = fa(fb(x)) 

= fa(bx) 

=a(bx) 

=(ab)x 

=fab(x) 

∴fa.fb = fab 

φ is homomorphism:Let a ,b € G 

Now φ (ab) = fab=fa.fb= φ (a).φ(b) 

∴φ(ab) = φ(a).φ(b) 

II)Let φ :G →Sx be a homomorphism 

claim: X is a G – set 

Define a * x = [φ(a)] (x) ∀ a € G , x € X 

Let a, b € G , x € X 

I) a*(b*x) = a*(φ(b)(x))= [φ(a)] (φ(b)(x)) 

= [φ(a). φ (b)](x) 

= [φ(ab)](x) 

= ab *x 

∴ a*(b *x)=ab *x 

II) e*x = [φ(e)(x)]= fe(x)= ex = x 

∴e*x = x 

∴ X is a G – set 
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State and Prove Cayley’s theorem 

statement:let g be a group then g is an isomorphic into the symmetric group SG 

proof :let G be a group and G be a set . 

by known theorem , G is a G – set . 

by known result,∃ a homomorphism φ : G → SG defined by[φ(a)](x) = ax, ∀ x € 

Gclaim :G ≈ SG 

φ is one – one :i.e., it is enough to show that Ker φ = {e} 

 Now Ker φ = {a € G /φ(a) = I} 

= {a€ G / φ [(a)](x) = I(x) , x € G} 

= {a € G / ax = x} 

= {a € G / ax = ex} 

= {a € G / a = e} 

= {e} 

∴ Ker φ = {e} 

∴φ is one- one 

∴φ: G → SG is an into isomorphism 

∴ G ≈ SG 

Hence proved. 

Theorem :let “G”be a group and H<G of finite index “n” then there is a 

homomorhism φ:G→ Sn such that Ker φ = ∩x€G xHx-1
 

proof: Let H<G of finite index n . 

∴ |G/H| = n also SG/H ≈ Sn 

by known theorem , G/H is a G – set . 
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⇒∃a homomorphism φ:G → SG/H defined by [φ(a)](xH) = axH∀x€G 

we get , ∃ a homomorphism φ : G → Sn defined by [φ(a)](xH) = axH∀ x€ G 

claim:Now Ker = {a € G / φ (a) = I} 

= {a € G / [φ (a)] (xH) 

= I(xH) ,∀€ G/H} 

= {a € G / axH = xH,∀ x € G } 

= {a € G / a(xHx-1) = (xHx-1) , ∀ x € G } 

= {a € G / a € xHx-1 ,∀ x € G } 

= ∩x€G xHx-1 

Ker φ = ∩x€GxH x-1 

Hence ∃ a homomorphism φ : G → Sn such thatKer φ = ∩x€GxH x-1 . 

Note (1):|G| = Σa€GO(G)/O(N(a)) is called the “class equation of G”. 

Note (2):|G| = Σa€GO(G)/O(N(a)) 

=Σa€ZO(G)/O(N(a))+Σa∉ZO(G)/O(N(a)) 

= Σa€ZO(G)/O(G)+ Σa∉ZO(G)/O(N(a)) 

∴ |G| = |Z| + Σa∉Z O (G)/O (N (a)). 

Note (3):If |G| = pn , where p is prime then Z ≠ {e} (or) G hasNon-trivial center. 

Note (4):G is abelian ⇔ Z = G 

Result :show that every group of order p2 isabelian. 

Proof:let g be a group э o(g) = p2 

claim:G is abelian 

i.e., it is enough to show that Z = G 

We know that Z = {a € G/ax = xa ∀x €G} 
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By know result, Z ≤G , G is finite. 

By Lagrange’s theorem O(Z) /O(G) 

⇒O (Z)/P2 

⇒O (Z) = 1 (or) O(Z) = P (or) O(Z) = P2 

i) Since O (G) = P2 

By known result, Z ≠ {e} 

⇒O (Z) > 1 

∴ O (Z) ≠ 1 

ii) Let O(Z) = P 

Let a € G Э a ∉ Z 

We know that N(a) ≤ G also Z ⊆N(a) 

⇒O(N(a))/O(G) 

⇒ O(N(a))/p2 

⇒ O(N(a)) = p2 

⇒ O(N(a)) = O(G) 

⇒ N(a) = G 

⇒a € Z 

Which is contradiction to a ∉ Z 

∴O (Z) ≠ p 

∴ O (Z) = p2 = O(G) 

Z = G 

G is abelian. 
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STATE AND PROVE BURNSIDE THEOREM: 

statement:let  G be a finite group acting on a finite set xthen the number k of 

orbit in x under G is K = 1/|G| Σg € G |xg| 

proof:Define, S ={(g, x) € GxX /gx = x} 

∴ |S| = |Xg| = |Gx| 

|S| = Σg € G |xg | = Σx € X|Gx|     ------- (1) 

We know that, |Gx| = |G| / |Gx| 

⇒|Gx | = |G| / |Gx| 

⇒Σx € X |Gx| = Σx € X |G| / |Gx| 

= |G| Σx € X 1 / |Gx| 

= |G| Σa € C Σx € Ga 1 / |Ga| 

Where C contains exactly one element from each orbit. 

=|G|Σa € C[1/|Ga| + 1/|Ga| +--- (|Ga| times)]                     

=|G|Σa € C |Ga| / |Ga| 

= |G|Σa € C (1) 

= |G|. K 

Σx € X |Gx | = |G|. K 

K = 1/|G| Σx € X |Gx | 

∴K = 1/|G| Σg € G |xg | 

Hence proved. 

SOLVABLE GROUP: 

Definition :solvable group: 

A group G is said to be “solvable” if G (k) = {e} for some integer k. 
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Theorem:Every homomorphic image of a solvable group is solvable. 

proof:let G be a solvable group 

i.e., G (k) = {e} for some integer k 

Let φ: G→G* be a homomorphism 

Let G* be the homomorphic image of G under φ 

claim: G* is solvable 

Now, (G*)(k) = φ(G(k)) 

= φ (e) 

= {e*} 

∴G* is solvable. 
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Theorem:let H1,H2,---Hn be a family of subgroups of a group G& 

let H = H1,H2,---Hn if Hi Δ H &Hi ∩ (H1 ---Hi-1Hi-+1---Hn) =(e)for 1≤i≤ n then show 

thatH1xH2x---xHn ≈ H. 

Proof:Suppose thatH1,H2,---Hn be a family of subgroups ofa group G & 

H = H1.H2.---Hn Hi ΔH&Hi ∩ (H1 ---Hi-1 Hi-+1---Hn) =(e)→(1) 

Claim:H1xH2x---x Hn ≈ H. 

Let x € Hi, y € Hj 

By (1), Hi ∩Hj = {e} 

⇒xy = yx ---→(2) 

Define a mapping φ:H1xH2x---x Hn→H by  

φ(x1,x2,---,xn)=x1.x2.---.xn∀ xi € Hi→ (3) 

i)φ is homomorphism: 

Now,φ[(x1,x2,---,xn).(y1,y2,---,yn)] =φ[(x1y1,x2y2,---,xnyn)] 

= x1y1.x2y2.---.xnyn 

By using equation(2),we get 

=[x1.x2.---.xn][y1.y2.---.yn] 

= φ(x1,x2,---,xn)φ(y1,y2,---,yn) 

∴φ is homomorphism 

ii) φ is one – one: 

To prove that ker φ = {e} 

Let (x1,x2,---,xn) € ker φ 

φ(x1,x2,---,xn) = e 

x1.x2.---.xn = e 

x1x1
-1.x2.---.xn = x1

-1e 

x2.---.xn= x1
-1 

Since x1
-1€ H1 also x1

-1€ H2--- Hn 
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⇒x1
-1€ H1∩(H2---Hn) 

⇒x1
-1= e 

⇒x1 = e 

Similarly, we get x2= e,---, xn= e 

⇒(x1,x2,---,xn) =(e,e,---,e) 

∴ker φ = {e} 

∴φ is one – one 

Clearly, φ is onto 

φ:H1xH2x---x Hn→H is isomorphism H1xH2x---x Hn ≈ H. 

FIRST SYLOW THEOREM: 

Statement:Let G be a finite group and let p be prime. If pm/O(G) but pm+1∤O(G) 

then G has a subgroup of order pm 

Proof: Given that G be a finite group and let p be prime. 

If pm/O(G) but pm+1∤O(G)  

Claim: G has a subgroup of order pm 

To prove this result by induction on O(G) . 

Case(i):If O(G) = 1 then the result is true 

Case(ii):Assume that the result is true for all finite abelian groups whose  

orders< O(G) 

Case(I): suppose that G has a proper subgroup H ∋ pm/O(H) 

Clearly, H⊂G 

⇒O(H)<O(G) 

By induction hypothesis, H has a subgroup T of order pm 

i.e., T<H and O(T) = pm 

∵ T < H < G 

T < G, O(T) = pm 
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∴ G has a subgroup T of order pm 

CASE(II):suppose that G cannot have a proper subgroup H ∋ pm/O(G) 

i.e., ∋ pm∤O(H) 

Claim:G has a subgroup of order pm 

By class equation in G, 

we have |G| = |Z| + Σa∉Z O(G)/O(N(a)) 

⇒ |Z| = |G| - Σa∉ZO(G)/O(N(a)) →(1) 

Here p/pm and pm/O(G) 

⇒ p/O(G) ----(2) 

Clearly, N(a) < G 

⇒pm∤O(N(a)) 

⇒pm/[O(G)/O(N(a))] 

⇒ Pm/ Σa∉ZO(G)/O(N(a)) 

⇒p/ Σa∉ZO(G)/O(N(a)) ---(3) 

From (2) & (3) 

p/ [|G| - Σa∉ZO(G)/O(N(a))] 

⇒p/ |Z| by (1) 

By Cauchy’s theorem for abelian groups ∃ an element b€Z∋bp=e 

i.e., O(b) = p 

Let B =<b>be a cyclic subgroup Of G 

Clearly, O(B) = O(b) = p 

Since b € Z  

⇒<b>∆G 

⇒B ∆G 

G/B ={xB/x € G} 
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Let G̅= G/B 

⇒O(G̅) = O(G/B) =O(G)/O(B) 

=pm.n/p 

=pm-1.n 

O(G̅) = pm-1.n 

pm-1/O(G̅),also pm∤O(G̅) 

Since O(G̅) = O(G)/O(B) < O(G) 

By induction hypothesis, 

G̅ has a subgroup p̅ of order pm-1 

i.e., p < G, O(P) =Pm-1 

Consider the set p={x€G/xB €p} 

P < G also, we have p̅ ≈ P/B 

⇒O(P̅) = O(P/B) 

⇒O(p̅) = O(P)/O(B) 

⇒O(p) = O(p̅).O(B) 

=pm-1.p 

O(p) = pm 

∴∃ P < G ∋O(p) = pm 

Hence , G has a subgroup of order pm 

Hence , the result is holds for G by using induction . 

Definition: let A,B be two subgroups of a group G. A&B are said to be conjugate 

if A = xBx-1 for some x € G 

STATE AND PROVE SECOND SYLOW THEOREM: 

Statement: Let G be a finite group and p be prime, pn/O(G) but pn+1∤O(G) then any 

two subgroups of order pn are conjugate. 

Proof: Assume that,A<G,B<G ∋O(A)=pn,O(B)=pn 
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Claim:A & B are conjugate 

i.e., it is enough to show that A = xBx-1 for some x € G 

If possible suppose that A = xBx-1∀x € G 

⇒A∩xBx-1=φ⊆A 

⇒A∩xBx-1⊆A 

⇒O(A∩xBx-1)<O(A) 

Let O(A∩xBx-1)=pm where m<n 

We know that,O(AXB)=O(A)O(B)/O(A ∩xBx-1) 

=pn.pn/pm 

=p2n-m→(1) 

Since m<n 

⇒n>m 

⇒ n-m>0 

⇒ n-m≥1 

⇒ n+(n-m)≥n+1 

⇒ 2n-m ≥n+1 

⇒p2n-m≥pn+1 

⇒pn+1≤ p2n-m 

⇒pn+1/p2n-m 

⇒pn+1/ΣO(AXB) 

⇒ Pn+1/O(G) 

Which is a contraction to pn+1∤O(G) 

Our assumption is wrong 

A = xBx-1 for some x€G 

Hence, A & B are conjugate. 
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DEFINITIONS: 

Ring:Let R be a non-empty set and +, .be two binary operations in R then the 

algebraic structure (R,+, .) is said to be RING if (R,+) is a commutative group  

(R, .)is a semi-group Distributive laws. 

Commutative Ring: In a ring (R,+, .) if a.b = b.a for a,b € R then we say that R is 

commutative ring. 

Field: let R be a commutative ring with unity elements if every non-zero element 

of R is invertible under multiplication then R is a field. 

Right Ideal:let R be a ring and U ≠ φ⊆R we say that U is a right ideal in R. If 

i) a,b € U ⇒ a-b € U 

ii) a € U,r € R ⇒ar € U. 

Left Ideal:let R be a ring and U ≠ φ⊆R we say that U is a left ideal in R. If 

i) a,b € U ⇒ a-b € U 

ii) a € U ,r € R ⇒ra € U 

Ideal:let R be a ring and U ≠ φ⊆R we say that U is an ideal in R. If 

i) a,b € U ⇒ a-b € U 

ii) a € U ,r € R ⇒ar,ra € U. 

Trivial&Non-Trivial Ideals:In a ring R , the ideals {0} and R are called 

trivial(or)improperideals in R and all other ideals of R are called non-

trivial(or)proper ideals of R. 

Problem:Let R be a ring and a € R then show that aR={ax/x€R}is a right ideal 

of R 

Solution: Given that R is a ring and a € R also aR={ax/x€R} 

Claim:aR is a right ideal of R. 
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Clearly, 0 € R 

∴0 = a.0 € R 

⇒0 € aR 

⇒aR ≠ φ⊂R 

i) Let x,y € R 

⇒x=ap, y=aq for some p,q € R 

Now, x-y = ap-aq 

=a(p-q) 

x-y=a.t where t=p-q €R 

Here at€aR 

⇒X-y € aR 

ii) Let x € aR, k € R 

Now xk = (ap)k 

=a(pk) 

xk = az where z=pk € R 

Here az € R 

⇒xk € R 

∴aR is a right ideal of R. 

Theorem:Let R be a commutative ring with unity. Suppose R has no non-trivial 

ideals then show that R is a field. 

Proof:Given that R is a commutative ring with unity 

Suppose that R has no non-trivial ideals. 

⇒The any ideals of R are {0} and R itself. 
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Claim:R is a field 

Let 0≠a€R 

Then by known result,The set aR={ax/x€R} is an ideal in R. 

Here a≠0€R ⇒aR ≠ {0} 

By the hyothesis,we get aR=R. 

Since 1€R 

⇒1€aR 

⇒ 1=ax for some x€R 

⇒ax=1 for some x€R 

⇒x€R is the multiplicative inverse of a in R. 

∴every non-zero element in R has multiplicative inverse in R. 

Hence R is a field. 

Definitions: 

i) Homomorphism:Let (R,R')be groups.Amappingφ: R→R'is calleda 

homomorphism. Ifφ(a).φ(b)=φ(ab),∀a,b€R. 

ii) Monomorphism:Ifφ is one-one then φ is calledMonomorphism of R. 

iii) Epimorphism:Ifφ is onto then φ is calledepimorphism of R. 

Iv) Isomorphism:Ifφ is homomorphism andbijection then φ is calledisomorphism 

of R onto R’. 

V)Endomorphism:A homomorphism of R intoitself is called anendomorphism of 

R. 

Vi)Automorphism:An endomorphism of R which is both one-one&onto is 

calledan automorphism. 
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Vii)Kernelof Homomorphism:If f:R→S is a ring homomorphism then the kernel 

of f isdenoted by “kerf”(or)I(f)(or)f-1(0) and is defined askerf={x€R/f(x)=0’} 

where 0’€S is the zeroelement. 

State And Prove Fundamental Theorem Of Homomorphism: 

Statement:let f be a homomorphism of a ring R into a ring Swith kernel then 

 R/N ≈Im(f). 

Proof: let f:R→S is a ringhomomorphism 

Let N=kerf 

By known result,kerf is an ideal of R 

⇒N is an ideal of R 

⇒R/N={x+N/x€R} isa quotient ring 

We know that,Im(f)={f(x)/x€R} 

Claim: R/N ≈Im(f) 

Define φ:R/N→Im(f) by φ(x+N)=f(x),∀x€R 

φis well-defined&one-one: 

Let x,y€R 

⇒x+N,y+N€R/N 

Let x+N=y+N 

⇔x-y€N⇔X-y€kerf 

⇔f(x-y)=0 

⇔f(x)-f(y)=0 

⇔f(x)=f(y) 

⇔φ(x+N)=φ(y+N) 
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φ is onto: let T€Imf 

⇒T=f(x) for some x€R 

Since x€R 

x+N € R/N 

By def φ,φ(x+N)=f(x)=T 

∴Every element in Imf haspre-element in R/N. 

φ is a homomorphism:Let x,y€R 

⇒x+N,y+N€R/N 

i) φ[(x+N)+(y+N)]=φ[(x+y)+N] 

=f(x+y) 

= f(x)+f(y) 

=φ(x+N)+φ(y+N) 

ii)φ[(x+N).(y+N)]=φ[(xy)+N] 

=f(xy)= f(x).f(y) 

=φ(x+N).φ(y+N) 

∴φ:R/N→Im(f) is anisomorphism. 

∴∃an isomorphism φ fromR/N into Im(f). 

∴R/N≈Imf. 

Definitons: 

Maximal Ideal:An ideal M≠R is said to be maximal in R if ∃an ideal U of R 

∍M⊂U⊂R theneither U=M(or)U=R. 

Co-Maximal:Two ideals A,B in any ring R are called co-maximal if A+B=R 
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Prime Ideal:An ideal P in a ring R is called a prime ideal if A,B are ideals in R 

such that AB⊆P thenA⊆P(or)B⊆P . 

Theorem:If R is a non-zero ring with unity 1 and I is an ideal in R ∍I≠R, then ∃ a 

maximal ideal M of R ∍ I⊆M. 

Proof: Given that R is a non-zero ring with unity 1 & I≠R is an ideal of R. 

Claim:∃ a maximal ideal M of R ∍I⊆M. 

Let S={J/J is an ideal of R& I⊆J, J≠R} 

Clearly, (S, ⊆) is a poset 

Let C be a chain in S 

Put T=∪ki€Cki 

First to prove that T is an ideal of R 

Let x,y€T and r€R 

x,y €∪ki € Cki 

x€ki ,y€kj for some ki,kj€C 

Since ki,kj€C and C is a chain in S. 

ki⊆kj(or) kj⊆ki 

Assume that ki⊆kj 

∴x,y€kj and also r€R, kj is an ideal of R 

⇒x-y €kj and xr,rx€kj 

⇒x-y € ∪ki € Ckiand xr,rx∪ki € Cki 

⇒x-y € T and xr,rx€T 

⇒ T is an ideal of R also ki⊆∪ki € Cki=T 

⇒T is an ideal of R and ki⊆ T for ki€C 
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⇒T is an upper bound of C 

Next to prove that T€S: 

i.e., to prove that T is an ideal of R and I⊆T, T≠R. 

Since ki€C⊂S 

⇒ki€S 

⇒ki is an ideal of R and I⊆ki,ki ≠R. 

Since I⊆ki 

⇒I⊆∪ki € Cki 

⇒ I⊆T 

if T=R then 1€T 

⇒1⊆∪ki € Cki 

⇒1€ kj for some ki€C 

⇒kj=R 

which is a contradiction to kj≠R 

∴ T≠R 

∴ T€S 

Every chain in S has an upper bound in S. 

By Zorn’s lemma S has a maximal element  say M 

i.e., M€S 

i.e., M is an ideal of R and I⊆M, M≠R 

Finally, to prove that M is maximal in R. 

Let N be an ideal of R ∍M⊆U⊆R. 
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To prove that N=M(or)N=R 

Suppose that N≠M 

Claim: N=R 

Let N≠RN€S 

N is a maximal in S 

Which is a contradiction to M ismaximal in S 

∴Our assumption N≠R is wrong 

∴N=R 

∴M is a maximal ideal of R such thatI⊆M 

Hence, ∃ a maximal ideal M of R∍ I⊆M 

Definition: An ideal A in a ring R is called Nilpotent if An=(0) for some n € Z+ 

Example:i)In the ring R=Z/(4), A={0,2} is Nilpotent ideal because A2=2.2=4=(0). 

ii) Every zero ideal is a Nilpotent ideal. 

Note: Every element in a Nilpotent ideal is a Nilpotent ideal. 

Example: we know that A={0,2} is an Nilpotent ideal in a ring R=Z/(4). 

Since 0,2 € A 

0.1=0,2.2=4=0 in R 

∴0,2 are Nilpotent elements. 

Definition:An ideal A in a ring R is called a Nill ideal if each element of A is 

Nilpotent 

Example:A={0,2} is a Nill ideal in a ring R=Z/(4). 

Problem: Show that A & B are Nilpotent ideals there sum A+B is Nilpotent ideal. 

Solution:Given that 
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Claim: A+B is Nilpotent ideal. 

i.e., it is enough to show that (A+B)n=0 

(A+B)n=nc0AnB0+nc1An-1B1+--- +ncnA0Bn 

=0+nc1An-1B1+--- +ncnA0Bn 

=nAnA-1B+---+ncnA0Bn 

=0+0+---+0 

=(0) 

∴(A+B)n=(0) 

∴ A+B is Nilpotent ideal. 

Zorn’s Lemma:A partially ordered set is a system of a non-empty set S & a 

relation Usually denoted by ≤ such that the following conditions are satisfied 

∀a,b,c € S  

i) a ≤b and b≤a ⇒ a=b  

ii) a≤a 

iii)  a≤b and b≤c ⇒ a≤c 

A chain C in a poset (S,≤)is a subset of S for every a,b € C either a≤b(or)b≤a. An 

element u € S is an upper bound of C if a≤u for every a€C,an element m€S is a 

maximal element of a poset (S,≤)if m≤a, a€ S implies m=a. 
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Definition: A commutative integral domain R with unity is called UNIQUE 

FACTORIZATION DOMAIN if it satisfies the following conditions. 

i) Every non-unit of R is a finite product of irreducible factors. 

ii) Every irreducible element is prime. 

Definition: A non zero element “a” of an integral domain R with unity is called an 

IRREDUCIBLE ELEMENT. If 

i) a is not a unit, 

ii)  a=bc for b,c €R. ⇒ either b is a unit(or)c is a unit. 

Definition: A non zero element P of an integral domain R with unity is called a 

“PRIME ELEMENT” if 

i) P is not a unit 

ii) if P/ab then P/a(or)P/b for a,b€R. 

Principal Ideal Domain: A commutative integral domain R with unity is a 

principal ideal domain if each ideal in R is of the form (a)=aR, a€R. 

Theorem: Every PID is a UFD. 

Proof: let R be a PID 

Every ideal in R is a P.I 

Claim:R is a UFD 

i.e., it is enough to show that  

i) Every non-unit of R is a finite product of irreducible factors. 

ii) Every irreducible element is prime. 

Step:1) In this step to show that Every ascending chain of ideals of R is finite 

In this step to show that Every ascending chain of ideals of R is finite. 

Suppose that I1⊂I2⊂I3⊂I4⊂ --→ (1) be an ascending chain of ideals of R. 

Let I=∪i=1Ii 

I is an ideal of R: clearly, I ≠φ ⊆R 

Let a,b€ I 
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⇒a,b€∪Ii 

⇒a,b€Ii 

⇒a-b€Ii for some i 

⇒a-b€∪Ii 

⇒a-b€I 

Let a€Ii,b€Ij for i≠j 

By (1), Ii⊆Ij(or) Ij⊆Ii 

⇒a,b€Ii 

⇒a-b€ Ii 

⇒a-b€∪ Ii =I 

ii) Let a€I, x€R 

⇒a€ Ii for some i, x €R 

⇒ax, xa € Ii 

⇒ax, xa €∪ Ii =I 

Clearly, a€<a>=I=∪ Ii 

∴I is an ideal of R 

Since R is PID 

Then I=<a> for some a € R 

⇒a€ Ii for some I 

⇒<a>⊆ Ii 

∴I=<a>⊂ Ii ⊂Ii+1⊂∪In=I 

∴I= Ii =Ii+1 ----- 

∴chain (1) is finite. 

STEP:2) To prove that each element a€R is a product of finite number of 

irreducible elements 
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If a is irreducible then it is clear 

Let a=bc, 

Where neither b nor c is not a unit. If both b &c are product of irreducible 

elements then the result is true 

Suppose that b cannot be written as product of irreducible elements 

Let b=xy where neither x nor y is not a unit. 

If both x & y are product of irreducible elements then the result is true. 

If not,continuing the above process finally we get an ascending chain of ideals of R 

i.e., <a>⊂<b>------ 

This chain is not stationary 

Which is contradiction to step(1) 

If both b &c are product of irreducible elements. Each element a€R is a product of 

finite number of irreducible elements. 

Step:3) Finally to prove that every irreducible element is prime. 

Let a€R be an irreducible element 

Since R is a PID then by known result a is prime. 

By step(1),step(2) & step(3) 

we conclude that R is a UFD. 

Definitions: 

 Principal Ideal Domain: A commutative integral domain R with unity is a 

principal ideal domain if each ideal in R is of the form (a)=aR, a€R. 

Eucliden Domain: A commutative integral domain R with unity is A Euclidean 

domain if∃ a function φ: R→Z is satisfying the following conditions: 

i) If a,b € R*=R-{0} and b/a, then φ(b)≤φ(a) 

ii) For all a,b€R,b≠0,∃q,r€E ∍a=bq+r with φ(r)≤φ(b) 

Example: i) Every field is a Euclidean domain 
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ii) The ring of integers Z is a Euclidean domain if φ(n)=|n|, n€Z . 

Theorem: Every Euclidean domain is a PID. 

Proof: let R be Euclidean domain ∃a function φ:R→Z is Satisfying the following 

conditions: 

i) If a, b € R*=R-{0} and b/a, then φ(b)≤φ(a) 

ii) For all a,b€R,b≠0,∃q,r€E ∍a=bq+r with φ(r)<φ(b) 

Claim: R is a PID. 

Let I ≠ (0) be an ideal in R 

⇒∃x€I∍x≠0 

Now we have 1/x ∀x≠0€I 

⇒φ(1)≤φ(x) ∀x≠0€I 

Define φ(I)={φ(x)/x≠0€I} 

Clearly, φ(1) is a lower bound of φ(I) 

Clearly, φ(I)≠φ ⊆ Z+ 

φ(I) has a least element 

⇒∃ d € I ∍ φ(d) is least element in φ(I) 

Claim: I=<d> 

Clearly, <d>⊂I 

To prove that I⊂<d> 

Let a € I ⊂R, also d0I⊂R 

By division algorithm in R, 

q, r € R ∍a=dq+r ----(1) with φ(r)<φ(d) 

If r≠0€R Then r=a-dq €I 

⇒r€I 

⇒φ(r) €φ(I) also φ(r)<φ(d) 

⇒φ(r) is the least element in φ(I) 
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Which is contradiction to φ(d) is the least element in φ(I) 

∴ r=0 

From (1) a=dq €<d> 

⇒I⊂<d> 

∴I=<d> is a PI in R 

∴Every ideal in R is a PI 

∴R is a PID 

Hence every Euclidean domain has a PID. 

Definitions: 

Eucliden Domain: A commutative integral domain R with unity is A Euclidean 

domain if ∃a function φ:R→Z is Satisfying the following conditions: 

i) If a, b € R*=R-{0} and b/a, then φ(b)≤φ(a) 

ii) For all a,b€R,b≠0,∃q,r€E ∍ a=bq+r with φ(r)≤φ(b) 

Example: i) Every field is a Euclidean domain 

ii) The ring of integers Z is a Euclidean domain if φ(n)=|n|, n€Z. 

Principal Ideal Domain: A commutative integral domain R with unity is a 

principal ideal domain if each ideal in R is of the form (a)=aR, a€R. 

Definition: A commutative integral domain R with unity is called “Unique 

Factorization Domain” if it satisfies the following conditions. 

i) Every non-unit of R is a finite product of irreducible factors. 

ii) Every irreducible element is prime. 

Theorem: Every Euclidean domain is a UFD. 

Proof: PART:1) Let R be Euclidean domain∃ a function φ:R→Z is Satisfying the 

following conditions: 

i) If a, b € R*=R-{0} and b/a, then φ(b)≤φ(a) 

ii) For all a,b€R,b≠0,∃q,r€E ∍ a=bq+r with φ(r)<φ(b) 

Claim: R is a PID. 
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Let I≠(0) be an ideal in R 

⇒∃x€I∍x≠0 

Now we have 1/x ∀x≠0€I φ(1)≤φ(x) ∀x≠0€I 

Define φ(I)={φ(x)/x≠0€I} 

Clearly, φ(1) is a lower bound of φ(I) 

Clearly, φ(I)≠φ ⊆ Z+ 

φ(I) has a least element 

⇒∃ d€I ∍φ(d) is least element in φ(I) 

Claim: I=<d> 

Clearly, <d>⊂I 

To prove that I⊂<d> 

Let a€I ⊂R, also d≠0€I⊂R 

By division algorithm in R,  

q, r €R ∍ a=dq+r ----(1) with φ(r)<φ(d) 

If r≠0€R then r=a-dq€I 

⇒r€I 

⇒φ(r) €φ(I) also φ(r)<φ(d) 

⇒φ(r) is the least element in φ(I) 

Which is contradiction to φ(d) is the least element in φ(I) 

∴ r=0 

From (1) a=dq€<d> 

⇒I⊂<d> 

∴I=<d> is a PI in R 

∴Every ideal in R is a PI 
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∴R is a PID 

Hence every Euclidean domain has a PID. 

Part:2) Let R be a PID 

Every ideal in R is a P.I 

Claim: R is a UFD 

i.e., it is enough to show that every non-unit of R is a finite product of irreducible 

factors. 

Every irreducible element is prime. 

STEP:1) In this step to show that Every ascending chain of ideals of R is finite. 

Suppose that I1⊂I2⊂I3⊂I4⊂ --→ (1) be an ascending chain of ideals of R. 

Let I=∪i=1Ii 

I is an ideal of R: clearly, I ≠φ ⊆R 

Let a,b€ I 

⇒a,b€∪Ii 

⇒a,b€Ii 

⇒a-b€Ii for some i 

⇒a-b€∪Ii 

⇒a-b€I 

Let a€Ii,b€Ij for i≠j 

By (1), Ii⊆Ij(or) Ij⊆Ii 

⇒a,b€Ii 

⇒a-b€ Ii 

⇒a-b€∪ Ii =I 

ii) Let a€I, x€R 

⇒a€ Ii for some i, x €R 
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⇒ax, xa € Ii 

⇒ax, xa €∪ Ii =I 

Clearly, a€<a>=I=∪ Ii 

∴I is an ideal of R 

Since R is PID 

Then I=<a> for some a € R 

⇒a€ Ii for some I 

⇒<a>⊆ Ii 

∴I=<a>⊂ Ii ⊂Ii+1⊂∪In=I 

∴I= Ii =Ii+1 ----- 

∴chain (1) is finite. 

STEP:2) To prove that each element a€R is a product of finite number of 

irreducible elements 

If a is irreducible then it is clear 

Let a=bc, 

Where neither b nor c is not a unit. If both b &c are product of irreducible 

elements then the result is true 

Suppose that b cannot be written as product of irreducible elements 

Let b=xy where neither x nor y is not a unit. 

If both x & y are product of irreducible elements then the result is true. 

If not,continuing the above process finally we get an ascending chain of ideals of R 

i.e., <a>⊂<b>------ 

This chain is not stationary 

Which is contradiction to step(1) 
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If both b &c are product of irreducible elements. Each element a€R is a product of 

finite number of irreducible elements. 

Step:3) Finally to prove that every irreducible element is prime. 

Let a€R be an irreducible element 

Since R is a PID then by known result a is prime. 

By step(1),step(2) & step(3) 

we conclude that R is a UFD. 

By part(1) & part(2) , 

Every Euclidean domain is a UFD. 

Definitions: Content Of A Polynomial: 

Let f(x)=a0+a1x+a2x2+---+anxn be a polynomial over a UFD in R. 

Then the content of f(x) is denoted by c(f) and is defined as c(f)=(a0,a1,---,an) . 

Example: f(x)=2x2-4x+8=0 

∴C(f)=(2,-4,8)=2 . 

Primitive Polynomial: 

Let f(x)= a0+a1x+a2x2+---+anxn be a polynomial over a UFD in R. 

f(x) is said to be primitive if c(f)=1 (or) a unit. 

i.e., (a0,a1,---,an)=1. 

Example: f(x)=3x2-5x+7 

Here,(3,-5,7)=1 

∴f(x) is primitive. 

Note: let R be a UFD. Every non-zero f(x) of R[x] can be written as f(x)=g.f1(x) 

where g=c(f) and f1(x) is primitive. 

Example: f(x)=x2+1€R[x] 

c(f)=1=g 
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∴f(x)=g.f(x) 

Theorem: If R is a UFD then the product of two primitive Polynomials in R[x] is 

again a primitive polynomial in R[x]. 

Proof: let f(x)= a0+a1x+a2x2+---+amxm 

                    g(x)= b0+b1x+b2x2+---+abnxn be two primitive polynomials in R[x] 

Let h(x)=f(x)g(x) 

             =co+c1x+---+cm+nx
m+n 

Claim: h(x) is primitive. 

If possible suppose that h(x) is not primitive in R[x]. 

⇒∃a prime element of R ∍ p/ci ∀i 

Since f(x) is primitive then p∤ai where ai is the first coefficient of f(x). 

Since g(x) is primitive then p∤bj where bj is the first coefficient of g(x). 

Let ci+j = the coefficient of xi+j of h(x). 

            =aibj+(ai-1bj+1+ai-2bj+2+---a0bj+i) +(ai+1bj-1+ai+2bj-2+---+ai+jb0) 

⇒ aibj =ci+j-{( ai-1bj+1+ai-2bj+2+---a0bj+i)+( ai+1bj-1+ai+2bj-2+---+ai+jb0)}→(1) 

Since p/a0,p/a1,p/a2,---p/an-1  

Then p/ ai-1bj+1+ai-2bj+2+---a0bj+i  

Since p/bj-1,p/bj-2,---p/b0 

Then p/ ai+1bj-1+ai+2bj-2+---+ai+jb0also p/ci+j 

from (1), we get 

P/RHS of (1) 

⇒p/aibj 

⇒p/ai (or) p/bj 

Which is contradiction to p∤ai and p∤bj 

∴Our assumption h(x) is not primitive is wrongh(x) is primitive. 

Hence the product of two primitive polynomials in R[x] is primitive. 


