DNR COLLEGE P.G COURSES (AUTONOMOUS) (AFFILIATED TO ADIKAVI NANNAYA UNIVERSITY) P.G DEPARTMENT OF MATHEMATICS

I M.Sc MATHEMATICS

ALGEBRA - 1

UNIT – 1

PREPARED BY:

M.SURYA SIRISHA

Assistant Professor

D.N.R College(A),

Bhimavaram.

Endomorphism: A homomorphism of a group G into itself is called endomorphism

Automorphism:

An isomorphism from a group G onto itself is called an "Automorphism".

The set of all automorphisms of G is denoted by AUT(G).

Inner automorphism:

let G be a group and a \in G the automorphism fa: G \rightarrow G defined by $f_a(x)$ =axa-1 for all x \in G is called an" inner automorphism of G" and It is denoted by In(G)

In (G) = { fa/a \in G}

Outer automorphism:

An automorphism which is not inner is called an "outerautomorphism"

<u>statement</u>: The set AUT(G) of all Automorphism of a group G is a group under composition of mappings and $IN(G)\Delta AUT(G)Moreover G/Z(G) \approx IN(G)$

proof:step (1): Given that G is a group

Consider AUT (G) = { $f/f: G \rightarrow G$ is an Automorphism}

claim: AUT (G) forms a group with respective toComposition of mappings.

Clearly, I€AUT (G)

AUT (G) $\neq \phi \subseteq S_G$ a symmetric group

∴gof€AUT (G)

ii) Let f € AUT(G)

 \Rightarrow f:G \rightarrow G is an automorphism

 \Rightarrow f⁻¹: G \rightarrow G is a bijective

<u>**f**</u>¹:**G** \rightarrow **G** is a homomorphism:Now f[f⁻¹(x).f⁻¹(y)]=f[f⁻¹(x)].f[f⁻¹(y)]

$$= I(x).I(y)$$

=xy

 \Rightarrow f[f⁻¹(x).f⁻¹(y)] =xy

 $f^{-1}(x).f^{-1}(y) = f^{-1}(xy)$

 $f^{-1}: G \rightarrow G$ is an automorphism

:-f⁻¹ € AUT(G)

 \therefore AUT(G) < SG

Hence AUT (G) forms a group with respective to Composition of mappings.

<u>step (2):IN (G) △AUT (G):</u>We know that $f_a: G \rightarrow G$ defined by $f_a(x) = axa^{-1}$, $\forall x \notin G$ is an automorphism of G.

Now IN (G) = { $f_a/a \in G$ }

I)i)<u>IN(G)<AUT(G) :</u> let $f_a, f_b \in IN(G), x \in G$

i) Let f, g € AUT (G)

 \Rightarrow f:G \rightarrow G is an automorphism andg:G \rightarrow G is also anautomorphism.

 \Rightarrow gof:G \rightarrow G is bijective

gof:G→G is homomorphism:

Let x,y€G

[gof(xy)] = g[f(xy)]

=g [f(x) f(y)]=g [f(x)] g [f(y)]= (gof)(x). (gof)(y)

::gof:G \rightarrow G is an automorphism

Now $(f_a.f_b)(x)=f_a(f_b(x))$

 $= f_a(bxb^{-1})$ $=a(bxb-1)a^{-1}$ $=abxb^{-1}a^{-1}$ $=abx(ab)^{-1}$ $= f_{ab}(x)$ \therefore (fa.fb)(x)=fab(x) $\forall x \in G$ \Rightarrow f_a.f_b= f_{ab} \in IN (G) \Rightarrow f_a.f_b \in IN(G) ii) Let fa € IN(G) ⇒a € G ⇒a⁻¹ € G \Rightarrow f_{a-1} \in IN(G) Now $f_a \cdot f_{a-1} = f_{aa-1} = f_e$ $::(\mathbf{f}_{a})^{-1} = \mathbf{f}_{a-1} \in \mathbf{IN} (\mathbf{G})$ \Rightarrow (fa)⁻¹ \in IN (G) \therefore IN (G) <AUT(G) 2) IN (G) is Normal in AUT (G): Let fa \in IN (G) and f \in AUT (G) <u>Aim</u>: $f.f_a.f^{-1}$ € IN (G) Let x € G Now $[f.f_a.f^{-1}](x) = f\{f_a[f^{-1}(x)]\}$ $=f[a.f^{-1}(x).a^{-1}]$

 $= f(a).f(f^{-1}(x)).f(a^{-1})$

=c.x.c⁻¹ where c = f(a) € G

 $= f_c(x)$

 $\therefore [f.f_a.f^{-1}](X) = f_c \forall \ x \notin G$

 \Rightarrow f.f_a.f⁻¹ = f_c \in IN (G)

 \Rightarrow f.f_a.f⁻¹ \in IN (G)

 \therefore IN(G) \triangle AUT(G)

<u>step (3): G/Z (G)</u> \approx **IN (G):** We know that Z (G)={a \in G/ax =xa \forall x \in G}

Define a mapping $\phi: G \to IN(G)$ by $\Phi(a) = f_a, \forall a \in G$

Clearly, ϕ is well defined

<u> Φ is onto:</u>Let f_a € IN (G)

 \Rightarrow a \in GA also ϕ (a) = f_a

∴every element in IN(G) has per-image in G

Φ is a homomorphism:Let a, b ∈ G

Now, ϕ (a b) = f_{ab}=f_a.f_b= ϕ (a). ϕ (b)

 $\therefore \phi: G \rightarrow IN(G)$ is an onto homomorphism

By fundamental theorem of homomorphism,

We have $G/\ker \phi \approx IN(G)$

Finally, to prove that ker $\phi = Z(G)$:

Nowker $\phi = \{a \in G / \phi(a) = an \text{ identity element in } G\}$

$$=$$
{a \in G / $f_a = f_e$ }

$$= \{ a \in G / f_a(x) = f_e(x), \forall x \in G \}$$

 $= \{ a \in G / axa^{-1} = exe^{-1}, \forall x \in G \}$

 $= \{a \in G / axa^{-1} = x, \forall x \in G\}$

 $= \{a \in G / ax = xa, \forall x \in G\} = Z (G)$

$$:: \mathbf{G}/\mathbf{Z} (\mathbf{G}) \approx \mathrm{IN}(\mathbf{G})$$

problem :Let G be a group and a \in G.The mapping $f_a : G \rightarrow G$ is defined by

 $f_a(x) = axa^{-1}, \forall x \in G$ is anautomorphism of G

solution: Given thatG is a group and a € G

```
Define a mapping f_a: G \rightarrow G by f_a(x) = axa^{-1} \forall x \in G
```

claim:f_a € AUT (G)

<u>**f**</u>_ais one-one</u>:Let x,y € G

Let, $f_a(x) = f_a(y)$

 $axa^{-1} = aya^{-1}$

x = y

<u>f</u>_a is onto :Let y € G

```
Then we get a<sup>-1</sup>ya € G
```

```
Now f_a(a^{-1}ya) = a(a^{-1}ya)a^{-1}
```

= aa⁻¹yaa⁻¹

=eye=y

∴Every element in co domain has pre-image inDomain.

$f_a: G \rightarrow G$ is a homomorphism:Let x, y € G

```
Now f_a(xy) = axa^{-1}
=ax(a^{-1}a)ya^{-1}
=(axa^{-1})(aya^{-1})
=f_a(x).f_a(y)
```

 $:\cdot f_a(xy) = f_a(x).f_a(y)$

 $:f_a:G \rightarrow G$ is an automorphism

∴f_a€ AUT(G)

Conjugacy and G-sets:

Definition: Let G be a group and X is a set. Then G is said to "act on X". If \exists a mapping φ : GxX \rightarrow X with $\varphi(a,x)=a^*x$ such that I) $a^*(b^*x)=ab^*x$

II) $e^*x = x$, $\forall a$, $b \in G$, $x \in X$.

The mapping φ is called "the action of G on X".X is said to be a "G - set"

Example (1): Let G be a group and a \in G we defined a*x = axa⁻¹ for a \in G, x \in GThen show that G is a G-set.

solution: Let G be a group and G be a set.

claim: G is a G - set.

Define φ : GxG \rightarrow G by φ (a, x) = a*x = axa⁻¹

Let a, b € G

 $i)a^{*}(b^{*}x) = a^{*}(bxb^{-1})$

 $=a (bxb^{-1}) a^{-1}$

 $=abx (ab)^{-1}$

=ab*x

 $\therefore a^*(b^*x) = ab^*x$

ii) $e^*x = exe^{-1} = exe = x$

 $\therefore e^*x = x$

 \therefore G is a G – set.

Examle(2): Let G be a group and H<G then the set G/H of all left cosets in a G is a G – set by definding a*xH = axH, $\forall a \in G$, $xH \in G/H$.

solution: Let G be a group and H<G

We know that $G/H = {xH/x \in G}$

<u>claim:</u> G/H is a G – set.

Define φ : G x G/H \rightarrow G/H by $\varphi(a,xH)=a^*xH=axH\forall a \in G, xH \in G/H$

Let a, b \in G, xH \in G/H

i) $a^{*}(b^{*}xH) = a^{*}(bxH)$

= abxH= ab*xH

 $a^*(b^*xH) = ab^*xH$

ii) $e^*xH = exH = xH$

 $\therefore e^*xH = xH$

:: G/H is a G – set.

Theorem : Let g be a group and let x be a set.if x is a g – set, then the action of g on x induces a homomorphism $\varphi : g \rightarrow s_x$ any homomorphism $\varphi : g \rightarrow sx$ induces an action of g onto x

proof:Let G be a group and let X be a set

I. Suppose that X is a G – set

For any $a \in G$,

Define a mapping $f_a : X \rightarrow X$ by $f_a(x) = ax$, $\forall x \in X$

Clearly, fa is one - one and onto

∴fa is bijective

∴fa € Sx

Define a mapping $\varphi: G \to Sx$ by $\varphi(a) = f_a, \forall a \in G$

Let , $x \in X$

Now $(f_a.f_b)(x) = f_a(f_b(x))$

 $= f_a(bx)$

=a(bx)

=(ab)x

 $= f_{ab}(x)$

 $\mathbf{i} \mathbf{f}_{a} \mathbf{f}_{b} = \mathbf{f}_{ab}$

<u> ϕ is homomorphism</u>: Let a ,b \in G

Now φ (ab) = f_{ab}=f_a.f_b= φ (a). φ (b)

 $\therefore \phi(ab) = \phi(a).\phi(b)$

II)Let φ :G \rightarrow Sx be a homomorphism

claim: X is a G - set

Define a * x = $[\phi(a)](x) \forall a \in G, x \in X$

Let a, b \in G , x \in X

I)
$$a^{*}(b^{*}x) = a^{*}(\phi(b)(x)) = [\phi(a)](\phi(b)(x))$$

 $= [\phi(a), \phi(b)](x)$

- $= [\varphi(ab)](x)$
- = ab *x

 $\therefore a^{*}(b * x) = ab * x$

II)
$$e^{x} = [\phi(e)(x)] = fe(x) = ex = x$$

 $\therefore e^*x = x$

 \therefore X is a G – set

State and Prove Cayley's theorem

statement: let g be a group then g is an isomorphic into the symmetric group S_G

proof: let G be a group and G be a set .

by known theorem, G is a G - set.

by known result, \exists a homomorphism $\varphi : G \to S_G$ defined by $[\varphi(a)](x) = ax, \forall x \in G$ Gclaim : $G \approx S_G$

 ϕ is one – one : i.e., it is enough to show that Ker $\phi = \{e\}$

Now Ker $\varphi = \{a \in G / \varphi(a) = I\}$

$$= \{a \in G / \phi [(a)](x) = I(x), x \in G\}$$

 $= \{a \in G / ax = x\}$

```
= \{a \in G / ax = ex\}
```

```
= \{a \in G / a = e\}
```

 $= \{e\}$

$$\therefore$$
 Ker $\varphi = \{e\}$

 $\therefore \phi$ is one- one

 $\therefore \varphi: G \rightarrow SG$ is an into isomorphism

 $\therefore \mathbf{G} \approx \mathbf{S}\mathbf{G}$

Hence proved.

<u>Theorem</u>: let "G"be a group and H<G of finite index "n" then there is a homomorhism $\varphi:G \rightarrow S_n$ such that Ker $\varphi = \cap x \in G \times Hx^{-1}$

proof: Let H<G of finite index n.

 $\because |G/H| = n \text{ also } S_{G/H} \approx S_n$

by known theorem , G/H is a G – set .

⇒∃a homomorphism $\varphi: G \to S_{G/H}$ defined by $[\varphi(a)](xH) = axH\forall x \notin G$ we get , ∃ a homomorphism $\varphi: G \to S_n$ defined by $[\varphi(a)](xH) = axH\forall x \notin G$ <u>claim:</u>Now Ker = {a $\notin G / \varphi(a) = I$ } = {a $\notin G / [\varphi(a)](xH)$ = I(xH) , $\forall \notin G/H$ } = {a $\notin G / axH = xH, \forall x \notin G$ } = {a $\notin G / a(xHx^{-1}) = (xHx^{-1}), \forall x \notin G$ } = {a $\notin G / a \notin xHx^{-1}, \forall x \notin G$ } = {a $\notin G / a \notin xHx^{-1}, \forall x \notin G$ }

Hence \exists a homomorphism $\varphi : G \to S_n$ such that Ker $\varphi = \bigcap_{x \in G} x H x^{-1}$.

<u>Note (1)</u>: $|G| = \sum_{a \in G} O(G) / O(N(a))$ is called the "class equation of G".

<u>Note (2):</u> $|G| = \sum_{a \in G} O(G) / O(N(a))$

$$\begin{split} &= \sum_{a \in Z} O(G) / O(N(a)) + \sum_{a \notin Z} O(G) / O(N(a)) \\ &= \sum_{a \in Z} O(G) / O(G) + \sum_{a \notin Z} O(G) / O(N(a)) \\ &\therefore |G| = |Z| + \sum_{a \notin Z} O(G) / O(N(a)). \end{split}$$

<u>Note (3):</u>If $|G| = p^n$, where p is prime then $Z \neq \{e\}$ (or) G hasNon-trivial center.

Note (4): G is abelian \Leftrightarrow Z = G

<u>Result</u>: show that every group of order p^2 isabelian.

<u>Proof</u>: let g be a group \ni o(g) = p^2

claim: G is abelian

i.e., it is enough to show that Z = G

We know that $Z = \{a \in G | ax = xa \forall x \in G\}$

By know result, $Z {\,\leq\!} G$, G is finite.

By Lagrange's theorem O(Z) / O(G)

 $\Rightarrow O(Z)/P^2$

 \Rightarrow O (Z) = 1 (or) O(Z) = P (or) O(Z) = P²

i) Since O(G) = P2

By known result, $Z \neq \{e\}$

 \Rightarrow O(Z) > 1

 \therefore O (Z) \neq 1

ii) Let
$$O(Z) = P$$

Let $a \in G \ni a \notin Z$

We know that $N(a) \leq G$ also $Z \subseteq N(a)$

 $\Rightarrow O(N(a))/O(G)$

 $\Rightarrow O(N(a))/p2$

 $\Rightarrow O(N(a)) = p2$

 $\Rightarrow O(N(a)) = O(G)$

 \Rightarrow N(a) = G

⇒a € Z

Which is contradiction to a $\notin Z$

 $:: O(Z) \neq p$

$$\therefore$$
 O (Z) = p2 = O(G)

Z = G

G is abelian.

STATE AND PROVE BURNSIDE THEOREM:

<u>statement</u>: let G be a finite group acting on a finite set xthen the number k of orbit in x under G is $K = 1/|G| \sum_{g \in G} |x_g|$

proof: Define, $S = \{(g, x) \in GxX / gx = x\}$

 $\therefore |S| = |X_g| = |G_x|$

We know that, $|\mathbf{G}\mathbf{x}| = |\mathbf{G}| / |\mathbf{G}_{\mathbf{x}}|$

$$\Rightarrow |G_x| = |G| / |Gx|$$

 $\Rightarrow \Sigma_{x \in X} |G_x| = \Sigma_{x \in X} |G| / |Gx|$

$$= |\mathbf{G}| \sum_{\mathbf{x} \in \mathbf{X}} 1 / |\mathbf{G}\mathbf{x}|$$

 $= |G| \Sigma_{a \in C} \Sigma_{x \in Ga} 1 / |Ga|$

Where C contains exactly one element from each orbit.

$$=|G|\Sigma_{a \in C}[1/|Ga| + 1/|Ga| + \dots (|Ga| times)]$$

$$= |G|\Sigma_{a \in C} |Ga| / |Ga|$$

 $= |G| \Sigma_{a \in C}(1)$

= |G|. K

 $\Sigma_{x \in X} |G_x| = |G|. K$

 $K = 1/|G| \Sigma_{x \in X} |G_x|$

$$:: K = 1/|G| \Sigma_{g \in G} |x_g|$$

Hence proved.

SOLVABLE GROUP:

Definition :solvable group:

A group G is said to be "solvable" if $G^{(k)} = \{e\}$ for some integer k.

Theorem:Every homomorphic image of a solvable group is solvable.

proof:let G be a solvable group

i.e., $G(k) = \{e\}$ for some integer k

Let $\varphi: G \rightarrow G^*$ be a homomorphism

Let G^* be the homomorphic image of G under ϕ

claim: G* is solvable

Now, $(G^*)^{(k)} = \varphi(G^{(k)})$

 $= \phi(e)$ $= \{e^*\}$

 $:: G^*$ is solvable.

DNR COLLEGE P.G COURSES (AUTONOMOUS) (AFFILIATED TO ADIKAVI NANNAYA UNIVERSITY) P.G DEPARTMENT OF MATHEMATICS

I M.Sc MATHEMATICS ALGEBRA - 1

UNIT - 2

PREPARED BY:

M.SURYA SIRISHA

Assistant Professor

D.N.R College(A),

Bhimavaram.

Theorem: let H₁, H₂,---H_n be a family of subgroups of a group G&

let $H = H_1, H_2, \dots, H_n$ if $H_i \Delta H \& H_i \cap (H_1 \dots H_{i-1}H_{i-1} \dots H_n) = (e)$ for $1 \le i \le n$ then show that $H_1 x H_2 x \dots x H_n \approx H$.

<u>Proof</u>: Suppose that $H_1, H_2, ---H_n$ be a family of subgroups of a group G &

 $H = H_1.H_2.--H_n H_i \Delta H \& H_i \cap (H_1 ---H_{i-1} H_{i-+1} ---H_n) = (e) \rightarrow (1)$

<u>Claim:</u> H_1xH_2x --- $x H_n \approx H$.

Let $x \in H_i$, $y \in H_j$

By (1), $H_i \cap H_j = \{e\}$

 \Rightarrow xy = yx --- \rightarrow (2)

Define a mapping φ : H₁xH₂x---x H_n \rightarrow H by

 $\varphi(x_1, x_2, \dots, x_n) = x_1 \cdot x_2 \cdot \dots \cdot x_n \forall x_i \in H_i \longrightarrow (3)$

i) o is homomorphism:

Now, $\varphi[(x_1, x_2, \dots, x_n).(y_1, y_2, \dots, y_n)] = \varphi[(x_1y_1, x_2y_2, \dots, x_ny_n)]$

$$= \mathbf{x}_1 \mathbf{y}_1 \cdot \mathbf{x}_2 \mathbf{y}_2 \cdot \mathbf{\cdots} \cdot \mathbf{x}_n \mathbf{y}_n$$

By using equation(2), we get

$$= [x_1.x_2.....x_n][y_1.y_2.....y_n]$$

 $= \phi(x_1, x_2, \dots, x_n)\phi(y_1, y_2, \dots, y_n)$

 $\div \phi$ is homomorphism

<u>ii) φ is one – one:</u>

To prove that ker $\varphi = \{e\}$ Let $(x_1, x_2, \dots, x_n) \notin \ker \varphi$

Let $(X_1, X_2, \dots, X_n) \in \mathbb{R}^n$

 $\varphi(x_1, x_2, \dots, x_n) = e$

 $x_1.x_2. - - . x_n = e$

 $x_1x_1^{-1}.x_2$.---. $x_n = x_1^{-1}e$

$$x_2$$
.---. $x_n = x_1^{-1}$

Since $x_1^{-1} \in H_1$ also $x_1^{-1} \in H_2$ --- H_n

 $\Rightarrow x_1^{-1} \in H_1 \cap (H_2 - -- H_n)$ $\Rightarrow x_1^{-1} = e$ $\Rightarrow x_1 = e$ Similarly, we get $x_2 = e, ---, x_n = e$ $\Rightarrow (x_1, x_2, ---, x_n) = (e, e, ---, e)$ $\therefore ker \phi = \{e\}$ $\therefore \phi \text{ is one - one}$ $Clearly, \phi \text{ is onto}$ $\phi : H_1 \times H_2 \times --- \times H_n \rightarrow H \text{ is isomorphise}$

φ :H₁xH₂x---x H_n \rightarrow H is isomorphism H₁xH₂x---x H_n \approx H.

FIRST SYLOW THEOREM:

<u>Statement:</u>Let G be a finite group and let p be prime. If $p^m/O(G)$ but $p^{m+1} \nmid O(G)$ then G has a subgroup of order p^m

Proof: Given that G be a finite group and let p be prime.

If $p^m/O(G)$ but $p^{m+1} \nmid O(G)$

<u>Claim</u>: G has a subgroup of order p^m

To prove this result by induction on O(G).

<u>Case(i)</u>: If O(G) = 1 then the result is true

Case(ii): Assume that the result is true for all finite abelian groups whose

orders< O(G)

<u>**Case(I)**</u>: suppose that G has a proper subgroup $H \ni p^m/O(H)$

Clearly, H⊂G

 $\Rightarrow O(H) < O(G)$

By induction hypothesis, H has a subgroup T of order pm

i.e., T<H and $O(T) = p^m$

 $\because T < H < G$

 $T < G, O(T) = p^m$

<u>CASE(II)</u>: suppose that G cannot have a proper subgroup $H \ni p^m/O(G)$

i.e., $\ni p^m \nmid O(H)$

Claim: G has a subgroup of order pm

By class equation in G,

we have $|G| = |Z| + \sum_{a \notin Z} O(G) / O(N(a))$

$$\Rightarrow |Z| = |G| - \sum_{a \notin Z} O(G) / O(N(a)) \rightarrow (1)$$

Here p/p^m and $p^m/O(G)$

 $\Rightarrow p/O(G) ----(2)$

Clearly, N(a) < G

 $\Rightarrow p^m \nmid O(N(a))$

```
\Rightarrow p^m/[O(G)/O(N(a))]
```

```
\Rightarrow P^m / \Sigma_{a \notin Z} O(G) / O(N(a))
```

```
\Rightarrow p / \sum_{a \notin Z} O(G) / O(N(a)) ---(3)
```

```
From (2) & (3)
```

```
p/[|G| - \sum_{a \notin Z} O(G) / O(N(a))]
```

```
\Rightarrow p/|Z| by (1)
```

By Cauchy's theorem for abelian groups ∃ an element b€Z∋b^p=e

```
i.e., O(b) = p
```

Let B =be a cyclic subgroup Of G

Clearly, O(B) = O(b) = p

Since $b \in Z$

⇒∆G

⇒B ∆G

 $G/B = \{ xB/x \in G \}$

Let $\overline{G} = G/B$ $\Rightarrow O(\overline{G}) = O(G/B) = O(G)/O(B)$ $=p^{m}.n/p$ $=p^{m-1}.n$ $O(\overline{G}) = p^{m-1}.n$ $p^{m-1}/O(\overline{G})$, also $p^m \nmid O(\overline{G})$ Since $O(\overline{G}) = O(G)/O(B) < O(G)$ By induction hypothesis, \overline{G} has a subgroup \overline{p} of order p^{m-1} i.e., p < G, $O(P) = P^{m-1}$ Consider the set $p = \{x \in G | x \in G \}$ P < G also, we have $\overline{p} \approx P/B$ $\Rightarrow O(\overline{P}) = O(P/B)$ $\Rightarrow O(\overline{p}) = O(P)/O(B)$ $\Rightarrow O(p) = O(\overline{p}).O(B)$ $=p^{m-1}.p$ $O(p) = p^m$ $\therefore \exists P < G \ni O(p) = p^m$ Hence, G has a subgroup of order p^m Hence, the result is holds for G by using induction.

Definition: let A,B be two subgroups of a group G. A&B are said to be conjugate if $A = xBx^{-1}$ for some $x \in G$

STATE AND PROVE SECOND SYLOW THEOREM:

<u>Statement</u>: Let G be a finite group and p be prime, $p^n/O(G)$ but $p^{n+1} \nmid O(G)$ then any two subgroups of order p^n are conjugate.

<u>Proof</u>: Assume that, $A < G, B < G \ni O(A) = p^n, O(B) = p^n$

i.e., it is enough to show that $A = xBx^{-1}$ for some $x \in G$ If possible suppose that $A = xBx^{-1} \forall x \in G$ $\Rightarrow A \cap xBx^{-1} = \varphi \subseteq A$ $\Rightarrow A \cap xBx^{-1} \subseteq A$ $\Rightarrow O(A \cap xBx^{-1}) < O(A)$ Let $O(A \cap xBx^{-1}) = p^m$ where m < nWe know that, $O(AXB)=O(A)O(B)/O(A \cap xBx^{-1})$ $=p^{n}.p^{n}/p^{m}$ $=p^{2n-m} \rightarrow (1)$ Since m<n ⇒n>m \Rightarrow n-m>0 \Rightarrow n-m>1 \Rightarrow n+(n-m) \ge n+1 \Rightarrow 2n-m >n+1 $\Rightarrow p^{2n-m} \ge p^{n+1}$ $\Rightarrow p^{n+1} \le p^{2n-m}$ $\Rightarrow p^{n+1}/p^{2n-m}$ $\Rightarrow p^{n+1}/\Sigma O(AXB)$ $\Rightarrow P^{n+1}/O(G)$ Which is a contraction to $p^{n+1} \nmid O(G)$ Our assumption is wrong $A = xBx^{-1}$ for some $x \in G$ Hence, A & B are conjugate.

DNR COLLEGE P.G COURSES (AUTONOMOUS) (AFFILIATED TO ADIKAVI NANNAYA UNIVERSITY) P.G DEPARTMENT OF MATHEMATICS

I M.Sc MATHEMATICS

ALGEBRA - 1

UNIT - 3

PREPARED BY:

M.SURYA SIRISHA

Assistant Professor

D.N.R College(A),

Bhimavaram.

DEFINITIONS:

<u>Ring:</u>Let R be a non-empty set and +, .be two binary operations in R then the algebraic structure (R,+, .) is said to be RING if (R,+) is a commutative group

(R, .) is a semi-group Distributive laws.

<u>Commutative Ring:</u> In a ring (R,+, .) if a.b = b.a for $a,b \in R$ then we say that R is commutative ring.

Field: let R be a commutative ring with unity elements if every non-zero element of R is invertible under multiplication then R is a field.

<u>Right Ideal</u>: let R be a ring and $U \neq \varphi \subseteq R$ we say that U is a right ideal in R. If

i) a,b € U \Rightarrow a-b € U

ii) a € U,r € R \Rightarrow ar € U.

Left Ideal: let R be a ring and $U \neq \varphi \subseteq R$ we say that U is a left ideal in R. If

i) a,b € U \Rightarrow a-b € U

ii) a € U ,r € R ⇒ra € U

<u>Ideal</u>: let R be a ring and $U \neq \varphi \subseteq R$ we say that U is an ideal in R. If

i) a,b € U \Rightarrow a-b € U

ii) a € U ,r € R \Rightarrow ar,ra € U.

<u>**Trivial&Non-Trivial Ideals:**</u> In a ring R, the ideals $\{0\}$ and R are called trivial(or)improperideals in R and all other ideals of R are called non-trivial(or)proper ideals of R.

Problem: Let R be a ring and a \in R then show that aR={ax/x \in R} is a right ideal

of R

Solution: Given that R is a ring and $a \in R$ also $aR = \{ax/x \in R\}$

Claim: aR is a right ideal of R.

```
Clearly, 0 \in \mathbb{R}
\therefore 0 = a.0 \in R
⇒0 € aR
\Rightarrow aR \neq \phi \subset R
i) Let x,y € R
\Rightarrowx=ap, y=aq for some p,q \in R
Now, x-y = ap-aq
=a(p-q)
x-y=a.t where t=p-q €R
Here at€aR
⇒X-y € aR
ii) Let x \in aR, k \in R
Now xk = (ap)k
=a(pk)
xk = az where z = pk \in R
Here az € R
⇒xk € R
\therefore aR is a right ideal of R.
```

Theorem:Let R be a commutative ring with unity. Suppose R has no non-trivial ideals then show that R is a field.

Proof: Given that R is a commutative ring with unity

Suppose that R has no non-trivial ideals.

 \Rightarrow The any ideals of R are {0} and R itself.

Claim: R is a field

Let 0≠a€R

Then by known result, The set $aR = \{ax/x \in R\}$ is an ideal in R.

Here $a \neq 0 \in \mathbb{R} \Rightarrow a\mathbb{R} \neq \{0\}$

By the hyothesis, we get aR=R.

Since 1€R

⇒1€aR

 \Rightarrow 1=ax for some x \in R

 \Rightarrow ax=1 for some x \in R

 $\Rightarrow x \in R$ is the multiplicative inverse of a in R.

∴every non-zero element in R has multiplicative inverse in R.

Hence R is a field.

Definitions:

i) Homomorphism: Let (R,R') be groups. Amapping φ : R \rightarrow R' is called a homomorphism. If $\varphi(a).\varphi(b)=\varphi(ab), \forall a, b \in \mathbb{R}$.

<u>ii) Monomorphism</u>: If ϕ is one-one then ϕ is called Monomorphism of R.

<u>iii) Epimorphism</u>: If ϕ is onto then ϕ is called epimorphism of R.

Iv) Isomorphism: If ϕ is homomorphism and bijection then ϕ is called isomorphism of R onto R'.

V)Endomorphism: A homomorphism of R intoitself is called anendomorphism of R.

Vi)Automorphism: An endomorphism of R which is both one-one&onto is calledan automorphism.

<u>Vii)Kernelof Homomorphism</u>: If f:R \rightarrow S is a ring homomorphism then the kernel of f isdenoted by "kerf"(or)I(f)(or)f-1(0) and is defined askerf={x \in R/f(x)=0'}

where $0' \in S$ is the zeroelement.

State And Prove Fundamental Theorem Of Homomorphism:

<u>Statement:</u> let f be a homomorphism of a ring R into a ring Swith kernel then

 $R/N \approx Im(f).$

<u>Proof:</u> let $f: R \rightarrow S$ is a ringhomomorphism

Let N=kerf

By known result, kerf is an ideal of R

 \Rightarrow N is an ideal of R

 \Rightarrow R/N={x+N/x \in R} is a quotient ring

We know that,Im(f)={ $f(x)/x \in R$ }

<u>Claim:</u> R/N ≈Im(f)

Define $\varphi: R/N \rightarrow Im(f)$ by $\varphi(x+N) = f(x), \forall x \in R$

<u>φis well-defined&one-one:</u>

Let x,y€R

```
\Rightarrowx+N,y+N\inR/N
```

Let x+N=y+N

⇔x-y€N⇔X-y€kerf

 \Leftrightarrow f(x-y)=0

 $\Leftrightarrow f(x)-f(y)=0$

 $\Leftrightarrow f(x)=f(y)$

```
\Leftrightarrow \varphi(x+N)=\varphi(y+N)
```

<u>φ is onto</u>: let T€Imf

 \Rightarrow T=f(x) for some x \in R

Since x€R

x+N ∈ R/N

By def ϕ , $\phi(x+N)=f(x)=T$

 \therefore Every element in Imf haspre-element in R/N.

<u>φ is a homomorphism:</u>Let x,y€R

 \Rightarrow x+N,y+N \in R/N

i) $\phi[(x+N)+(y+N)]=\phi[(x+y)+N]$

=f(x+y)

```
= f(x) + f(y)
```

```
=\phi(x+N)+\phi(y+N)
```

```
ii)\phi[(x+N).(y+N)]=\phi[(xy)+N]
```

=f(xy)=f(x).f(y)

 $= \varphi(x+N).\varphi(y+N)$

∴ ϕ :R/N→Im(f) is an isomorphism.

∴∃an isomorphism φ fromR/N into Im(f).

∴R/N≈Imf.

Definitons:

<u>Maximal Ideal</u>: An ideal M \neq R is said to be maximal in R if \exists an ideal U of R \exists M \subset U \subset R theneither U=M(or)U=R.

<u>Co-Maximal</u>: Two ideals A,B in any ring R are called co-maximal if A+B=R

<u>Prime Ideal</u>: An ideal P in a ring R is called a prime ideal if A,B are ideals in R such that $AB \subseteq P$ then $A \subseteq P(or) B \subseteq P$.

Theorem: If R is a non-zero ring with unity 1 and I is an ideal in $R \ni I \neq R$, then $\exists a maximal ideal M of R \ni I \subseteq M$.

<u>Proof</u>: Given that R is a non-zero ring with unity 1 & $I \neq R$ is an ideal of R.

<u>Claim</u>:∃ a maximal ideal M of R \exists I⊆M.

Let $S = \{J/J \text{ is an ideal of } R\& I \subseteq J, J \neq R\}$

Clearly, (S, \subseteq) is a poset

Let C be a chain in S

Put T= $U_{ki\in C}k_i$

First to prove that T is an ideal of R

Let x,y $\!\!\!\! \in \! T$ and r $\!\!\!\! \in \! R$

 $x, y \in U_{ki \in C} k_i$

 $x \in k_i$, $y \in k_j$ for some $k_i, k_j \in C$

Since $k_i, k_j \in C$ and C is a chain in S.

 $k_i \subseteq k_j(or) k_j \subseteq k_i$

Assume that $k_i \subseteq k_j$

 $\therefore x, y \in k_j$ and also $r \in \mathbb{R}$, k_j is an ideal of \mathbb{R}

 \Rightarrow x-y \in k_j and xr,rx \in k_j

 \Rightarrow x-y $\in \bigcup_{ki \in C} k_i$ and xr,rx $\bigcup_{ki \in C} k_i$

 \Rightarrow x-y € T and xr,rx€T

 $\Rightarrow T \text{ is an ideal of } R \text{ also } k_i \subseteq \cup_{ki \in C} k_i = T$

 $\Rightarrow T \text{ is an ideal of } R \text{ and } k_i \subseteq T \text{ for } k_i {\in} C$

 \Rightarrow T is an upper bound of C

Next to prove that T€S:

i.e., to prove that T is an ideal of R and $I \subseteq T$, $T \neq R$.

Since k_i€C⊂S

⇒ki€S

 \Rightarrow k_i is an ideal of R and I \subseteq k_i,k_i \neq R.

Since I⊆k_i

```
\RightarrowI\subseteqU<sub>ki</sub>\inck<sub>i</sub>
```

⇒ I⊆T

```
if T=R then 1€T
```

```
\Rightarrow 1 \subseteq \cup_{ki \in C} k_i
```

```
\Rightarrow 1 {\ensuremath{\, \in } } \, k_j \text{ for some } k_i {\ensuremath{ \in } } C
```

 $\Rightarrow k_j = R$

which is a contradiction to $k_j \not= R$

 $\div T \not= R$

∴ T€S

Every chain in S has an upper bound in S.

By Zorn's lemma S has a maximal element say M

i.e., M€S

i.e., M is an ideal of R and I \subseteq M, M \neq R

Finally, to prove that M is maximal in R.

Let N be an ideal of $R \ni M \subseteq U \subseteq R$.

To prove that N=M(or)N=R

Suppose that N≠M

Claim: N=R

Let N≠RN€S

N is a maximal in S

Which is a contradiction to M ismaximal in S

 \therefore Our assumption N \neq R is wrong

 $\therefore N=R$

::M is a maximal ideal of R such that $I \subseteq M$

Hence, \exists a maximal ideal M of $R \ni I \subseteq M$

Definition: An ideal A in a ring R is called Nilpotent if $A^n=(0)$ for some $n \in Z^+$

Example: i) In the ring R=Z/(4), $A=\{0,2\}$ is Nilpotent ideal because $A^2=2.2=4=(0)$.

ii) Every zero ideal is a Nilpotent ideal.

Note: Every element in a Nilpotent ideal is a Nilpotent ideal.

Example: we know that $A = \{0, 2\}$ is an Nilpotent ideal in a ring R = Z/(4).

Since 0,2 € A

0.1=0,2.2=4=0 in R

..0,2 are Nilpotent elements.

Definition: An ideal A in a ring R is called a Nill ideal if each element of A is Nilpotent

Example: $A = \{0,2\}$ is a Nill ideal in a ring R = Z/(4).

Problem: Show that A & B are Nilpotent ideals there sum A+B is Nilpotent ideal.

Solution: Given that

Claim: A+B is Nilpotent ideal.

i.e., it is enough to show that $(A+B)^{n}=0$ $(A+B)^{n}=n_{c0}A^{n}B^{0}+n_{c1}A^{n-1}B^{1}+\dots+n_{cn}A^{0}B^{n}$ $=0+n_{c1}A^{n-1}B^{1}+\dots+n_{cn}A^{0}B^{n}$ $=nA^{n}A^{-1}B+\dots+n_{cn}A^{0}B^{n}$ $=0+0+\dots+0$ =(0)

 $:(A+B)^{n}=(0)$

 \therefore A+B is Nilpotent ideal.

Zorn's Lemma: A partially ordered set is a system of a non-empty set S & a relation Usually denoted by \leq such that the following conditions are satisfied $\forall a, b, c \in S$

i) $a \leq b \text{ and } b \leq a \Rightarrow a = b$

- ii) a≤a
- iii) $a \le b$ and $b \le c \Rightarrow a \le c$

A chain C in a poset (S, \leq) is a subset of S for every $a, b \in C$ either $a \leq b(or)b \leq a$. An element $u \in S$ is an upper bound of C if $a \leq u$ for every $a \in C$, an element $m \in S$ is a maximal element of a poset (S, \leq) if $m \leq a$, $a \in S$ implies m=a.

DNR COLLEGE P.G COURSES (AUTONOMOUS) (AFFILIATED TO ADIKAVI NANNAYA UNIVERSITY) P.G DEPARTMENT OF MATHEMATICS

I M.Sc MATHEMATICS

ALGEBRA - 1

UNIT - 4

PREPARED BY:

M.SURYA SIRISHA

Assistant Professor

D.N.R College(A),

Bhimavaram.

Definition: A commutative integral domain R with unity is called UNIQUE FACTORIZATION DOMAIN if it satisfies the following conditions.

- i) Every non-unit of R is a finite product of irreducible factors.
- ii) Every irreducible element is prime.

Definition: A non zero element "a" of an integral domain R with unity is called an IRREDUCIBLE ELEMENT. If

- i) a is not a unit,
- ii) $a=bc \text{ for } b, c \in \mathbb{R}$. \Rightarrow either b is a unit(or)c is a unit.

Definition: A non zero element P of an integral domain R with unity is called a "PRIME ELEMENT" if

- i) P is not a unit
- ii) if P/ab then P/a(or)P/b for $a,b\in \mathbb{R}$.

<u>Principal Ideal Domain</u>: A commutative integral domain R with unity is a principal ideal domain if each ideal in R is of the form (a)=aR, a \in R.

Theorem: Every PID is a UFD.

Proof: let R be a PID

Every ideal in R is a P.I

Claim: R is a UFD

i.e., it is enough to show that

i) Every non-unit of R is a finite product of irreducible factors.

ii) Every irreducible element is prime.

Step:1) In this step to show that Every ascending chain of ideals of R is finite

In this step to show that Every ascending chain of ideals of R is finite.

Suppose that $I_1 \subset I_2 \subset I_3 \subset I_4 \subset - \rightarrow$ (1) be an ascending chain of ideals of R.

Let $I=U_{i=1}I_i$

I is an ideal of R: clearly, I ≠φ ⊆R

Let a,b€ I

 $\Rightarrow a, b \in \bigcup |_i$ $\Rightarrow a, b \in |_i$ for some i $\Rightarrow a - b \in \bigcup |_i$ $\Rightarrow a - b \in \bigcup |_i$ $\Rightarrow a - b \in \bigcup$ Let $a \in |_i, b \in |_j$ for $i \neq j$ By (1), $|_i \subseteq |_j(or) |_j \subseteq |_i$ $\Rightarrow a, b \in |_i$ $\Rightarrow a - b \in \bigcup |_i = |$ ii) Let $a \in |_i, x \in \mathbb{R}$ $\Rightarrow a \in |_i \text{ for some } i, x \in \mathbb{R}$ $\Rightarrow ax, xa \in |_i$ $\Rightarrow ax, xa \in |_i$

⇒ax, xa €∪ I_i =I

Clearly, a€<a>=I=∪ I_i

 \therefore I is an ideal of R

Since R is PID

Then I=<a> for some a € R

⇒a€ I_i for some I

⇒<a>⊆ I_i

 $\therefore |= <a> \subset |_i \subset_{ii+1} \subset \cup_{in} = |$

 $::|=|_i=|_{i+1}-\cdots$

∴chain (1) is finite.

STEP:2) To prove that each element a€R is a product of finite number of irreducible elements

If a is irreducible then it is clear

Let a=bc,

Where neither b nor c is not a unit. If both b &c are product of irreducible elements then the result is true

Suppose that b cannot be written as product of irreducible elements

Let b=xy where neither x nor y is not a unit.

If both x & y are product of irreducible elements then the result is true.

If not, continuing the above process finally we get an ascending chain of ideals of R

i.e., <a>⊂-----

This chain is not stationary

Which is contradiction to step(1)

If both b &c are product of irreducible elements. Each element a€R is a product of finite number of irreducible elements.

<u>Step:3</u> Finally to prove that every irreducible element is prime.

Let a€R be an irreducible element

Since R is a PID then by known result a is prime.

By step(1), step(2) & step(3)

we conclude that R is a UFD.

Definitions:

Principal Ideal Domain: A commutative integral domain R with unity is a principal ideal domain if each ideal in R is of the form (a)=aR, a \in R.

Eucliden Domain: A commutative integral domain R with unity is A Euclidean domain if \exists a function φ : R \rightarrow Z is satisfying the following conditions:

- i) If $a,b \in \mathbb{R}^{*}=\mathbb{R}^{0}$ and b/a, then $\varphi(b) \leq \varphi(a)$
- ii) For all $a,b \in \mathbb{R}, b \neq 0, \exists q, r \in \mathbb{E} \ni a = bq + r \text{ with } \varphi(r) \leq \varphi(b)$

Example: i) Every field is a Euclidean domain

ii) The ring of integers Z is a Euclidean domain if $\varphi(n)=|n|$, $n\in \mathbb{Z}$.

Theorem: Every Euclidean domain is a PID.

<u>Proof</u>: let R be Euclidean domain $\exists a \text{ function } \phi: R \rightarrow Z \text{ is Satisfying the following conditions:$

- i) If a, b $\in \mathbb{R}^{*}=\mathbb{R}^{0}$ and b/a, then $\varphi(b) \leq \varphi(a)$
- ii) For all $a,b \in \mathbb{R}, b \neq 0, \exists q, r \in \mathbb{E} \ni a = bq + r \text{ with } \varphi(r) \leq \varphi(b)$

Claim: R is a PID.

Let $I \neq (0)$ be an ideal in R

⇒∃x€I∍x≠0

Now we have $1/x \forall x \neq 0 \in I$

 $\Rightarrow \phi(1) \le \phi(x) \forall x \ne 0 \in I$

Define $\varphi(I) = \{\varphi(x)/x \neq 0 \in I\}$

Clearly, $\varphi(1)$ is a lower bound of $\varphi(I)$

Clearly, $\phi(I) \neq \phi \subseteq Z +$

 $\varphi(I)$ has a least element

 $\Rightarrow \exists d \in I \ni \varphi(d)$ is least element in $\varphi(I)$

Claim: I=<d>

Clearly, <d>⊂I

To prove that $I \subset \langle d \rangle$

Let $a \in I \subset R$, also $dOI \subset R$

By division algorithm in R,

q, r € R \exists a=dq+r ----(1) with ϕ (r) $\leq \phi$ (d)

If r≠0€R Then r=a-dq €I

⇒r€I

 $\Rightarrow \phi(r) \in \phi(I)$ also $\phi(r) \le \phi(d)$

 $\Rightarrow \phi(r)$ is the least element in $\phi(I)$

Which is contradiction to $\varphi(d)$ is the least element in $\varphi(I)$

∴ r=0

From (1) $a=dq \in d>$

⇒I⊂<d>

:I = <d> is a PI in R

 \therefore Every ideal in R is a PI

∴R is a PID

Hence every Euclidean domain has a PID.

Definitions:

Eucliden Domain: A commutative integral domain R with unity is A Euclidean domain if $\exists a$ function $\varphi: R \rightarrow Z$ is Satisfying the following conditions:

- i) If a, b $\in \mathbb{R}^{*}=\mathbb{R}^{0}$ and b/a, then $\varphi(b) \leq \varphi(a)$
- ii) For all $a,b \in \mathbb{R}, b \neq 0, \exists q, r \in \mathbb{E} \ni a = bq + r \text{ with } \varphi(r) \leq \varphi(b)$

Example: i) Every field is a Euclidean domain

ii) The ring of integers Z is a Euclidean domain if $\varphi(n)=|n|$, $n\in \mathbb{Z}$.

<u>Principal Ideal Domain</u>: A commutative integral domain R with unity is a principal ideal domain if each ideal in R is of the form (a)=aR, a \in R.

Definition: A commutative integral domain R with unity is called "Unique Factorization Domain" if it satisfies the following conditions.

- i) Every non-unit of R is a finite product of irreducible factors.
- ii) Every irreducible element is prime.

Theorem: Every Euclidean domain is a UFD.

<u>Proof:</u> PART:1) Let R be Euclidean domain \exists a function $\phi: R \rightarrow Z$ is Satisfying the following conditions:

- i) If a, b $\in \mathbb{R}^*=\mathbb{R}^{0}$ and b/a, then $\phi(b) \le \phi(a)$
- ii) For all $a,b \in \mathbb{R}, b \neq 0, \exists q, r \in \mathbb{E} \ni a = bq+r$ with $\phi(r) < \phi(b)$

Claim: R is a PID.

Let I≠(0) be an ideal in R

⇒∃x€l∍x≠0

Now we have $1/x \forall x \neq 0 \in I \varphi(1) \le \varphi(x) \forall x \neq 0 \in I$

Define $\phi(I) = \{\phi(x)/x \neq 0 \in I\}$

Clearly, $\phi(1)$ is a lower bound of $\phi(I)$

Clearly, $\phi(I) \neq \phi \subseteq Z^+$

 $\phi(I)$ has a least element

⇒∃ d€l $\ni \phi(d)$ is least element in $\phi(l)$

Claim: I=<d>

Clearly, <d>⊂I

To prove that I⊂<d>

```
Let a€I ⊂R, also d≠0€I⊂R
```

By division algorithm in R,

```
q, r €R \ni a=dq+r ----(1) with \phi(r) < \phi(d)
```

If r≠0€R then r=a-dq€l

⇒r€l

```
\Rightarrow \phi(r) \in \phi(I) also \phi(r) < \phi(d)
```

 $\Rightarrow \phi(r)$ is the least element in $\phi(I)$

Which is contradiction to $\phi(d)$ is the least element in $\phi(I)$

∴ r=0

From (1) a=dq€<d>

⇒I⊂<d>

 \therefore I=<d> is a PI in R

∴Every ideal in R is a PI

Hence every Euclidean domain has a PID.

Part:2) Let R be a PID

Every ideal in R is a P.I

Claim: R is a UFD

i.e., it is enough to show that every non-unit of R is a finite product of irreducible factors.

Every irreducible element is prime.

STEP:1) In this step to show that Every ascending chain of ideals of R is finite.

Suppose that $I_1 \subset I_2 \subset I_3 \subset I_4 \subset -- \rightarrow (1)$ be an ascending chain of ideals of R.

Let $I=U_{i=1}I_i$

```
I is an ideal of R: clearly, I \neq \varphi \subseteq R
```

```
Let a,b€ I
```

⇒a,b€∪l_i

⇒a,b€l_i

```
⇒a-b€l<sub>i</sub> for some i
```

⇒a-b€∪l_i

⇒a-b€l

```
Let a€l<sub>i</sub>,b€l<sub>j</sub> for i≠j
```

```
By (1), I<sub>i</sub>⊆I<sub>j</sub>(or) Ij⊆Ii
```

⇒a,b€l_i

⇒a-b€ I_i

⇒a-b€∪ I_i =I

ii) Let a€l, x€R

 $\Rightarrow a \in I_i$ for some i, x $\in R$

⇒ax, xa € l_i

⇒ax, xa €∪ l_i =l

Clearly, a€<a>=I=∪ I_i

∴I is an ideal of R

Since R is PID

Then I=<a> for some a € R

⇒a€ I_i for some I

⇒<a>⊆ I_i

 $:: I = \langle a \rangle \subset I_i \subset_{Ii+1} \subset U_{In} = I$

 $:|=|_i = |_{i+1} - \cdots - |_i$

∴chain (1) is finite.

STEP:2) To prove that each element a€R is a product of finite number of irreducible elements

If a is irreducible then it is clear

Let a=bc,

Where neither b nor c is not a unit. If both b &c are product of irreducible elements then the result is true

Suppose that b cannot be written as product of irreducible elements

Let b=xy where neither x nor y is not a unit.

If both x & y are product of irreducible elements then the result is true.

If not, continuing the above process finally we get an ascending chain of ideals of R

i.e., <a>⊂-----

This chain is not stationary

Which is contradiction to step(1)

If both b &c are product of irreducible elements. Each element a€R is a product of finite number of irreducible elements.

<u>Step:3</u> Finally to prove that every irreducible element is prime.

Let a€R be an irreducible element

Since R is a PID then by known result a is prime.

By step(1), step(2) & step(3)

we conclude that R is a UFD.

By part(1) & part(2),

Every Euclidean domain is a UFD.

Definitions: Content Of A Polynomial:

Let $f(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ be a polynomial over a UFD in R.

Then the content of f(x) is denoted by c(f) and is defined as $c(f)=(a_0,a_1,\cdots,a_n)$.

Example: $f(x)=2x^2-4x+8=0$

::C(f)=(2,-4,8)=2.

Primitive Polynomial:

Let $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ be a polynomial over a UFD in R.

f(x) is said to be primitive if c(f)=1 (or) a unit.

i.e., (a₀,a₁,---,a_n)=1.

Example: $f(x)=3x^2-5x+7$

Here,(3,-5,7)=1

 \therefore f(x) is primitive.

<u>Note</u>: let R be a UFD. Every non-zero f(x) of R[x] can be written as $f(x)=g.f_1(x)$ where g=c(f) and $f_1(x)$ is primitive.

Example: $f(x)=x^2+1 \in R[x]$

c(f)=1=g

 $\therefore f(x)=g.f(x)$

Theorem: If R is a UFD then the product of two primitive Polynomials in R[x] is again a primitive polynomial in R[x].

<u>Proof:</u> let $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_mx^m$

 $g(x) = b_0 + b_1 x + b_2 x^2 + \dots + a b_n x^n$ be two primitive polynomials in R[x]

Let h(x)=f(x)g(x)

 $=c_0+c_1x+--+c_{m+n}x^{m+n}$

<u>Claim</u>: h(x) is primitive.

If possible suppose that h(x) is not primitive in R[x].

 $\Rightarrow \exists a \text{ prime element of } R \ni p/c_i \forall i$

Since f(x) is primitive then $p \nmid a_i$ where a_i is the first coefficient of f(x).

Since g(x) is primitive then $p \nmid b_i$ where b_i is the first coefficient of g(x).

Let c_{i+i} = the coefficient of x_{i+i} of h(x).

$$=a_{i}b_{j}+(a_{i-1}b_{j+1}+a_{i-2}b_{j+2}+\cdots+a_{0}b_{j+i})+(a_{i+1}b_{j-1}+a_{i+2}b_{j-2}+\cdots+a_{i+j}b_{0})$$

$$\Rightarrow a_{i}b_{j} = c_{i+j} - \{(a_{i-1}b_{j+1} + a_{i-2}b_{j+2} + \dots + a_{0}b_{j+i}) + (a_{i+1}b_{j-1} + a_{i+2}b_{j-2} + \dots + a_{i+j}b_{0})\} \rightarrow (1)$$

Since $p/a_0, p/a_1, p/a_2, ---p/a_{n-1}$

Then p/ $a_{i-1}b_{j+1}+a_{i-2}b_{j+2}+--a_0b_{j+i}$

Since p/b_{j-1},p/b_{j-2},---p/b₀

Then p/ $a_{i+1}b_{j-1}+a_{i+2}b_{j-2}+\cdots+a_{i+j}b_0$ also p/c_{i+j}

from (1), we get

P/RHS of (1)

 $\Rightarrow p/a_ib_j$

 $\Rightarrow p/a_i$ (or) p/bj

Which is contradiction to $p \nmid a_i$ and $p \nmid b_j$

 \therefore Our assumption h(x) is not primitive is wrongh(x) is primitive.

Hence the product of two primitive polynomials in R[x] is primitive.