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FUNCTIONAL ANALYSIS
Unit I
Banach Space

The definition and some examples

Definition: Let N be a linear space over field K (where K is either R the field of
real numbers or C the field of complex numbers). A function || .|| : N — R is said to
be a norm on N 1if it satisfies the following conditions

(1) |IxIl =0V x € N (non-negativity)

(1) x| =0iff x=0.

(1) Ix+ylI < x|+ 1yl V X,y € N (triangle inequality).

(1v) Jlax]| =lalllx| VX € N, a € K.
A linear space N over a field K with a norm || .|| defined on N is called a normed
linear space over K.

Result: Every normed linear space N is a metric space with respect to metric d
defined by d(x, y) =|x—y|| V X,y € N.

Proof: Let N be a normed linear space. Let x, y € N.

Then (i) d(x,y)=llx—y|l=0and d(x,y) =0 iff | x —y| =0 iff x —y=0iff x = y.
() dx, y=llx =yl =I—@ =0l =y — x|l = d(y, x)

(i) Letx,y,ze N. Thend(x,y)=|lx =y =llx—z+z—=Y| < ||x —z|| + ||z — VIl
=d(x, z) + d(z, y). Hence every normed linear space is a metric space.

Definitions: Let (N, || .||) be a normed linear space.
(1)  Asequence {x,} < N is said to be convergent to an element X, if for each
€ > (0 J a positive integer ng such that ||x,, — xy|| < € Vn = n,.
(1)) Asequence {X,} < N is said to be a Cauchy sequence if foreache>03a
positive integer ng such that ||x,, — x,,|| < €V n,m = n,.
(111)) The space N is said to be complete if every Cauchy sequence in N
converges to an element of N.

Theorem 1: Let (N, || .||) be a normed linear space.

Then (a) [lIxl — Iyl < Ix =yl Vx,y €N.

(®) [llxll = Iyl < llx + yI| ¥V x,y € N.

(c) norm is a real valued continuous function. Ie. X, = X = ||x,|| = |1X]|.
(d)1*: addition and scalar multiplication are joint continuous.

Proof: |lx|| = I(x =) + Il < llx =yl + I

= Ixll =1yl < ix =yl ... ()




Again - (Jlx|l — 11y1) = Iyl — lIxll < Ily — x| by (i)
==& =2I=Ilx—Yl

Ie = (llxll = 1y1) < llx — ylI...(ii)
Suppose [|x]| = [|yll. Then [llx|| — [Iyll| = X — 1Yl < lIx — Y1l by (1)
Suppose [|x]| < [I[¥]l. Then [|lx]| = [Iy¥lI] = =Xl — Y1) < lx — || by (ii)
Thus [1x]| — Iyll] = Xl — 11YIl o7 = (1]l = I1YID
In either case it is < || x — y||. Hence the result.
(b) Replace y by —y in (a) Then [llxll — | = ¥Illl < [lx — (=)
= [lIxX = Iyl < Iix + vl
(¢) Let N be a normed linear space and {xX,} be a sequence in N converging to x in
N.
Then by the above result |||x,|| — |x]|| < ||1x, — X]|.
Now since x, = x, [|X, — X|| = 0 = [[|x,]l — [IX]Il = 0. =|Ixn| - |Ix]|. Hence the
result.
(d) Let {x,} and {y.} be sequences in N 3 x, — x in N and y, — y in N.
Now [|(xp +y,) —x+WI=11(x, —x)+ Y, = DI <X — x| Ty, =Yl ...(1)
Since X, — X and y, — Y, [IX, — x|l = 0 and ||y, — y|l = 0 so that RHS
1 — XN + 11y, =¥l > 0+ 0=0.
s from (1) I(xn +y,) = X+ NI 0
=xn + Y, = lIx + Yl
.. addition is jointly continuous
Let {a,} be a sequence in F and {x,} be a sequence in N 5> a,, »> o in F and x, — x
in N.
Then ||a,X, — aX|| = |lanXy, — AnX + ayXx — ax||

= lan(Xn — X) + (an — OX||

<laplllXn = X+ |y — aliix|
Since a, — o and X, = X, |a,, — @| = 0 and ||x, — x|| = 0 so that RHS
lanlllXn — x|| + |a, — al|lx|| = 0 and hence LHS |a,x, — ax| = 0 ie a,Xx,, = ax.
.. Scalar multiplication is jointly continuous.

Definition (1*): A Banach space is a complete normed linear space.

Theorem 2: (8*): Let M be a closed linear subspace of a normed linear space N. If

norm of a coset x + M in the quotient space % is defined by ||x + M| =

inf {||lx+m|:m € M3}, then % is a normed linear space. Further, if N is a Banach

. N
space then so is o




Proof: Letx + M e% where x € N. Then % 1s a linear space.
Define ||x + M| =inf {|x + m|:m € M}.
(1) Since x + m €N and N is a normed linear space, |[x + m|| =0V m € M.
Linf{x+m|meM}Z0=|x+M|=0Vx€EN.
(i) Letx+M=M.Thenx € M. ..[|x + M|| = inf{||lx + m|:m e M,x €
M} —inf {|lyl:y €
M} = 0 since M being a subspace contains zero vector whose norm is real
number zero.
Thusx +t M=M= |[x+ M| =0
Conversely |[x+M||=0 = inf {Jx+m|:meM}=0.
= J a subsequence {mg} in M 3 ||x +m;| — 0.

) N
=xeM=x+M=M. = x+ M is the zero element of e

(1) Letx+M,y+M € %Wherex,y e N.
Ax+M+y+ M| =|x+y+M|=inf {|lx +y +m|:m € M}.
=inf{lx+y+m' +m"|tm=m"+m'" € M}
=inf{lx+m' +y+m"|:m',m" € M}
inf {||lx +m'|| + ||y + m”||: m',m" € M}
inf {|lx+m'|:m'" e M}+inf {|y +
m'||:m" € M}
= |lx+ M| + |y + M|
ic. |x+M+y+M| S |x+M|+|y+ M|
(iv) Letx+M e %Where X € N, a be a scalar.
lax + M| = inf {|jax +m|:m € M}
=inf {|lax + am'|:m = am’ € M}
=inf {|la(x +m")|:m' € M}
=inf {|a||x +m'|:m' € M}
= lalinf {|x+m|:m € M} = |all|x + M|

N . .
Sooisa normed linear space.

Let N be complete. Let {s, + M} be any Cauchy sequence in % where s, € N.
1

Forszzl.El n; € Nan,man:>||(Sn+M)—(Sm+M)||<§.

Set s, = x1. S0 x; €N.

Similarly, for ¢ 221—2, dmeN,om>nmsnm2n = (S, + M) — (s, + M) <

Set s,, = x,. S0 x, € N.




Having chosen X1, X2, ..., X, and ny, n, ..., 0 now for %% 3 a positive
integer nx which we may assume ng >ng_; 3 n, m=>nx = ||(S, + M) —
1
(Sm + M)” < ?
Set s, = Xg. So x € N.
And so on,
Thus, we have constructed a subsequence {xx + M} of the sequence {s, + M}

such that ||(xk+1+M)—(xk+M)||<21kf0rk=1,2,

Choose y; € x; + M where y; =x; + m; for m; € M.
Now selectys € X + M3 Iy, —y,II < %

For [|(x; + M) — (x2 + M)|| < 3.

= inf {||x; —x, + ml:m M} <.

= 3my e M> |x; —xz + mgll <3.
=y, =Yl <%Wherey2=xz—mo+m1 ex,+M
Now selecty; in x3 + M 3 ||ly, — vl <2i2.

.. : 1
Continuing, we get aseq {yaj InN>3 |y, —y, Il < 7

We claim that {y,} is a Cauchy sequence in N.

Let € > 0. Select mg so large that L <«

Zmo—l
Thenn>m > mo = 1V, = Vull =1V = Vis1) ¥ (Vs = Yimaz) T F
Vet =Y
Yot 1Y i1 = Vg ol AV = Y,
1 1 1

n-11 (o) _
< Zl=77"l. Zi < Zl=m Zi - 2m—1 S 2m0—1 < €.

Thus ||y, —v,|| = 0asm,n— .
= {yn} 1s a Cauchy sequence in N.
Since N is complete, y, — y € N for somey.
Now [|(xn + M) = (v + M)|| = l|(xn — ) + M| = inf {lx, —y +m|:m € M}
<Ny, —YIl " Yn=Xn T m, for some m, € M,
—> 0asn— o,
:>xn+M—>y+ME%asn—>oo.

.. A subsequence {x, + M} of Cauchy Sequence {s, + M} converges toy + M.

N .
= 18 complete.

N .
Hence o isa Banach Space.




Example 1: Show that the set of real linear space R and the complex linear space
C are Banach space under the norm defined by ||x|| = |x| V x € R or C.

Solution: Let x € R or C. Then (i) ||x|| =x>0.

(ii) Let x € Ror C. Then |x|| = 0iff |[x| = 0iffx = 0.

(iii) Letx,y € R. Then |lx + y|| = |x + y| < |x| + |y| = x|l + 1y

Letz, ® € R.

Then|lz+w|?=|z+w|?=C+ w)(Z+®)=zZ+2z0 +wZ+ wd

=|z|? + 2Rp(z@) + |w|? < |z|? + 2|z®@| + |w|? = |z]|? + 2|z]|@]| + |w]|?

= |z|* + 2|z||w| + |w]? = (|z] + |w])?*= (llz]| + lw[D? . ie 1z + wll < |12]l + ]|
(iv) Leta € K,x € R. Or C. Then |lax| = |ax| = |a| |x| = |a]| ||x]|.

.. Ror Cis anormed linear space under the norm defined by ||x|| = |x| V x €
R.orC.

Let {xn} be a Cauchy sequence

= {xn} is a bounded seq

= {xn} has at least one limit point by Bolzano Weierstrass theorem

= {xn} has a convergent sequence converging to that limit point.

= {xn} has a convergent subsequence.

= Cauchy seq {xn} has a convergent subsequence

= {xn} is convergentin R or C.

= R or C is complete.

Hence R and C are Banach spaces under the norm defined by ||x|| = x| V x € R
orC.

Example 2: The set of all n — tuples of real numbers, R", is a Banach space under

1
the norm defined by (x| = [, |&|*]" where x = (¢, &5, .., &) = (€)1, €
R, & € RV
Solution: (i) Let x Z(fi):lzl € R*for & e RV i.
1

Then [|x|| = | ?:1|€l.|2]7 >0
(i) Letx=(¢;)_ €R for§ € RV .

1
Then lx] =0 &[S, |& "] =0 & 3,817 =0
slg =0vie|gl=0vie§=0viex=0
(i) Letx=(g)._ ¥ = M)y, € R"for &, n;eRV i

1
;1
Ix+yll = [Z?=1|€i +1 ]2




= |Ix + yII* = X4 1& + il + il
= Ix +y||2 < Z L (& + I DIE + 14l
Z L& X 1€+ il

n| el o HXR| fEd )
<IIXIIIIX+)’II+|I3’|Illx+3’|l

ie. [lx 4+ VI (x| + 1yIDIx + v
=|x+y| < lxil + 1yl
(iv) Letx = (El?leRnforfleRVl(xE]R

x| = [Bfq || ] [Zilal?g] ] ) [£7 /€| ] el 1]

le. |ax]|| = |al|x]|| X —(Ei)?zl € R", a € R.

..IR™ is a normed linear space.

Let {xm} be any Cauchy sequence in R"™ where X, = (fgm))r_l_l € R" for €i(m)
cRVi. >

= foreach€>03n9> ||x, —Xp|| <&V m,p 2n,.

1
212
— foreach € >0 3 ng > [2?:1|5§m)—€§p)| ] <gV m,p > n.

2
— foreache>03np> )%, —f(p)| <&V m,p=n,..

(m) s;(p) |

= for each £ > 0 3 ng 3|E <&V m,p>ny.

= foreach e>03ng> |g(m) f(p)|

<gVm,p =ny..
= {Eg )} is a Cauchy sequence in R for each1, 1 <1<n

Since R is complete 3 ¢; in R > the sequence {fgm)} converges to ¢; for eachi, 1 <1

<nletx=(&,&,....&) = (& ?:1

212
Then x € R" and ||x,, — x|| = [Z?:1|f§m)—fi| ] —0asm—

=>xXp—xXx—>0asm—>0=x, >xasm-—> oo
..the sequence {Xn} in R™ converges to x in R™.
. R™is complete.

Hence R" is a Banach space.

Example 3: The set of all n — tuples of complex numbers, C", is a Banach space
1

under the norm defined by |1zl = | ?=1|§l.|2]z where z= (¢, &5, ..., &) = (E)1, €
C",&,eCV i




Solution: Same as above example

Example 4: The linear space €~ of bounded sequences is a Banach space under the
norm defined by ||x|| = |¢,;|, where x = (fi)zl (i eRorCVi
(i) Letx c &. [x = ¢, =0 '
(i1) Letx el |x||=|¢;| =0iff 1§ =0V iiff¢;, =0 viiffx=0.
(iii) Letx,ye . Ix+yl =[5, +n| = 1&l +1n))
= 16l + [l = i+ iyl
(iv)  Letx e, Then |lax| = |ag,| = |all&] =lal [§;]= lallx]
. ¢*1s a normed linear space.

[00]

€ ¢~ for €i(n) eR or

Let {x,} be any Cauchy sequence in €* where x, = (f gn))
CVvi.

= foreache>03ny eN> |x,, — x| <&V m, n>ny where x, = (Egm)) S
i=1

i=1

for Ei(m)e RorCVi.
= foreache>03ng eN > Sup; |€i(m) —Ei(n)| <gV m,n > n.

— for each € > 0 3 ny eN3|§§m)—€i(n)|<8Vm,n2n0.

= {Egn)} is a Cauchy sequence of real or complex number.

Since R and C are complete 3 ¢; in R or C > the sequence {fgn)} converges to ¢; for
each 1.

Let x :(51:52; ) = (&)1

Then |1x, — x| = sup |€§n) — €i| —>0asn— w
L

= X, 2 Xasn-— o,

..the sequence {x,} in €~ converges to X.

Claim: x € ¢~.

1$il=18; — fi(n) + fi(n)| S T fi(n)| + |€i(n)| <g+kforeachi. = x e ¢~
.. 071s complete.

Hence €-is a Banach space.

1 1 ap bq
Lemma: Let p > 1,;+;= 1,a>0,b > O.Thenabs?+;.

Proof: If a =0 or b = 0 then the conclusion is obvious. So let a> 0 and b > 0.
Define f(t) =k(t— 1) —t<+ 1 fort> 1,k € (0, 1).




/ -1 _ 1
Note that f(1) = 0 and f'(t) = k —kt* " =k (1 - =) 2 0.
So, f(t) >0V t e [1,00). ~tc<kt+1—k

1
Put t = aPb ™ and replace k by 1/p. We get (apb_q)p <1- % + %apb_q=$ +

1 _ . . . q-21 a?  pq . aP b4
. aP b~1 Multiplying both sides by bq we get ab™ » < - + - le. ab < > + Py

Holder’s and Minkowski’s inequalities:
Theorem 3: Let x = (X1, X2, ..., Xn) and y = (y1, y2, ..., ¥n) denote n — tuples of
1

scalars (real or complex numbers. Define ||x|| p = (Y |x;|P]P forp > 1
1

1
() Syl < [T PPyl 710 = i Iyl ifp> Tand >+ = 1.
1 % 1
(i) |2 + v PP < [SglxalP] + [Sialy P] e ix + yiL, < ixil, + 1y,
Proof: If x = 0 or y = 0 then the conclusion is obvious. So let a # 0 and b # 0.

D .q
Then by the lemma for a; > 0, b; > 0 we have a;b; < * b‘; :
il ond by = 24

11 L,

I N T 71

Xlip 1Yllg = P Ix” g iy, 9

Summing from 1 = 1 to n both sides we get
Sizalxillyil < 12’{;1|x;;|p n 1XR il 1 1xlp” 41 ig? _ 1
IxXlpllyllg = P lIxllp a wig? pixip?  qivig? p
Te. Xy lxayil < 1xil, Iyl

(11) This inequality is evident when p = 1. So, assume p > 1.

I+ yi,P = Xisalx +yil? = Xizalx + yillx + yil P B (] + Ly D lxg +
yilP~! . .

= Xz (i Dlxg + i P70 + Xin (v Dl + yi P~

= il G + y)P T+ Xy (g + y)P

1 1 1 -114
< (B lPIPIEE | G + v )P TSy P [z?=1|(xi+yi>” ’ ]

Put a; =

Thus, we get |

= 1.

41
q

1 1
= 1 >
:[Z?zllxilp]% [2?21 ‘(xi + yi)g|p]p+[z?=1|yi|p]E [Z?zl |(xi + yi)§|p]p

p p p
= Xl 12+ Y17+ Y11+ Y19 = (X, + 1YI)1x + Y,




Corollary: Holders and Minkowskie’s inequalities for sequences.
Let x = {x,} and y = {ya} be sequences of scalars 3 Y72, |x;|P < oo, 372, |y;]? <
0,

For p > 1 define ||lx|| = [E2 1lxl|p]’"
Then (i) £, |x;;| < [Zl:1|xl|p] > 1|yl|Q]q = lxll, Iy, ifp>1 and + Z=1.

1

1 1
(i) [524 i + v, ] < [5240xP] +[S2aly, I”]” ie. IIx + yIl,, < Ixl, + Iy,
Proof: If n is a positive mteger then by above result
Zn lxyil < [Zn 11 |p] [Zn 1|y1|q] [Xi211x; |p]p[ = 1|y |q]q< e...(1)
Thus the partial sums /-, |x;y;| are bounded and so Zl xyi] < oo,
If we let n — oo in (1) we get ;2 |x;y;| < [lellxllp] (22 1Iyllq]q = 1xl, Y1l
(i1)

1

1 D
Ll +yilP = [ g [P]P [Z?:l (x; + ;)9 ] [Z Ly, Ip] [Z (xl

1
£|P]5 r r

= Il + Vil + 1L 1+ V¢

Now letting n — oo
14

12+ Y, = Rzl +yel?< (i, +1y1)) i+ Yl or

p
p—= .
I+ i, 7S, S e 1x + Vi, < I, + 1,

Example 5: (1*): The linear space [P, p > is a Banach space under the norm
1

defined by Il = [£24]&,[°] where x = (¢, &5, )y onn) =

(§)i2, P, §eRV

Solution: (i) Let x = (fi)zl €lPforé eRorCVi

1
Then ||x|| = [£24]¢,["]? = 0
(ii) Letx =(¢;) _ € IPfor & eRorCV i
1
Then x| =0 < [Z?i1|fi|p]p =0< Z?i1|fi|p =
sl =0vie|gl=0vie§=0Viex=0
i) Letx=(g)._ ¥ = M)21, € P for &,n; eRor CV i




1 1 1
X+ yil = [£241€; + 0,7 [P <[22418,°] + [£24m,"]7 by Minkowskie’s inequality
< Xl + 1yl ie. jlx + yI < Qi1+ 1y
(iv) Letx = (El 1Elpf0r€l eRorCVlae]R
lax|| = [£24]ag, |p]” = |22 laP|E,| ]p— lal [ZF 4[| ]” = lalllx|
le. ||ax| = |al||x|| where x —(fi)izl €lP,aeR
.. [P is a normed linear space.
Let {X,} be any Cauchy sequence in [P where x, = (Egn))il
CVi

(o]
= foreach € >0 3 ny > ||x;, — xpll <€ V m, n>ng where Xy, = (fgm))
i=1

€i(m) eRorCVi

1
.
= [Z?i1|fgm)_€§n)| ]p <gVm,nz2ny

p
=1 |€i(m) - ’fi(n)| <& Vm,nzng
p

= ggm) - {i(")| <g’ Vm,n>n
= | —5i(n)| <eVm,n2>ng
= {Egm)} is a Cauchy sequence in Ror CV i
Since R and C are complete 3 ¢; in R or C > the sequence {fgm)} converges to ¢; V
1.
Let x = (&1,&2, ) ny ) = )i21-

1
Then ||x, — x| = [2’3:1 |€§n) - €i|p]p - 0 asn —ow

= X, = X as n —o,
. the sequence {x,} in [P converges to X.

Claim: x € [P. x, —x—( () fl) —>0 =>x, 2xasn—wo

P
= Givene>03ng eN> |x, —x|| Vn=ny= Y2, (”) §i| <P =k<eg

= X,—Xx € [P,
Nowx=X—X,+ X, €lP. =>x e [P
- 1P is complete.

Hence [P is a Banach space.




Example 6: (3*): Let C(X) denote the linear space of all bounded continuous
scalar valued functions defined on a topological space X. Show that C(X) is a
Banach space under the norm || f|| = sup{|f(x)|: x € X}, f € C(X).

Solution: We know that C(X) is a linear space.

Since |f(x)| >0V x € X, we have ||f]|| > 0.

Il = 0iff sup{|f(x)|:x € X}=0iff |[f(x)| =0V x € Xiff f(x)=0V x € X iff
f=0.

If + gll = sup{l(f + g)(¥)|:x € X} =sup{|f (x) + g(x)|: x € X}

S T]UII)I{If(x)I +1f(0)]:x € X} <sup{|f (x)|:x € X} + sup{lg(x)[:x € X} = ||fl
+1(gll.

llaf |l = sup{|(af)(x)|:x € X} = sup{|af(x)|: x € X} = sup{la||f (x)|:x € X}
= || sup{|f (x)|:x € X} = |alllf]l

Hence C(X) is a normed linear space.

Let {f,} be any Cauchy sequence in C(X). Then for a given € > 0, 3 a positive
integer mp>m,n>my = ||fr, — full <& = sup{|l(fn — L(X)]: x € X} <e.

= sup{|fin(®) — fL(O]:x € X}<e. = |fin(x) — f(x)| <&V x € X. But this is
the Cauchy’s condition for uniform convergence of the sequence of bounded
continuous scalar valued functions. Hence the sequence {f,} must converge to a
bounded continuous function f on X. .. C(X) is complete and hence it is a Banach
space.

Example 7: (3*): In the linear space C[0, 1] of real valued continuous functions on
[0, 1] define ||f|| = max |f (t)|. Prove that C[0, 1] is a Banach space with this

<t<1

norm.

Solution: Since a real valued continuous function on a closed interval is bounded
and so C[0, 1] is a Banach space following exactly the same manner as in above
example.

CONTINUOUS LINEAR TRANSFORMATION:

Definition: Let N and N’ be normed linear spaces with the same scalars.

(1) A linear transformation T: N — N’ is said to be continuous ift for each sequence
{xn} 1n N converging to x in N, the sequence {T(X,)} in N' converges to T(x) in N'.
(1) Let T: N — N’ be a linear transformation.

If 3 a real number k > 0> || T(x)|| < k||x|| V X € N, then k is called a bound for T
and T is said to be bounded linear transformation.

Theorem 4: Let T be a linear transformation of a normed linear transformation N
into another normed linear space N'. Then the following statements are equivalent.




(1) T 1s continuous

(1) T 1s continuous at the origin, in the sense that x, - 0 = T(x,) — O.
(1i1) 3 a real number k > 05 ||T ()| < klix|l v x e N.1e. T is bounded.
(iv) If S = {x: ||x|| < 1} then its image in N’ is a bounded set.

Proof: Claim: (i) = (i1).

Assume T is continuous in N and {x,} 1s a sequence in N converging to 0.
Since T is continuous at 0, {T(x,} converges to T(0). But T(0) = 0.

.. Sequence {T(x,} converges to 0. .. T is continuous at the origin.
Claim: (i1) = (ii1).

Assume T is continuous at the origin.

If possible, suppose T is not bounded.

Then for each positive integer n, 3 X, € N 3 [T (x| > n||xy]l.

T(xn
TGl > 1= 1225 > 1. (D).

n||x [

Now set y, = thn||yn||———>0asn—>oo

nllx I
~.daseq {y.} in N>y, — 0. But ||[T(y,)|| > 1 from (i).

So, T(yn) +» O.

= T is not continuous at origin which is a contradiction.

Hence T must be bounded.

Claim: (iii) = (iv). Assume that T is bounded.

LetS={x € N:|x| < 1}

Since T 1s bounded, 3 a real number k > 0 > ||T(x)|| < kllx|l V x € N.

=TI <kVxeS. .. T(S)is bounded in N'.

Claim: (iv) = (1).

Assume that T(S) is bounded in N’ if S = {x: ||x|| < 1} is a closed unit sphere in N.
If x = 0 then T(x) 0 so that |[T0)| < k|x||.

Ifx #0, then = o € S and so, 3 a real numberk >0 > ||T(“x”) <k

= TN < k= IT@I < kx|

llx]

“NITO| < kjjx|| V x € N...(1).
Letx € N, and {x,} be a sequence in N 3 X, = X.
Since X, —x € N, by (1), IT(x, — )| < k|lx, — x| = 0.
= ITx) —TX)|| — 0asn — oo,
= T(x,) —T(x) > 0asn— .
T(x,) - T(x) asn— .
= T is continuous. Hence the theorem.




Definition: Let N and N’ be any two normed linear spaces, and T be a bounded
linear transformation of N into N'. Define ||T|| = Sup {|IT(x)|l: x € N, ||x|| < 1}.

Theorem 5: Let N and N’ be any two normed linear spaces, and T be a bounded
linear transformation of N into N'. Put a = Sup{||T(x)|: x € N, ||x|| = 1},

b= Sup {%x EN,x + O}, c=Inf{k:k > 0,IT(x)| < k|x|}.

Then ||T||=a=b=cand ||TX)| <|T|x| V x € N.

Proof: Since {x € N, ||x|| =1} S {x € N,|Ix|| < 1}, a = Sup{IT(x)|:x €
N, x| = 1} <Sup {ITC)Il:x €N, |Ix|| < 1} =T ie.a < |T| ... (i)

Since T is a linear transformation, b = Sup {M X EN,x # O}

[l
= Sup{ITM)|:y = ”i—” EN, |yl =1} =aieb=a..(ii)
1T )|l

From definition of b, b > o Vx €N, x#0 =|T)| < bllx|

=c=Inf{kik >0, T < kIx||} £ b.Ie.c <b ..(iii).

From the definition of ¢, |[T(X)|| < cllx|| Vx € N= ||IT(x)| <cV x eN with x| <
1.

= cis an upper bound of {||T(x)|l:x €N, ||x|| < 1}.

ST = sup{ITGO)|:x €N, ||lx|| <1} <c.le. ||IT|| < c...(iv)
ST £c<b=a<||T|.Hence |T|=a=b=c.

Since ||IT)|| < b||x|| and b = ||T||, it follows that | T < |ITlIxII-

Theorem 6: (6*): Let N and N’ be any two normed linear spaces, and B(N,N')

denote the set of all bounded linear transformation of N into N'. Then B(N, N’) is

itself a normed linear space with respect to pointwise linear operator

(T+U)(x) =T(x) + U(x), (aT)(x) = a{T(x)} and the norm defined by

IT) = Sup{ITX)|l:x € N, |x|| < 1}. Further if N’ is a Banach space then so is
B(N,N).

Proof: Claim: B(N, N') is a linear space.

Clearly the set S of all linear transformations from a linear space N into another

linear space is itself a linear space with respect to pointwise operations.

Let Ty, T, € B(N,N'). Then Ty, Tz are bounded and so 3 real numbers ki > 0,

k2 =205 |ITy ()1l < kqlixl and [T (X))l < KalIx|| Vx € N.

If o, B are any two scalars then || (aT,+BT,) (X))l = II(aT,) (x)+(BT,)X)I

= |af{Ty () }+B{T O < afT, )+ IB{T, 3
= [a[IT I+ IBNTGON < (Jalky + [Blk)IIXII.




Thus, aT; +BT, is bounded and so aT; +T, e B(N,N’).

Thus B(N, N’) is a linear subspace of S.

Claim: B(N,N') is a normed linear space. Let T € B(N,N").

IT|| = 0 since ||T|| = Sup{IT(x)|l:x € N, |lx|| < 1} and |T(x)|| =0 v x e N.

IT|| = 0 iff Sup {”T(X)" X EN,x # 0} =0iffI® —0,xeN,x# 0

x| 11X
iff IT))=0,x€N,x#0iff T(x) =0vx e Niff T =0 zero transformation.
Let T, U € B(N,N'). Then |T + U| = Sup{|I(T + U)(x)|:x € N, ||x|| < 1}
= Sup{IIT(x) + U()|:x € N, |Ix|| < 1}
<Sup{IT)| + 1IUX)|I:x € N, |Ix|| < 1}
=Sup{IIT()l:x € N, |Ix|| < 1} + Sup{IUX)|l:x EN, |lx|| < 1}
=TI+ U]
LetT € B(N,N'), o € K.
Then ||aT|| = Sup{l(aT)()l: x € N, ||x|| < 1}
= Sup {llaT(X)|l: x € N, ||lx|| < 1} = Sup{la|IT(x)|l: x € N, |lx|| < 1}
= |a|Sup{IT()l:x € N, |Ix|| < 1} = |al||T||
Hence B(N, N') is a normed linear space.

Claim: B(N, N') is complete if N’ is complete. Suppose N’ is complete.

Let {Tw} be any Cauchy sequence in B(N, N"). Then ||T,,—T,|| — 0asm,n —>
0...(1).

For each x € N we have ||T(X) =T ()l = (T ,,—T7) CONl < ITsm—=Thllllx|l > 0
by (1).

Hence {Tn(x)} is a Cauchy sequence in N’ for each x € N.

Since N’ is complete, 3 a vector in N’, which we denote by T(x) 3Tn(x) > T(x).
This defines a mapping T of Ninto N'. Leta, B € K, x,y € N.

Then T(ax + By) = lim T,(ax + fy) =lim{aT,(x) + T,(y)}
n—oo n—oo

=alimT,(x) + BlimT,(y)} = aT(Xx) + BT(y). .. Tislinear.

n—-oo n—-oo
Now ITCOIN = ILlim T (Ol = lm T ()N < Lim ITwllixll < Sup{iTy il
= (Supl T DNl - (2).
Now |[ITll = I Tnll| £ [Ty, — Trll— 0 @as m, n — .
~{IITxI1} is a Cauchy sequence of real numbers and hence convergent and
bounded. So, 3k = 05 Sup||T,|| < k ... (3).
From (2) and (3) we have || T(x)| < k||x|| showing that T is bounded.
~TeB(N,N").
Claim: To show that T, > T.
Let ¢ > 0. Then 3 a positive integer mo>n, m = mo = ||T),— Tyl < € ... (4).




Letx €e Nbes x| < 1.
Then we can choose a +ve integer mx>mo 3 |T(xX) — Ty, || < % .. (5).

Hence Vn>moand x| < 1, |Tnx) —T)| = 1T, (x) — T, (x) + T, (x) —
Tl S ITn(0) = TN + 1T =TI = 1(T,, = Tr) Ol +
ITm ) = TCON <N Tn = TrllIX + 1T =TI <5 +- =&
Thus |IT,(x) —T(x)|<eVn=moandx € N > |x|| < 1.

Hence Sup{||T,,(x) —T(x)|:x € N, |x|| <1} < &£ Vn = mO.

= Sup{ll(T, = T)(X)|:x EN, x| <1} <eVn=mo.le. |T,—T|< eV n=mo.
=>Ta—>T.

Example 8: (3*): If M is a closed linear subspace of a normed linear space N,
and if T is a natural mapping of N onto % defined by T(x) = x + M show that T

is a continuous linear transformation for which ||T|| < 1.

Solution: Let M be a closed linear subspace of a normed linear space N, and T
be a natural mapping of N onto N/M defined by T(x) =x+ M V x € N.

Clearly %is a normed linear space with norm |[x + M|| = inf {||x + m||:m €

M3}. T is linear: Letx,y € N; a,  be scalars. Then T(ax + By) =
ox + By + M =(ax+M)+ Py +M) =ax+
M) + B(y + M) = aT(x) + BT(y). Tis
continuous: ||Tx|| = ||x + M|| =inf{||x + m|:m € M} < ||[x + m|| Vm € M.
~Form=0, ||Tx|| <||x|]| =1.]||x|| .. Tis continuous.

Further ||T|| = Sup {||Tx|[: x € N, ||x|| <1} <Sup {||x|l: x e N, ||x]| <1} < 1.

Example 9: Let N, and N’ be normed linear spaces and T be a continuous linear
transformation of N into N'. If M is the null space of T, show that T induces a
natural linear transformation T’ of N/M into N’ and that ||T’|| = ||T]||.

Solution: Since T is continuous, M is a closed linear subspace of N. So, N/M is a
normed linear space with the norm defined by ||x + M|| = inf {||x + m||:m €
M3}. We define T: N/ M >N by T'(x+ M) =T(x) Vx+ M e N/M.
Claim: T" is linear. Letx + M,y + M € N/M and o,f3 be scalars.
Then T'{a.(x + M) + B(y + M)} =T '(ax + By + M) = T(ox + By) = aT(x) +
BT(y) =aT'(x + M) + BT'(y + M). Claim: ||T’|| = ||T]|.
IT'll = sup{lIT"Cx + M)l: x € N, || + M| < 1}

= sup{[|IT(x)|l: x € N,inf{|]|lx + m|:m € M} < 1}
=sup{||IT(x) + T(m)|l: xe Nym €M, ||x + m|| <1}
=sup{[|T(x +m)|l:x+m e N, ||lx +m|| <1} =||T|l.




HAHN BANACH THEOREM

Linear functional: We know that R and C are Banach Spaces. If we take R or C
for N’ then B(N, R) and B(N, C) denote respectively the set of all continuous
linear transformations from N into R or C. We denote either of these sets by
N* and call N* the conjugate space (or adjoint space or dual space). Members
of N* are called continuous linear functionals or simply functionals.

Note: (i) N* is a Banach space. (ii) All the theorems hold good for B(N, N')
also hold for B(N, R) and B(N, C). (iii) ||f|| = Sup {|f (x)|: x € N, ||x]|| < 1}

Lemma: (1*): Let M be a linear subspace of a normed linear space N and let f be
a functional defined on M. If xo € M and if My = M + <x¢0> = {x + aXo: X €M, a
real} is the linear subspace spanned by M and xo, then f can be extended to a
functional f; defined on My such that || /o] = |If]l.

Proof: Case (i): Let N be a real normed linear space. Since X, is not in M, each
vector ® in My 1s uniquely expressible in the form ® = x + axo with x € M.
Define f; by setting fo(®) = fo(x + axp) = f(x) + arg where ry is any real number.
Claim: For any choice of the real number ry, f; 1s linear on My > fo(x) =f(x) V x €
M. Let B3, y be scalars and x, y € M.
Then fo{P(x + axo) +v(y + axo)} = fo{fx +yy + (B +v)axo}

=f(Bx + yy) + (B + y)aro.

= Pi(x) + yH(y) + Pouo + yaur

= B{(x) + aroj+ y{f(y) + arof

= B{fo(x + oxo)} + v {foly + axo)}

.. fo 1s linear on My. Also for x € M, fy(x) = fo(x + 0x¢) = f(x) + Orp = f(x).
So, fy extends f linearly to M.
Claim: || foll = 1If1I.
We have [fyll = sup {Ifo(0)]: x € Mo, llx] < 1}
zsup {|fo()]:x e M, |lx|[ <1} - Moo M.
=sup {|f()]:x e M, ||x|| <1} "~ fy=fon M.
= I£1l

Thus, [[foll = [If]l ... (A)
To choose 1o 3 || foll < I

If x4, X, are any two vectors in M; then f(x,) — f(x1) = f(x2 — x1) < | f (%, — x1)|

<N flllez =24 Il = 111z +x0 = Cer + x| < N FI{IIx2 + xoll+1=Crs + 2011}
= If[xz + xo I+ F 2y + xoll

Thus, — f(x1) — I llllx1 + xoll < —1(x2) + || fI[l]2x2 + xol




Since this inequality holds for arbitrary x;, X, € M, we see that

Sup {—f(y) = If [lly + x|} < inf {~f(y) + [[fllly + xoll}-
Choose 1y to be any real number such that

sup {=f () = lIfllly + xoll} <ro < Inf {—=F(y) + [If[llly + xoll3

yeEM

= —fO) = IIfllly + xoll <0< =fF @) + If Y + %01l ¥y € M.... (id).
With this choice of rp we show that || f, || < ||f]l.

Let ® = x + axo be any arbitrary vector in M.
X . .. X X X X

Put;forym(u)toget—f(;)—||f|| ;+x0||ﬁroﬁ—f(z)+||f|| ;+x0||

(iii).

If o> 0, then 1o < — = £ (x) + — [|fll|x + axo |

= f(x) + oo < || fl]x + axo|
= fo(x + axo) < || flllx + axl.

If o0 <0, then —= £ () + = [Ifllllx + axoll < 1o

= f(x) + aro < [|f|lllx + ax,l|

= fo(o) < |Iflllwl|

Thus, when o # 0. fy(0) < ||fll[|lw]] V ® € M. ... (iv).

When o =0, [[fo[| = Il

Replacing o by — o, fy(— o) < [|f|Hl-w]|[ = — fo(o) < [[flllw]] ... (v)
From (iv) and (v), [fO(®)| < [|f[[|lw]] ... (vi).

.. 1o 1s a linear bounded functional on M.

Since || foll = sup {|fo(w)]: @ € My, [|w]| < 1}.

Ifoll <IIfIl ... (B)

Hence || foll = lIf -

Case (i1) Let N be a complex normed linear space over C.

Let g=R. P. of f, h =1. P. of f so that f(x) = g(x) + ih(x) V x € M.

Let x, y € M. Then f(x +y) = {(x) + f(y) since fis linear.

= g(x +y) +ih(x +y) = g(x) + ih(x) + g(y) + ih(y).

Comparing the real and imaginary parts g(x +y) = g(x) + g(y), h(x + y) =h(x) +
h(y).

Leta e R, x € M.

Then f(ox) = af(x) = g(ax) + 1 h(ax) = a{g(x) + i h(x)}

Comparing the real and imaginary parts g(ax) = a{g(x), and h(ax) = a {h(x)}.
Thus, g, and h are linear on M.

Further [g()| < [f (Ol < [If[HIx|l, and [hCe)| < £ COl < NIf H]x]].

..g, and h are bounded.

Thus, g, and h are real valued linear bounded functionals on M.




Also, we have g(ix) + ith(ix) = f(ix) = if(x) = — h(x) + 1g(x), for all x € M.
Comparing the real and imaginary parts, g(ix) = — h(x), h(ix) = g(x).
Consequently, f(x) = g(x) —1g(ix) = h(ix) + 1h(x).
Since g is real functional on M, by case (i) g can be extended to a functional g
defined on My > ||goll = llg]l.
Now define fj for x € My by fo(x) = go(X) — 1go(1x).
Then fj 1s linear on My > fo = f on M.
[Letx,y € My, o+ 1B € K.
So, fo(x +y) = go(x +y) — igo(ix + 1y)

= go(X) + go(y) — igo(ix) — igo(iy)

= fo(x) + fo(y)
and fo{(a +1B)x} = go(ox + 1Bx) — 1go(— PX + 10X)

= 0go(X) + Pgo(ix) — 1{-Pgo(x) + ago(ix)}

= 0go(x) + 1Bgo(x) + Pgo(ix) — iogo(ix)

= (a0 +1B) {go(x) — igo(ix) }

= (o + 1B)fo(x).
Thus, fj is linear on M. Also, go =g on M = f; = f on M].
Let x € My be arbitrary and write fo(x) = r € where r > 0 and 0 is real.
Then [f5(x)] =1 = e rel® = e fy(x) = fo(e°x) = go(e %) < | go (e 70 x)|

<||go(e™x)|| < ligoll|le x| = llgollllxll = llgllxll < I £ l|x]I.
. fo 1s bounded and || f, || < ||f||
Also, as in case (i) it is obvious that || f,|| = || f]|. Hence || foll = [If]|

Hahn Banach Theorem 8: (5*): Let M be a linear subspace of a normed linear
space N and let f be a functional defined on M. Then f can be extended to a
functional F defined on the whole space N such that |[F|| = || f]|.

Proof: Let P denote the set of all ordered pairs (f., M) where f,, is an extension of
to the subspace My > M and ||f5]I= IIf]I-

Relation < is defined on P by (fi, M) < (fu, My) iff My < My and f;, = f, on M.

P is evidently non-empty, for, certainly (f, M) € P.

Clearly < 1s a partially ordering on P.

- (P, <) 1s a poset.

Let Q = {(fi, Mj)} be a chain in P. Then Q has an upper bound (¢, UM;) where ¢(x)
=fi(x) V x € M, as detailed below.

Claim: UM,; is a subspace of N where (f;, M;) € Q.

Letx, y € UM; and a, B be any scalars.

Let x € Mj, y € M; for some 1 and j.




Since Q 1s totally ordering either M; € M; or M; € M.

Without loss of generality assume M; < M;.

L X,y € M.

= ax+ Py e M;cu M,

.. U M; is a subspace of N.

Claim: ¢ is well defined.

Suppose x € M; is such that x € M; and x € M,;.

Then by definition, @(x) = fi(x) and ¢(x) = f;(x).

By total ordering of Q, either f; extends f; or vice versa.

In either case fi(x) = fij(x).

Thus, ¢ 1s well defined.

(¢, UM;j) 1s an upper bound of Q.

By Zorn’s lemma 3 maximal element (F, H) in P.

Claim: H=N.

Suppose, if possible, N contains H properly. Then 3 xo € N-H and so, by the above
lemma, f can be extended to a functional Fy on Ho = H + (x,) which contains H
properly. But this contradicts the maximality of (F, H)

- H=N.

Theorem 9: (3*): Let N be a normed linear space and X, be a non-zero vector in N.
Then there exists a functional F in N* 5 F(xo) = [|x,|| and ||F|| = 1. In particular, if
X,y € N and x # Y, then there exists a functional f € N* > f(x) = f(y).

Proof: Let M = <x¢> be the linear subspace of N spanned by xo.

Define fy on M by fo(axo) = al|x,|l.

Claim: f; is a functional on M 3 ||f|| = 1.

Let yi, y2 € M so that y; = axo, y2 = Bxo for some scalars a, f3.

Ify, d are any two scalars then fo(yy; + 0y2) = fo(yoxo + 6Bx0) = fo{(ya + )Xo}
= (ya. + 8B) llxoll = vallxoll + 8Bllxo Il = yio(oxo) + 8fo(Bxo) = vfo(y1) + 8fo(y2).
.. fo 1s linear.

Lety = axo € M so that ||y ||=|lax,l| = |e|l|x,]l-

Now [fo) = Ifolaxe)] = lallxolll = lalllxoll=llyll-

..o 1s bounded.

Hence fj is a functional on M.

Further || foll = sup {|fo(W)|: yeM, |lyll < 1} =sup {llyll: yeM, llyll < 1} = 1.
Also, fo(xo) = [|xo]| by definition of f;.

Hence by Hahn Banach theorem, f; can be extended to norm preserving functional
F € N* so that F(xo) = fo(x0) = ||xo]| and ||F]|| = || /5] = 1.

In the particular case, since X # y, x —y # 0 and by the above part of this theorem,




Jdfe N*suchthatf(x —y)=||lx —y|[#0
= f(x) - f(y) %0
= f(x) # f(y).

Theorem 10: (1*): Let M be a closed linear subspace of a normed linear space N
and X a vector not in M. Then there exists a functional F in N* such that F(M) =

{0} and F(x¢) # 0.

Proof: Consider the natural map ¢: N — % such that p(x) =x + M.

Then ¢ is a continuous linear transformation and if m € M, then p(m)=m +M =0
. N ...
(Here 0 denotes zero element in o which 1s M.)

In other words, (M) = {0}... (1).
Also, since X ¢ M, we have ¢(X¢) = xo + M # 0 (# zero element in M/N which is
M). Hence, by the previous theorem, 3 a
functional f € (%) > f(xo + M) =||xg + M|| #0 - xo + M # 0 (zero element in N/M
ie. M) and ||f|| = 1... (i1).
We now define F by F(x) = f{op(x)}.
Then F is a linear functional on N with the desired properties as shown below.
F is linear: F(ax + By) = f{p(ax + By)}

= f{oax + By + M}

= fla(x +M) + B(y + M)}

= af(x + M) + Bf(y + M) * fis linear on %

= a[f{e(x)}] + Blf{o(y)}]
= aF(x) + BE(y).

|f{e ()}

1l GOl

I Il ]l
£ IHlx]l - llell < 1 by example 8.

.. F1s bounded. Thus, F is a functional on N ie. F € N*.
Further, if m € M, then F(m) = f{¢p(m)}= f(0) = 0 so that F(M) = {0}.
and F(x¢) = f{p(x0)}.

=f(xo + M) # 0 by (i1).

F is bounded: |F(x)|

IANIACIA |

Example 11: Let M be a closed linear subspace of a normed linear space N and let
X be a point not in M. If d is the distance of x¢ from M, show that 3 a functional F

in N* such that F(IM) = {0}, F(x¢) =1 and ||F|| = %.




Solution: By definition, d = inf {||x, — x|| : x eM} ... (i).

Since M is closed and xo € M, d > 0.

Now consider the subspace My = {x + a x¢: X € M, aeR} spanned by M and xo.
Since X9 € M, the representation of each vector y in My in the form y = x + axy is
unique.

Define the map f, on My by fo(x + axp) = a.

The map fy is well defined and linear on M.

Also, fo(Xo) = fo(O +1 X()) =1

and if m €M, then fy(m) = fo(m + 0 x0) =0, > fo(M) = {0}.

Now || foll = Sup {M:y € M,y + 0} = Sup {—lf"(xmx")l xEM,a ER a #

Iyl ll2c+axol

llx+axoll

O} =Sup{ |a| :xEM,aER,a;tO}:Sup {H;

M,aE]R{,a;tO}

_ 1 1
R, a # O} inf{llxo-zll: zeM}  d
Thus, fj is linear functional on My such that fo(M) = {0}, fo(x0) = 1 and ||, || = %
.. By Hahn Banach Theorem 3 F € N* such that F(y) =fo(y) Vy € My and ||F|| =

|l foll. Hence it follows that F(M) = {0}, F(x0) = 1 and ||F|| = %,

Example 12: Let M be a closed linear subspace of a normed linear space N and let
X be a point not in M. If d is the distance of x( from M, show that 3 a functional F
in N* such that F(IM) = {0}, F(x¢) =d and ||F|| = 1.

Solution: By definition, d = inf {||x, — x]|| : x eM} ... (i).

Since M is closed and xo € M, d > 0.

Now consider the subspace My = {x + a x¢: X € M, e R} spanned by M and x.
Since xo € M, the representation of each vector y in My in the form y = x + axg is
unique.

Define the map f, on My by fo(x + axp) = ad.

By the uniqueness of y, the map fj is well defined and also linear on M.

Also, fo(x0) = fo(0 + 1 x9) = 1.d and if m € M, then fo(m) = fo(m + 0 x¢) = 0, > fo(M)
= {05.

Now [Ifgll = Sup {457y € Mo,y # 0}

lyll
=Su {M:x EM,aeRx #0,a # 0}
llx+ax,|l




lad|
llx+axoll

:xEM,aE]R,a;tO}:Sup {L

X
= o]
[0

=Sup{

:xEM,aER,aiO}

J— . —_ _f frd d fd
=d Sup {”xo—Z” 1z == EM,a eER a# 0} izl 2o

Thus, fy is linear functional on My such that fo(M) = {0}, fo(xo) =d and ||fy|| = 1
.. by Hahn Banach Theorem 3 F € N* such that F(y) =fy(y) Vy € My and ||F|| =
I foll. Hence it follows that F(M) = {0}, F(x¢) =d and [|F|| = 1.

Example 13: (3*): Prove that a normed linear space is separable if its conjugate
space 1s separable.

Solution: Let N be a normed linear space whose conjugate space N* is separable.
Consider S = {f: f € N*, [|f]| =1}.

Since every subspace of a metric space is separable, S must be separable.

Hence S contains countable dense subset, say, A= {f}, f,, ..., fu, ...}.

Since each f, € S we have ||f,,|| =1 V n.

Since || f, || = sup {Ifn(x)|: ||x|| = 1}, for each n there must exist some vector x,
with [|x, ]| =13 | f,,(x)] >% . [ If such x, does not exist, this would contradict the
fact that || £, ]| = 1].

Let M be the closed linear subspace in N generated by the sequence {x,}.

We assert that M = N. Suppose, if possible, that M = N and let xo € N — M.

Then 3 a functional F € N* 5 ||F|| = 1, F(x¢) # 0 and F(x) =0 if x € M.

Since ||F|| =1, F € S and since each x, € M, we have F(x,)=0forn=1,2, ....

NOW%< Ifn(xn)l = Ifn(xn) - F(xn) + F(xn)l < |fn(xn) - F(xn)l + |F(xn)|
=[(fn = F)(xp)| - F(xa) = 0.

<|fo = Fllllxnll = [ fn = FIl - [l ]l = 1.

Thus, ||, — FI| > % V n. Now since A is dense in S, every point of S is an adherent

point of A so that each sphere centered at arbitrary f € S must contain a point of A.

But the open sphere {f: ||f — F|| <% } centered at F € S contains no point of A by
(1).

We thus arrive at a contradiction and so we must have M = N.

It then follows that the set of all linear combinations of the x,’s whose coefficients
are rational or if N is complex have rational real and imaginary parts, contribute a
countable set everywhere dense in N and consequently N is separable.

THE NATURAL IMBEDDING OF N IN N**




Since N* is a normed linear space, whenever N is, (N*)* is called a second
conjugate of N and is denoted by N**,
Definition: A normed linear space is said to be reflexive if N = N**,

Definition: Week topology on a normed linear space N:

Definition: Let N and N’ be normed linear spaces. An isometric isomorphism of N
into N' is a one — to — one linear transformation T of N into N’ such that ||T(x)]|| =
||x|| for every x in N; and N is said to be isometrically isomorphic to N" if there
exists an isometric isomorphism of N onto N'.

Theorem 11: (4*): Let N be an arbitrary normed linear space. Then, each vector x
in N induces a functional Fx on N* defined by Fy(f) = f(x) V f € N* > || E|| = ||x]I.
Further the mapping J: N — N** 5 J(x) = Fx V x €N defines an isometric
isomorphism of N into N**.

Proof: Let x € N and feN*. Define a function Fyx: N*— K by Fy(f) =f(x) V f €
N*, Claim: F is linear and bounded.

Let f, g € N* and a, 3 be scalars (€ K).

Now Fy(af + Bg) = (af + Bg)(x) = af(x) + Bg(x) = aFx(f) + PFx(g) and

[E.(O)] = 1fC)| < IfIIlx]]...(1) where the constant ||x|| is a bound for F.

Thus Fx (e N**) is a functional on N*.

Claim: ||F || = [lx]l.

IEcll = Sup {|E(O: f € N* IfIl <1}

= Sup {l|fllllx|l: f € N%IfIl <1} <|x]| ... (2).

Again, when x = 0, by (2) ||Fy|| < |[0]] = 0. But for any x, ||E,|| = O.

Thus ||Fy|| = 0 and so ||E,|| = ||x|| when x = 0.

Let x be any non — zero vector in N.

By a theorem 3 a function F € N* 5 F(x) = ||x|| and ||F|| = 1.

But [|Ec |l = Sup {IE(A)|: f € N IfIl = 1} =Sup {If()|: f € N |If]l = 1} and
since ||x|| = F(x) = [F(x)| <Sup {|F(x)|:x € N,Fe N*,|[|F|| = 1} we have
IE = Ixl.-. (3).

From (2) and (3) [|Fll = |||l ... (4).

Claim: The mapping J: N — N** 5 J(x) =Fx V x €N is linear.

Forany x,y € N, f € N* and a.eK, Fx+(f) =f(x +y) = f(x) + f(y) = Fx(f) + Fy()
= (Fx + Fy)(f). and Fux(f) = f(ox) = af(x) = aF(f) = (aF)(f) V f eN*.

Thus, Fx+y=Fx+ Fyand Fox = 0Fx. V X,y € N, and a.eK.

Now J(x +y) =Fx+y=Fc+ F, =J(x) + J(y) and J(ax) = Fox = aFx = aJ(x).

Thus, J is linear.

Claim: J is an isometry




Letx,y eN. Then [|/(x) = JO)Il =||F = B || =[|Fe—y || = llx = ¥l ... (5) by (4)
Thus J preserves norm and hence it is an isometry.

Also, from (5), J(x) = J(y) =0 = x -y =0. le. J(x) = J(y) = x =y so that J is one-
one. Also [J()I| = [IF|l = Il

Hence J defines isometric isomorphism of N into N**,

OPEN MAPPING THEOREM:

Lemma: (3*): If B and B’ are Banach Spaces, and if T is a continuous linear
transformation of B onto B’, then the image of each open sphere centered on the
origin in B contains an open sphere centered on the origin in B'.

Proof: We denote by S; and S, the open spheres with radius r centered at origin in
B and B’ respectively. Then S; =rS,.

Then clearly T{S;} = T{rS;} =rT{S:} so that it suffices to show that T{S;}
contains some Sy'.

We begin by proving that T{S,} contains some S.

For each positive integer n, consider the open sphere S, in B.

Then clearly B = U;-; S,,. Since T is onto, we see that B' =T[B] =T [Up=1 Sn] =
Un=1 T{Sn}. -

Since B’ is complete, Baire’s theorem implies that for some ny, T{Sno} has an
interior point yo, which may be assumed to lie in T{Sn O}.

The mapping y — y — yo 1s a homeomorphism of B’ onto itself, so T{Sno} — Yo has
the origin as an interior point.

Since yy is in T{Sno}, we have T {Sno} — Yo C T{SZnO}; and from this we obtain
T{Sno} — Vo = T{Sno} — Yo € T{SZnO}, which shows that the origin is an interior
point of T{SZnO}.

Multiplication by any non-zero scalar is a homeomorphism of B onto itself, so
T{SZn 0} = 2n,T{S;} = 2ny T{S,}; and it follows from this that the origin is an
interior point of T{S, }.

So for some € > 0, S’ = T{S,}.

We conclude the proof by showing that S¢’ < T{S5}, which is clearly equivalent to
Se' < T{S1}-
3

Lety be a vector in B’ so that ||y|| < &.
SinceyisinT{S;},3avectorxiinB>||x;|| <1land |y — y,|l < 2, where y1 =

T(x1). We next observe that S’ < T {Sl} ,soJa
2

3




. 1
vector xz in B 3 ||x, || <Eand 1y —vy1) — vl <§,

where y2 = T(x2).
Continuing in this way, we obtain a sequence {X»} in B such that ||x, || < zn—l_l,

and |[ly — (y; +y, + -+ )|l < zin where yn = T(Xn).

1
271—1’
Cauchy sequence in B for which ||s,, || < |[xi || + x|l + -+ x| <1+ %+

1
—— <2

Since B is complete, so there exists a vector x in B such that s, — x; and

|x|] = |llim s,|| =lim ||s,|| < 2 < 3 shows that x is in Sa.

All that remains is to notice that the continuity of T yields T(x) = T(lim sn)
=lim T(sn) = lim (y1 + y2 + ... + yn) =y, from which we see that y is in T(S3).
Hence the lemma.

If we put sp = x1 + X2 + ... + Xy, then it follows from |[x,, || < that {sn} is a

Open Mapping theorem: 1*: Let B and B’ be Banach Spaces and T be a
continuous linear transformation of B onto B’. Then T is an open mapping.

Proof: Let G be an open set in B.

Lety € T(G) be an arbitrary point.

Since Tisonto 3 x € G>T(x) =Y.

= 3 an open sphere X + S; (0) = Si(x) < G for some r > 0...(1).

Now by the above lemma, 3 an open sphere S;" in B’ 5 S¢' < T{S;} for some € > 0.
Nowy+ S cy+T{S;} =T(x) +T{S;} =T{x +S;} < T(G) by (1).

Thus, to each y € T(G) 3 an open sphere in B’ centered at y and contained in T(G)
and consequently T(G) is an open set.

So, T(G) 1s open in B’ whenever G is open in B.

Hence T is an open map.

Theorem: (2*): (Banach’s Theorem) Let B and B’ be Banach Spaces and T be a
continuous one — one linear transformation of B onto B'. Then T is a
homeomorphism.

Proof: Let G be an open set in B. Let y € T(G) be an arbitrary point.

Since Tisonto 3x € G>T(x) =Y.

= 3 an open sphere Si(x) =x + S; (0) < G for some r > 0...(1).

Now by the above lemma, 3 an open sphere S¢'(0) in B’ 5 S¢" < T{S,(0)} for some
€>0.Nowy+ S/ cy+T{S;} =T(x)+ T{S;} =T{x+ Sx(0)} < T(G) by (1).
Thus, to each y € T(G) 3 an open sphere in B’ centered at y and contained in T(G)
and consequently T(G) is an open set.




So, T(G) is open in B’ whenever G is open in B.
Hence T is an open map.
Since T is also one to one, onto and continuous T is a homeomorphism.

Projections:

Definition: A projection E on a linear space L is simply an idempotent (E? = E)
linear transformation of L into itself.

Note: Projection on L can be described geometrically as follows.

(1) a projection E determines a pair of linear subspaces M and N such that L =
M@®@N where M = {E(x): x € L} and N = {x € L: E(x) = 0} are the range and null
spaces of E respectively.

(2) A pair of linear subspaces M and N such that L = M@N determines a projection
E whose range and null space are M and N (If z = x + y is a unique representation
of a vector in L as a sum of vectors in x € M and y € N, then E is defined by E(z)
= X.

Definition: Projection on a Banach space is an idempotent operator E on B. ie.
(i) It is a projection on B if E> = E ie. E is a projection in the algebraic sense
(i1) E is continuous.

Theorem: If P is a projection on a Banach space B, and M and N are it’s range and
null space, then M and N are closed linear subspaces of B such that B=M @ N.

Proof: Let P is a projection on a Banach space B, and M and N be it’s range and
null spaces. So, P> =P, P is continuous, M = {P(z): z eB} and N= {z €B: P(z) =
0}.

Let z €B. Then for identity operator I, z = I(z) + P(z) — P(z) = P(z) + (I — P)(2).
Now P(z) € M and since P{(I - P)(z)} = P(z) - PX(z) =P(z) - P(z) = 0, (I - P)(2) €
N. So, that B=M + N.

Letz=x+ywherex € M,andy € N.

Then P(z) = P(x +y) = P(x) + P(y) = P(x) + 0 = P(x)... (i).

Again since, P(x) = P?(x), P(I - P)(x) = 0 so that (I - P)(x) = x — P(x) € N.

But (I - P)(x) =x —P(x) € M.

L X=Px) e MNAN={0} =>Px)=xe M ... (il).
I-P)z)=z—-Pz=x+y-Px)=x+y—x=y...(i).

From (i), (ii) and (iii) z=x + y = P(z) + (I — P)(z) where P(z) € M, (I - P)(z) € N.
.. B=M @ N. Moreover P(z) =P(x +y) =x.

Since Null space of any continuous linear transformation is closed N is closed.




[Letz eN. = 3{z,} inN >3 {z,} - z.

Now P(z) = P{lim (z,)} = lim P(z,) = 0 since z, € N = z eN.
~NcN= N =N].

Now M = {P(z): z€ B} = {z € B: z=P(2)} = {z: (I-P)(z) =0}.

..M is null space of linear operator I — P. Hence M is closed. Hence the theorem.

Theorem: Let B be a Banach space and M, N be closed linear subspaces of B such
that B =M @ N. If z=x + y is the unique representation of a vector in B
as a sum of vectors in M and N, then the mapping P defined by P(z) =xis a
projection on B whose range and null space are M and N.

Proof: Since B=M @ N, every element z of B can be uniquely expressed as
z=x+ywherex € M,y € N.

P: B > Bisdefined by P(z) =P(x+y)=x V z € B.

Clearly P(x)=x Vx e Mand P(y)=0Vy e N.

P is linear, for, P(az; + Bz2) = P{ou(x: +y1) + (X2 + y2)}.

= P(ax; + Bxz + ay; + By2) = ax; + Bx, = aP(z)) + BP(z).

Range of P={P(z) :ze B}={P(x+ty):xe M,y e N} = {x:x e M} =M.
Null spaceof P={ze B:Pz=0}={x+ye M@®N:P(x+y)=0}
={x+tyeMO®N:x=0}={y:yeN}=N.

Letz=x+y e M@ N. Then P’z =P{P(z)} = P(x + 0) =x = P(2)

ie. PX(z) =P(z) V z € B. So, P> =P. Thus, P is idempotent.

If B’ denotes the linear space B equipped with the norm defined by ||z||" = |[|x]|| +
Iyl

Then, B’ is a Banach space and since forz=x+y e M®N, [|[P(2)||" = [|x]|
<|lx|l + llyll =1 |lz||' V z € B, P is continuous as a mapping of B’ into B. If ]
denotes the identity mapping of B’ onto B, then ||I(2)|| = ||z|| = |[x + yl| < |x]| +
lyl] =1 ]|z||" V z € B’ shows that I is continuous as a one to one, linear
transformation of B" onto B. ..1 is a homeomorphism and so B’ and B have the
same topology. Hence the theorem.

Graph of a mapping:

Definition: Let X, Y be any two non — empty sets and f: X — Y be a mapping.
Then the graph of f, denoted by fg, is defined as {(x, f(x)): x € X}.

Remark: Let N, N’ be normed linear spaces. Then N x N’ is a normed linear space
1

with coordinate wise linear operations and the norm ||(x, V)|| = (||x||? + ||y||?)?
where x € N,y €e N'and 1 <p < oo,




Moreover, this norm induces the product topology on N x N and N x N’ is
complete iff both N and N’ are complete. In future we mostly use norm when p = 1.

Definition: Let B, B’ be Banach spaces and T: B — B’ be a linear transformation.
Te = {(x, T(x)): x €B} is called graph of T.
Note: Tg 1s a subspace of B x B'.

Definition: Let N, N’ be normed linear spaces and D be a subspace of N. Then a
linear transformation T: D — N’ is said to be closed linear transformation if x, €
D, x, = x and T(x,) — y implies x € D and y = T(x).

Theorem: Let N, N’ be normed linear spaces and D be a subspace of N. Then a
linear transformation T: D — N’ is closed if and only if the graph of T is closed.

Proof: Given that N and N’ are normed linear spaces and D is a subspace of N.
Suppose the linear transformation T: D — N’ is a closed.

Required to prove that Tg is closed.

Let (x, y) be a limit point of Tg. We prove that (x,y) € T.

By definition of limit point, 3 a sequence (Xn, T(Xs)) of points in T, where x, € D,
converging to (X, y).

Now (Xn, T(x0)) = (X, y) = ||(xn, T(xn)) — (x, y)|| — 0.

= [[Cen — x, T(x) — ) — 0.

= |l — x|l + [[(TCx) =WI=0 G, Il = llxll + [yl
= |lxn — x| = 0, I(T(x) == 0

=Xn > X, T(Xs) 2 V.

= x € D and T(x) =y since T is closed linear transformation.
= (X,y)=(x, T(x)) € Tg. .. Tg 1s closed.

Conversely suppose Tg is closed.

Let {x»} be a sequence in D 3 X, = x and T(X,) = y.

To prove T is closed we have to show that x € D and y = T(x).
Now (x, y) is an adherent point of T so that (x, y) €Tj.

But Tg = T since Tg is closed. = (x,y) € Tg

Then, by the definition of T, x €D and T(x) =y.

.. T is a closed linear transformation.

The Closed Graph Theorem: 4*: Let B, B’ be Banach spaces and T: B — B’ be a
linear transformation. Then T is continuous mapping if and only if it’s graph is
closed.




Proof: Suppose T: B — B’ be a continuous linear transformation and T be it’s
graph. Ie. X, & x = T(Xy) = T(X).
Claim: Tg = {(x, T(x)) : x € B} is closed.

Let (x, y) be a limit point of Tg.

= J a sequence (X, T(Xn)) € TG 3 (Xn, T(xn)) = (X, y).

= (Xn, T(Xn)) — (X, ) > 0

= || (%, T(xn)) = (. 1) || > 0.

= ”(xn - X,T(Xn) - y)” — 0.

= [l —xIl + (T Ce) = M- 0 since [[Cx, )| = [lx]l + [yl

= llxn —xI >0, I(TCG) —MI—>0

= Xp 2> X, T(Xn) 2 Y.

But x, &> x = T(x,) = T(x) since T is continuous linear transformation.
=y =T(x). ..limit point (X, y) = (x, T(x)) € Tg.

= Tg contains all its limit points. .. Tg is closed.

Conversely suppose Tg is closed.

Then Tg is a subspace of B x B'.

For, Tg = {(x, T(x)): x € B} c B x B’

and (xi, T(x1)), (x2, T(x2)) €T and a, B € K implies that

a1, T(xn)) + B (x2, T(x2)) = (001, €T(x1)) + (Ba, BT(x2)
= (axitBx2, aT(x1) + BT(x2))
= (ax1+Bx2, T(ax;+px2)) € Ta.

Now Tg is complete, and so Banach space.
Define a map ¢: Tg »B by ¢ (x, T(x)) =x V (x, T(x)) €T.
¢ 1s one- one, for, let @ (x5, T(x1)) = ¢ (x2, T(X2))
= X1 = X2
= (x1, T(x1)) = (x2, T(x2)).
¢ 1s onto, for, let x €B. Then 3 (x, Tx) € Tg and then ¢ (x, Tx) = x.
¢ 1s linear. For, @ {ou(xi, Tx1) + B(x2, TX2)} = @{axi+ Bxa, aTx; + fTx2)} = ax;+
BXz = 0(,([)(X1, TX]) + B([)(Xz, TXz)
Also @is continuous. For, |[@(x, Tx)|| = ||x|| < llx|l + ||[Tx]|| = ||(x, Tx)||
= llpCe TOI < G TNV (x, Tx) €T
Thus, ¢: T¢ — B is one-one, onto and continuous linear transformation.
Then by a theorem following open mapping theorem ¢ is a homeomorphism.
So, ¢ ~1: B — Tg is bounded (continuous).
Now [ITx]l < [lx|l + [ITxIl = ICx, Tl = llo™* COll <k |l
Ie. ||Tx|| <k ||x|| Vx € B. ..T is continuous. Hence the theorem.




Lemma: (3*) (In detail) If B and B’ are Banach Spaces, and if T is a continuous
linear transformation of B onto B’, then the image of each open sphere centered on
the origin in B contains an open sphere centered on the origin in B'.

Proof: We denote by S; and S, the open spheres with radius r centered at origin in
B and B’ respectively. Then S;=rS,.

Then clearly T[S;] = T[rS;] = rT[S,] so that it suffices to show that T[S;] contains
some Sy’

We begin by proving that T[S, ] contains some Sy.

For each positive integer n, consider the open sphere S, in B.

Then clearly B = U~ Sp,-

Since T is onto, we see that B' = T[B] =T [Up=1 Sn] = Un=1 T[S, 1.

Since B’ is complete, by Baire’s theorem, for some ny, T[Sn 0] has an interior point
yo, which may be assumed to lie in T [Sn 0].

[y is an interior point of T[Sno] = JopensetGoay e G T[Sno].

y € T[Sno] = y is a limit point ofT[Sno]. = the nbd G of y must contain a point yy
of T[S, |- Thus yo € T[S,,] > y0 € G = T[Sy, |-

= yo 1S an interior point of T[Sno].]

The mapping f: B’ > B’ 5> f(y) = y — yo 1s a homeomorphism.

For, fis clearly one — one, onto and if y, eB’ 1s 3y, = y then f(yn) =yn—y0o >y —
yo=1f(y)and £~ !(ys) = ya + yo =y + yo = ! (y) so that fand f ! are both

continuous. Claim: T[Sno] —Y, has the origin

as an interior point. yo is an interior point of T [Sno] = 3 open

set Goyo € G T[Sy, | = f(yo) € (G) = fIT{S,, }].

=0=yo—yo € f(G) T[Sno] — Yo. = 0 1s an interior point ofm — Vo ---
2). Claim:
T[Sno] — Yo & T[SZnO]-

Lety € T[S,,] — ¥o.- Then I x € S, 5y = T(X) - yo.

But yo € T[S,,] = yo = T(xo) for some xo € Sy,

Thus y = T(x) — T(Xo) = T(X = Xo) ... (3) where x, Xg € Sy, .

Also x, Xo € Sy, = [|x[[<ng and ||x, || < no.

= [lx = xoll < [lxl + [lxoll < 2ny.

= X=X € Syp, = T(X—Xp) € T[SZnO] —=>Vye€ T[SZnO] by (3).




Thus we have T[Sno] —Yo T[Szm,] =2n T[S4]

Since f is a homeomorphism, f [T[Sno]] = [T[Sno]]
= T[Sno] — Yo = T[Sno] — Yo € T[SZnO] = 2ny T[S;] and it follows from (2) that
the origin is an interior point of T[S, ].

= for some £ >0, S,/ < T[S] ... (4)
We conclude the proof by showing that S’ < T[S5], which is clearly equivalent to

Se ’ - T[S1]
3

Lety € S¢'. So ||y|| <e.
S yisinT[S;] = yisalimit pointof T[S;] = 3y1 € T[S1] 2 1ly —y1ll < g

Buty: € T[S;] = JFavectorx1in S13 ||x;|| < 1and |y — y,| < g where y1 =
T(x1). From (4), S’s/, € T[S ] and since

ly — il < g,}’- V1 65'8/2 cT [Sg]. .. as above
2

dyz2 €T [51/2] 3 |y — y1) — y2ll <€/, whereyz = T(x2) and ||x,]| < 1/2
1

T[sl/z] S —y) =yl < = wherey2 = T(x2),x2 €51, &llxll < 7
Continuing in this way, we obtain a sequence {X»} in B such that ||x, || < zn—l_l,
and [y — (s ty2 + -+ y)ll < zin ... (5) where yn = T(Xn).
If we put sn =x1 + X2 + ... + Xn, then [|s,, || < ||xq || + 2] + -+ ||x, ]|

1,1 1
<1+ E+ 2—2+"'+ Tl <2..(6)
Also forn>m, ||s, — S|l = |Xme1 + Xmaz + - + x|

Sl + xmaz [l + o+ [l |l
1 1

1 1 sml\1—5=m 1 1
perree s S =2( ) — — 0asm, n— o.

n—-1 1L T om-1 on-m-1
2

1
<2—m+

.. {sn} is a Cauchy sequence in B. Since B is complete, so there exists a vector x
in B such that s, — x; and so ||x|| = |[lim s,|| =lim ||s,|| <2<3.=>x € Ss.
Now yi +y2+4 ... + Yo = T(x1) + T(x2) + ... + T(Xn)

=T(x1 + x2 + ... + Xn) = T(sn).

Since T is continuous, X = lim sy

= T(x) = T(lim sp) = lim T(sn) =lim (y1 + y2 + ... + yn) =y, by (5)
Thus y = T(x) where ||x|| < 3, so thaty €T[S3]. .. S¢' < T[Ss].
Hence the lemma.
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THE CONJUGATE OF AN OPERATOR

Theorem: 5 *: (The uniform bounded theorm or Banach Steinhaus theorem).
Let B be a Banach space and N be a normed linear space. If {T;} is a non-empty
set of bounded (i.e, continuous) linear transformation of B into N having the
property that {T;(x)} is a bounded subset of N for each vector x in B, then {||T;||} is
a bounded set of numbers ie.{Ti} is bounded as a subset of B (B, N).
Proof: For each positive integer n, define F,= {x € B: ||T;(x)|| <n V i} ... (1).
Then F, is a closed subset of B as shown below.
x € Fyiff ||T;(0)||<n Vi

< Ti(x) € Sy[0] V' 1

< x e TS, [0]} Vi

e x e N T, {s,[0]}
so that F,=N; T;"*{s,[0]} which is closed being intersection of closed sets.
[Note that - each T; is continuous and S,[0] is closed in N each T; ! {S,[0] is closed
in B]
Further, B = Uy -1 F,
For, if B # U; -1 F, then 3 some x € B such that x ¢ F, for any n.
= [IT;()|l>n V nby (1)
= The set {Ti(x)} 1s not bounded, which contradicts hypothesis.
Hence, we must have B = U; -1 F, , so that this complete space B is the union of a
sequence of its subsets.
.. By Baire’s category theorem, 3 an integer ng 3 K has non empty interior.

Since F, is closed F, = F,, and so F, must have non empty interior, i.e., 3 some

Xo € F,,° so that F,  is a nbd of xo.

Since Fy is closed, 3 a closed sphere S = {x € B: [|x — xo|[ <10} = F, ... (2)
Now if [|y[l < 1, and z = roy then, ||z + xo — xoll = llroyll = Rollyll < 75
sothatz + xy e SC F,,and xge S C F,




Now for arbitrary but fixed 1,
2\ =17
Il = |7 (2)] =2 1m@I

1
=—|ITi(z + xo — xo)

To

1
= IT;(z + x0) — T; (xo)l

1
< E[”Ti(z + x) Il + IT; o)l

1 2n .
< E(Tlo +ng) = r—oo since z + xo and xp € F, .

2 .
Thus IT; )1l < Z2if llyl] < 1

Tl = suplITi O Iyl < 1} < ==
It follows that {||T;(y)||} is a bounded set of numbers.
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Theorem: 2*: A nonempty subset S of a normed linear space N is bounded if and
only if f(S) 1s a bounded set for each f € N*.

Proof: Let S be a bounded subset of N. .. realk>05 ||x|]| <k Vx €S.

Now for each f € N*, since f is bounded linear functional 3 real k; >0 >

forallx € S, [f()| <|IfIIllx]] <k k;. ..f(S) is bounded for each f € N*.
Conversely let f(S) be bounded set for each f € N*.

Claim: S is bounded.

For convenience we exhibit vectors in S by S = {x;}.

By assumption f(S) = {f(xi): x; € S} i1s a bounded set for each f € N*.

Now by a theorem, each vector x; in N induces a functional F, on N* defined by

Eo(f) = f() ¥ £ N*5 || B || = llxill.

{in (f )} is a bounded set of numbers for each f € N*.

= By uniform bounded theorem, { |in ||} is a bounded set of numbers V f € N*.
= {||x;||} is a bounded set of numbers V f € N*. = S is a bounded subset of N.

Notation: Let N be a normed linear space and denote by Ns, the linear space of all
scalar valued functions defined on N.

Definition: Let N be a normed linear space and T be an operator on N i.e, T be a
continuous linear transformation of N into itself. Define a linear transformation T*
of N* into itself as follows.




If f € N* then T*(f) is given by [T*(f)](x) = f{T(x)} V x € N...(1)
We call T* the conjugate (or adjoint) of T.

Theorem: 2*: Let T be an operator on a normed linear space N, then its conjugate
T*, defined by T*: N* — N* such that T*(f) = f oT and [T*(f)](x) = f{T(x)} V f €
N* and V x € N is an operator on N* and the mapping ¢: B(N) — B(N*) > ¢(T) =
T* V T € B(N) is an isometric isomorphism of B(N) into B(N*) which reverses
products and preserves the identity transformation.
Proof: Claim: T* is linear on N*.
Leta, B € K, f, g € N*,
Then for each x € N, T*(af + Bg)](x) = (af + Bg){T(x)} = (ah){T(x)} +
(Be){T()} = o[f{T(x)}] + Ble{T()}] = o THBI(X) + BITH)(X)
= [o{T*(®)} + B{T*(2)}1(x)
Thus, T*(af + Bg) = aT*(f) + BT*(g) .. T* is linear on N*,
Claim: T* is continuous operator on N*
IT*Il = sup {IT*COIl: [IfII < 1}

=sup {|[T" O] Il < 1, llx] < 1}

= sup {IfITCOII: IFIl < 1, IIxll < 1} by (1)

< sup {IFIIITIHExI: AN < 1, llxll < 13 < Il (2).
Since T is bounded, T* is bounded
=~ T* is an operator on N*
Claim: [|[T*|| = [IT]l _
For each x € N, x # 0 3 a functional f € N* 5 ||f|| = I and f(T(x)) = [T (x)]| ...(3)
by a
theorem.

Therefore ||T|| = su {”T”(x”)”: + 6}.

VAKKEIN] q
= sup (L 1] = 1,x # 0} by (3)

T —
=sup {F=E PR 1) = 1, # 0 by (1)

IT* O 3
sup (1D 1)) = 1,x # ).

=sup {IT*(OI:NIfI = 13 =TI ... (4).

From (2) and (4) [|IT*|| = ||T]| ...(5)

Claim: ¢ 1s linear:

Let T, U be arbitrary elements of B(N) and a, B be scalar.

Then ¢ (aT + BU) = (aT + BU)* by def

But for any f eN*, x € N, [(aT+ BU)*()](x) = f[(a T+ BU)(x)] by (1)
= flaT(x) + PUX)]




= of[ T(x)] + BIU( x)] =+ f1s linear
= a[T*(D](x) + P[U*f](x) from (1)
= {a[T*(®)] + PIU*]} (x) = [(aT* + PU*)(H)](x)
~ (aT+ BU)*(f) = (aT* + BU*)(f) V £ € N* so that (aT + BU)* = aoT* + BU*... (6)
s @ (aT + BU) = (aT + BU)* = aT* +pU* = a @(T) + B o(U)
=~ @ 1s linear.
Claim: ¢ is one-one: Let o(T)=¢(U) for T, U € B(N)
= T*=U*
= |IT*=U*||=0
=T =U)lI=0=|T-Ull=0
=T=U
~ (@ 1s one-one.
Claim: [[@(T)[|=[IT]|:
Now [lo(D)[| = [IT*]| by def
=IT|l by (5)
“ (@ 1s 1sometric isomorphism.
Claim: ¢ reverses products.
[(TU)*(H](x) = fI(TU)x)] by (1)
=fT{U(x)}]
= [T*(H{UX)} by (1)
= [U*{T*(H}](x) by (1)
= [U*T*(D](x).
So, [(TU)*(f)] = (U*T*)(f) V f € N*.
Hence (TU)* = U*T*... (7).
Now ¢(TU) = (TU)* = U*T* = o(U) o(T)
Thus, ¢ reverses products.
Claim: ¢ preserves identity:
Let f € N*, x € N. Then [I*(f)](x) = f[I(x)] by (1)
= f(x) = (If)(x) so that [*(f) = I(f) V f € N*
Hence, [* =1 so that p(I) =1* =1
Thus, ¢ preserves Identity.

HILBERT SPACES

Definition: Let H be a complex Banach Space. Then H is said to be a Hilbert
Space if a complex number (X, y), called the inner product of x and y, is associated
to each of the two vectors x and y in such a way that (1) (x,y) = (y, x), (i1) (ax +

By, 2) = a(x, z) + B(y, 2) and (iii) (x, x) = [|x[|*.




Example 1: Consider the Banach Space I3 consisting of all n — tuples of complex
numbers with the norm of a vector x = (x1, X2, ..., Xs) defined by ||x|| =

1
Gl %)z, If the inner product of two
vectors X = (X1, X2, ..., Xn), Y = (Y1, Y2, ... , ¥n) 1s defined by
(X, y) =2 x;y, then [} is a Hilbert Space.

Example 2: Consider the Banach Space ¢, consisting of all infinite sequences of
complex numbers X = < X, > = (X1, X2, ..., Xn, ...) 3 24 |%;|* < oo with the norm

1
of a vector defined by ||x|| = (X:2,1x;]?)z. If the inner product of two vectors x =

(X1, X2 +eer Xy --2)5 Y= (Y1, V2 --- » Y, ...) is defined by (x, y) =
Y.io1 Xy, then & is a Hilbert Space.

Theorem: In a Hilbert Space H prove that
(1) (ox = By, z) = a(x, z) — B(y, 2).
(if) (x, ay + Bz) = &(x, ) + B (x, ).
(i) (x, 0y — Bz) = @(x, y) - B (x, 2).
(iv)(x,0)=0VxeHand (0,x) =0V x € H.
Proof: In what follows let ., B € K and X, y, and z € H.
() (ex=By,2) = (ax + {-B}Y, 2) = a(X, Z) + (-=B)(Y, 2) = a(X, Z) — B(Y, 2).
(i) (x oy +B2)=(@y + Bzx) =a(,x) +Bzx) = a(,x) + B2
=ay,x)+B(Zx)=aXxy)+pXx72. )
(iif)  (x, ay — Bz) = (x, ay +{-B}z) = a(x, y) + -B)(x, 2) = a(x, y) - B (X, 2).
(iv) (0,x)=(00,x)=0(0,x)=0 VxeHand(x,0)=(0,x)=0=0Vxe
H.

Schwartz Inequality: 4*: If x and y are any two vectors in a Hilbert Space H then
eyl < Il i

Proof: If y = 0, then ||y|| = 0 and (x, y) = (x, 0) = 0 so that both sides vanish and
the equality holds.

Now lety # 0.

For any scalar A, (x + Ay, x + Ly) >0

= X, X+Ay) + My, x +Ay) >0

= (%, %) + A%, y) + My, X) + My, y) 2 0.

= lxll* + A, y) + Ay, x) + A4 [lylI* 2 0... (1)




Sincey # 0, [|y|l # 0. -.Put A = _||(x|,|321)'

2 () NCA%) G EY oz >
= Ilxll” =5 G ) =5 02 ) e il =

2 - &2 (x, y) — &2 Gy + ED L&A 2

lly1I? II2 ylI? , Iy 11Z llyli?
X, X, X,

”xllz_l( y)zl ¢ y)zl Iy y)zl >0
Iyl Iyl Iyl

= =20 > 0. = lx2lyl? = (e, )12

= [Ce, Y = lx[lyll

Theorem: In a Hilbert space the inner product is jointly continuous
1., Xn =X, Yn 2> ¥ = (Xn, ¥n) = (X, y).
Proof: Let x,— X, yp > V.
|Gy ) = (621 = 10G Y) = (e, ¥) + (e, y) = (x, ¥)
=G yn = ¥) + (tn =6, W < [ Cony yn = W]+ 10 — %, ¥)|
< |lxnllllyn = 1l + llx, — x[lllyll by Schwartz inequality,
But ||y, —y|l > 0and ||x, —x|| >0asn—>o (*X,—> X, yn > Y)
“ | yn) = (2, ¥)| > 0asn— .
Hence (xn, yn) = (X, y).

Theorem: 2*: If x and y are any two vectors in a Hilbert space then
(D) llx + yllP+ llx = ylI2 =2 [lx]|> + 2 [ly||>  (poreliclogramlaw)
)4, y)=lx +ylI?=llx = ylI?+illx + iy]|*—i||x — iy||*> (Polarization
identity)
Proof (i) [lx + y|I* = (x +y, x+y) = (X, x +y) + (¥, x +Y)
=)t )+ Ex) (Y
= lx]I? + X, y) = (v x) + Iyll* ... (1)
Ix—ylI?=x-yx-y)=&x-y)+ (¥ x-y)
= (Xa X) - (X: Y) - (ya X) + (ya Y)
=IxI? - x, ) - @ x) +Iyl*... (2)
Adding (1) and (2), [lx + y[I? + llx — ylI* =2 [Ix]|* + 2 [ly||?
(ii) Subtracting (2) from (1) ||x + y||? = |lx — y|I* = 2(x, y) + 2(y, X) ... (3)
Replacing y by 1y in (3)
lIx + iyll? — llx — iyll* = 2(x, iy) + 2(iy, )
=21(x, y) + 2i(y, X)
=-2i(x,y) + 2i(y, X) ... (4)
Multiplying both sides of (4) by 1 we get
illx + iyll* —illx — iyll* = 2(x, y) = 2(y, X) ... (5)




Adding (3) and (5)
lx + ylI? = llx — ylI> +illx + iyll* —illx — iy|l* = 4(x, y)

Theorem: 4*: If B is a complex Banach space whose norm obeys the
parallelogram law and if the inner product is defined on B by
4(x,y)=|lx+ y|1? = llx — y||? +illx + iy||*> —il|x — iy||? then B is a Hilbert
space.
Proof: Given that parallelogram law
Ix + yl? +Ix —ylI? =2 IxI> + 2 Iyl* ... (1)
Also, 4(x, y) = Ix + yI> — Ix —yI> + 1 Ix + iyl> —ilx —iyl* ... (2)
Claim: (x, x) = IxI?
Replace, y by x in (2)
4(x,x) = Ix + x> = 101> + i I(1 + )xI?> — 1 I(1 — D)xI?
= 4IxI? + 1|1 + i|2IxI?> — 1|1 — i]2IxI?
= 4IxI?+ 2ilxI? - 2ilxI? |1+ i|>?= |1 —i|?=1+1=2
= 41x/?
Thus, (x, x) = IxI?
Claim: (x,y) = (y, X)
Taking the complex conjugate on both sides of (2)
406 y) = llx + ylI2 = llx — ylI? = illx + iyll® + illx — iyll?
= lly + x> = I-@& — OlI* — illiy — )l1* + il =iy + ix)|I?
= lly +xlI* = lly — x| — ilil*lly — ix|I* + il =il lly + ix]|?
=lly + x> = lly — x> — illy — ix]|* + illy + ix]|?
=4y, X)
(X, y) = (ya X)
Claim: (x ty,z)=(x,2) +(y, 2)
Replacing x by x + y and y by z in (2)
Ax+y,z)=lIx+y+zP—Ix+y—zP+ilx +y+izl*>—ilx +y—izl* ... (3)
Replacing x by x + z'in (1)
Ix +z+ylP+Ix+z—yl?=2Ix+zI>+2lyI?
(or)Ix +y+zl?=2Ix+zP+2 1y P~ Ix+z—yl* ... (4)
Againlx +z—-ylP=lz-y+xI?=2lz-yP+2Ix >~ z—y —xI> by (1)
=2ly—zP +2IxIP - Ix +y—zI*... (5)
Substituting the value of Ix + z — ylI? from (5) in (4)
Ix +y + zI? = 2Ix + zI> + 2lyI* — {2ly — zI> + 2IxI* — Ix + y — zI*}
(or) Ix +y+zl>—lIx +y—zP=2Ix +zI*> + 2l y I> = 2ly — zI> = 21 x I* ... (6)
Interchanging x and y in (6) we get
Ix +y+zPP—Ix+y—zI?=2ly +zI> + 2l x I? = 2Ix — zI* = 2l y I*... (7)
Adding (6) and (7) we get




Ix +y+zlP—Ix+y—zP=Ix+zI> —Ix -z + ly + zI> - ly — zI*... (8)
Replacing z by iz in (8) and multiplying both sides by 1
ilx +y+izl? —ilx +y —izl* = ilx + izl* — ilx — izl* + ily +izl* —ily — izl*... (9)
Adding (8) and (9)
Ix+y+zlP—lIx+y—zP+ilx +y+izl> —ilx +y—izl* = Ix + zI> - Ix — zI*> +
ilx +izl? —ilx —izl* + {ly + zI* — ly — zI* + ily + izI* — ily —izI*}...(10)
By (3) and (10) we get 4(x +, z) = 4(X, z) + 4(y, z)
e, (x+ty,z)=(x,2)+(y,z)...(11)
Claim: (ox, y) = a(X, y)
(a) let a be a positive integer
Then (x +x,y)=(x,y) + (X,y)
= (2x, y) = 2(x, y) so that result is true forn =2
Assume the result is true for n i.e., (nx, y) = n(x, y)...(12)
Then ({n+1}x,y) =(nx +x,y) = (0X, y) + (X, y)
=n(x, )+ (x, y) = (0 + D(x, y).
= Result is true for n + 1 if it were true for n
=~ By induction result is true for all positive integral values of o
Replacing x by — x in (2) we get,
4(-x,y) = lx + yI* - Ix — yI* + i l-x + iyl* - ilx — iyl
=lx—ylP—Ix+ylP +ilx—iyl® —ilx +iyl*> (= 1-=xI=1x1)
- 4(Xa Y)
“ (X y)=-(xy) ... (13)
Let a be negative integer. Then 3 a positive integer 3 > o = — .
(0%, y) = (Bx, ) = ((BX), ) = — (Bx, ) = —B(x, ¥) = a(x, ¥)

(c) Let a be rational say o = s where p, q are integers and q # 0

s (ox,y) = (s X, y) = (pz, y) where z :g
=p(z,y) ... (14)

Now (qz, yl) =q(z,y)

Sz y) = p (qz,y) ... (15)

Substituting the value of (z, y) from (15) in (14) we get (ax, y) = s (qz, y) = a(X,y)

Similarly, we can prove the result if a is any real number.

(d) Let a be a complex number.

Replacing x by ix in (2),

4(ix, y) = lix + ylI? — lix — yI* + ilix + iyl* — ilix — iyl
= 1112Ix — iyl? — 11120x + iyl? + 11102 Ix + yI? —i1i2lx - yI?
= Ix —iyl> — Ix + iyl* + ilx + yI* —ilx — yI?
= —i?Ix —iyl* + i%Ix + iyl? + ilx + yI* —ilx — yI?




=1{Ix + yI? — Ix — yI* +ilx + iyl> — ilx — iyl*} =i4(x, y) so that (ix, y) = i(x,
y)
Now let o = a + 1ib where a, b are real numbers.
(0x,y) = ({a +ib}x,y) = (ax, y) + i(bx, y)
= a(x, y) +ib(x, y) = (@ + b)(x, ) = a(x, y)
Ie. (ax, y) = a(X, y) when a is a complex number
Hence B is a Hilbert space.

Convex Set: Let L be a real or complex linear Space. A non-empty subset S of L is
said to be convex if X,y € S = (1 — a)x + oty € S where o is any real number > 0
<a<l.

Note: Taking o = % we see that if S 1s a convex subset of a linear space L, then x, y

X+
eSS :Tyes.

Theorem: 8*: A closed convex subset C of a Hilbert Space H contains a unique
vector of smallest norm.

Proof: Let d = inf {||x||: x € C}.

Then 3 a sequence {x,} of vectors in C 3 ||x,,|| > d

Consider two vectors X, and X, belonging to sequence {X,}
Xm+Xn cC

~. By the definition of d, > d so that ||x,, + x,|| = 2d ... (1).

Appling parallelogram law for the vectors x,, and x, we get
|2t + xnllz + lxm — xnllz . 2”xm”2 + 2”an|2
= (12t — xall? = 2[5 17 + 2l1xn 17 — 1l + 25117
<2[lxmll? + 2llxn 17 — 4d®... (2).
Since ||x,,||—=>d and ||x,,||— d, we have 2||x,,||? + 2||x,||* — 4d*— 2d? + 2d? —
4d? =0
=~ {xp} 1s a Cauchy sequence in C.
Since H is complete and C is closed, C is also complete.
Hence Cauchy sequence {x,} converges in C. .. 3x1in C >3 x, > X.
Now ||x]|| = ||It x,,|| =1t ||x,,|| since norm is a continuous mapping
=d.
=~ x 1s vector in C with smallest norm.
Uniqueness of x:
If possible, suppose y is another vector in C 3 ||y|| = d.

Since C is a convex subset of H and x,, x,, € C,

Xm+Xn

Then % € C and again by parallelogram law,




"*y” +2||X||2 _|1x= y” ||x||2+||y||2_d_2+d_2=d2
2

which contrad1cts the definition of d.

.. A closed convex subset C of a Hilbert Space H contains a unique vector of
smallest norm.

Theorem: 3*: Let M be a closed linear subspace of a Hilbert space H, x be a vector
not in M and d be the distance of M from x. Then 3 a unique vector yo in M 3

llx = yoll =d.

Proof: Let d(x, M) =d = inf {||x — z||: z € M} by definition.

~ 3 asequence {y,} of vectorsin M 3 |[x — y,,|| > d

Consider two vectors yn, and y, belonging to sequence {yy}.

. . . +
Since M is a linear subspace of H, 22" ¢ M.

e =222 2 d = 12 = G + vl 2 2d - (1),
Appling parallelogram for the vectors X — ym and X — y, we get
”x —Ym — (X - Yn)llz = 2”x - ymllz + 2”x - yn”2 - ”X —Ym T X— ynllz
= lyn = Ymll? =2l1x = ylIZ + 2llx = ¥l = 112 = (v + Y112

<2|lx = ymll? + 2llx — yplI? — 4d?

Since ||x — y,,|| — d and ||x — y,,||— d we have
1V = Ymll? <201 = ylI? + 2[lx = yl|> — 4d*— 2d? + 2d* — 4d* =0
=~ {yn} 1s a Cauchy sequence in M.
~dyoe My, —>yo M is complete being closed subspace of complete space.
Now [lx — yoll = llx = Lty ll = |1t Cx — y)ll =1t |lx — ypll =d
~ yois vector in M 3 |[x — yol| =d
Uniqueness of yo:
If possible suppose y is another vectorin M 5 |[|x — y|| = d

Then — yo Y ¢ M and agam by parallelogram law

x—= yo+x y” _||x= yo ” X=Yo= (x y)” az d — 42—

|2x — (yO + )|l < 2d which is a contrad1ct1on to (1). Hence Yo 1S unique.

Example: For the special Hilbert space [} use Cauchy’s inequality to prove
Schwartz inequality.

Solution: Let x = (x1, X2, ..., Xn), Y = (Y1, Y2, ... , ¥n) be any two members of the
Hilbert space [7.

By Cauchy’s inequality, 7y v < (S22 (S [yi[2)2




But (x, y) = Bty %%, )
o =12 x| < il = i x v

< (ST lyal®)2 = V) @) = lixlliyl

ORTHOGONAL COMPLEMENT:
Orthogonality: Definition
Let x and y be vectors in a Hilbert space H. Then x is said to be orthogonal to 'y
if (x, y) =0 (written as x L y).
Note: 1. Ifx,y e Hand x L ytheny L x.
Solution: Letx,y e Handx Ly
= (X, ¥)=0=(y,x)=(x,y) =0so thaty L x.
2. If x is orthogonal to y, then every scalar multiple of x is orthogonal to y.
Solution: Letx,y e Hand x L y. .. (x,y) =0. Let a be any scalar
Then (ax, y)=a(x,y) =a0 =0so thatax Ly
3. The zero vector is orthogonal to every vector.
Solution: Let x € H. Then (0, x)=0. . 0 L x. Thus, 0 Lx V x € H.
4. The zero vector is the only vector which is orthogonal to itself.
le.x L xiffx=0.
Solution: Let x € H. Then x L x iff (x, x) = 0 iff ||x||? = 0 iff ||x|| = 0 iff x = 0.
5. Lis not transitive. ie. X,y,z e H,x Lyandy L z# x | z
Solution: Consider x = (1, 0, 0), y=(0, 1,0),z=(1,0, 1) € C°.
Then (x,y)=1(0) +0(1)+ 0(0) =0 and (y,z) =0(1) + 1(0) + 0(1) =0 so thatx Ly
andy Lz But1(1)+0(0)+0(1)=1=0. So, x is not orthogonal to z.

The Pythagorean theorem: If x and y are any two orthogonal vectors in a Hilbert
Space H, then [lx + yl1* = llx — ylI* = lIx|I* + lIyll®

Proof: Letx 1 yie. (x,y) =0 then (y, x) =0.

Now [lx + ylI? = (x +y, x +y) = (X, ) + (X, y) + (v, X) + (¥, )-

= [lx[I>+ 0+ 0+ [lyll* = llxI* + llyl|* and

lx = ylIP=(x -y, x=y) = (%)~ (%, ¥) ~ %0 T % y) = x1* + Iyl

Definition: A vector x is said to be orthogonal to a non — empty subset S of a
Hilbert Space H (writtenx L S)ifx Ly Vy e S.

Two non — empty subsets S; and S, of a Hilbert space H are said to be orthogonal
(written S; L S;)ifx LyVxe SjandVy € S,.




Definition: Let S be a non-empty subset of a Hilbert Space H. The orthogonal
complement of S (written as S*) is defined by S* = {x e H:x Ly Vy € S}.

Theorem: 4*: Let S be a non — empty subset of a Hilbert Space H then S* is a
closed linear subspace of H.

Proof: Claim: S+ is linear subspace of H.

S is non-empty, since (0,x) =0V x € S.

Let x;, X, € St and o, B be any scalars. Let y € S then, (x1, y) =0 = (X2, y).
So(oxg F Bxe, y) =oux1, y) T B(X2, y) = a0+ B0 =0.

o (ax;+PBx2, y) =0V y € Ssothat ax; + Bx, LS.

. St is a subspace of H.

Claim: S+ is closed.

Let x be a limit point of S*.

. 3 asequence {x,} of points of S* 3 x, = x.

Then for every n, (x,, y)=0VyeS.

Now lety € S. Then (x, y) = (It Xn, y) =1t (X, y) =1t 0=0. .. x eS*.
Hence S+ is closed subspace of H.

Note: S+ is complete. .. S+ is a Hilbert Space.

Orthogonal complement of an orthogonal complement.
Definition: Let S be any non-empty subset of a Hilbert Space H.
We define (1)t =S+t ={xeH:(x,y)=0VyeSt}.

Theorem: 1*: If'S, S;, S, are non-empty subsets of a Hilbert Space H, then (1)
{0}t =H, (i) H* = {0}, (i) SN St c {0} (iV) S1 = S, = S,- = 5+
and (v) S < S+,

Proof: (i) Clearly {0} — H, Letx € H. Then (x, 0) =0. .. x €{0}* sothat H ¢
{0}*. Hence {0}* = H.

(ii) Let x eHL. ~.(x,y)=0V y € H. .. In particular (x, x) =0. = ||x[[?=0=>x =
0. - H+ < {0}. Since (0,x) = 0 Vx € H,{0} € H*. Hence H* =
{0}.
(ili) Letx e SN St. Thenx e Sandx € S*. =>xeSandx LyVyeS. =In
particular x L x. = (x,x)=0 = |[x][?=0=>x=0. .. SN St {0}.

(iv)Let S| c S, andx € S,

XxlyVyeS;=x1lyVyeS;since S; c S,.

—=xe8 STt

(v)Letx e S.Lety e S*. Thenx Ly. . x LyVye St =>xe (§t)t =5+
L Sc St




Theorem: 7*: If M is a proper closed linear subspace of a Hilbert Space H, then 3
a non — zero vector zo in H> zo 1 M.

Proof: Since M is a proper closed linear subspace of a Hilbert Space H, 3 a vector
x € H which is not in M.

Let d be the distance of M from x. Then d =inf {||x — y|| : y € M}.
Sincex#zy VyeM,d>0.

Since M is a closed linear subspace of H, 3 a vector yo in M 3 |[x — y, || = d.
Now we set zp = X — yo.

~.We have ||zy|| = ||x — || = d > 0 so that z, is non-zero vector.

Let y be any arbitrary vector in M. For any scalar o, we have zo — ay =X — (yo +
ay). Since M is a subspace of H and yo, y € M, yo + oty € M.

By definition of d, ||x — (v, + ay)|| = d.

Now [[(zo — ayll = llx = (yo + ayll = d = ||zl

clzo — ayll® = llzoll?

= (zo — vy, Zo — ay) — (2o, Zo) = 0

= —alzy,y) —a(zy,y) taa(y,y) >0 ... (1).

The relation (1) is true V scalars a.

Let us take o = B(z,, y) where B is real number.

Then @ = B(zy,y).

Putting the values of o, & in (1),

= B(20,¥) (20, ¥) — B(20,¥) (20, ) + B* (20, ¥) (2o, W IYII*> > 0

= = 2Bl(20, Y)1? + B1(2o, MIZIlyII* 2 0

= Blzo, MIPBllylI* =2)20 ... (2).

The relation (2) is true V real f.

Suppose that (zg,y) # 0. Then choose B positive and so small that B]|y||? < 2.
= Blzo, MIZBlIyII? - 2) < 0 which contradicts (2)

. (z5,y) =0

>z lyleyeM=1z1ly

SzZolyVyeM.

Hence zp L M.

Theorem: 2*: If M is a linear subspace of Hilbert Space H, show that M is closed
if and only if M = M+,

Proof: Let M be a subspace of a Hilbert Space H and M = M1+,

We know that (M1)? is a closed subspace of H.

.. M is a closed subspace of H.




Conversely suppose that M is closed subspace of H.

As proved earlier M c M1+,

If possible, suppose that M is a proper subset of ML+,

Now M=+ is a Hilbert Space and M is a proper closed subspace of M1+,
.. By previous theorem, 3 non-zero vector zoin M+ 3 z, L M.

= 7o eM*t.

. zo€ Mt and zg € M+t

=70 € Mt n M+ < {0}.

-.zo =0 which is a contradiction. Hence M = M*+.

Theorem: 2*: If M and N are closed linear subspaces of a Hilbert Space H such
that M L N, then the linear subspace M + N is also closed.
Proof: Let z be a limit point of M + N.

.. Jasequence {z,} of points of M + N >z, - z.

Since M L. N, M N N = {0} and so the subspace M + N is the direct sum of the
subspaces M and N.

.. each z, can be uniquely written as z, = X, + y, where x, € M, y, € N.
Consider two vectors zy, = Xm + Ym and z, = X, + y, belonging to {z,}.

Since Xm—Xn € M and ym —yn € Nand M L N, (Xm — Xn) L (Ym — ¥n)-

By Pythogorian theorem, [|x,, — Xn + Ym = Yull? = 1t — 25117 + 1y — yull®.
= ||z — Zn”Z = |ty — xn”2 + lym — yn”2° (D)

Now {z,} is a convergent sequence in the Hilbert Space H.

.. {za} 1s a Cauchy sequence in the Hilbert Space H.

. asm, n — oo, we have ||z,,, — z,||?°—= 0 =||x,, — x,11* + [V, — ¥1|* = 0.
= ”xm - xnllz - 0, ”ym - ynllz - 0.

= {xn} and {yn»} are Cauchy sequences in M and N respectively.

But M and N are complete being closed subspaces of a complete space.

- {xn} and {y»} in M and N are convergent sequences in M and N.
LdxeMandy e Nax, > xandy, > V.
Nowz=Ilimz,=lim (X, +y,) =limx, +limy,=x+y € M+ N.

Thus, if z is a limit point of M + N then z € M + N.

.. M+ N is closed.

Projection Theorem: 6*: If M is a closed linear subspace of a Hilbert Space H,
then H=M®& ML

Proof: Let M be a closed linear subspace of a Hilbert Space H.

o.M~ Mt = {0} since M is a subspace of H.

Now M+ is a closed subspace of H.




M is given to be a closed subspace of H.

.. By the preceding theorem M + M+ is closed subspace of H.
PutN=M+ Mt ... (i)

Then, By (i), M c Nand M+ — N.

~NtcMtand Nt c ML

= N+t c Mt M+ ={0}.

- N+t =1{0}

= Nt ={0}t=H

= N =H since N=M + M+ is a closed subspace of H = N11 =N
Thus, N=M + M+ =H.

Finally, H=M + Mt and M n M+ = {0}.

—>H=M®M".

Example 1: 2*: If S is a non-empty subset of a Hilbert Space H, show that S+ =
gLl

Solution: We know that if M is a closed subspace of a Hilbert Space H then M =
M+, Since S+ is a closed subspace of Hilbert Space H, S+ = S+++,

Example 2: 1*: If S is a non-empty subset of a Hilbert Space H, show that the set
of all linear combinations of vector in S is dense in H if and only if S* = {0}.
Solution: Put M = [S]. Suppose M is dense in H. ie. M = H.

Let z be a limit point of M.

Then 3 a sequence {z,} of points of M 5 z, — z.

Letx L M. Thenx 1 z, Vnsince z, € M V n.

= (X,Z,) =0V n.

L0=lt(x, zn)=(x, 1t z) = (X, 2). 1e. (X, 2) = 0. So, x L z.

Thus, x L M = x L z where z is a limit pointof M. .. x L M (= x € Mt)
Now let x € S*. Then x L S = x is orthogonal to every vector in [S] = M.

= x L M = x L H. In particular x L x which = x=10. ..S* = {0}.
Conversely suppose S+ = {0}.

Claim: M = H. Clearly, M € H.

If possible, suppose H & M.

Then Ja vectorxin H>x ¢ M.

Since M is a closed subspace of H H=M @ M*.

. wecan writex =y +zwherey € M and z € M+

Now z cannot be zero vector. If z= 0, then x =y € M which is a contradiction.
Then 3 non-zero vectorz3z € M* =z 1L M+~ M c M.

Thus, z e M+ = z e M which is a contradiction. Hence H = M.




Example 3: 1*: If S is a non-empty subset of a Hilbert Space H, show that S+

=1S]. Solution: We know that S < S++. Also S** is a closed
subspace of H. But [S] is the smallest

closed subspace of H containing S. .. [S] g_ . (1)
Now Sc[Sland [S]< [S] -~ Sc [S] STt < S by a theorem = S+ <

[ST... (2) Since [S] is the closed subspace of H, [S] = [ST**.
From (2) we get St+ < [S] ... (3)

From (1) and (3) S** =[S].

ORTHONORMAL SETS

Definition: A non-empty set {e;} of a Hilbert Space H is said to be an orthonormal
setif (i) ||le;|| = 1 foreveryi(ii)i#j = e Le;.

Note: (i) Orthonormal set cannot contain 0 vector.

(i1) Every Hilbert Space which is not equal to zero space possesses an orthonormal

set. For, 0 #x € H> ﬂ 1s a unit vector and so {” ”} 1s an orthonormal set of H.

(i) If {x;} is a non empty set of mutually orthogonal non-zero vectors in H, then

{ei} where ¢; = ” ” 1s an orthonormal set in H.
l

Example: In the Hilbert Space [, {e1, €, ..., en} of I} where ¢; = (X1, X2, ..., Xp)
such that x; = 1 and x; = 0 if j # 1 1s an orthonormal set, exactly it is an orthonormal
basis of 7.

Bessel’s inequality for finite sets

Theorem: 4*: Let {ey, €2, ..., €,} be a finite orthonormal set in a Hilbert Space H.
If x is any vector in H, then Z "1 (e, e)|? < ||x||%. Further, x — X1, (x, e;)e; L e
for each j.

Proof: Given that {ej, e, ..., €.} be a finite orthonormal set in a Hilbert Space H
and x be any vector in H. Cons1der the vectory =x — Y.1-,(x, ;)e;.

L0 ylP =@y, y) = (x— X (x e)e, x — X (x, €))e))
= (%X~ Ty () (e, ) — X () (6 €5) + Ny T (e (6, (e, )
= |lx12 = i, (x, ) (x,e) — Xioq(x,€)) (x, €)) + Tiny (x, €) (x, €,)

= Ilxll? = Ziza ] (e e |2 = llxll? = Xi [ (x, e) |




2 Zimal o )2 < lxll?.... (@)

Further, for each 1 <j<n, (x — X, (x, el)el,ej) (x, &) — Xit1(x, e;)(e; €))

= (x, &) — (x, ) = 0.
x—2ti(x,e)e; Lejforeachj> 1 <j<n.

Theorem: If {ei} is an orthonormal set in a Hilbert Space H, and if x is any vector
in H, then the set S = {ei: (x, ei) # 0} is either empty or countable.

2
Proof: For each positive integer n, consider S, = {ei: |(x, €)% > '”);” }

If the set S, contains n or more than n vectors, then Y.es |(x, ,)[* >n— [Edi =||x]|?

.. (1) which is a contradiction since by a theorem ., cs [|(x, e)|? < ||x||2.

". S, contains at most n — 1 vectors.
Thus, for each + ve integer n, the set S, is finite.
Now suppose ¢; € S. Then (x, ¢i) # 0.
However small may be the value of |(x, e;)|?, we can take n so large that

|Gx, e 2 > 12

~Ifei €S, then e; must belong to some S,.
. S=Up=1S,. .- Sis acountable being countable union of finite sets.
If (x, e;) = 0 for every 1, then S 1s empty. Otherwise, S is a finite or a countable
infinite set.

Theorem: 2*: Bessel’s inequality.
If {e;} is an orthonormal set in a Hilbert Space H, then }.|(x, e;)|? < ||x||? for each
vector x € H.
Proof: Let x € H and S = {e;i: (x, €i) # 0}. Then S is either empty or countable.
If S is empty then (x, ;) =0 V 1.
In this case define },|(x, e;)|? to be 0 and we have 0 < ||x||?.
Thus, X[ (x, €)% < [lx]I*.
Now suppose S # ¢.
. either S is finite or countably infinite.
If S is finite S = {ey, €2, ..., €,} for some + ve integer n.
In this case we can define Y| (x, €;)|? to be ¥.1-,|(x, ;)|* which is < ||x]||% by
Bessel’s inequality for finite cases.
Finally suppose that S be arranged in a definite order say S = {e}, e, ... , €n, ...}.
For each n, the set {ej, e, ..., en} 1s an orthonormal set and by Bessel’s inequality
for finite cases Y1—,|(x, el)l2 <lx|I?.




This says that the infinite series Y.;2,|(x, ;)|? is absolutely convergent since all
terms of this series are + ve, and so Yo, |(x, €)% < ||x]|% ... (D).

Also, it’s sum will not change by any rearrangement of it’s terms. In this case we
can define Y| (x, €;)|? to be Y72, (x, ¢;)|? and from (i) this is < ||x]|?.

Theorem: 2*: If {e;} is an orthonormal set in a Hilbert Space H, and if x is an
arbitrary vector in H, then x — }:(x, e;)e; L e; for each j.

Proof: Let S = {ei: (X, ei) # 0}. Then S is either empty or countable.

If S is empty then (x, ;) =0 V 1.

In this case define Y.(x, e;)e; to be vector 0 and then x — Y.(x, e;)e;=x -0 =x.
Since S = @, (X, €;)) =0 V j so that x L ¢; V j and hence the result.

Now suppose S # ¢.

.. either S is finite or countably infinite.

If S is finite S = {ej, e, ..., €y} for some + ve integer n.

In this case define };(x, e;)e; = X (x, e;) e; and we have already proved that
x — Xie1(x,e;))e; L e; for eachj.

Finally suppose S be countably infinite and be arranged in a definite order say,
S={ee...,¢en...}.

Put s, = Yi-,(x, e)e;.

Form > 1, llsy = S 2=l Z 70 o)y [P=S 401, )2

But by Bessel’s inequality the series Y72, (x, €;)|? is convergent.

- m,n—> oo, we have 272 ., |(x,e) = 0= ||s,, — sl = 0.

.. the sequence {s,} 1s a Cauchy sequence in H.

Since H is complete, {s,} is convergent in H.

~.Javectors € H>s, > s which we write s = Y7, (x, e,,) e, .

Now define Y.(x,e;)e; = Ym=1(x, €5) e,

(x —Y(x,e;)e; ,ej) ® (x -5, ej) = (x, ej) — (s, ej) = (x, ej) — (lt Sn» ej)
=(x,¢) — lt( sy €).

Ife; ¢ S then (sp, €) = (Z?=1(x, e;)e; ,ej) =0.

. 1t('sp, ;) = 0 in this case.

(x —Y(x,e;)e; ,ej) = (x, ¢j)) =0since ¢j ¢ S.

Ifej € S, then (s, &) = (X1 (x, ee; e]-) = (X, ¢j) forn >j.

=1t (sn, €§) = (X, €) 1n this case.

So that (x — X(x, €)e; , ej) = (X, ¢j) — (X, &) = 0.

Thus, we have (x —(x,e)e;, ej) = 0 for each j.
ie. x — ).(x, e;)e; L e for each j.




Claim: Definition of }.(x, e;)e; is valid.

Let the vectors in S be arranged in any manner say S = {f}, 5, ..., f,, ...}.
Put SH' - ?=1(xi fl)fl '

As shown above {s,'} will converge to vector say s’ in H.

We write s" = Y01 (X, f) fn -
For any € > 0, let no be a + ve integer so large that if n > ny, then ||s,, — s|| <&,

/ ! co 2 2
llsn" — s'll <eand X;2, q1(x, e)]° <&
For some + ve integer mo > ny, all terms of s, occur among those of s, "
.S, — Sp, 18 a finite sum consisting of the type (x, ej)ei fori=no+1,no+2, ...

. 2
This gives ||Sp," = Sn, || < Xi2n 411 (% €)% <€

Consequently, | Smo, — Sn, || <e.
Now, ||s" —s]| = ||S’ — Sm, +Sm, — Sn, + Sn, — s||

= ”S’ o Smo’” + ”Smo, o Sno” + ”Sno o S” < 3e.
Since ¢ is arbitrary, ||s’ — s|| <3¢ gives s’ =s.

COMPLETE ORTHONORMAL SET

Definition: An orthonormal set is said to be complete if it is not contained in any
larger orthonormal set.

Theorem: 2*: Every orthonormal set in a Hilbert Space is contained in some
complete orthonormal set. Further every non — zero Hilbert Space contains a
complete orthonormal set.

Proof: Let S be an orthonormal set in a Hilbert Space H.

Let P be the class of orthonormal sets containing S.

Then P 1s non-empty since S € P.

Now P is partially ordered set w. r. t. set inclusion.

Let T be any totally ordered subset of P and let T = {As: AeA}.

Obviously for every A, As. € U{As, LeA}.

Since each Ay contains S, WA, contains S.

Let x, y be any two distinct vectors belonging to WA, AeA.

Then 3 Acand Ag e Tox € Agandy € Ag.

But T is totally ordered.

.. either Aq < Ap or Ap C A

Without loss of generality let us take Ao < Ag.

Then x, y € Ap. But Ap is an orthonormal set.

S x Lyand x| =1, ||yl = 1.




.. UA), A€ A is an orthonormal set.

Thus, UA;, L€ A is an orthonormal set containing S and each Aj < UAy, AeA.
. UAj, AeA is an upper bound for T in P.

Thus, P satisfies all the conditions of Zorn’s lemma.

.. there must exist a maximal element in P. Let it be M.

Then M is a complete orthonormal set containing S.

For, if it is not so, then 3 an orthonormal set containing S and also containing M
properly. This will contradict the maximality of M.

Further, let H be a non-zero Hilbert Space.

Let x be a non-zero vector in H.

_(x
Then S = {”x”

.. By the above part of this theorem 3 a complete orthonormal set in H containing
S.

} 1s an orthonormal set in H.

Theorem: 5*: Let H be a Hilbert Space, and let {e;} be an orthonormal set in H.
Then the following are equivalent.

(1) {ei} is complete.

(i) x L {e;} =>x=0.

(ii1) If x is an arbitrary vector in H, then x = }.(x, e;)e; .

(iv) If x is an arbitrary vector in H, then ||x||? = X|(x, ;) |?.

Proof: Claim: (i) = (i1).

Let {e;} be an orthonormal set. Suppose x L {e;} and x # 0.

Then e = ”z—” 1s a unit vector 3 e L {e;}. 1e. (e, e;) = 0 for each i. Then {e, e;} is an

orthonormal set containing {e;} which contradicts the fact that {ei} is complete.
Sx1{e} =>x=0.

Claim: (ii) = (ii1).

Letx L {e;) =>x=0andx € H.

Then by a theorem x — }(x, e;)e; is orthogonal to every vector in the set {e;}.
Ie. x — X.(x,e;)e; L {ei}.

By (ii) x — X(x,e;)e;= 0. = x = Y(x, ¢;)e; .

Claim: (111) = (iv). Assume (iii).

Let x € H. Then x = }}(x, e;)e; by (iii).

Sl = (x, %) = (Zi(x» ee, Zj(x: ej)ej ) =2 j(x, ei)(x' e])(ei» ej)
=i(x, e)(x,e) = Xl(x, e)l?

Claim: (iv) = (i). Assume (iv). Ie ||x]|* = ¥| (x, ¢;)|* V x € H.

If possible, suppose {ei} is not complete.




Then {e;} is a proper subset of an orthonormal set {e, ¢;}.
~llell? =X (e, e;)|?> = 0 which is a contradiction to the fact that e is a unit vector.

Standard Terminology. Let {ei} be a complete orthonormal set in a Hilbert Space
H and x be any vector in H. Then w.r.t this complete orthonormal set the scalars (x,
¢i) are called the Fourier coefficients of x, the expression x = ).(x, e;)e; is called
the Fourier expansion of x, and the equation ||x||? = | (x, ¢;)|? is called Parseval’s
equation or Parseval’s identity.

Gram — Schmidth Orthogonalisation

Theorem: 1*: Let S ={x, X, ..., Xn, ... } be a linearly independent set of vectors
in a Hilbert Space H. Then 3 an orthonormal set of vectors S, ={e;, €2, ..., €n, ... }
such that for each n, [{xi, X2, ..., Xn}] =[{€1, €2, ..., €n}] 1€, fOr any n, the linear
subspace spanned by {xi, X2, ..., Xa} 1s same as that spanned by {ei, €,, ..., €n}.
Proof: We prove it by induction on n.

Letn = 1. Then x; # 0 since S is linearly independent. Put e; =

X1

llxa Il

Then e; is a unit vector and so {e;} is an orthonormal set.

Since e; and x; are non-zero vectors and they are linearly dependent, the subspace
spanned by {x;} is the same as that spanned by {e,}.

Thus, the theorem is true forn=1.

Now assume that we have constructed an orthonormal set {ej, e, ..., €,.1} such that
[{X1, X2, ..., Xi}] = [{e1, €2, ..., €} ] forany integeri>1 <i<n-—1.

Now consider y = x,, — Y14 (xp, €)e; .

Then y is orthogonal to each of vectors ey, e, ..., €,-1 by a known theorem.
Further, y # 0. For, if y = 0, then x,, = X1 (x,,, €)e; .

1€. X, 1S a linear combination of ey, €, ..., €y 1.

= X, 1s a linear combination of X, Xz, ..., Xy-1 by induction hypothesis which is
contrary to the fact that {x;, xo, ..., Xn} 1s linearly independent.

y
Now take e, = L

Then e, is a unit vector orthogonal to each of e}, e,, ..., €, so that {e, e,, ..., €4}
) Xn=Y" 1 (x,e0)e; )
is an orthonormal set. Now e, = ”z—” == Z“Hly(” neleL (1).

So, e, 1s a linear combination of e, €, ..., €1, Xn

= e, 1s a linear combination of x, X, ..., Xn_1, X, by induction.

Also from (i), %, = [[yllen + XI5 (s €)e;

Thus, X, 1s a linear combination of ey, €, ..., €,. ... the linear subspace of H
spanned by {xi, X2, ..., Xa} 1S same as that spanned by the set{ei, €2, ..., €,}. The
proof of the theorem is complete by induction.




Example 1: Show that in the Hilbert space [, the set {e}, e,, ... , €.} Where e; is
the n-tuple with 1 in the i place and 0 elsewhere is a complete orthonormal set.
Solution: Let S = {e}, €2, ..., e,} wheree; =(1,0,...,0),e.=(0,1,0,...,0), ...,
e.=1(0,0, ..., 1). Ifx=(x1, X2, ..., Xa) €l," then by definition of norm in [,",

1
lxll = X, %123
Also if y = (y1, Y2, ..., Yu) € I, then by definition of inner product in I, we have
(Xa Y) = Z?=1 xi37l'
Now ||e;|| = 1 for each i. Also, if i # j then, (e;, €j) = 0.
.. S is an orthonormal set.
x Leiforeachi=1,2,...n=x,0 +x,0+ ... +x,0 + x;1 + xi;0 + ... + x,0 = 0.
=>x;=0foreachi=1,2, ..., n.
X1 S=x=0... Siscomplete.

Example 2: Show that in the Hilbert space [, the set {e}, €2, ..., €, ...} Where ¢; is
the n-tuple with 1 in the i™ place and 0 elsewhere is a complete orthonormal set.
Solution: Let S= {ej, €2, ..., €, ...}. [f X = (X1, X2, ..., X, ...) € [, then by

1
definition of norm in Iy, ||x|| = {X2x;1%}>.

Also ify =(y1, Y2, -+, ¥n, -..) € l, then by definition of inner product in [, we have
(Xa Y) = Z?0=1 xi)7l'

Now ||e;|| = 1 for each i. Also, if i # j then, (e;, ¢;) = 0.

.. S is an orthonormal set.

x Le,forecachn=1,2,..., =2x0+x0+... +x,,0 +x,1 + x40+ ... =0.

= x,=0foreachn=1,2, ...

L x1 S=x=0...Siscomplete.

Example 3: Prove that an orthonormal set in a Hilbert Space is linearly
independent.

Solution: Let S be any orthonormal set of vectors in a Hilbert Space H.

Let S, = {ei, €2, ..., €.} be a finite subset of S.

Let X1, a;e; = 0 for scalars o, 1 <i<n. ...>i).

Now for eachj, 1 <j<n, 0=(0, ¢j) = (L, ase;, ej) =i ai(e;e) = o
ie. aj=0 foreachj, 1 <j<n.

.. the set S, is linearly independent. Thus, every finite subset of S is linearly
independent. .. S is linearly independent.
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FUNCTIONAL ANALYSIS
UNIT III
K. C. TAMMI RAJU

THE CONJUGATE SPACE H*

Let H be a Hilbert Space. A continuous linear transformation from H into C is
called a functional on H. The set B(H, C) of all functionals on H is denoted by H*
and 1s called conjugate space of H. If we define addition and scalar multiplication
in H* pointwise and if the norm of a functional fis defined by || f|| = Sup

{If )|: llx]| < 1}, then H* is a Banach Space. To give H* the structure of a
Hilbert Space we can define a suitable inner product on H*. Consequently by the
same process (H*)* will also become a Hilbert Space.

Theorem 1: 3*: Let y be a fixed vector in a Hilbert Space H and let f, be a scalar
valued function on H defined by fy(x) = (X, y) V x € H. Then {; is a functional in
H*. Further show that ||y|| = ||fy||

Proof: By definition fy(x) = (x, y) V X € H. Since (X, y) is a scalar, f; is a mapping
from H into C.

fy 1s linear: For, let xi, x, € Hand o, € K.

Then fy(axi + Bx2) = (ax1 + Bx2, y) = alx1, y) + B(x2, y) = afy(x1) + By(x2).

fy is continuous: For, x € H = |fy(x)| =1, )| < x|yl ... (1) by Schwartz
inequality. = Kk|[x]|
where ||y|| = k = 0. |fy(x)| < kl|lx||Vxe
H so that f; 1s bounded and hence continuous. Thus, f
is a functional on H. ie. f;, € H*.

Now ||y || = sup £, G| Ixll < 13 < llyll from (1). Te. ||y | < Iy l..(2).

Ify =0, then ||y|| = 0 so that f,,(x) = (x, 0) =0 V x € H. ie. zero functional

Also || ;]| = 0.
Lety # 0. Then H is not a zero space.

A= sup {1 @|: lIxll = 13...03).

Sincey # 0, — ” m —— is a unit vector.

Taking x =g [|f, ] = 15 (||y||)|:(y v)= R0 V) =g V1 = 1.

Iyl Iyl
Thus ||£, || = Iyl ... (4). From (2) and (4) ||, || = ll¥l.




Note: v : H — H* defined by y(y) =f; V y € H is a norm preserving map.

Theorem 2: 7*: (Riesz Representation theorem) Let H be a Hilbert space and f be
an arbitrary functional in H*. Then 3 a unique vector y in H > f = f; ie. f(x) = (X, y)
vV x € H.

Proof: Case (1):

If f is zero functional, so f(x) =0 V x € H. Also, if y = 0 then (x, y) = (x, 0) =0 V
x € H.

Thus,3y=0 >f(x)=(x,y) V x € H.

Case (i1): Now suppose f'is not a zero functional ie. f(x) # 0 for some x € H.
Then the null space of fis N = {x € H: f(x) = 0}. Then N is a proper subspace of
H.

Since f'is also continuous N is proper closed subspace of H.

. 3 anon-zero vector yo € H> yo L Nie.yo € N*.

Now define v = f(x)yo — f(yo)x V x € H

Then f(v) = f(x)f(yo) — f(yo)f(x) =0 V x € H.

=veN. = (v,y)=0= (f(x)yo— f(yo)X, yo) = 0.

= (f(x)yo, yo) — (f(yo)x, y0) = 0. = f(x)(yo, Yo) = f(yo)(X, yo).

= 100 =128 (x,70) = (%, 1230

Lety= Ijlc (yﬁz ¥o- Then f(x) = (x,y) Vx € H

[Let a be any scalar > y = ayo.

If x € N, then f(x) =0 and (x, y) = (X, atyo) = &(X, y0) =0 V yo L N.

- If x e N and y = ayy then, f(x) = (x, y).

Now choose a in such a way that y = ayy satisfies f(x) = (x, y) for x = yo.
le. f(yo) = (yo, &ty0) = @(yo, Yo) = @ [|yoll?

f(¥o)

llyoll?
yo. Now let x € H. Since N n N* = {0} and yj is a non-zero vector belonging to

NL, yo & N. .4 f(yo) # 0. Now f(x) = ]f(( ))f(yo) Bf(yo) where p = L& )) Then f(x)

= Bf(yo)- = f(x) - Pf(yo) =0 = f(x - ByO) 0 = x—Pyo
€ N = x—PByo=n for somen € N. Thus, x € H= x=n+ By
where [3 is some scalar and n € N. Now {(x)

= f(n + Byo) = f(n) + Bf(yo) = (n, y) + B(yo, y) = (0, y) + (Byo, y) = (n + Byo, y)

=(X,y). .. 3y =y, where o = ljlc(yﬁg > f(x) =(x,y) V x € H]

If we take a = then, y = ayo satisfies f(x) = (x, y) for every x in N and for x =

Uniqueness of y:




If possible, suppose y and z are two vectors in H 5 f(x) =(x, y) V x € H and f(x) =
(x,z) Vx e H.

Then (x,y)=(x,2z) V x € H.

= x,y—z)=0VxeH.

=>(y-2zy-2)=0.

>y-z=0=>y=z

Hence the Theorem.

Theorem 3: Show that the mapping y : H — H* defined by y(y) = f;, where
fy(x) = (x,y) V x € H is one to one, onto additive but not linear but an isometry.
Proof: (i) v is one to one. For let y, z € H and y(y) = y(2).
=>f,=1,
= fy(x) =f(x) Vx € H.
= X,¥y)=(%,z) VxeH.
=Xy -(x2=0VxeH.
= Xx,y—-2)=0VxeH.
=>((y—-2zy-2)=0.
=>y-z=0=>y=z
(11) v 1s onto: For, let f be an arbitrary functional in H*.
3 a unique vectory > f = {,.
Then y(y)=f;=1.
(111) y 1s additive: For, let y, z € H.
flix)=x,y+tz)Vx e H

=x,y)+t(x,z2)VxeH

=f(x)+f(x) Vx e H

=, +f)(x) Vx e H.
S fe=5+E 0 ().
Now y(y +z) =fy, =fy + £, = y(y) + w(2) ... (2)
(iv) y 1s not linear: For, lety € H, and o € K.
Then foy(x) =(x, ay) Vx € H

=ax,y)VxeH
=afy(x) Vx e H.

oy =afy ... (3).
Now y(ay) = foy = afy = ay(y) ... (4).
Thus, v is not linear. Such a mapping is called a conjugate linear map.




(v) y is an isometry: For, lety, z € H.

Then [[p() =@l = |fy = Il = Iy + F=2ll = [I5-2[ = lly — zI| by theorem
(1). Sy 1S an isometry.

Theorem 4: If H is a Hilbert Space, then show that H* is also a Hilbert Space with
respect to the inner product defined by (fy, fy) = (y, x).
Proof: We know that H* is a Banach Space with suitable definitions of addition
and scalar multiplication in H* and norm of a functional in H*.
(i)  Claim: (afx + pfy, f,) = a(fy, f;) + B(fy, f,).
We know that fg, = af,.
(atf+ By, £) = (fax + F5y0 £2) = (Faxspy £2) = (2.@x + BY)
=a(z,x) + B(z,y) = alfx ) + B(Fy, f2).
(iiy Claim: (£, f,) = (fy, fr)-
(fx'fy) =, x)=(X,y)=(fy, f)
(iii) Claim: (fx, fx) = |1 ]1%.
(fx £) = (X, %) = llxlI? = | eI
Hence H* is a Hilbert Space with inner product (f;, fy) = (y, x).

Corollary: If we denote the elements of H** by Fy, F, etc. where f, g are their
corresponding elements in H*, then by theorem 4, H** is also a Hilbert Space with
respect to inner product defined by (Fg, F,) = (g, f).

Theorem 5: 1*: If H is a Hilbert Space, then H is reflexive.

Proof: Let H be a Hilbert Space.

We prove that there exists a natural isometric isomorphism from H onto H**.
For this we will define two natural mappings from H to H** which are equal.
Let x be any fixed vector in H.

Let Fy be a scalar valued function defined on H* by F(f) = f(x) V f € H*.
Then Fy is a functional on H*.

Fx 1s called functional on H* induced by x.

Now define T: H > H** by T(x) =Fx V x € H.

Since T is linear and therefore T is isometric isomorphism from H onto H**.
Let T) be a mapping from H into H* defined by T;(x) = fx where fx(y) =(y,x) Vy
e H.

Let T, be a mapping from H* into H** defined by Ta(fx) = Ff, where Ff, (f) =

(f, ) vV fe H*
Then T,T; is a mapping of H into H**.




Then T,T; 1s also one-one and onto, since T, T, are one-one and onto.
Claim: T =T,T;
Both T and T, T, are mappings from H into H**.
By definition of T, T(x) = Fx.
AlSO, Tle(X) = Tz{Tl(X)} = T2(fx) = fo.
Now we have to prove that Fy = Fy_
Clearly both Fy and Fj, are scalar valued functions defined on H*.
Let f be an arbitrary element of H*.
Then 3 unique y in H such that f = f;.
Now Fy (f) = (f, fx) = (fy, ) ~ T=1
~ (x,y) = () = f(x) = £ =1,
= Fx(D).
Thus, Fr (f) =Fx(f) V f € H*.

.. T 1s a mapping of H onto H**.
Hence H is reflexive.

THE ADJOINT OF AN OPERATOR:

Theorem 1: 5*: Let T be an operator on a Hilbert Space H. Then 3 a unique
operator T* on H > (Tx, y) = (x, T*y) V x, y € H. The operator T* is called adjoint
of the operator T.
Proof: Existence: Let y be a fixed vector in H.
Define a scalar valued function f; : H — K such that f,(x) = (Tx, y) V x €H.
fy 1s linear: For, If x;, x> € H, a, B €K then fy(ax; + Bx2) = (T(ax; + Bx2), y)
= (aTx; + BTxz, y) - T is linear.
= o (Tx1, y) + B (Txz, y)
= afy(x1) + Bfy(x2)
fy is continuous: For, If x € H, then | fy (x)| =|(Tx,y)|
<|ITx|| l|y|l by Schwartz inequality.
<|\ITIyIlx]| ... (i) as T is bounded.
Hence f;, € H*.
Now by Riesz representation theorem 3 a unique vector z € H 3 fy(x) = (X, z) V X
e H.
Ie. 3 aunique vectorz € H> (Tx,y)=(x,z) Vx € H ... (i1).




And ||f, || = llzll ... Gii).
Thus, for each y in H 3 a unique vector zin H> (Tx,y) =(x,z) V x € H.
Hence, we get a mapping (say) T*: H>H>T*y=zVy e H.
So, from (ii), we have (Tx, y) = (x, T*y) V x,y € H...(iv).
Thus, existence of T*: H — H 5 (Tx, y) = (x, T*y) V X, y € H is established.
We call this new mapping T*: H — H, the adjoint of T.
Claim: T* is linear. Let yj, y2 be any two vectors in H and a, 3 be any scalars.
For any vector x € H, (x, T*(ay; + By2) = (Tx, ay: + By2) by (1)
=a (TX, yl) + ﬁ_(TX, y2)
= a(x, T*y) + B(x, T*y2) by (1)
= (x, oT*y1 + pT*y2)
Thus, (x, T*(ay; + By2) = (x, aT*y; + BT*y,) V x € H.
s T*(ayr + By2) = aT*y; + BT*y,. .. T* is linear
Claim: T* is continuous.
For any vectory € H, ||T*y||? = (T*y, T*y) = (TT*y, y) by (1)
=|(TT"y, )| ~IIT*yl|l* is real > 0
<|ITT*y|| |lyll by Schwartz inequality.
<WITINT=yIl Iyl
Thus, [IT*yII? < ITINIT*yIl Iyl Yy € H ... (2).
IEIT*yll =0 then IT*y[ < ITHlyll = WTI Iyl = 0.
IF[IT*yll # 0 then from (2), IT*yll <IITllllyll V'y € H.
Let ||T|| =k then, k >0 and ||T*y|| <k]||y|| Vy € H.
.. T* is bounded and hence continuous. .. T* is an operator on H.
Uniqueness: Suppose 3 another mapping T: H > H> (Tx,y)=(x, T'y) VXx,y €
H.
Thus, (Tx, y) =(x, T'y) and (Tx, y) = (x, T*y) V x, y € H.
= x Ty) =&, T*y) Vx,y € H.
=>Ty=T*yVyeH =T =T*

Theorem 2: The adjoint operator T — T* on B(H) has the following properties.
(1) (To+ T)*=To*+To* 4%
(2 (aT)Y*=aT* 1*
(3) (Tsz)* =T,* T* 4*
(4) T>=T 3*
®) T =TIl 3*
6) IT*TIl =TI 5*
Proof: (1) Forevery x,y € H, (x, (T; + To)*y) = ({T1 + T2}x, y)
=(Tix+Tx,y)




= (TIX’ Y) + (sza Y)
=(x, Ti*y) + (x, To*y)
=, {Ti* + Ta*}y)
.. From Uniqueness of T*, (T; + Ty)* =T * + Ty*
(2) Forevery x,y € H, (x, {aT*}y) = ({aT}x,y)
= (a{Tx},y)
=a (Tx,y)
= a(x, T*y)
= (x, @{T*y})
= (x, {aT*}y)
..From uniqueness (aT)* = aT*.
(3) Forevery x,y € H, (x, {TiT2}*y) = ({T1T2}x, y)
= (Ti{Tox}, y)
= (Tox, Ti*y)
= (x, T5{Ti*y})
=, {T2*Ti*}y)
.. From uniqueness (T Ty)* = Tx* T *
(4) For every x, y € H, (x, T**y) = (x, {T*}*y)
= (T*x,y)

=(y,T"x)
= (Ty, x)
= (x, Ty)

.. From uniqueness T** =T .
(5) Foreveryy € H,
IT*yll* = (T*y, T*y)

=(TT*y,y)
=|(TT*y, )| = (TT*y,y) =IT*y||* 2 0.
<|ITT*y|l|llyll by Schwartz inequality.
<[ITINT=y ]yl

Thus, IT*y|I? < ITIIT*yllllyll V' y € H.

=Ty < ITllllyll V'y € H...(A)

Now [[T*]| =sup {IT*yll: lyll < 1} <[ITIl = IT*| < IT]] ... (B)

Now apply result (B) for T* in p[lace of T. ||(T™)*|| < ||IT”||
= T < IT|
= ITIF < T ... (O).

From (B) and (C), [IT*[| = [|T|

(6)We have [|[T*T|| < [IT*[[[IT ~ [IST|I < [ISIHIT]

=ITINTI = ITI>.




Thus, ||T*T|| < |IT]|?... (D).
Further for every x € H, ||Tx]|? = (Tx, Tx)
= (T*Tx, x)
=|(T"Tx,x)|
<||IT*Tx||||x|| by Schwartz inequality
<NIT*TIxllxll = NI T*T 1l l|x]]?
Thus, ||Tx||2 < |IT*T||lx]|* ¥V x € H... (E).
Now [|IT|l = sup {[ITx]]: llx|| < 1}
< NTN? = [sup {NTx]l: llx]l < 137 = sup {[ITx[1?: Ix]| < 1} <|IT"T|
= ITII?<|IT*T]|... (F). From (D) and (F), ||T*T|| = ||T||?.

Theorem 3: If O and I be zero and identity operators on a Hilbert Space H, then
O* =0 and I** = 1. Hence show that if T is a non-singular operator on H then T* is
also non-singular and in this case (T*) ! = (T 1)*.

Proof: For every x, y € H, (x, O*y) = (0x,y) = (0, y) =0 = (x, 0) = (x, Oy).

.. O* =0 (~ adjoint operator is unique).

Again (x, I*y)=(Ix,y) = (X, y) =(x, ly). .. [*=1.

Now suppose that T is non-singular operator on H.

Let T! be the inverse of T.

Then T! is also an operator on Hand TT '=1=T'T ...(1).

Taking adjoint of (1), (TT 1)* =I* = (T 'T)*

or (T H*T*=1=T*T")*

.. T* is invertible and hence non-singular.

Inverse of T* is (T 1)*. ie. (T*) ! = (T ")*,

Example 1: Show that the adjoint operator is one-to-one, onto as a mapping of
B(H) into itself.

Solution: Let v: B(H) — B(H) defined by w(T)=T* V T € B(H).
Claim: v is one-one.

Let Ty, T, € B(H) and Ww(T)) = y(T,) = T* = Ty*.

= (T1")'= (T,")" = Ti*¥* = Ty**,

= T, =T,. ..y is one-one.

Claim: y is onto.

Let T be any arbitrary member of B(H).

Then T* € B(H) and y(T*) = (T*)* =T**=T.

.. 1s onto.

Example 2: Show that ||[TT*|| = ||T]|?.




Solution: We have ||T*T|| = |IT||?... (D).

Take the operator T* in place of the operator T.
NTET N =T N2 = TN 1T = |IT].
= ITT*I1 =TI

SELF - ADJOINT OPERATORS

Definition: An operator T on a Hilbert Space H is said to be self-adjoint if T* =T
ie. (Tx,y)=(x,Ty) Vx,y € H.
Note: O and I are self-adjoint operators.

Theorem 1: 3*: The self-adjoint operators in B(H) form a closed real linear
subspace of B(H) and therefore a real Banach Space which contains the identity
transformation.
Proof: Let S be the collection of all self-adjoint operators on a Hilbert Space H.
Claim: S is real linear subspace
Clearly S is a non-empty subset of B(H).
Let Aj, A; € S and a, B be any two real numbers.R
Then A;* = A; and Ay* = A,.
Then (aA; + BA2)* = (aA)* + (BA2)* = A1 * + dAy* = aA; + PAs.
- oA1 + BA; is also self-adjoint operator on H.
.. S is a real linear subspace of B(H).
S is closed: Let A be any limit point of S.
J a sequence {A,} of distinct points of S 5 A, —> A.
I1A—-A"I=1A— Ay + Ap—A," + A" — A7l
S ”A - An” + ”An - An*” + ”An* - A*”
=1(An = Al + |47 = Apll + (4 = A)7||
= 1Ay — DIl + 1 (4n — A
=2||(4,, — A)|| > 0as A, > A.
A=A =0 = A-A*=0 = A=A*
= A s self-adjoint. .. A € S.
Thus, S is closed.
. S is complete - B(H) is complete.
". S is real Banach Space.
Since I* = I, S contains Identity transformation.
Theorem 2: If A and A, are self-adjoint operators on H, then their product A ;A is
self- adjoint if and only if Aj A, = AsA.
Proof: Let Aj, A, be self-adjoint operators on a Hilbert Space H.
Then A;* = A; and Ay* = A,.




Suppose A1A; = ArAy

Then (A]Az)* = Az*Al* = A2A1 = A1A2.

. A1A; 1s self-adjoint.

Conversely suppose A A; is self-adjoint. Then AjA; = (A1A2)* = A*A1* = ALA .
Ie. A]A2 = AzAl.

Theorem 3: If T is an arbitrary operator on a Hilbert Space H, then T = O if and
only if (Tx,y)=0V x, .

Proof: Suppose T=0. Then V x, y; (Tx, y) = (0Ox, y) = (0,y) = 0.

[e. (Tx,y)=0Vx,y.

Conversely suppose (Tx,y) =0V x,y e H

= (Tx, Tx)=0VxeH

=|Tx[|?=0 Vx eH

=Tx=0VxeH.

=T=0.

Theorem 4: 4*: If T is an operator on a Hilbert Space H, then (Tx, x) =0V x € H
if and only if T =O.
Proof: Suppose T=0. Then V x € H, (Tx, x) = (Ox, x) = (0,x) = 0.

Conversely suppose that (Tx, x) =0V x € H.

Let a, B be any scalars and x, y € H.

Then 0 = (T{ox + By}, ax + By) = (aTx + BTy, ax + By)

= aa(Tx, x) + af (Tx, y) + Ba (Ty, x) + BB(Ty, y).

= of (Tx,y)+ pBa (Ty,x)=0... (1) V scalars a, B and x,y € H.
Puta=1,B=11n (1). Then (Tx, y) + (Ty,x) =0 ...(2).

Putoa =1, =11n (1). Then i(Tx, y) — i(Ty, x) =0 1e. i(Tx, y) — i(Ty, x) =0 ... (3).
2)+(3) gives 2(Tx,y)=0Vx,ye H = (Tx,y) =0V x,y € H.

= (Tx, Tx)=0VxeH =Tx=0VxeH =T=0.

Theorem 5: 3*: An operator T on a Hilbert Space H is self-adjoint if and only if
(Tx, x)1sreal V x € H.

Proof: Suppose T is a self-adjoint operator on a Hilbert Space H.

Let x € H. Then (Tx, x) = (x, T*x) = (x, Tx) = (Tx,x) .. (Tx, x)isreal V x € H.
Conversely suppose that (Tx, x) is real V x € H.

Then (Tx, x) = (Tx,x) = (x,T*x) = (T"x,x)

= (Tx,x) - (T*x,x)=0V x € H.

= (Tx-T*x,x)=0VxeH




=>{T-T*}x,x)=0VxeH
= T —T* =0 by Theorem (4)
=T=T*

Definition: Let S be the set of all self-adjoint operators on a Hilbert Space H. We
define <on S as follows. We write A <A, for A, A; € S, if (A1x, X) < (Axx, x) V
x € H.

Theorem 6: 1*: The real Banach Space of all self-adjoint operators on a Hilbert
Space H is a partially ordered set whose linear structure and order structure are
related by the following properties.
(a) IfA; <A, then A} + A< A, + Aforevery A.
(b) If A; <A;j and a > 0 then aA; < aA,.
Proof: Let S denote the set of all self-adjoint operators on H. For A;, A, € S,
define <on Sby A; <A, if (Aix, X) < (Axx, x) V x € H.
<is reflexive: For, let A € S. Observe that (Ax, x) = (Ax, x) V x € H.
.. we may say (Ax, x) <(Ax,x) Vx € H = A<A.
Thus, A<AVY A € S.
<is antisymmetric: For, let Aj, A € S>3 A;<Azand A, <A,.
S(AIX X) < (Axx, x) and (Axx, X) <(A1x,x) V x € H.
= (A1x,x) = (Axx,Xx) V x € H.
= (Ax—Ax,x)=0V x € H.
= ({AI—Ax}x,x)=0V x € H.
:>A1 —A2 =0.= A] :Az.
<is transitive: For, let Aj, Az, Az € S3>A; <A;and A, <As.
S(AIX, X) < (Agx, x) and (Axx, xX) < (Asx, x) V x € H.
= (A1x, x) < (Asx,x) Vx € H.
= A <As.
Thus, < 1s a partial order relation on S.
(a) Let A, A, As e S>A; <A,
Then (A1x, x) < (A2X, X) Vv X € H.
2 (A, X) + (AX, X) < (A%, X) + (AX, X) v X € H.
= (A1x + AX, X) < (A2X + AX, X) vV X € H.
= ({A1+ A}x, X) <({A2+ A}X, X) v X € H.
>AI+tA<A+A
(b) Let A;, A, e Sand ascalar o > 05 A; < Ao.
Then (Aix, x) < (A2X, X) v X € H.




S a(Arx, x) < o(A2x, X) v X e H.

= (A1, X) < (alA2X, X) ¥ X € H.

= ({aA1}x, x) < ({aA2}X, X) v X € H.
= oA1 < 0A,.

POSITIVE OPERATORS

Definition: A self-adjoint operator A on a Hilbert Space H is said to be positive if A
> 0. ie.if (Ax,x) >0V x € H.
Note: O, I are positive operators.
Note: Let T be any arbitrary operator on H. Then both TT* and T*T are positive
operators.
For, (TT*)* = (T*)*T* = TT* so that TT* is self-adjoint. Again (T*T)* =
(T*)(T*)* = T*T so that T*T is self-adjoint.
Now (TT*x, X) = (T*x, T*X) = ||T*x||> >0
and (T*Tx, X) = (Tx, {T*}*X) = (Tx, Tx) = ||Tx]||?> > 0.

Theorem 7: 2*: If T is a positive operator on a Hilbert Space H, then I + T is non-
singular.
Proof: Claim: I + T is one — one.
Letx e Ker(I+T)ie. I+T)x=0
SX+Tx=0=>x+Tx=0=2Tx=—x= (Tx, X)) =(-x, X)) =— ||| >0 Tis
positive.
= ||x]|? < 0.
= |x[|?= 0 [|x||* > 0.
= x = 0.
~Ker (1+T)={0}.
Hence, I + T 1s one-one.
Claim: I + T is onto.
Let M be the range of [ + T.
First, we prove that M is closed.
For any vector x € H, ||(I + T)x||?=||x + Tx||?> = (x + Tx, x + Tx)
= (x, X) *+ (x, Tx) + (Tx, x) + (Tx, Tx) = ||x]|? + (Tx,x) + (Tx, x) + ||Tx||?
= ||x]|? + 2(Tx, x) + ||Tx||? [ T is +ve = T is self-adjoint = (Tx, X) is real.]
> ||x||? - T is positive.
Thus, [|x|| < [|(I + T)x|| V x € H.
Now let {(I+ T)x,} be a Cauchy sequence in M.
For any 2 positive integers m, n; [|x,, — X, || < (I + T) (X, — x) |




=|(I + T)x,, — (I + T)x,)|| = 0 {1+ T)x,} be a Cauchy sequence.
”xm - xn” —0
= {Xyn} 1s a Cauchy sequence in H.
= {Xa} converges to say x € H * H is complete.
St {d+T)x,} =+ T)(It x,) = I+ T is continuous.
=(1+T)x e M.
Thus, the Cauchy sequence {(I + T)x,} in M converges to (I + T)x in M.
Thus, M is complete.
Hence M is closed. - complete subspace of a complete space is closed.
To prove I + T is onto it suffices if we prove that M = H.
If possible, suppose M = H.
Then 3 a non-zero vector Xo in H 3 X9 L M.
= ({I + T}Xo, Xo) =0vxol M
= (xo + Txp, X0) = 0.
= (Xo, Xo) + (TX(), Xo) =0
= Ix0ll* + (Txo, X0) = 0.
= —llxolI* = (Txo, X0).
= —||xo]]? = 0 = T is positive.
= lIx0lI* <0 = [lxo|I> = 0.
= Xo = 0 which contradicts the fact that x¢ is a non-zero vector.
.. M=HandsoI+Tis onto.
Claim: I + T is non-singular.
Since I + T is a bijection, I + T is invertible.
Hence, I + T is non-singular.

Corollary: If T is an arbitrary operator on H, then the operators [ + TT* and I
+T*T are non-singular.

Proof: For an arbitrary operator T on H, T*T and TT* are both positive operators.
Hence by the above theorem both the operators [ + TT* and I + T*T are non-
singular.

NORMAL AND UNITARY OPERATORS

Normal Operator: Definition: An operator T on a Hilbert Space H is said to be
normal if it commutes with it’s adjoint. le. TT* = T*T.

Note: Obviously every self-adjoint operator is normal. For if T is a self-adjoint
operator ie. T* =T. Then T*T =TT =TT*




Theorem 1: 2*: The set of all normal operators on a Hilbert Space H is a closed
subset of B(H) which contains the set of all self — adjoint operators and is closed
under scalar multiplication.
Proof: Let M be the set of all normal operators on a Hilbert Space H.
Let T be a limit point of M. 3 a sequence {Tn} of distinct points of M > T, —> T.
AT =T =T =TI =T, — Tl > 0.
SN, =T > 0.=T," > T
Now [|TT* = T*T|| = |ITT* — T,T,," + T,T,," — T, Ty +T, T, — T*T||
= ”TT* - TnTn*” + ”TnTn* - Tn*Tn” + ”Tn*Tn ] T*T”
=|\TT7* -T,T,,’|| +IIT,,’T,, = T*T|| >0 T," > T*and T,
—>T.
Thus, ||TT*—=T*T|| > 0.= TT* =TT =0
= TT* =T*T = T is normal operator on H.
.. T e M and so M is closed.
Since every self-adjoint operator is normal, M contains the set of all self — adjoint
operators on H.
Let T € M and a be any scalar.
Now (aT)(aT)* = (aT)(aT*) = aa (TT*) =aa (T*T) = (a T*)(aT) = (aT)*(aT).
. oT is normal ie. T € M.
.. M is closed under scalar multiplication.

Theorem 2: 3*: If N; and N, are normal operators on a Hilbert Space H with the
property that either commutes with the adjoint of the other, then N; + N, and NN,
are also normal operators.
Proof: Let N; and N, be normal operators so that NN ;* = N;*N; and NoNy* =
N2*N,
Also given NiN»* = N,*N; and NN * = N *No.
Now (N; + Nao)(N; + No)* = (N7 + No)(N;* + Ny*)
= NN * + NiN,* + NoN 1 * + NoNL*
= N;*N; + N>*N; + N;*N, + N>*Nos.
=Ni*(N; + No) + No*(N; + Np)
= (N * + No2¥)(N; + Ny).
=N + N2)*(N1 + No)
. Nj + N3 is normal.
Again (NlNz)(NlNz)* = (NlNz)(Nz*Nl*)
= Nl(NzNz*)Nl*
= Nl(Nz*Nz)Nl*
= (NIN2*)(N2N )
= (N2*N1)(N1*N>)




= No*(N;N;*)N,

= No*(N;*N)N;

= (N2*Ni*)(N1N2)

= (NlNz)*(NlNz)
.. NiN3 1s normal.

Theorem 3: 3*: An operator T on a Hilbert Space H is normal if and only if
IT*x|| = ||ITx|| V¥ x € H.
Proof: T is normal iff TT* =T*T iff TT* - T*T =0

iff (TT* -T*T)x,x)=0V x € H.

ift (TT*)x, x) =(T*T)x,x) Vx € H

iff (T*x, T*x) = (Tx, T**x) V x € H.

ift (T*x, T*x)=(Tx, Tx) V x € H.

iff ||T*x||? = ||ITx||?V x e H

iff |[T*x|| = [|Tx]| V¥ x € H.

Theorem 4: 2*: If N is a normal operator on Hilbert Space H, then ||[N?2|| = ||N||?
Proof: Let N be a normal operator on H. .. ||[Nx|| = |[N*x|| Vx € H ... (1)
Replace x by Nx, we have, ||[NNx|| = ||[N*Nx|| V x € H.
= |IN2x|| = |IN*Nx|| V x € H... (ii).
IITTO\GIZIINZII = Sup{[IN?x|| : l|x|l < 1} = Sup {|IN"Nx||: [Ix|| < 1} = IN*N|| =
N||“.

Theorem 5: 1*: Any arbitrary operator T on a Hilbert Space H can be uniquely
expressed as T = Ty + iT2 where T1 and T2 are self - adjoint operators on H.

Proof: Let T1 = 47" and T, = T_,T*.
ThenT=Ti1+iT2
T*+T** T+T*

2 21
Now T1* = (TJ;T*) = = = T1 so that T is self - adjoint.

2

. _ : o
Again T —( ) S T T 5 = = T2 so that T2 is self - adjoint.

If possible, let T = U1 + iUz where U1 and U: are self - adjoint.
Then T* = (U1 + iU2)* = Ur* + (iU2)* = Ur* + T U2* = Us* -1 Uz* = Uy - iU,
Now T + T*=U; + iUz + U1 - iUz = 2 Us.

T+T*

LU= = T4

Again T-T*=U; + iUz - U1 + iUz = 2i U>.

LU=Tl=Ty

Hence the expression T =T, + iT; is unique where T1 and T are self - adjoint.

T—T*)*_ T*-T** _ T*-T _T-T*




Theorem 6: 2*: If T is an operator on a Hilbert Space H, then T is normal if and
only if it’s real and imaginary parts commute.

Proof: Let T =T, + 1T, where T, and T are the real and imaginary parts of T.
Then T, and T, are self — adjoint operators and

T* = (T1 + sz)* = Tl* + (1T2)* = Tl* + TTQ* = Tl* - sz* = T1 — 1T2

Now TT* = (T] + 1T2)(T1 — 1T2) = T12 + T22 + 1(T2T1 — T1T2) v (1)

Again T*T = (T1 — 1T2)(T1 + 1T2) = T12 + T22 + 1(T1T2 — Tle) e (11)

Suppose T is normal then TT* = T*T

— T12 + T22 + 1(T2T1 — T1T2) = T12 + T22 + 1(T1T2 — Tle)

= T2T1 — T1T2 = T1T2 — T2T1

=T, T, =TT,

= T, and T, commute.

Conversely suppose T and T, commute. Ie. T, T, = T,T;.

Then from (i) and (ii), TT* = T;? + T,> = T*T

.. T is normal.

Unitary Operator: Definition: An operator U on a Hilbert Space H is said to be
unitary if UU* = U*U =[.
Note: (1) Obviously every unitary operator is normal.

(ii) U is unitary iff U is invertible and U ! = U*,

Theorem 7: If T is an operator on a Hilbert Space H, then the following are
equivalent:
i T*T=I
i (Mx, Ty)=(Xxy) VX yeH
(iii)  ||Tx|| = ||x]| ¥ x € H.
Proof: Assume (i). ie. T*T =1.
Then for x,y € H, (Tx, Ty) = (x, T*Ty) = (x, Iy) = (X, y). .. (1) = (11)
Assume (i1). Ie (Tx, Ty)=(x,y) VX, y € H.
= (Tx, Tx) = (X, X) V x € H.
= ||ITx||? = ||x]|* V x € H.
= ||Tx|| = ||x]| V x € H.
s (1) = (1ii).
Assume (iii). Ie. ||[Tx|| = ||x]| v x € H.
= ||ITx||? = ||x]|* V x € H.
= (Tx, Tx) =(x,x) Vx € H.
= (T*Tx, x) =(Ix, x) V x € H.
= (T*T-I)x,x)=0V x € H.




= T*T-1=0.
= T*T =1
.. (111) = (1). Hence the theorem.

Theorem 8: 2*: An operator T on a Hilbert Space H is unitary if and only if it is an
isometric isomorphism of H onto itself.

Proof: Suppose T is unitary operator on H.

T is invertible and so T is onto.

Also, TT* =1.

.. By the above theorem, [|Tx|| = ||x]|| v x € H.

Thus, T preserves norm and so T is an isometric isomorphism of H onto itself.
Conversely suppose T is an isometric isomorphism of H onto itself.

Then T is one-one and onto.

. T exists.

Also, T is an isometric isomorphism.

= ||Tx|| = [|x]| v x € H.

= T*T =1 by the above theorem

= (T*DT!' =1T"!

= T*[=T"!

= T*=T"

S TT*=1=T*T

Hence T is unitary.

Example 1: 3*: If T is any arbitrary operator on a Hilbert Space H, and if a, 3 are
scalars > |a| = |B], then aT + BT* is normal.
Solution: (aT + BT*)* = (aT)* + (BT*)* = aT* + fT**=aT*+ B T
Now (aT + BT*)(aT + BT*)* = (aT + PT*)(@T* + B T)
= aa@TT* + aff T + Ba(T*)* + BB T*T.
= |a|>TT* + aBT? + Ba(T*)* + | B|*T*T... (i)
Also (aT + BT*)*(aT + BT*) = (aT* + BT) (aT + PT*)
= aaT*T + foT? + ap(T*)* + § BTT*.
= |a|?T*T + afT? + Ba(T*)* + |B|>TT*... (ii)
Since |a| = |B|, RHS’s of (i) and (ii) are same.
S(aT + BT*)(aT + BT*)* = (aT + BT*)*(aT + BT*).
Hence oT + BT* is normal.

Example 2: If T is a normal operator on a Hilbert Space H and A is any scalar, then
T — Al is also normal.




Solution: Let T be a normal operator.

o TT* =T*T.

Now (T—AD)*=T*—(A)*=T* —AT*=T* -1 1.

S (T=AD (T=AD)*=(T-AD)(T*=AD)=TT* = AT - A T* + |A|? I...(0)
Also (T—AD* (T—AI) =(T* — A1) (T—AI) = T*T — AT* — AT + |A]1...(ii).
Since TT* = T*T, RHS of (i) and (ii) are equal. .. T — Al is normal.

Example 3: If H is a finite dimensional Hilbert Space, show that every isometric
isomorphism of H into itself is unitary.

Solution: Let T be an isometric isomorphism of a finite dimensional Hilbert Space
H into itself.

Since H is a finite dimensional linear space and T is an isomorphism of H into
itself. .. T must be onto.

.. T 1s unitary.

Example 4: 3*: Show that the unitary operators on a Hilbert space H form a group.
Solution: Closure: Let Ty, T, be two unitary operators.

Then T, and T are invertible and T, "> = T;* and T, ' = T,*.

Since the mappings T, T, are continuous, T, T, is also continuous.

.. T\T, is an operator on H.

Also, Ty, T; are invertible = T, T, is also invertible.

(T T) ™ =T, T, = To* Tix = (T To)*

.. Ti T, 1s also unitary.

Associativity: We know that product of mappings is associative.

Existence of Identity: The identity operator I on H, is one — one, and onto so that I
is invertible.

Also I"1 =1=1*. . 1is unitary.

Existence of inverse: Let T be unitary on H. Then T is invertible and T~ = T*,
The mapping T~ is continuous. .. T* is an operator on H.

Also, T71 is invertible and (T~1) 1= (T*)"1 =(T1)*

-.T~1 is unitary.

Hence unitary operators on a Hilbert Space form a group.

Example 5: 5*: Show that an operator T on a Hilbert Space H is unitary if and
only if T({ei}) is a complete orthonormal set whenever {e;} is.

Solution: Suppose T is unitary operator on H and {ei} is a complete orthonormal
set in H.

S TT*=1"-T is unitary.




.. By a theorem (Te;, Tej) = (ej, €j) = {2: i; i i ; .

. {T(e;)} is orthonormal set in H. To show that {T(e;)} is complete let x L {T(ei)}
= (x, Te)) =0V e

= (T*X, ei) =0Veg

= T*x L {ei}

= T*x = 0 by theorem 6.

= TT*x =TO

=Ix=0=x=0.

Thus, x L T({e;}) = x = 0.

.. The orthonormal set {T(ei)} is complete.

Conversely suppose that {T(ei)} is a complete orthonormal set whenever {e;} is.
Claim: T is isometry.

If x = 0 then obviously ||Tx]|| = ||x]|.

Let x # 0. Obviously {” ”} is an orthonormal set.

". 3 a complete orthonormal set in H containing singleton set {” ”}

By hypothesis T maps this complete orthonormal set onto a complete orthonormal
. x —
set. ..T (”x”) is a unit vector. Ie. ||T (”x”) ” 1.

:ﬂllTxll = Lie. ITx]l = [lx]l

.. T preserves norms and so T is also one-one.
To show T: H — H is onto.
Let T(H) = M.
We show that M is closed subspace of H.
Let y be a limit point of M.
. Jasequence {T(x,)} of distinct points of M 3> Tx,, > y.
Now ||, — x,l1% = IT ey — )% = ITx,, — Txp||? - T is linear.
— 0 {T(xn)} 1s a convergent sequence in H.

= {Xa} 1s a Cauchy sequence in H.

. {Xa} 1s convergent - H is complete.

~dxeHyx,—>x
Now y =1t Tx, = T(It x,,) " T is continuous.

=Tx.

Buty =Tx
= y is in the range of T which is M.

.. M s closed.
Let M = H.




Then M is a proper closed subspace of H.

.. dnon-zeroyp € M>yo L M.

M itself is a Hilbert Space because M is a closed subspace of H.
If M is zero space, then T is one-one = H itself is a zero space.
.. In this case everything is trivial.

So let M = {0}.

Then M must contain a complete orthonormal set.

Since yo L M, yy is also orthonormal to this complete orthonormal set.
Then yo = 0 by theorem 6 which is a contradiction.

.. M=H.

.. T 1s onto.

.. T 1s unitary.

PROJECTIONS

Definition: A projection P on a Hilbert Space H is said to be a perpendicular
projection on H if the range M and the null space N of P are orthogonal.

Theorem 1: 2*: If P is a projection on a Hilbert Space H with range M and null

space N then M L N if and only if P is self-adjoint; and in this case, N = M.
Proof: Suppose P is a projection on a Hilbert Space H with range M and null Space
N. Then H=M @ N.

Assume M L N. Let z € H. Then z can be uniquely written as z=x +y where x €
Mandy € N.

L (Pz,2)=x2)=XxtTy)=Xx)+tXy) =xx)"MLN

Also (P*z,z)=(z,Pz) = (z,X) = (x ty, X) = (X, X) T (v, X) = (X, X).

- (Pz,z)=(P*z,z) V z € H.

= (P-P*)z,z)=0V z e H.

= P—-P*=0 = P=P* = P is self- adjoint.

Conversely suppose, P is self- adjoint.

Letx € M,y € N. Then (x, y) = (Px, y) = (x, P*y) = (x, Py) = (x, 0) = 0.
S~ MLN.

Finally let P be a projection on a H with range M and null Space N.
Then M L N by above part. Supposey € N.then N L M =y € M+,

. Nc M.

Suppose N is a proper subset of M,

.. N is a proper closed linear subspace of the Hilbert Space M.

.. 3 anon-zero vector zo € M* 57y L N.




Butzy € M+ = 7, L M.
..zo = 0 which contradicts the fact that zy # 0.
S N=M

Note: From now onwards by a projection P on H we mean a perpendicular
projection on H

.. An operator P on a Hilbert Space is a projection on H iff P is linear, continuous,
P? =P and P* =P.

Note: The zero operator O and identity operator I are projections on H.

Note: If M is a closed linear subspace of Hthen H=M @& M*,
.. 3 aprojection P on H with range M defined by P(x + y) =x where x € M,y €
M,

Remark: If P is a projection on a Hilbert Space H with range M, then the null
space of P is uniquely determined and is always M.

Theorem 2: P is a projection on a closed linear subspace M of H if and only if [ —
P is the projection on M+,

Proof: Suppose P is a projection on M. .. P> =P and P* = P, P is linear &
continuous.

Clearly I — P is linear and continuous.

Now (I-P)*=1*-P*=1-P.
AlsoI-P¥?=(I-P)(I-P)=I-P-P+P*=1-P-P+P=1-P.

.. I =P is a projection.

Let M be the range of P, N be the range of [ — P.

Nowx e N,(I-P)x=x=x—-Px=x

= Px=0.

= x is in the null space of P = x € M.

S Nc M.

Again x € M*.

=Px=0

= x—-Px=xie. (I-P)x=x.

= x 1s in the range of [ — P.

= x € N.

S MteN

Hence M+ =N,




.. If P is the projection on the closed linear subspace M of H, then I — P is the
projection on M*.

Conversely suppose that I — P is the projection on M.

= I — (I - P) ie. P is the projection on (M1)+ ie. M,

Since M is closed M = M.

.. P is a projection on M.

Theorem 3: If P is a projection on the closed linear subspace M of H, then x € M
if and only if Px = x if and only if ||Px|| = ||x]|.

Proof: Let P be a projection on a closed linear subspace M of H.
Claim: x € M iff Px =x

Suppose Px = x. Then x is in the range of P " Px is in the range of P.
Sox e M.

Conversely suppose that x € M.

Let Px=y. = P(Px)=Py = P>x=Py = Px =Py P>=P.

= P(x —y) =0 = x —y is in the null space of P.

=>x-y=ze M,

=>X=ytz

Now y = Px = y is in the range of P ie. y € M.

Thus, x =y +zwherey € M, z € M.

But x isin M. So, x =x + 0 wherex e M, 0 € M-,

ButH=M ® M*.

y=x,z=0.

Claim: Px = x iff || Px|| = ||x]|.

If Px = x then obviously ||Px|| = ||x|].

Conversely suppose ||Px|| = [|x]|.

s lxl? = |IPx + (I — P)x||? ... ()

Now Px € M.

Also, P is the projection on M

= [ — P is the projection.

.. Px and (I — P)x are orthogonal vectors.

Then, by Pythagorean theorem, ||Px + (I — P)x||? = ||Px||* + ||(I — P)x]||? ... (ii
From (i) and (i) [lx[I* = [[Px[|* + [|( — P)x||?

= I = P)x|I*> =0 [[Px]l = [|x]|.

=0 —-P)x||=0

= Px=x.

Theorem 4: If P is a projection on a Hilbert Space H, then




(i) P isapositive vector ie. P > O.

(i) O<P<I

(i) ||Px|| < [lx]|| ¥ x € H.

(iv) Pl < 1.
Proof: Let P be a projection on a Hilbert Space H.
Then, P>=P, P* =P.
Let M be the range of P. (i) Let x be any vector in H.
Then (Px, x) = (PPx, x) = (Px, P*x) = (Px, Px) = || Px||? > 0.
Thus, (Px,x) >0V x € H.
.. P is a positive operator. Ie. P > O.
Note: If P is a projection on a Hilbert Space H and x € H, then (Px, x) = ||Px]|?.
(1) Since P is a projection on H, I — P is also a projection on H.
Thus, by part (i) we have [-P>0O1e. P<1L.
But P > O.
~0<P<I
(iii)Let x € H. If M is the range of P, then M is the range of I — P.
Now Px € M and (I -P)x € M-
.. Px and (I — P)x are orthogonal vectors.
.. By Pythagorean theorem, ||Px + (I — P)x||? = ||Px||*> + ||(I — P)x]||?
= llx|I? = [Px|I* + |(1 — P)x||?
= [lx[1? > [|Px]|? = [IPx]| < [IxI.
(V) [IPIl = Sup{llPx[l: llx]l < 1} <1 -~ [[Px|| < [[x]| ¥ x € H.
SR < 1.

INVARIANCE AND REDUCIBILITY.

Definition: Let T be an operator on a Hilbert Space H. If M is a closed linear
subspace of H, then M is said to be invariant under T if x € M = Tx € M. ie. if
TM) c M.

Since M is closed linear subspace of H, M itself is a Hilbert Space.

T may be regarded as an operator on M.

Thus, the operator T on H induces an operator Ty on M defined by TM(x) = Tx V
x € M.

The operator Ty 1s called the restriction of T on M.

Reducibility: Definition: Let T be an operator on a Hilbert Space H. [f M is a
closed linear subspace of H, then T is said to be reducible by M if both M and M+
are invariant under T.




Theorem 5: 2*: A closed linear subspace M of a Hilbert Space H is invariant under
an operator T if and only if M* is invariant under T*.

Proof: Suppose M is invariant under T.

Lety €e M* and x € M.

Then Tx € M " M is invariant under T.

Also,y € M+

=y is orthogonal to every vector in M.

Sy L Tx e (Tx,y)=0.

= (x, T*y)=0.

S T*y LxVxeM.

o T*y e ML

.. M L is invariant under T*.

Conversely suppose that M_L is invariant under T*.

Since M is a closed linear subspace of H and invariant under T*, by first case
(MYt is invariant under (T*)*. But (MY)t =M =M and (T*)* =T** =T.
.. M is invariant under T.

Theorem 6: A closed linear subspace M of a Hilbert Space H reduces an operator
T if and only if M is invariant under both T and T*.

Proof: Suppose M reduces T.

.. both M and M* are invariant under T.

But by theorem 5, M* is invariant under both T and T*.

Conversely suppose that M is invariant under both T and T*.

Since M is invariant under T*, by theorem 5, M* is invariant under (T*)* ie. T.
Thus, both M and M+ are invariant under T.

.. M reduces T.

Theorem 7: If P is a projection on a closed linear subspace M of a Hilbert Space
H, then M is invariant under an operator T if and only if TP = PTP.

Proof: Suppose M is invariant under T.

Let x € H. Then Px is in the range of T ie. Px € M.

= TPx € M -» M is invariant under T.

(= TPx will remain unchanged under P - P is projection, M is the range of P.)
.. PTPx =TPx Hint: Px =x

le. PTPx=TPx V x € H.

.. PTP=TP.

Conversely suppose that PTP = TP.




Letx € M.

. Px=x " P is projection with range M.

= TPx=Tx

= PTPx=Tx - PTP=TP.

= PTPx=TPx - TPx =Tx

= TPx € M - P is the projection with range M. Hint: Tx=x=>x €
M.

= Tx e M - TPx =Tx.

Thus,x e M = Tx € M.

.. M is invariant under T.

Theorem 8: If P is a projection on a closed linear subspace M of a Hilbert Space

H, then M reduces an operator T if and only if PT = TP.

Proof: Let P be the projection on a closed linear subspace M.

Then M reduces T iff M is invariant under both T and T*. Hint: By theorem 6
ift TP =PTP and T*P = PT*P Hint By theorem 7
iff TP = PTP and (T*P)* = (PT*P)*
iff TP = PTP and P*T** = p*T**p*
ifft TP =PTP and PT = PTP - P is projection, P* =P

ie. M reduces T iff TP = PTP and PT =PTP ... (1)

Now suppose M reduces T.

Then from (i), TP = PTP and PT = PTP.

.. TP=PT.

Conversely suppose that TP = PT.
= PTP =P°T
— PTP=PT - P>=P.

Similarly, TP> = PTP = TP = PTP.

Thus, TP =PT = TP =PTP and PT = PTP

... from (1), M reduces T.

Theorem 9: 2*: If M and N are closed linear subspaces of a Hilbert Space H and P
and Q are the projections on M and N respectively, then M L N if and only if PQ =
O if and only if QP = O.

Proof: Let M and N be closed linear subspaces of a Hilbert Space H and P and Q
be the projections on M and N respectively.

S P¥=Pand Q*=Q

Claim: PQ =0 iff QP = O.

Now PQ = O iff (PQ)* = O* iff Q*P* =O* iff QP=0.1e. PQ=0iff QP =0
Claim: M L N iff PQ =O.




Now suppose M L N.Lety € N. Theny L. Mie.y € M*
Thus,y e N=>y e M*.. Nc M*....(i)
Now let z € H. Then Qz is in the range of Q ie. Qz € N.
From (i), Qz € M* which is the null space of P.
~.P(Qz)=0.
Thus, PQz=0V ze H. .. PQz= OzV z € H.
Hence PQ = O.
Conversely suppose, that PQ =0 and x €e M andy € N.
.. Px=x"- M is the range of P.
And Qy =y " N is the range of Q.
S (%, y) = (Px, Qy)

= (x, P*Qy)

=(x, PQy) = P*=P.

=(x,0y) - PQ=0

= (x,0)

=0.

ORTHOGONAL PROJECTIONS

Definition: Two projections P and Q on a Hilbert Space H are said to be
orthogonal if PQ = O.
By theorem 9, P and Q are orthogonal iff their ranges M and N are orthogonal.

Theorem 10: 1*: If Py, P,, ..., P, are the projections on closed linear subspaces M,
M,, ..., M, of a Hilbert Space H, then P=P; + P, + ... + P, 1s a projection if and
only if the P;’s are pairwise orthogonal. Also, then P is the projection on M = M; +
M, + ...+ M,.

Proof: Let Py, Py, ..., P, be pairwise orthogonal projections on H.

-.Py’s linear, continuous, P = P; = P;* for eachi=1, 2, ..., n. and P;P; = O if i #].
Let P=P; + P, + ... + P,. Then clearly P is linear and continuous.

AlSOP*:(P1 +P2+ +Pn)*: P1*+P2*+ +Pn*:P1 +P2+ +Pn:P.
AndP2= (P +Py+ ...+ P =YL P?+ ¥ i jcn PP =Y, P, =P.

Thus, P is linear, continuous, P> = P = P*,

.. P is a projection on H.

Conversely suppose P is a projection on H. ie. let P is linear, continuous P> =P =
P*.




To prove PiP; = O V 1 #] it suffices to prove that M; L M; V 1 # j in view of
theorem 9.
Let T be any projection on H and z € H.
Then (Tz, z) = (TTz, z) = (Tz, T*z) = (Tz, Tz) = ||Tz||? ... ().
Let x € M, and y € M;. Since M; 1s range of P;, Px=xVi1=1,2, ..., n.
Then [[xI|? = 1Poxl|? < 27y | Py
= Xj=1(Pjx, x) by ().
= (Pix, x) + (P2x, x) + ... + (PuX, X).
:((Pl +P2+ +Pn)X, X)
= (Px, x) = [|Px||? by (i).
< |lx||? by using projection theorem (or theorem 4) ... (ii).
fe. [lxll? = 1Pell? < X | Prx]|*< 111
= 1Pl = S [Pl
= ||Px|| =0V j=i.
=Px=0Vj#1
= x 1s in the null space of P; V j # 1.
=>xeM*Vj#i
:MigMjLVjii.
=ML Mj.
Hence P;P; = O whenever 1 #j.
Claim: P is a projection on M = M; + M, + ... + M, ie. Range of P=P.
Letx e M. Thenx=x; + X, + ... + X, where x; € M;, 1 <1<n.
Now Px=P(x; +x2+ ... +X5) =Px; + Pxo + ... + Px,
:(P1 +Pr+ ... +Pn)X1 +(P1 +Pr+ ... +Pn)X2+ +(P1 +Py,+ ... +Pn)Xn
= P1X1 + P2X2 + ...+ Pan
=X tXpt...TX, =X
le. Px =x
So, x € Range of P.
.. M c Range of P.
Now suppose x € Range of P. Then Px = x
:>(P1 +P,+ ... +PH)X=X.
= Pix+Px+...+Px=x.
But Pix € My, P)x e My, ..., P.x € M,.
J.X e M] +M2+ ...+Mn:M
.. Range of Pc M.
.. M = Range of P.
Hence P is a projection on M.




Example 1: 3*: If P and Q are the projections on a closed linear subspaces M and

N of H, then prove that PQ is projection if and only if PQ = QP. In this case, show

that PQ is the projection on M M N.

Solution: Let P and Q be the projections on closed linear subspaces M and N.

P, Q are linear, continuous, P> =P = P* and Q* = Q = Q*.

Suppose PQ is a projection on H.

S (PQ*=PQ = Q*P*=PQ = QP=PQ.

Conversely suppose PQ = QP.

Since P, Q are Projections, they are linear and continuous so that PQ is linear and

continuous.

- (PQ)* =Q*P* = QP =PQ

11)%(1280 (PQ)* = (PQ)(PQ) = P(QP)Q = P(PQ)Q = (PP)(QQ) = P*Q* = PQ. le. (PQ)* =

.. PQ is a projection.

Claim: Range of PQ, denoted by R(PQ), is M N N.

Letxe MNN=xe Mandx € N.

Then (PQ)x =P(Qx)=Px - N=R(Q)andx e N = Qx =x.
=xM=R(P)andx e M = Px =x

Thus, (PQ)x =x

.. x € R(PQ).

.. M NN cR(PQ)...(a)

Now suppose that x € R(PQ).

Then (PQ)x =x ... (1)

= P[(PQ)x] =Px

= (P’Q)x = Px.

= (PQ)x = Px...(i1)

. from (i) and (i1), Px=x = x € R(P) =M

Ie, x € M...(ii1)

As, PQ =QP, from (1), (QP)x =x ... (iv)

= Q[(QP)x = Qx

= (Q°P)x = Qx

= (QP)x=0Qx. ... (v)

From (iv) and (v) Qx =x

=>xeN.

From (iii) and (v) x e M N N.

- R(PQ)cM N N... (b)

Hence, from (a) and (b) R(PQ) =M n N.




Example 2: 2*: If P and Q are the projections on closed linear subspaces M and N
of H, prove the following statements are all equivalent to one another.
i) P=<Q
(i) ||Px|| < ||Qx]|| for every x € H.
(i) M cN.
(iv) QP=P.
(v), PQ=P.
Solution: Remember if P is any projection on H, then (Px, x) = ||Px]|* V x € H.
Claim: (i) = (ii).
LetP<Q.= (Px,x)<(Qx,x) V x € H.
= [|Px]|? < ||Qx|I* V x € H.
= ||Px|| < [|Qx]| for every x.
Claim: (ii) = (iii)
Assume ||Px|| < [|Qx]| for every x in H.
Letx e M.
= Px=x
= [|[Px|| = []x]|.
= lIx]l < llQxl|
= ||lx|| = [|Qx]|| -~ ||@x]|| < ||x]| ¥ x € H by theorem 4.
= Qx = x by theorem 3.
=xeN... McN.
Claim: (i11) = (1v).
Assume M < N.
Let x € H. Then (QP)x = Q(Px).
Since Px e M\, M c N = Px € N.
S (QP)x=Px Vx € H.
.. QP=P.
Claim: (iv) = (v).
LetQP=P
= (QP)* = P* = P*Q* = P*
=PQ=P.
Claim: (v) = (1).
Let PQ=P.
Let x € H. Then (Px, x) = ||Px]||?> = ||PQx]|? - PQ =P.
= [IP(Q@x)II?
<[1QxI1? - IIPx|l <llx|l V x € H.
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FUNCTIONAL ANALYSIS
K. C. TAMMI RAJU, M.Sc.
UNIT IV
FINITE DIMENSIONAL SPECTRAL THEORY

EIGEN VALUES AND EIGEN VECTORS

Definition:- Let T be an operator on a Hilbert Space H. Then a scalar A is called an
eigen value or Characteristic value, or proper value or latent value of T if 4 non-
zero vector x in H > Tx = Ax.

Also, if A 1s an eigen value of T, then any non-zero vector x in H > Tx = Ax is
called an eigen vector or Characteristic vector, or proper vector or latent vector of
T corresponding to the eigen value A.

The set of all eigen values of T is called the spectrum of T and is denoted by o(T).

Note: Eigen vector is always a non-zero vector.

IfH= {0}, then H has no eigen vector and hence no eigen value.
So, here after we assume that H= { 0 }.

Therom-1: If x is an eigen vector of T corresponding to eigen value A, then ax is
also an eigen vector of T corresponding to the same eigen value A where o is any
non-zero scalar.

Proof: Let x be an eigen vector of T corresponding to the eigen value A.

Thenx #0 and Tx = Ax

If o is any non - zero scalar, then ax # 0 and T(ax) = o Tx = a(Ax) = M0ox)

.. ox 1s an eigen vector of T corresponding to the eigen value A.

Theorem-2: If x is an eigen vector of T, then x cannot correspond to more than one
eigen value of T.
Proof: If possible, suppose x is an eigen vector of T corresponding to two distinct
eigen values A, and A, of T.
Then Tx = A, x and also Tx = A,x

= MX = AyXx




= (A —A)x = 0
= A — A, =0 (since, x # 0).
= Ay = A, which is a contradiction.
.. X cannot correspond to more than one eigen value of T.

Theorem-3: Let A be an eigen value of an operator T on a Hilbert space H. If M,
1s the set consisting of all eigen vectors of T which corresponds to the eigen value
of A together with the null vector 0, then M is a non-zero closed linear subspace of
H invariant under T. M is called the eigen space of T
corresponding to the eigen value A.

Proof: Since, by definition, an eigen vector is a non-zero vector, M ; necessarily
contains some non-zero vector. Also given that the vector 0 € M.

.. X € M, if and only if Tx = Ax.

S M,={x €H:Tx = Ax}={x € H: (T — A)x = 0}.

Thus, M} is the null space of the linear transformation T — AI on H.

.. M} is a linear sub space of H.

Recall that the null space of a continuous linear transformation is closed.
Since the linear transformation T — Al is a continuous mapping, M is closed
Claim: M is invariant under T.

Let xeM;. Then Tx = Ax

But Ax € M, (since M is linear subspace of H)

S ITxe My

Thus, T(My) < My,

..M 1s invariant under T.

We assume that H is a finite dimensional Hilbert space with dimension n
throughout the remaining part of this chapter.

Note: Every linear transformation on H is continuous and so is an operator on H.
B(H) 1s the collection of all linear transformations.

Total Matrix Algebra of degree n:

Let A,, be the set of all n x n matrices over the field €. Then A4,, is a Complex
Algebra with identity with respect to matrix addition, scalar multiplication and
matrix multiplication. It is called the total matrix algebra of degree n.




MATRIX OF LINEAR TRANSFORMATION:

Definition: Let H be an n-dimensional Hilbert space and let B = {e;, e,, . . . e,,}
be an ordered basis for H. Let T be an operator on H. Since each T(e;) € H and B
is a basis, I scalars ¢ ,1=1,2,3,..,n5T(ej) = ayje; + ozje; + ...t apje, =
n
i=1 Aij€i

Then n x n matrix whose j* column (j =1, 2, 3, ..., n) consists of the scalars
Qqj,0yj,....,0p 18 called the matrix of the operator T relative to the ordered basis
B.

. [T]g = Matrix of T relative to the ordered basis B is [ozij]n><n where T(e;j) =

n L
i=1 &je; foreachj=1,2, .., n.

Matrices of identity and zero operator :

Theorem 1:- Let H be an n-dimensional Hilbert space and B be an ordered basis
for H. If I is an identity operator and O be the zero operator on H then
(i)  [I]g =1 = [8;j]nxn, unit matrix of order n.
(if) [0]s = O, Null matrix of the type n x n.
Proof: Let B= {e,, e,, ..., e,} be an ordered basis for H.
() 1(e) = & = E1y Oyes where 8y = {o o 2
S [ I']s = [8;j]nxn= 1, unit matrix of order n.
We have O(e;) = 0 (forj=1,2,..,1n)
=0e; + 0ey + -+ + Oey,
=iy @;;e; where o =0 Vi, .
~[0]g = [aij]nxn = O, null matrix of the type n x n.

Theorem 2: Let H be a finite dimensional Hilbert space of dimension n and let

B = {eq, e,, ... €e,} be an ordered basis for H. If f;, f5, . . ., f,, are any n vectors in
H then 3 unique operator Ton H> T(e;) = f;,1=1, 2, ..., n.

Proof: Existence of T:

Let x € H. Since B = {e;, e,, ... e, } 1s a basis for H 3 unique scalars &, «,, . .
.0, D X =oeitoge, .. taze,




Now define T: H > Hby T(xX) = T(eye1+.... v ep) = a1 fit.... o fn
Clearly T is well defined.

Let e; € B. Then Oe;+....+ O0¢;_; + 1e;+ 0¢; 1 +... 7 0e,, fori=1,2, ..., n.
s T(e)=0f;+...+0f;_y + 1f; + Of;1 4+ ... +0f,, = f; fori=1,2, ... n.
Let o, B be any scalars and x,y € H.

Then 3 scalars oy, o, ... o, B, B,5 - - B, 3

X=oe;t e, . tope,andy= e+ e, + .+ ey
Then T(ax + By) = T{a(a e +... taney) + B(B e t... 78 en)}
=T{(aastfp)es +..+ (aontff, )en}
= (aqtpp)fi +..+ (o B ) fa
- aa1f1+ﬂﬂ1f1 + ... T aayft IBIann
=a(afit...tanfy) + BBt ... B fn).
=aT(x) + PT(y)

.. T 1s a linear transformation

Thus, 3 an operator Ton H> T(e;)=f; fori=1,2,...,n.

Uniqueness of T:

Let T' be an operatoron H> T'(e;) = f; fori=1,2, ..., n.

Now for the vector x = ;e;+ ... + ae, € H, T (X)) =T (1t ... + an€5)
=oyT'(e)) +... + a,T'(e,)
=ofit.. T oy
=T(x)

Thus, T'(x) =T(x) Vx € H

ST =T

Note: Two operators on H are equal if they agree on a basis of H.

Theorem 3: 3*: If B is an ordered basis for a finite dimensional Hilbert space H of
dimension n then the mapping T — [T] which assigns to each operator T it’s matrix
relative to B is an isomorphism of the algebra B (H) onto the total matrix algebra
A,

Proof: Let B= {e;, e,,...,e,}.

Define w: 8B (H) > A, by w(T)=[T]z VT € B(H).

Let Ty, T, € B(H) and let [Ty ] = [4j]nsm and [T3]p = [ﬂij]nm where

Tl(ej) = Z?=1 ojje; =12, ...,n. ... ().
and T,(e;) = X1 By er 11,2, .0 (2).




Claim: yis one-one:
Let y(Ty) = w(Ty)
= [T1]g = [T2]5

= [aij]nxn - [Bij]nxn

=T Bl.j fori=1,2,...,n,j=1,2,..,n

= i1 ojje; = N Bijei forj=1,2,..,n.
= Tl(ej) = Tz(ej) forj=1,2,..,n

=T =T,

Y 1S onto:

Let [Yij]" «n be any matrix in 4,,

Then foreachj=1,2, ..., n, Z?=1yijei eH

By theorem 2, 3 a unique operator T on H 5 T(e;) = Xi, Yij€i forj=1,2, ..

~[T1g = [Yij]nxn = y(T)= [Yij]nxn
v preserves addition:
LetT;, T, € B (H).
From (1) and (2), (Ty + T) () = Ty(e;) + Tx(e;) forj=1,2, ..., n.

= Xic1 aije; + Xizg Byje

W Z?:l(aij'l' Bij)ei
[Tl + TZ] - [(Zl.j + Bij]nxn

= [aij]nxn+ [Bij]nxn
=[T1] +[T2]
Ly (T + ) =T +T;] = 1] + [Tl = y[Ti] + y([T,]
w preserves scalar multiplication:
Let a be any scalar then (aTy)(e;) = aTy(e;) forj=1,2,..,n.
= aXi-1 aije;
=21 agije;
" [aTy] = [aaij]nxn - Cz[%j]ﬂxn = a[T]
sy (aly) = [oTy] = a[T1] = ay(T]
y preserves multiplication:
We have (T1T) (ej) = T1(Tx(e;)), j=1,2, ..., n.
=T1 (Xk=1 ﬂkjek)
= $F o1 B Ti (o)




= Yk=1By;(Liz1 ker)
= Xi=1 (X1 aufBy e
ST T,] = [Z}l:l aikﬁkj)]nxn
= [l By nom
= [1][T]
Sy Ty) = [ThT,]
= [T1][T:]

=y[T1]y[T].
.. w1s an isomorphism of the algebra B (H) onto the Matrix algebra A,,.

Theorem 4: 2*: Let B be an ordered basis for a finite dimensional Hilbert space H
of dimension n and T an operator on H whose matrix relative to B is [al- j]. Then T

1s non-singular if and only if [ ¢;;] is non-singular and in this
case [a;;]7 1 =[T7'].
Proof: T is non-singular iff 3 an operator T"* on H> T T =1 =TT

iff [T~1T]=[I] =[TT™1]

iff [T7[T] =[] = [TIT™"]

iff [T7'][ey;] = [6;;] = [T 7]

iff the matrix [a.j] is non-singular and [a;;]”

SIMILARITY OF MATRICES:

Definition: Let A and B be square matrices of order n over the field of complex
numbers. Then B is said to be similar to A if there exists an nxn non-singular
matrix C over the field of complex numbers > B= C 1A C.

Note: The relation of similarity on the set of all nxn matrices over the field of
complex numbers is an equivalence relation.

Theorem 5: Similar matrices have the same determinant.
Proof: Suppose A and B are similar matrices.
Then there exists a non-singular matrix C such that B= C~1AC
Then det B = det (C~1AC)

= (det C71)(detA)(det )




= (det C~1)(det C)(detA)
= (det C71C)(det 4)
= (det [5;;] ) (det 4)
=1.detA
=det A

Thus, det B=det A

Hence the result.

Similarity of operators:

Definition: Let A and B be operator on a Hilbert space H. Then B is said to be
similar to A if there exists a non-singular operator C on H> B = C 1AC.
Note: The relation of similarity on B(H) is an equivalence relation.

Theorem 6: 2*: Two matrices in A,, are similar if and only if they are the matrices
of a single operator on H relative to (possibly) different bases.

Proof: [First we prove that if T 1s an operator on an n — dimensional Hilbert Space
H and if B and B’ are two ordered bases for H, then the matrix of T relative to B is
similar to the matrix of T relative to B’]

Suppose T is an operator on an n-dimensional Hilbert space H.

LetB={e;, e,,...,e,}and B'={f}, f5, ... f,} be two ordered bases for H.

Let [T]p = [aij]nxn and [T]pr = [:Bij]nxn so that T(e;) = i ae, J=1,2, ..,
n. ... (1)

T(f;) = Xiz1 Bijfi ,1=1,2,..,n. ... (2).

Let S be an operator in H defined by S(e;) = f;, j= 1,2, ...,n. ... (3).

Then S is non-singular since S maps a basis B onto a basis B'.

Let [7ij]n «n be the matrix of S relative to B.

Then [7ij]n «n 18 also non-singular, (by theorem 4.)
Also S(e;) = 2?=1yijei, j=1,2,...,n. ..(4).
We have T(fj) = T{S(e;)} [from (3)

=T k=1 VijCk ) [from (4) on replacing i by k]

- ;cl=1 yij(ek)

= SR17y, Shy e, [from (1) on replacing j by K]
= 2i=1(Xk=1 O‘ikij)ei - (5)




Again T(fj) = X4 Bkj fx [from (2) on replacing i by k]
~S2., B, S [fom (3))
= Dk=1 Bkj =1V 8 [ from (4), on replacing j by k]
= Di=1 Q=1 YikBkj)ei .. (6)
From (5) and (6), £y (Sher 0y )€ = St (Sier 7By e
Req Olik Yij = Yi=1"Y; Py ; since ey, e, . . . ey are linearly independent
= [ (7T = [y Tonl B T
= [y.17" [ey;117;] = [7,.17" [;,118,;] since [7,] is non-singular.
= [y, 17 el 1 =181 - (D)

= [aij] and [ﬂij] are similar matrices

= [T]gis simialr to [T]g
From (7) we note that [B,;] = [y 17" [¢;]1[7;]
ij

[Tlgr = [ 17" [Tls [l .- (8)
where | }/l.j] 1s the matrix of the operators S relative to the basis B.
[The relation (8) gives us a formula which enables us to write the matrix of T

relative to basis B~ when we already know the matrix of T relative to the basis B.]

Converse: Suppose that [aij] and [f, ] are two n xn similar matrices.

Then 3 a non-singular matrix [yl.j]nm such that [7/1.].]'1 [ai].][;/l. 1=18..]...(9)
Let B={ey, €5, ... e,} be any ordered basis for H and let T be the operator on H
whose matrix relative to B is [al.j]. i.e.,[T]g = [aij].
Let S be the operator on H whose matrix relative to B is [7/”]
Then S is also non-singular since [7/”] 1s non—singular.
Let B'= {Seq, Se,, ... Se, }.
Then B’ is also a basis since non-singular S carries basis onto a basis
We have [S]s = [7;,]
By the result (8), proved in this theorem,
[Tlgr = (1,17 [T1s [7]
= [, [e 11,1
= [8,] by )




Thus, [aij] and [ﬂij] are the matrices of T relative to the basis B and B’

respectively.

Definition: Let T be an operator on an n-dimensional Hilbert space H. Then the
determinant of the operator T is the determinant of the matrix of T relative to any
ordered basis for H.

Theorem — 7: 1*: Let S and T be operators on a finite dimensional Hilbert space H
of dimension n. Then (i) det (I) = 1 where I is the identity operator
(11) det (ST) = (det S)(det T)
(111) det T # 0 iff T is non-singular.
Proof: Let B be any ordered basis for H. We have det T = det [T]s.
(i)  det(l)=det([1]p)=det([5;])=1
(i)  det (ST) =det ([ST]g)
=det ([S]p [T]p)
= (det [S]p)(det [T]p)
= (det S)(det T)
(ili) T isnon-singular iff [ T ]g is non- singular iff det [ T |5 = 0 iff det (T) #
0.

Theorem — 8: An operator T on a finite dimensional Hilbert space H is singular if
and only if there exists a non-zero vector x in H 5> Tx = 0.

Proof: Suppose 3 a non-vector x in H> Tx =0
But TO = 0). Ie. Two distinct elements in H have the same image.
.. T 1s not one — one.
.. T 1s not non-singular.
1.e., T is singular.
Conversely suppose that T is singular.
If possible, suppose there exists no non-zero vector x > Tx = 0
ie,Tx=0=>x=0.
Lety,ze H>Ty=Tz = T(y —z) = 0.
=y-z=0.
=>y=z
.. T 1s one — one.




Since H 1is finite dimensional and T is one — one, = T is onto and so, T is non-
singular which is a contradiction. Hence there must exist a non-zero vector x 3> Tx
=0.

Theorem -9: 1*: If T is an arbitrary operator on a finite dimensional Hilbert space
H, then the eigen values of T constitute a non-empty finite subset of the complex
plane. Furthermore, the number of points in this does not exceed the dimension n
of the space H.
Proof: Let T be an operator on a finite dimensional Hilbert space H of dimension
n.
A scalar A is an eigen value of T iff 3 a non-zero vector x in H > Tx = Ax
iff 3 a non-zero vector x 3 (T — A)x = 0.
iff the operator T — Al is singular [by theorem §]
iff det (T — AI) = 0 [by theorem 7]
Thus, A 1s an eigen value of T iff A satisfies the equation det (T — AI) = 0.
Let B be any ordered basis for H.
Then det (T — AI) =det ([T — /”LI]B)
= det ([T ] A [1]p)
=det ([T — 2[5y]
Let [T]z = [a’ij]
Then det (T—-Al) = O takes the form
- A Ay . Ain

a21 22 - A . . azn
=0..(1)

An1 Ana e e A — A
The equation (1) is called the characteristic equation of the operator T.

If we expand the determinant on the left hand side of (1), then (1) is a polynomial
equation with complex coefficients of degree n in the complex variable A.

By fundamental theorem of Algebra, the equation (1) has a root in the field of
complex coefficients of degree n in the complex variable A. .. equation (1) has a
root in the field of complex numbers. Hence every operator T on H has an eigen
value.

Also, the equation (1) has exactly n roots in the complex field.

Some of these roots may be repeated.

Hence T has an eigen value and the number of distinct eigen values of T <n.




Theorem 1: 1*: If T is a normal operator on a Hilbert Space H, then x is an eigen
vector of T with eigen value A if and only if X is an eigen vector of T* with eigen
value 2.
Proof: Let T be a normal operator on H.
Now for any scalar A, (T — AI)(T — AL)* = (T — AI)(T* — 1 I*)
= (T-A)(T*-2A1)
=TT*-ATI-AT*[+ 21 12
=T*T-AT*I—AT I+ |1|?
=T*(T—-A) - A1 (T -AD)
= (T* = A 1)(T — AI)
=(T-AD)*(T - A
.. T— Al is also a normal operator on H where A is any scalar.
Recall that T is normal iff ||Tx]|| = ||T"x||.
Since T — Al is normal, ||(T — ADx|| = ||(T —AD)*x|| Vx e H
iff [|(T — ADx|| = ||(T* — ADx|| V x € H.
iff [Tx — Ax|| = ||T*x — Ax|| Vx e H ... (1).
S Tx—Ax=0iff T*x — Ax = 0.
.. x 1s an eigen vector of T with eigen value A iff it is the eigen vector of T* with
eigen value /.

Theorem 2: If T is a normal operator on a Hilbert Space H, then eigen spaces of T
are pairwise orthogonal.
Proof: Let M;, M; be eigen Spaces of a normal operator T on H corresponding to
the distinct eigen values Aj, A
Let x; be any vector in M; and x; be any vector in M;.
Then Tx; = Aix; and Tx; = Ax;.
ki(Xi, Xj) = (7\.1Xi, Xj)
= (TXi, Xj)
= (Xi, T*Xj)
= (Xi, A]x])
y 7\.j(Xi, Xj)-
S =), x) =0
= (Xi, Xj) =0 7\.1' F* 7\.j.
=x; L Xj.
Thus, x; L x; V x; € M; and X; € M;.
oML Mj.




Theorem 3: If T is a normal operator on a Hilbert Space H, then each eigen space
of T reduces T.

Proof: Let T be a normal operator on a Hilbert Space H and M be an eigen space
of T corresponding to the eigen value A.

Claim: M is invariant under T.

Let x € M. Then Tx = Ax.

But Ax € M " M is a linear subspace.

= Tx € M.1ie. T(M) c M.

.. M is invariant under T.

Claim: M is invariant under T*.

Let x € M. Then Tx = Ax.

. T*x = Ax by Theorem 1.

But Ax € M - M is a linear subspace.

= T*x € M. 1e. T*(M) c M.

.. M is also invariant under T*. Hence M reduces T.

THE SPECTRAL THEOREM

Theorem: 9%: Let T be an operator on a finite dimensional Hilbert Space H. Let
A1, A2, ..., Am be the distinct eigen values of T and M, M, ..., My, be their
corresponding eigen spaces, and Py, P, ..., Py, be the projections on these spaces.
Then the following statements are all equivalent to one another.

(i)  The My’s are pairwise orthogonal and span H.

(if)  The Pi’s are pairwise orthogonal, };i%, P, =l and T =}/, A;P;.

(ili) T is normal.
Proof: Claim: (1) = (i1). Assume (1).
Let x € H. Then x can be uniquely expressed as x =x; + Xo + ... + X ... (1) where
x; € Mj foreachi1=1, 2, ..., m, since M;’s are pairwise orthogonal and span H.
PiP; = O if 1 # J, since P;’s are projections on M;’s which are pairwise orthogonal.
Then from (1), for each 1, Pix =Pi(x; + X2+ ... + Xp) =Pix; + Pixo + ... + Pixpy ...
(2).
Now Pix; = x; " X; € M; which is the range of P;.
Further, Pix; = 0 if j #1 "~ x; € M;" which is null space of Pi. M L M.
~.From (2), Px =x; ... (3).
NowVxeH Ix=x=x;+x2+ ... +Xpn =P1x + Pyx + ... + Ppx from (3)

= (P] + Pz + ...+ Pm)X.

P] +P2+ +Pm:I.
Agan, Vxe H,Tx=T(x;+ X2+ ... +Xp) =Tx1 + Txo + ... + Txny




=MX1+AXo oo AnXm. X € M = TX; = AiXi.
= 7\,1P1X + 7\,2P2X + ...+ XumX from (3)
= (7\,1P1 + 7\,2P2 + ...+ kam)X.
S T=0MP+ 2P+ .0+ AP
Claim: (ii) = (iii)
Assume (ii).
Since each P; is a projection, P;* = P; = P, Also, PiP; = 0 if i #j.
Now T* = (7\,1P1 + 7\,2P2 + ...+ 7\,um)*
:/1_1P1* +ZP2* T +EPm*
=P+ ,P, + ...+ A, P
S TT* =GP+ MPa+ o+ AaP)(A Py + AP, + ... + A, P)
= [A112P12 + | 2,12P,% + - + | A |?P, 2% o PPy =0 for i #].
= |A,12P; + | A,|2P, + -+ + |A,,|?* Py, - P; = P2,
Similarly, T*T = |A;|?P; + |A,|?P, + - + |A,,|?P,,.
Hence TT* = T*T so that T is normal.

Claim: (ii1) = (1).

Assume (1i1). Since T 1s a normal, M;’s are pairwise orthogonal. By Theorem 2
..(By theorem 9,) P;’s are pairwise orthogonal " P;’s are projections on M;’s and
M;’s are pairwise orthogonal.

LetM=M; + M, + ... + M.
Then M is a closed linear subspace of H and its associated projection is P =P; + P,
+ ... + Py (by theorem 10).
Since T is normal, each eigen space M; of T reduces T (by theorem 3).
Also, P; is the projection on the closed linear subspace M; of H.
.. Mj reduces T = P;T = TP; (by theorem 8).
Thus, P;T = TP; for each P;.
S TP=TP; +Py+ ... + Py)
=TP,+ TP, + ... + TPy,
= P1T+P2T+ A PmT
=P +P,+...+Py)T=PT.
Now TP =PT and P is the projection on M.
.. (By theorem 8,) M reduces T and so M* is invariant under T.
Let U be the restriction of T to M*.
Then U is an operator on a finite dimensional Hilbert Space M+ and Ux = Tx V x
e M-
If x is an eigen vector for U corresponding to the eigen value A, then x eM* and
Ux = Ax.
. Tx = Ax and so x is also an eigen vector for T.




.. each eigen vector for U is also an eigen vector for T.

But T has no eigen vector in M* since all the eigen vectors for T are on M and M N
Mt={0}.

So U is an operator on a finite dimensional Hilbert Space M* and U has no eigen
vector and so no eigen value.

- M= {0} because if M* = { 0 } then every operator on a nonzero finite
dimensional Hilbert Space must have an eigen value.

Now M‘={0}=M=H.

Thus, M; + M, + ... + M, = H and so M;’s span H.

SPECTRAL RESOLUTION.

Definition: Let T be an operator on a Hilbert Space H. If there exist distinct
complex numbers Aj, Ay, ..., Am and pairwise orthogonal projections Py, Py, ..., Py
such that T=MP+ P2+ ...+ ApPm ... (1) and P, + P+ ... + Py =
I, then the expression (i) for T is called Spectral Resolution for T.

Note: Every normal operator T on a non-zero finite dimensional Hilbert Space H
has a spectral resolution.

Theorem 5: The spectral resolution of a normal operator on a finite dimensional
non — zero Hilbert Space is unique.
Proof: Let T be a normal operator on a finite dimensional non — zero Hilbert Space
H.
Let T=MP;+ APy + ... + AP ... (1) be a spectral resolution of T. Then A4, A,
..., Am are distinct complex numbers and P;’s are non-zero pairwise orthogonal
projections such that Py + P, + ... + P, =1... (1)
Claim: A4, Ay, ..., Ay are precisely the distinct eigen values of T.
Since P; # O, 3 a non-zero vector x in the range of P;.
But P; is a projection. .. Pix = x.
Now Tx = (MP; + APy + ... + AnPm)X

— (7\.1P1 + 7\.2P2 + ...+ Xum)PiX

= MPPix + PoPx + ...+ ApnPnPix

= kiPiZX = kiPiX = 7\,1X.
Thus, x is a non-zero vector > Tx = AX.
. Aiis an eigen value of T.
Since T is an operator on a finite dimensional Hilbert Space, T must possess an
eigen value.




Let A be an eigen value of T.

Then 3 a non — zero vector x such that Tx = Ax.

=>Tx=Ax = (MP1+ AP+ ...+ AnP)x = AP + P2+ ... + Pp)X.

= M-AMPx+(M—A)Px+ ...+ (An— A)Ppx = 0.

Operating on this with P; and remembering that P = P; and P;P; = O if i = j we get
(Li—A)Px=0fori=1,2,...,m.

If A # A for each i, then we have Pix = 0 for each i.

S PX+Px+ ... +Px=0=P +P,+ ... +P)x=0=1Ix=0

= x = 0 which is a contradicts that x # 0.

Hence A must be equal to A; for each 1.

Thus, we have proved that in the spectral resolution (1) of T the scalars A;’s are
precisely the distinct eigen values of T.

S HET=0Q1 + 0Q2 + ... + amQm ... (111) 1s another spectral resolution of T, then
scalars a;’s are precisely distinct eigen value of T.

..Renaming the projections Qj’s, if necessary, we can write (1i1) in the form
T=MQ; + Q2+ ... + AnQm.

We have T°=1=P; +P,+ ... + Py,

T= 7\,1P1 + 7\,2P2 + ...+ 7\,um

T2= (WP + WPy + .o+ AnPi) Py + APy + o+ AnP) = A,2P; + A,%P, + -+ +
A’ P

Similarly, T"=2,"P, + A,""P, + -+ + 4,,,"' P,, where n is a non-negative integer.

- If g(t) 1s any polynomial with complex coefficients in the complex variable t,
then taking linear combinations of the above relations, we get g(T) = g(A)P; +
gA)Py + ... + g(hn)Pim =211, g(4))P;.
Now suppose that p; is a polynomial such that pi(A;) = ;. Ie.pi(Ai) = 1 and pi(A;)) =0
ifj #1.

Taking p; in the place of g, pi(T) = XL, pi(4))P; = XL, 8;;P; = P..

Thus, for each 1, P; = p;(T) which is a polynomial in T. But we must show the
existence of such a polynomial p; over the field of complex numbers.

(t=21)...(t=2Ai—1) (t=2Aj41) ..(E=A)

(Ai=21) . (Ai=2i=1) Ai=Ai41) . (A= A)
and pi(A) =01fj #1.

If we apply the above discussion for Q;’s then we shall get Q; = pi(T) for each 1.
. Pi = Q;j for each 1.
Hence the two spectral resolutions of T are the same.

Obviously, pi(t) = serves the purpose ie. pi(Ai) = 1




Theorem 6: 2*: If T is a normal operator on a finite dimensional Hilbert Space H,
then prove that there exists an orthonormal basis for H relative to which the matrix
of T is diagonal.
Proof: Let T = AP, + A,P, + ... + AP be the spectral resolution of normal
operator T.
Then A1, Ao, ..., Am, are precisely the distinct eigen values of T and Py, Py, ..., Py,
are the projections on M;, My, ..., My, which are the eigen spaces of the eigen
values Aj, A2, ..., Am respectively.
AlSO, Pi+Py+...+P,=1
Now M; L M if1 #j; since M;’s are eigen spaces of a normal operator.
Now each M,; is a finite dimensional non-zero Hilbert Space.
..each M; contains a complete orthonormal set which will be a basis for it.
Let By, B,, ..., By, be orthonormal basis for the spaces M1, My, ..., My,
respectively.
Claim: B = U B; is an orthonormal basis for H
Obviously, B is an orthonormal set since each B; is an orthonormal set and any
vector in B; 1s orthonormal to any vector in Bj, 1f 1 # j.
Note that the vectors in B; are some elements of M; and the vectors in B; are some
elements of M;.
The eigen spaces M; and M; are orthogonal if 1 # j.
Since B is an orthonormal set, B is linearly independent.
Now B will be a basis for H if we prove that B generates H.
Letx € H.
Thenx=Ix=P; +P,+ ... + Pn)x=Pix + Pox + ... + PnX.

=X; + X2 + ... + Xn where X; = Pix.
Since Pix is in the range of P;, x; 1s in M. So for each 1, the vector x; can be
expressed as a linear combination of vectors in B; which is a basis for M.
.. X can be expressed as a linear combination of the vectors in B.
Hence H is generated by B.
.. B is an orthonormal basis for H.
Since each non-zero vector in M; is an eigen vector of T, each vector in B; is an
eigen vector for T.
Consequently, each vector in B is an eigen vector of T.
Then B is an orthonormal basis for H and each vector in B is an eigen vector for T.
Let us find the matrix of T relative to the basis B.
LetB={ej, ez, ..., en}.
Since each vector in B is an eigen vector of T, Te; = aje1, Tex = ey, ..., Ten = ey
where oy, 0, ..., O, are some scalars.
Now Te; = aiie; = ayer +0e; +... + Oen.




Ter, = e, = 0e; + oer + 0es + ... + Oe,.

Te, = on,e,=0e; +0ey + ... + 0e, 1 + A€y

o 0 .. O
0O a, ... O D : :
which is a diagonal matrix.

0 e O

Example 1: 2*: Let T is an operator on a finite dimensional Hilbert Space H. Prove
that
(a) T 1s singular if and only if 0 € o (T) and
(b) if T is non — singular then A € o (T) if and only if 171 € o(T71).
(c) If A is non — singular, then 0(ATA™!) = o(T)
(d) If A € o(T) and if p 1s any polynomial, then p(A) € o{p(T)}.
Here o(T) denotes the spectrum of T i.e. the set of all eigen values of T.
Solution: (a) T is singular iff 3 a non — zero vector x > Tx = 0.
iff 3 a non — zero vector x > Tx = 0x
iff 0 1s an eigen value of T
ift 0 € o (T).
(b) Suppose T is non — singular and A € c (T).
= A # 0 by part (a)
So, 271 exists.
Janon—zerovectorx € HaTx=Ax+ A € o (T).
= J anon — zero vectorx € H> T™1(Tx) = T~ (Ax)
= Janon — zero vectorx € H> (T71T)x = AT 1(x)
= 3 anon — zero vector x € H> I(x) = AT 1 (x)
—> Janon —zero vectorx € H> x = AT 1(x)
= Janon — zero vectorx € H>171x = T71(x)
= A7 1 is the eigen value of T"1ie. 171 € o(T71).
Conversely suppose 171 is the eigen value of T2,
= (17171 is the eigen value of (T~1)71.
= A is an eigen value of T. ie A € o (T).
(c) Let ATA™1 =S,
Then S —AI=ATA ! —AI=ATA 1 -AM) A" I=A(T-A) A7 L.
- det (S —AI) = det {A(T —AI) A71} = det A det (T — AI) det A~ =det (AA™?) det
(T = AD).




=det (T —AI).

s det (S—AI) =0 iff det (T —AI) =0.

But A is an eigen value of T iff det (T — AI) = 0.

.. S and T have the same eigen values.

le. o(T) = o(S) = c(ATA™ 1)

(d) Let A € o(T).

.. 3 anon—zero vector x € H > Tx = Ax.

= 3 anon—zero vector x € H > T(Tx) = T(Ax).

— 3 a non—zero vector x € H > T?x = ATx

= 3 a non—zero vector x € H 3T*x = A(Ax)

= J a non—zero vector x € H > T?x = A%x.

5o A eo(TP).

Repeating k times we get Tkx = Akx.

“.A¥ € o(T*) where k is any + ve integer.

Let p(t) = ap + aut + ... + ant™ where o’s are scalars.

Thenp(T) =0+ o T+ ... + omT™.

We have [p(T)]x = aplx+ oy Tx + ... + am T™X.
= ooX + a1 (AX) + ... + om(A™X)
= (oo +t oA + ... + anA™)X.

S pA)=aopt+ okt ...+ anA™ 1s an eigen value of p(T). ie. p(A) € o{p(T)}.

Example 2: 2*: If T is any arbitrary operator on a finite dimensional Hilbert Space
H, and N, a normal operator on H. Show that if T commutes with N, then T also
commutes with N*.
Solution: Let T be any arbitrary operator on a finite dimensional Hilbert Space H,
and N, a normal operator on H such that T commutes with N.
[e. TN =NT.
Claim: TN =NKT V k € N.
Obviously, the result is true for k = 1.
Suppose TNK! = Nk-I T,
Then TN* = (TN¥)N = N*IT)N = N<!(TN) = N !I(NT) = N¥T,
. By induction TN* = N¥T V + ve integral values of k.
Claim: T commutes with every polynomial in N
Now let p(t) = oo + ot + ... + o,t® be any polynomial with complex coefficients.
Then p(N) = aol + ouyN + ... + osN°.
S Tp(N) = T(ol + 0N + ... + asN®).
=0 TT+ o TN+ ... + o TN
= oolT +oNT + ... + aN°T.




= (ool TN + ... + asN°)T
=p(N)T.
Thus, T commutes with every polynomial in N.
Now let N = APy + A,P, + ... + AP be the spectral resolution of the normal
operator N.
Then N* = (7\,1P1 + 7\,2P2 + ...+ 7\,um)*
:/1_1P1* +ZP2* T +EPm*
=P+ ,P, + ...+ A P
But, for each 1, the operator P; is a polynomial in N.
.. N* 1s also a polynomial in N.
.. T also commutes with N* - T commutes with every polynomial in N.

Example 3: 3*: Show that an operator T on a finite dimensional Hilbert Space H is
normal if and only if its adjoint T* is a polynomial in T.

Solution: Suppose T* is a polynomial in T.

Let T* = ool + oy T + ... + oy TE.

Then T*T = (ool + oy T+ ... + OLka) T=olT+oT?+... + OLka+1
=T(aol + oy T+ ... + oy TF) =TT*

.. T 1s normal.

Conversely suppose that T is normal.

Let T=AP; + Py + ... + AP be a spectral resolution of T.

Then T* = A, P," + A,P," + ... + AP = A Py + A,P, + ... + A, P
But, for each i, the operator P; is a polynomial in T.

.. T* 1s also a polynomial in T.

Example 4: 1*: Let T be a normal operator on a finite dimensional Hilbert Space H
with spectrum {Ai, A2, ..., Am}. Then prove that

(a)* T is a self — adjoint if and only if each A, is real

(b) T is positive if and only if each eigen value A; of T is > 0.

(¢) T is unitary if and only if [1;| =1 for each i.

Solution: Let T = A,P; + A,P> + ... + AP be the spectral resolution of P.

Then Ay, A», ... + Ay are preciously the distinct eigen values of T, Pi # O and P;P; =
Oifi#j. Also,Pi+Py+ ... +Py=1

(a) *= (MP1+ AP+ .+ APn)* = AP+ P+ L+ APy

=P+ 2,P+ ...+ A,P, ... (1)

Suppose each 2, is real. Then 4, = A; for each i.

From (1), T* =AP; + AoPa+ ... + AP =T.

Hence T is self — adjoint.




Conversely suppose T is self — adjoint. Then T* =T.
sfrom (i) APy + AP, + ...+ A, Py = MP1 + APy + ... + AnPin.
= (ﬂ_/h)ﬂ + (/12__ AP+ .+ (A __}Lm)Pm =0.
= A —A)P;Py + (A, — )PP, + ... + (A, — Ayy) Pi By, = P;O = O for each 1.
= (A, — A;)P; = O for each i.
= A, = A; for each i.
= A 1s real.
(b)For each x in H, (Tx, x) = (Tx, Ix) = (X2, 4;P;x, X7, Pjx)
=iz Z;n:1 A;(Pyx, Pix)
=iz Z;n:1 Ai(x, Pi*ij)
=ity 271:1 A;(x, PPjx)
= D=1 Ai(x, PiP;x)
=Yiz1 Li(Px, Pix)
= D=1 Ai(Pix, Pix)
= X AllPx]l® .. ).
Now suppose that each eigen value A; of T is > 0. Then each 2, is real.
.. T is self-adjoint by part (a). Also || P;x||? = 0 for each i.
S 1f A > 0 for each 1, (Tx, x) 20 V x eH. .. T is positive.
Conversely suppose that T is positive.
Now for any fixed i, suppose x is in the range of P;.
Then Pix = x and Px = 0 for j #1.
- from (3), 4;]|x]|? > 0 = A; > 0 for each i.
(c) We have TT* = (MP; + APy + ... + APu)(A Py + A,P + ... + A, P)
- |/11|2P1 + Mz|2P2 +t |7Lm|2Pm G
Suppose each eigen value A; of T is of unit modules ie. [4;| =1 for each i.
Then, from (4), TT*=P; + P, + ... + P, =1.
Similarly, T*T = L.
Hence T is unitary.
Conversely suppose T is unitary.
Then TT* = 1.
From (4), |[A{|?P; + |A,]?P, + -+ + |A,,|?P, =L
= Pi{|A1|?P; + |A,|?Py + -+ + |An|?B,, } = P; for each i.
= |A;|?P;% = P; for each i.
= |4;|?P; = P; for each i.
= (]A;]*> = 1)P; = 0 for each i.
= |A;]> = 1 or [4;] = 1 for each i.




