

Fax: 08816-227318 off: 08816-224072, 224119,228342 Mobile: 9491334119 **ANTULURI NARAYANA RAJU COLLEGE**

(Autonomous) BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

E – CONTENT PAPER: M 301, FUNCTIONAL ANALYSIS M. Sc. II YEAR, SEMESTER - III UNIT – I : BANACH SPACES

PREPARED BY K, C. TAMMI RAJU, M. Sc. HEAD OF THE DEPARTMENT DEPARTMENT OF MATHEMATICS, PG COURSES DNR COLLEGE (A), BHIMAVARAM – 534202

FUNCTIONAL ANALYSIS Unit I Banach Space

The definition and some examples

Definition: Let N be a linear space over field K (where K is either \mathbb{R} the field of real numbers or \mathbb{C} the field of complex numbers). A function $\|.\|: N \to \mathbb{R}$ is said to be a *norm* on N if it satisfies the following conditions

- (i) $||x|| \ge 0 \forall x \in N$ (non-negativity)
- (ii) ||x|| = 0 iff x = 0.
- (iii) $||x + y|| \le ||x|| + ||y|| \forall x, y \in \mathbb{N}$ (triangle inequality).
- (iv) $\|\alpha x\| = |\alpha| \|x\| \forall x \in \mathbb{N}, \alpha \in \mathbb{K}.$

A linear space N over a field K with a norm $\| . \|$ defined on N is called a *normed linear space* over K.

<u>Result</u>: Every normed linear space N is a metric space with respect to metric d defined by $d(x, y) = ||x - y|| \forall x, y \in N$.

<u>Proof</u>: Let N be a normed linear space. Let $x, y \in N$.

Then (i) $d(x, y) = ||x - y|| \ge 0$ and d(x, y) = 0 iff ||x - y|| = 0 iff x - y = 0 iff x = y. (ii) d(x, y = ||x - y|| = || - (y - x)|| = ||y - x|| = d(y, x)

(iii) Let x, y, $z \in N$. Then $d(x, y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x, z) + d(z, y)$. Hence every normed linear space is a metric space.

<u>**Definitions**</u>: Let $(N, \|.\|)$ be a normed linear space.

- (i) A sequence $\{x_n\} \subseteq \mathbb{N}$ is said to be convergent to an element x_0 if for each $\varepsilon > 0 \exists$ a positive integer n_0 such that $||x_n x_0|| < \varepsilon \forall n \ge n_0$.
- (ii) A sequence $\{x_n\} \subseteq N$ is said to be a Cauchy sequence if for each $\varepsilon > 0 \exists$ a positive integer n_0 such that $||x_n x_m|| < \varepsilon \forall n, m \ge n_0$.
- (iii) The space N is said to be complete if every Cauchy sequence in N converges to an element of N.

<u>**Theorem 1**</u>: Let (N, ||.||) be a normed linear space.

Then (a) $|||x|| - ||y||| \le ||x - y|| \forall x, y \in N$.

(b) $|||x|| - ||y||| \le ||x + y|| \forall x, y \in N.$

(c) norm is a real valued continuous function. I.e. $x_n \rightarrow x \Rightarrow ||x_n|| \rightarrow ||x||$.

(d)1*: addition and scalar multiplication are joint continuous.

<u>**Proof**</u>: $||x|| = ||(x - y) + y|| \le ||x - y|| + ||y||$

 $\Rightarrow \|x\| - \|y\| \le \|x - y\| \dots (i)$

Again – $(||x|| - ||y||) = ||y|| - ||x|| \le ||y - x||$ by (i) = || - (x - y)|| = ||x - y||Ie – $(||x|| - ||y||) \le ||x - y||...(ii)$ Suppose $||x|| \ge ||y||$. Then $|||x|| - ||y||| = ||x|| - ||y|| \le ||x - y||$ by (i) Suppose ||x|| < ||y||. Then $|||x|| - ||y||| = -(||x|| - ||y||) \le ||x - y||$ by (ii) Thus ||x|| - ||y||| = ||x|| - ||y|| or -(||x|| - ||y||)In either case it is $\leq ||x - y||$. Hence the result. (b) Replace y by -y in (a) Then $|||x|| - || - y|||| \le ||x - (-y)||$ $\Rightarrow |||x|| - ||y||| \le ||x + y||$ (c) Let N be a normed linear space and $\{x_n\}$ be a sequence in N converging to x in N. Then by the above result $|||x_n|| - ||x||| \le ||x_n - x||$. Now since $x_n \to x$, $||x_n - x|| \to 0 \Rightarrow |||x_n|| - ||x||| \to 0$. $\Rightarrow ||x_n|| \to ||x||$. Hence the result. (d) Let $\{x_n\}$ and $\{y_n\}$ be sequences in N $\ni x_n \rightarrow x$ in N and $y_n \rightarrow y$ in N. Now $||(x_n + y_n) - (x + y)|| = ||(x_n - x) + (y_n - y)|| \le ||x_n - x|| + ||y_n - y|| \dots (i)$ Since $x_n \to x$ and $y_n \to y$, $||x_n - x|| \to 0$ and $||y_n - y|| \to 0$ so that RHS $||x_n - x|| + ||y_n - y|| \rightarrow 0 + 0 = 0.$ \therefore from (i) $||(x_n + y_n) - (x + y)|| \rightarrow 0$ $\Rightarrow ||x_n + y_n|| \rightarrow ||x + y||$: addition is jointly continuous Let $\{\alpha_n\}$ be a sequence in F and $\{x_n\}$ be a sequence in N $\ni \alpha_n \to \alpha$ in F and $x_n \to x$ in N. Then $\|\alpha_n x_n - \alpha x\| = \|\alpha_n x_n - \alpha_n x + \alpha_n x - \alpha x\|$ $= \|\alpha_n(x_n - x) + (\alpha_n - \alpha)x\|$ $\leq |\alpha_n| ||x_n - x|| + |\alpha_n - \alpha| ||x||$ Since $\alpha_n \to \alpha$ and $x_n \to x$, $|\alpha_n - \alpha| \to 0$ and $||x_n - x|| \to 0$ so that RHS $|\alpha_n|||x_n - x|| + |\alpha_n - \alpha|||x|| \to 0$ and hence LHS $||\alpha_n x_n - \alpha x|| \to 0$ ie $\alpha_n x_n \to \alpha x$. : Scalar multiplication is jointly continuous.

Definition (1*): A *Banach space* is a complete normed linear space.

Theorem 2: (8*): Let M be a closed linear subspace of a normed linear space N. If norm of a coset x + M in the quotient space $\frac{N}{M}$ is defined by ||x + M|| = $inf \{||x + m||: m \in M\}$, then $\frac{N}{M}$ is a normed linear space. Further, if N is a Banach space then so is $\frac{N}{M}$.

<u>Proof</u>: Let $x + M \in \frac{N}{M}$ where $x \in N$. Then $\frac{N}{M}$ is a linear space. Define $||x + M|| = inf \{||x + m||: m \in M\}$. Since $x + m \in N$ and N is a normed linear space, $||x + m|| \ge 0 \forall m \in M$. (i) $\therefore \inf \{ \|x + m\| : m \in M \} \ge 0 \implies \|x + M\| \ge 0 \forall x \in N.$ Let x + M = M. Then $x \in M$. $\therefore ||x + M|| = inf\{||x + m||: m \in M, x \in M\}$ (ii) $= \inf \{ \|y\| : y \in$ MM = 0 since M being a subspace contains zero vector whose norm is real number zero. Thus $x + M = M \Rightarrow ||x + M|| = 0$ Conversely $||x + M|| = 0 \Rightarrow inf \{||x + m||: m \in M\} = 0$. $\Rightarrow \exists$ a subsequence $\{m_k\}$ in M $\Rightarrow ||x + m_k|| \rightarrow 0$. $\Rightarrow x \in M \Rightarrow x + M = M. \Rightarrow x + M$ is the zero element of $\frac{N}{M}$ Let x + M, $y + M \in \frac{N}{M}$ where $x, y \in N$. (iii) $\|x + M + y + M\| = \|x + y + M\| = \inf \{ \|x + y + m\| : m \in M \}.$ $= \inf \{ \|x + y + m' + m''\| : m = m' + m'' \in M \}$ $= inf \{ ||x + m' + v + m''||: m', m'' \in M \}$ $\leq \inf \{ \|x + m'\| + \|y + m''\| : m', m'' \in M \}$ $= inf \{ ||x + m'|| : m' \in M \} + inf \{ ||y + m'|| : m' \in M \}$ $m'' \parallel : m'' \in M$ = ||x + M|| + ||y + M||ie. $||x + M + y + M|| \le ||x + M|| + ||y + M||$ (iv) Let $x + M \in \frac{N}{M}$ where $x \in N$, α be a scalar. $||\alpha x + M|| = inf \{||\alpha x + m||: m \in M\}$ $= \inf \{ \|\alpha x + \alpha m'\| : m = \alpha m' \in M \}$ $= inf \{ \|\alpha(x+m')\| : m' \in M \}$ $= inf \{ |\alpha| ||x + m'|| : m' \in M \}$ $= |\alpha| \inf \{ ||x + m'|| : m' \in M \} = |\alpha| ||x + M||$ $\therefore \frac{N}{M}$ is a normed linear space. Let N be complete. Let $\{s_n + M\}$ be any Cauchy sequence in $\frac{N}{M}$ where $s_n \in N$. For $\varepsilon = \frac{1}{2}$. $\exists n_1 \in \mathbb{N} \ni n, m \ge n_1 \Longrightarrow ||(s_n + M) - (s_m + M)|| < \frac{1}{2}$. Set $s_{n_1} = x_1$. So $x_1 \in \mathbb{N}$. Similarly, for $\varepsilon = \frac{1}{2^2}$, $\exists n_2 \in \mathbb{N}$, $\exists n_2 \geq n_1 \exists n, m \geq n_2 \Longrightarrow ||(s_n + M) - (s_m + M)|| < 1$ $\frac{1}{2^2}$. Set $s_{n_2} = x_2$. So $x_2 \in N$.

Having chosen $x_1, x_2, ..., x_{k-1}$ and $n_1, n_2, ..., n_{k-1}$ now for $\frac{1}{2}^k \exists$ a positive integer n_k which we may assume $n_k > n_{k-1} \ni n, m \ge n_k \implies ||(s_n + M) - M|$ $(s_m + M) \| < \frac{1}{2^k}.$ Set $s_{n_k} = x_k$. So $x_k \in N$. And so on, Thus, we have constructed a subsequence $\{x_k + M\}$ of the sequence $\{s_n + M\}$ $\|(x_{k+1}+M) - (x_k+M)\| < \frac{1}{2^k}$ for k = 1, 2, ... such that Choose $y_1 \in x_1 + M$ where $y_1 = x_1 + m_1$ for $m_1 \in M$. Now select $y_2 \in x_2 + M \ni ||y_1 - y_2|| < \frac{1}{2}$. For $||(x_1 + M) - (x_2 + M)|| < \frac{1}{2}$. $\Rightarrow \inf \{ \|x_1 - x_2 + m\| : m \ M \} < \frac{1}{2}.$ $\Rightarrow \exists m_0 \in \mathbf{M} \ni \|x_1 - x_2 + m_0\| < \frac{1}{2}.$ $\Rightarrow ||y_1 - y_2|| < \frac{1}{2}$ where $y_2 = x_2 - m_0 + m_1 \in x_2 + M$ Now select y_3 in $x_3 + M \ni ||y_2 - y_3|| < \frac{1}{2^2}$ Continuing, we get a seq $\{y_n\}$ in N $\ni ||y_n - y_{n+1}|| < \frac{1}{2^n}$, We claim that $\{y_n\}$ is a Cauchy sequence in N. Let $\varepsilon > 0$. Select m₀ so large that $\frac{1}{2m_0-1} < \varepsilon$ Then $n > m \ge m_0 \implies ||y_m - y_n|| = ||(y_m - y_{m+1}) + (y_{m+1} - y_{m+2}) + \dots + (y_{m+1} - y_{m+2}) + \dots + (y_m - y_{m+1}) + (y_m - y_{m+1}) + \dots + (y_m - y_m) + \dots +$ $\leq || y_m (y_{n-1} - y_n) \parallel$ $\begin{aligned} y_{m+1} &\| + \| y_{m+1} - y_{m+2} \| + \ldots + \| y_{n-1} - y_n \| \\ &< \sum_{i=m}^{n-1} \frac{1}{2^i} < \sum_{i=m}^{\infty} \frac{1}{2^i} = \frac{1}{2^{m-1}} \le \frac{1}{2^{m_0-1}} < \varepsilon. \end{aligned}$ Thus $||y_m - y_n|| \to 0$ as m, $n \to \infty$. \Rightarrow {y_n} is a Cauchy sequence in N. Since N is complete, $y_n \rightarrow y \in N$ for some y. Now $||(x_n + M) - (y + M)|| = ||(x_n - y) + M|| = inf \{||x_n - y + m||: m \in M\}$ $\leq ||y_n - y|| \quad \because y_n = x_n + m_n \text{ for some } m_n \in \mathbf{M},$ $\rightarrow 0$ as $n \rightarrow \infty$. $\Rightarrow x_n + M \to y + M \in \frac{N}{M} \text{ as } n \to \infty.$ \therefore A subsequence $\{x_n + M\}$ of Cauchy Sequence $\{s_n + M\}$ converges to y + M. $\Rightarrow \frac{N}{M}$ is complete. Hence $\frac{N}{M}$ is a Banach Space.

Example 1: Show that the set of real linear space \mathbb{R} and the complex linear space \mathbb{C} are Banach space under the norm defined by $||x|| = |x| \quad \forall x \in \mathbb{R} \text{ or } \mathbb{C}$. **Solution**: Let $x \in \mathbb{R}$ or \mathbb{C} . Then (i) $||x|| = x \ge 0$. (ii) Let $x \in \mathbb{R}$ or \mathbb{C} . Then ||x|| = 0 iff |x| = 0 iff x = 0. (iii) Let $x, y \in \mathbb{R}$. Then $||x + y|| = |x + y| \le |x| + |y| = ||x|| + ||y||$ Let $z, \omega \in \mathbb{R}$. Then $||z + \omega||^2 = |z + \omega|^2 = (z + \omega)(\overline{z} + \overline{\omega}) = z \overline{z} + z \overline{\omega} + \omega \overline{z} + \omega \overline{\omega}$ $= |z|^{2} + 2\operatorname{Rp}(z\overline{\omega}) + |\omega|^{2} \le |z|^{2} + 2|z\overline{\omega}| + |\omega|^{2} = |z|^{2} + 2|z||\overline{\omega}| + |\omega|^{2}$ $|z|^{2} + 2|z||\omega| + |\omega|^{2} = (|z| + |\omega|)^{2} = (|z|| + ||\omega||)^{2}$ ie $||z + \omega|| \le ||z|| + ||\omega||$ (iv) Let $\alpha \in K$, $x \in \mathbb{R}$. Or \mathbb{C} . Then $||\alpha x|| = |\alpha x| = |\alpha| ||x|| = |\alpha| ||x||$. $\therefore \mathbb{R}$ or \mathbb{C} is a normed linear space under the norm defined by $||x|| = |x| \forall x \in$ $\mathbb{R}.or\mathbb{C}$. Let $\{x_n\}$ be a Cauchy sequence \Rightarrow {x_n} is a bounded seq \Rightarrow {x_n} has at least one limit point by Bolzano Weierstrass theorem \Rightarrow {x_n} has a convergent sequence converging to that limit point.

 \Rightarrow {x_n} has a convergent subsequence.

 \Rightarrow Cauchy seq {x_n} has a convergent subsequence

 \Rightarrow {x_n} is convergent in \mathbb{R} or \mathbb{C} .

 $\Rightarrow \mathbb{R} \text{ or } \mathbb{C}$ is complete.

Hence \mathbb{R} and \mathbb{C} are Banach spaces under the norm defined by $||x|| = |x| \forall x \in \mathbb{R}$ or \mathbb{C} .

Example 2: The set of all n – tuples of real numbers, \mathbb{R}^n , is a Banach space under the norm defined by $||x|| = \left[\sum_{i=1}^n |\xi_i|^2\right]^{\frac{1}{2}}$ where $\mathbf{x} = (\xi_1, \xi_2, ..., \xi_n) = (\xi_i)_{i=1}^n \in \mathbb{R}^n$, $\xi_i \in \mathbb{R} \forall i$ **Solution:** (i) Let $\mathbf{x} = (\xi_i)_{i=1}^n \in \mathbb{R}^n$ for $\xi_i \in \mathbb{R} \forall i$. Then $||x|| = \left[\sum_{i=1}^n |\xi_i|^2\right]^{\frac{1}{2}} \ge 0$ (ii) Let $\mathbf{x} = (\xi_i)_{i=1}^n \in \mathbb{R}$ for $\xi_i \in \mathbb{R} \forall i$. Then $||x|| = 0 \Leftrightarrow \left[\sum_{i=1}^n |\xi_i|^2\right]^{\frac{1}{2}} = 0 \Leftrightarrow \sum_{i=1}^n |\xi_i|^2 = 0$ $\Leftrightarrow |\xi_i|^2 = 0 \forall i. \Leftrightarrow |\xi_i| = 0 \forall i. \Leftrightarrow \xi_i = 0 \forall i. \Leftrightarrow \mathbf{x} = 0.$ (iii) Let $\mathbf{x} = (\xi_i)_{i=1}^n, \mathbf{y} = (\eta_i)_{i=1}^n, \in \mathbb{R}^n$ for $\xi_i, \eta_i \in \mathbb{R} \forall i$. $||\mathbf{x} + \mathbf{y}|| = \left[\sum_{i=1}^n |\xi_i + \eta_i|^2\right]^{\frac{1}{2}}$

$$\Rightarrow \|x + y\|^{2} = \sum_{i=1}^{n} |\xi_{i} + \eta_{i}| |\xi_{i} + \eta_{i}| \Rightarrow \|x + y\|^{2} \leq \sum_{i=1}^{n} (|\xi_{i}| + |\eta_{i}|) |\xi_{i} + \eta_{i}| = \sum_{i=1}^{n} |\xi_{i}| |\xi_{i} + \eta_{i}| + \sum_{i=1}^{n} |\eta_{i}| |\xi_{i} + \eta_{i}| = \sum_{i=1}^{n} |\xi_{i}| |\xi_{i}| + \eta_{i}| + \sum_{i=1}^{n} |\eta_{i}| |\xi_{i}| + \eta_{i}| = |x + y||^{2} \leq (\|x\| + \|y\|) \|x + y\| \Rightarrow \|x + y\| \leq \|x\| + \|y\| \\ (iv) \qquad Let x = (\xi_{i})_{i=1}^{n} \in \mathbb{R}^{n} for \ \xi_{i} \in \mathbb{R} \forall i, \alpha \in \mathbb{R}. \\ \|\alpha x\| = [\sum_{i=1}^{n} |\alpha\xi_{i}|^{2}]^{\frac{1}{2}} = [\sum_{i=1}^{n} |\alpha|^{2} |\xi_{i}|^{2}]^{\frac{1}{2}} = |\alpha| [\sum_{i=1}^{n} |\xi_{i}|^{2}]^{\frac{1}{2}} = |\alpha| \|x\| \\ Le. \|\alpha x\| = |\alpha| \|x\| x = (\xi_{i})_{i=1}^{n} \in \mathbb{R}^{n}, \alpha \in \mathbb{R}. \\ \therefore \mathbb{R}^{n} \text{ is a normed linear space.} \\ Let \{x_{m}\} \text{ be any Cauchy sequence in } \mathbb{R}^{n} \text{ where } x_{m} = (\xi_{i}^{(m)})_{i=1}^{n} \in \mathbb{R}^{n} \text{ for } \xi_{i}^{(m)} \\ \in \mathbb{R} \forall i. \\ \Rightarrow \text{ for each } \varepsilon > 0 \exists n_{0} \Rightarrow \|x_{m} - x_{p}\| < \varepsilon \forall m, p \ge n_{0}. \\ \Rightarrow \text{ for each } \varepsilon > 0 \exists n_{0} \Rightarrow \sum_{i=1}^{n} |\xi_{i}^{(m)} - \xi_{i}^{(p)}|^{2} \le \varepsilon^{2} \forall m, p \ge n_{0}. \\ \Rightarrow \text{ for each } \varepsilon > 0 \exists n_{0} \Rightarrow |\xi_{i}^{(m)} - \xi_{i}^{(p)}|^{2} < \varepsilon^{2} \forall m, p \ge n_{0}. \\ \Rightarrow \text{ for each } \varepsilon > 0 \exists n_{0} \Rightarrow |\xi_{i}^{(m)} - \xi_{i}^{(p)}|^{2} < \varepsilon^{2} \forall m, p \ge n_{0}. \\ \Rightarrow \text{ for each } \varepsilon > 0 \exists n_{0} \Rightarrow |\xi_{i}^{(m)} - \xi_{i}^{(p)}|^{2} < \varepsilon^{2} \forall m, p \ge n_{0}. \\ \Rightarrow \text{ for each } \varepsilon > 0 \exists n_{0} \Rightarrow |\xi_{i}^{(m)} - \xi_{i}^{(p)}|^{2} < \varepsilon^{2} \forall m, p \ge n_{0}. \\ \Rightarrow \{\xi_{i}^{(m)}\} \text{ is a Cauchy sequence in } \mathbb{R} \text{ for each } i, 1 \le i \le n \\ \text{ Since } \mathbb{R} \text{ is complete } \exists \xi_{i} \text{ in } \mathbb{R} \text{ the sequence } \{\xi_{i}^{(m)}\} \text{ converges to } \xi_{i} \text{ for each } i, 1 \le i \le n \\ \text{ Since } \mathbb{R} \text{ and } \|x_{m} - x\| = \left[\sum_{i=1}^{n} |\xi_{i}^{(m)} - \xi_{i}|^{2}\right]^{\frac{1}{2}} \to 0 \text{ as } m \to \infty \\ \therefore \text{ the sequence } \{x_{m}\} \text{ in } \mathbb{R}^{n} \text{ converges to } x \text{ in } \mathbb{R}^{n}. \\ \therefore \mathbb{R}^{n} \text{ is complete.} \\ \text{ Hence } \mathbb{R}^{n} \text{ a Banach space.} \end{cases}$$

Example 3: The set of all n – tuples of complex numbers, \mathbb{C}^n , is a Banach space under the norm defined by $||z|| = [\sum_{i=1}^n |\xi_i|^2]^{\frac{1}{2}}$ where $z = (\xi_1, \xi_2, ..., \xi_n) = (\xi_i)_{i=1}^n \in \mathbb{C}^n$, $\xi_i \in \mathbb{C} \forall i$

Solution: Same as above example

Example 4: The linear space ℓ^{∞} of bounded sequences is a Banach space under the norm defined by $||x|| = |\xi_i|$, where $x = (\xi_i)_{i=1}^{\infty} \xi_i \in \mathbb{R}$ or $\mathbb{C} \forall i$

- (i) Let $\mathbf{x} \in \boldsymbol{\ell}^{\infty}$. $\|\boldsymbol{x}\| = |\boldsymbol{\xi}_i| \ge 0$
- (ii) Let $\mathbf{x} \in \boldsymbol{\ell}^{\infty}$. $\|\boldsymbol{x}\| = |\boldsymbol{\xi}_i| = 0$ iff $|\boldsymbol{\xi}_i| = 0 \forall i$ iff $\boldsymbol{\xi}_i = 0 \forall i$ iff $\mathbf{x} = 0$.
- (iii) Let x, $y \in \ell^{\infty}$. $||x + y|| = |\xi_i + \eta_i| \le |\xi_i| + |\eta_i|$)
 - $= |\xi_i| + |\eta_i| = ||x|| + ||y||$
- (iv) Let $\mathbf{x} \in \boldsymbol{\ell}^{\infty}$, Then $\|\boldsymbol{\alpha} x\| = |\boldsymbol{\alpha} \xi_i| = |\boldsymbol{\alpha}| |\xi_i| = |\boldsymbol{\alpha}| |\xi_i| = |\boldsymbol{\alpha}| \|x\|$ $\therefore \boldsymbol{\ell}^{\infty}$ is a normed linear space.

Let $\{x_n\}$ be any Cauchy sequence in ℓ^{∞} where $x_n = \left(\xi_i^{(n)}\right)_{i=1}^{\infty} \in \ell^{\infty}$ for $\xi_i^{(n)} \in \mathbb{R}$ or $\mathbb{C} \forall i$.

 $\Rightarrow \text{ for each } \varepsilon > 0 \exists n_0 \in \mathbb{N} \Rightarrow ||x_m - x_n|| < \varepsilon \forall m, n \ge n_0 \text{ where } x_m = \left(\xi_i^{(m)}\right)_{i=1}^{\infty} \in \ell^{\infty}$ for $\xi_i^{(m)} \in \mathbb{R} \text{ or } \mathbb{C} \forall i.$ $\Rightarrow \text{ for each } \varepsilon > 0 \exists n_0 \in \mathbb{N} \Rightarrow Sup_i \left|\xi_i^{(m)} - \xi_i^{(n)}\right| < \varepsilon \forall m, n \ge n_0.$

$$\Rightarrow \text{ for each } \varepsilon > 0 \exists n_0 \in \mathbb{N} \Rightarrow \left| \xi_i^{(m)} - \xi_i^{(n)} \right| < \varepsilon \forall m, n \ge n_0.$$

 $\Rightarrow \{\xi_i^{(n)}\}\$ is a Cauchy sequence of real or complex number.

Since \mathbb{R} and \mathbb{C} are complete $\exists \xi_i \text{ in } \mathbb{R} \text{ or } \mathbb{C} \text{ } \text{ } \text{ } \text{ the sequence } \{\xi_i^{(n)}\} \text{ converges to } \xi_i \text{ for each i.}$

Let $\mathbf{x} = (\xi_1, \xi_2, ...) = (\xi_i)_{i=1}^{\infty}$. Then $||x_n - x|| = \sup_i |\xi_i^{(n)} - \xi_i| \to 0 \text{ as } n \to \infty$ $\Rightarrow x_n \to x \text{ as } n \to \infty$. \therefore the sequence $\{x_n\}$ in ℓ^{∞} converges to x. Claim: $\mathbf{x} \in \ell^{\infty}$. $|\xi_i| = |\xi_i - \xi_i^{(n)} + \xi_i^{(n)}| \le |\xi_i - \xi_i^{(n)}| + |\xi_i^{(n)}| < \varepsilon + k \text{ for each } i. \Rightarrow \mathbf{x} \in \ell^{\infty}$. $\therefore \ell^{\infty}$ is complete. Hence ℓ^{∞} is a Banach space.

Lemma: Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $a \ge 0$, $b \ge 0$. Then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$. **Proof**: If a = 0 or b = 0 then the conclusion is obvious. So let a > 0 and b > 0. Define $f(t) = k(t-1) - t^k + 1$ for $t \ge 1$, $k \in (0, 1)$.

Note that f(1) = 0 and $f'(t) = k - kt^{k-1} = k\left(1 - \frac{1}{t^{1-k}}\right) \ge 0$. So, $f(t) \ge 0 \forall t \in [1, \infty)$. $\therefore t^k \le kt + 1 - k$ Put t = a^pb^{-q} and replace k by 1/p. We get $(a^p b^{-q})^{\frac{1}{p}} \le 1 - \frac{1}{n} + \frac{1}{n} a^p b^{-q} = \frac{1}{n} + \frac{1}{$ $\frac{1}{p}a^pb^{-q}$ Multiplying both sides by bq we get $ab^{q-\frac{q}{p}} \leq \frac{a^p}{p} + \frac{b^q}{q}$ ie. $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$. Holder's and Minkowski's inequalities: **Theorem 3**: Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ denote n – tuples of scalars (real or complex numbers. Define $||x||_p = [\sum_{i=1}^n |x_i|^p]^{\frac{1}{p}}$ for $p \ge 1$ (i) $\sum_{i=1}^{n} |x_i y_i| \le \left[\sum_{i=1}^{n} |x_i|^p\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} |y_i|^q\right]^{\frac{1}{q}} = ||x||_p ||y||_q \text{ if } p > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1.$ (ii) $\left[\sum_{i=1}^{n} |x_i + y_i|^p\right]^{\frac{1}{p}} \le \left[\sum_{i=1}^{n} |x_i|^p\right]^{\frac{1}{p}} + \left[\sum_{i=1}^{n} |y_i|^p\right]^{\frac{1}{p}}$ ie. $\|x + y\|_p \le \|x\|_p + \|y\|_p$ **Proof**: If x = 0 or y = 0 then the conclusion is obvious. So let $a \neq 0$ and $b \neq 0$. Then by the lemma for $a_i \ge 0$, $b_i \ge 0$ we have $a_i b_i \le \frac{a_i^p}{p} + \frac{b_i^q}{q}$. Put $a_i = \frac{|x_i|}{\|x\|_n}$ and $b_i = \frac{|y_i|}{\|y\|_n}$ Thus, we get $\frac{|x_i|}{\|x\|_p} \frac{|y_i|}{\|y\|_q} \le \frac{1}{p} \frac{|x_i|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_i|^q}{\|y\|_q^q}$ Summing from i = 1 to n both sides we get $\frac{\sum_{i=1}^{n} |x_i| |y_i|}{\|x\|_p \|y\|_q} \le \frac{1}{p} \frac{\sum_{i=1}^{n} |x_i|^p}{\|x\|_p^p} + \frac{1}{q} \frac{\sum_{i=1}^{n} |y_i|^q}{\|y\|_a^q} = \frac{1}{p} \frac{\|x\|_p^p}{\|x\|_p^p} + \frac{1}{q} \frac{\|y\|_q^q}{\|y\|_a^q} = \frac{1}{p} + \frac{1}{q} = 1.$ Ie. $\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_a$ (ii) This inequality is evident when p = 1. So, assume p > 1. $\|x + y\|_{p}^{p} = \sum_{i=1}^{n} |x_{i} + y_{i}|^{p} = \sum_{i=1}^{n} |x_{i} + y_{i}| |x_{i} + y_{i}|^{p-1} \le \sum_{i=1}^{n} (|x_{i}| + |y_{i}|) |x_{$ $y_i |_{p-1}^{p-1}$ $= \sum_{i=1}^{n} (|x_i|) |x_i + y_i|^{p-1} + \sum_{i=1}^{n} (|y_i|) |x_i + y_i|^{p-1}$ = $\sum_{i=1}^{n} |x_i (x_i + y_i)^{p-1}| + \sum_{i=1}^{n} |y_i (x_i + y_i)^{p-1}|$ $\leq \left[\sum_{i=1}^{n} |x_{i}|^{p}\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} |(x_{i} + y_{i})^{p-1}|^{q}\right]^{\frac{1}{q}} + \left[\sum_{i=1}^{n} |y_{i}|^{p}\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} |(x_{i} + y_{i})^{p-1}|^{q}\right]^{\frac{1}{q}}$ $= \left[\sum_{i=1}^{n} |x_{i}|^{p}\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} \left| (x_{i} + y_{i})^{\frac{p}{q}} \right|^{p}\right]^{\frac{1}{p}} + \left[\sum_{i=1}^{n} |y_{i}|^{p}\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} \left| (x_{i} + y_{i})^{\frac{p}{q}} \right|^{p}\right]^{\frac{1}{p}}$ $= \|x\|_{p} \|x + y\|_{p}^{\frac{p}{q}} + \|y\|_{y} \|x + y\|_{p}^{\frac{p}{q}} = (\|x\|_{p} + \|y\|_{p}) \|x + y\|_{p}^{\frac{p}{q}}$

Corollary: Holders and Minkowskie's inequalities for sequences. Let $x = \{x_n\}$ and $y = \{y_n\}$ be sequences of scalars $\ni \sum_{i=1}^{\infty} |x_i|^p < \infty, \sum_{i=1}^{\infty} |y_i|^q < \infty$ ø. 1

For
$$p \ge 1$$
 define $||x|| = [\sum_{i=1}^{\infty} |x_i|^p]^{\overline{p}}$.
Then (i) $\sum_{i=1}^{\infty} |x_i y_i| \le [\sum_{i=1}^{\infty} |x_i|^p]^{\frac{1}{p}} [\sum_{i=1}^{\infty} |y_i|^q]^{\frac{1}{q}} = ||x||_p ||y||_q$ if $p > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$
(ii) $[\sum_{i=1}^{\infty} |x_i + y_i|^p]^{\frac{1}{p}} \le [\sum_{i=1}^{\infty} |x_i|^p]^{\frac{1}{p}} + [\sum_{i=1}^{\infty} |y_i|^p]^{\frac{1}{p}}$ ie. $||x + y||_p \le ||x||_p + ||y||_p$.
Proof: If n is a positive integer, then by above result
 $\sum_{i=1}^{n} |x_i y_i| \le [\sum_{i=1}^{n} |x_i|^p]^{\frac{1}{p}} [\sum_{i=1}^{n} |y_i|^q]^{\frac{1}{q}} \le [\sum_{i=1}^{\infty} |x_i|^p]^{\frac{1}{p}} [\sum_{i=1}^{\infty} |y_i|^q]^{\frac{1}{q}} < \varepsilon \dots (1)$
Thus the partial sums $\sum_{i=1}^{n} |x_i y_i|$ are bounded and so $\sum_{i=1}^{\infty} |x_i y_i| < \infty$.
If we let $n \to \infty$ in (1) we get $\sum_{i=1}^{\infty} |x_i y_i| \le [\sum_{i=1}^{\infty} |x_i|^p]^{\frac{1}{p}} [\sum_{i=1}^{\infty} |y_i|^q]^{\frac{1}{q}} = ||x||_p ||y||_q$.
(ii)

$$\begin{split} \sum_{i=1}^{n} |x_{i} + y_{i}|^{p} &\leq \left[\sum_{i=1}^{n} |x_{i}|^{p}\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} \left| (x_{i} + y_{i})^{\frac{p}{q}} \right|^{p}\right]^{p} + \left[\sum_{i=1}^{n} |y_{i}|^{p}\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} \left| (x_{i} + y_{i})^{\frac{p}{q}} \right|^{p}\right]^{\frac{1}{p}} \\ &= \|x\|_{p} \|x + y\|_{p}^{\frac{p}{q}} + \|y\|_{p} \|x + y\|_{p}^{\frac{p}{q}} \end{split}$$

Now letting $n \to \infty$

 $\|x + y\|_{p}^{p} = \sum_{i=1}^{\infty} |x_{i} + y_{i}|^{p} \le (\|x\|_{p} + \|y\|_{p}) \|x + y\|_{p}^{\frac{p}{q}} \text{ or }$ $||x + y||_p^{p - \frac{p}{q}} \le ||x||_p + ||y||_n$ ie. $||x + y||_p \le ||x||_p + ||y||_p$.

Example 5: (1*): The linear space l^p , $p \ge is$ a Banach space under the norm • $||x|| = [\sum_{i=1}^{\infty} |\xi_i|^p]^{\frac{1}{p}}$ where $\mathbf{x} = (\xi_1, \xi_2, \dots, \xi_n, \dots) =$ defined by $(\xi_i)_{i=1}^{\infty} \in l^p, \xi_i \in \mathbb{R} \forall i$ **Solution:** (i) Let $\mathbf{x} = \left(\xi_i\right)_{i=1}^{\infty} \in l^p for \ \xi_i \in \mathbb{R} \text{ or } \mathbb{C} \ \forall \ i$ Then $||x|| = \left[\sum_{i=1}^{\infty} |\xi_i|^p\right]^{\frac{1}{p}} \ge 0$ (ii) Let $\mathbf{x} = \left(\xi_i\right)_{i=1}^{\infty} \in l^p for \ \xi_i \in \mathbb{R} \text{ or } \mathbb{C} \ \forall i$ Then $||x|| = 0 \iff \left[\sum_{i=1}^{\infty} |\xi_i|^p\right]^{\frac{1}{p}} = 0 \iff \sum_{i=1}^{\infty} |\xi_i|^p = 0$ $\Leftrightarrow |\xi_i|^p = 0 \ \forall \ i. \Leftrightarrow |\xi_i| = 0 \ \forall \ i. \Leftrightarrow \xi_i = 0 \ \forall \ i. \Leftrightarrow x = 0.$ (iii) Let $\mathbf{x} = \left(\xi_i\right)_{i=1}^{\infty}, y = (\eta_i)_{i=1}^{\infty}, \in l^p \text{ for } \xi_i, \eta_i \in \mathbb{R} \text{ or } \mathbb{C} \forall i$

 $||x + y|| = \left[\sum_{i=1}^{\infty} |\xi_i + \eta_i|^p\right]^{\frac{1}{p}} \le \left[\sum_{i=1}^{\infty} |\xi_i|^p\right]^{\frac{1}{p}} + \left[\sum_{i=1}^{\infty} |\eta_i|^p\right]^{\frac{1}{p}}$ by Minkowskie's inequality $\leq ||x|| + ||y||$ ie. $||x + y|| \leq ||x|| + ||y||$ Let $\mathbf{x} = (\xi_i)_{i=1}^{\infty} \in l^p for \ \xi_i \in \mathbb{R} \text{ or } \mathbb{C} \ \forall \ i \ \alpha \in \mathbb{R}.$ (iv) $\|\alpha x\| = \left[\sum_{i=1}^{\infty} |\alpha \xi_i|^p\right]^{\frac{1}{p}} = \left[\sum_{i=1}^{\infty} |\alpha|^p |\xi_i|^p\right]^{\frac{1}{p}} = |\alpha| \left[\sum_{i=1}^{n} |\xi_i|^p\right]^{\frac{1}{p}} = |\alpha| \|x\|$ Ie. $\|\alpha x\| = |\alpha| \|x\|$ where $x = (\xi_i)_{i=1}^{\infty} \in l^p, \alpha \in \mathbb{R}$. $\therefore l^p$ is a normed linear space. Let $\{x_n\}$ be any Cauchy sequence in l^p where $x_n = \left(\xi_i^{(n)}\right)_{i=1}^{\infty} \in l^p$ for $\xi_i^{(n)} \in \mathbb{R}$ or $\mathbb{C} \forall i$ $\Rightarrow \text{ for each } \varepsilon > 0 \exists n_0 \ni ||x_m - x_n|| < \varepsilon \quad \forall m, n \ge n_0, \text{ where } x_m = \left(\xi_i^{(m)}\right)_{i=1}^{\infty} \in l^p \text{ for }$ $\xi_i^{(m)} \in \mathbb{R} \text{ or } \mathbb{C} \ \forall i$ $\Rightarrow \left[\sum_{i=1}^{\infty} \left| \xi_i^{(m)} - \xi_i^{(n)} \right|^p \right]^{\frac{1}{p}} < \varepsilon \ \forall \ m, n \ge n_0$ $\Rightarrow \sum_{i=1}^{\infty} \left| \xi_i^{(m)} - \xi_i^{(n)} \right|^p < \varepsilon^p \quad \forall m, n \ge n_0$ $\Rightarrow \left|\xi_{i}^{(m)}-\xi_{i}^{(n)}\right|^{p} < \varepsilon^{p} \ \forall m, n \ge n_{0}$ $\Rightarrow \left|\xi_{i}^{(m)}-\xi_{i}^{(n)}\right| < \varepsilon \forall m, n \ge n_{0}$ $\Rightarrow \{\xi_i^{(m)}\}\$ is a Cauchy sequence in \mathbb{R} or $\mathbb{C} \forall i$ Since \mathbb{R} and \mathbb{C} are complete $\exists \xi_i$ in \mathbb{R} or \mathbb{C} \ni the sequence $\{\xi_i^{(m)}\}$ converges to $\xi_i \forall$ Let $\mathbf{x} = (\xi_1, \xi_2, \dots, \xi_n, \dots) = (\xi_i)_{i=1}^{\infty}$. Then $||x_n - x|| = \left[\sum_{i=1}^n \left|\xi_i^{(n)} - \xi_i\right|^p\right]^{\frac{1}{p}} \to 0 \text{ as } n \to \infty$ $\Rightarrow x_n \to x \text{ as } n \to \infty.$: the sequence $\{x_n\}$ in l^p converges to x. Claim: $\mathbf{x} \in l^p$. $\mathbf{x}_n - \mathbf{x} = \left(\xi_i^{(n)} - \xi_i\right)_{i=1}^{\infty} \to 0 \implies x_n \to x \text{ as } n \to \infty$ $\Rightarrow \text{Given } \varepsilon > 0 \exists n_0 \in \mathbb{N} \Rightarrow ||x_n - x|| \forall n \ge n_0 \Rightarrow \sum_{i=1}^{\infty} \left| \xi_i^{(n)} - \xi_i \right|^p < \varepsilon^p = k < \varepsilon$ \Rightarrow $x_n - x \in l^p$. Now $x = x - x_n + x_n \in l^p$. $\Rightarrow x \in l^p$ $\therefore l^p$ is complete. Hence l^p is a Banach space.

Example 6: (3*): Let $\mathcal{C}(X)$ denote the linear space of all bounded continuous scalar valued functions defined on a topological space X. Show that $\mathcal{C}(X)$ is a Banach space under the norm $||f|| = \sup\{|f(x)|: x \in X\}, f \in C(X).$ **Solution**: We know that $\mathcal{C}(X)$ is a linear space. Since $|f(x)| \ge 0 \forall x \in X$, we have $||f|| \ge 0$. ||f|| = 0 iff sup{ $|f(x)|: x \in X$ } = 0 iff $|f(x)| = 0 \forall x \in X$ iff $f(x) = 0 \forall x \in X$ iff $f = \hat{0}$. $||f + g|| = \sup\{|(f + g)(x)|: x \in X\} = \sup\{|f(x) + g(x)|: x \in X\}$ $\leq \sup\{|f(x)| + |f(x)|: x \in X\} \leq \sup\{|f(x)|: x \in X\} + \sup\{|g(x)|: x \in X\} = ||f||$ + ||g||. $\|\alpha f\| = \sup\{|(\alpha f)(x)|: x \in X\} = \sup\{|\alpha f(x)|: x \in X\} = \sup\{|\alpha||f(x)|: x \in X\}$ $= |\alpha| \sup\{|f(x)|: x \in X\} = |\alpha| ||f||$ Hence $\mathcal{C}(X)$ is a normed linear space. Let $\{f_n\}$ be any Cauchy sequence in $\mathcal{C}(X)$. Then for a given $\varepsilon > 0, \exists$ a positive integer $m_0 \ni m, n \ge m_0 \Longrightarrow ||f_m - f_n|| < \varepsilon. \Longrightarrow \sup\{|(f_m - f_n)(x)|: x \in X\} < \varepsilon.$ $\Rightarrow \sup\{|f_m(x) - f_n(x)| : x \in X\} \le \varepsilon \Rightarrow |f_m(x) - f_n(x)| \le \varepsilon \forall x \in X$. But this is the Cauchy's condition for uniform convergence of the sequence of bounded continuous scalar valued functions. Hence the sequence $\{f_n\}$ must converge to a

bounded continuous function f on X. $\therefore C(X)$ is complete and hence it is a Banach space.

Example 7: (3*): In the linear space C[0, 1] of real valued continuous functions on [0, 1] define $||f|| = \max_{0 \le t \le 1} |f(t)|$. Prove that C[0, 1] is a Banach space with this norm.

Solution: Since a real valued continuous function on a closed interval is bounded and so C[0, 1] is a Banach space following exactly the same manner as in above example.

CONTINUOUS LINEAR TRANSFORMATION:

Definition: Let N and N' be normed linear spaces with the same scalars. (i) A linear transformation T: $N \rightarrow N'$ is said to be *continuous* iff for each sequence $\{x_n\}$ in N converging to x in N, the sequence $\{T(x_n)\}$ in N' converges to T(x) in N'. (ii) Let T: $N \rightarrow N'$ be a linear transformation.

If \exists a real number $k \ge 0 \ni ||T(x)|| \le k ||x|| \forall x \in N$, then k is called a *bound* for T and T is said to be *bounded linear transformation*.

Theorem 4: Let T be a linear transformation of a normed linear transformation N into another normed linear space N'. Then the following statements are equivalent.

(i) T is continuous

(ii) T is continuous at the origin, in the sense that $x_n \to 0 \Rightarrow T(x_n) \to 0$.

(iii) \exists a real number $k \ge 0 \Rightarrow ||T(x)|| \le k ||x|| \quad \forall x \in \mathbb{N}$. ie. T is bounded.

(iv) If $S = \{x : ||x|| \le 1\}$ then its image in N' is a bounded set.

<u>Proof</u>: Claim: (i) \Rightarrow (ii).

Assume T is continuous in N and $\{x_n\}$ is a sequence in N converging to 0. Since T is continuous at 0, $\{T(x_n)\}$ converges to T(0). But T(0) = 0.

:. Sequence $\{T(x_n)\}$ converges to 0. :. T is continuous at the origin. Claim: (ii) \Rightarrow (iii).

Assume T is continuous at the origin.

If possible, suppose T is not bounded.

Then for each positive integer n, $\exists x_n \in \mathbb{N} \ni ||T(x_n)|| > n ||x_n||$.

$$\Rightarrow \frac{1}{n \|x_n\|} \|T(x_n)\| > 1 \Rightarrow \left\| \frac{T(x_n)}{n \|x_n\|} \right\| > 1 \dots (1).$$

Now set
$$y_n = \frac{x_n}{n \|x_n\|}$$
 then $\|y_n\| = \frac{1}{n} \to 0$ as $n \to \infty$.

 $\therefore \exists a \text{ seq } \{y_n\} \text{ in } N \ni y_n \to 0. \text{ But } ||T(y_n)|| > 1 \text{ from (i).}$ So, T(y_n) $\neq 0$.

 \Rightarrow T is not continuous at origin which is a contradiction.

Hence T must be bounded.

Claim: (iii) \Rightarrow (iv). Assume that T is bounded.

Let $S = \{x \in N : ||x|| \le 1\}$

Since T is bounded, \exists a real number $k \ge 0 \Rightarrow ||T(x)|| \le k ||x|| \forall x \in N$.

 $\Rightarrow ||T(x)|| \le k \forall x \in S. :: T(S) \text{ is bounded in } N'.$

Claim: (iv) \Rightarrow (i).

Assume that T(S) is bounded in N' if S = { $x: ||x|| \le 1$ } is a closed unit sphere in N. If x = 0 then T(x) = 0 so that $||T(x)|| \le k ||x||$.

If
$$x \neq 0$$
, then $\frac{x}{\|x\|} \in S$ and so, \exists a real number $k \ge 0 \Rightarrow \|T\left(\frac{x}{\|x\|}\right)\| \le k$

$$\Rightarrow \frac{1}{\|x\|} \|T(x)\| \le k \Rightarrow \|T(x)\| \le k \|x\|$$

 $\therefore ||T(x)|| \le k ||x|| \ \forall \ x \in \mathbb{N}...(1).$

Let $x \in N$, and $\{x_n\}$ be a sequence in $N \ni x_n \rightarrow x$.

Since $x_n - x \in N$, by (1), $||T(x_n - x)|| \le k ||x_n - x|| \to 0$.

 $\Rightarrow ||T(x_n) - T(x)|| \to 0 \text{ as } n \to \infty.$

 $\Rightarrow T(x_n) - T(x) \rightarrow 0 \text{ as } n \rightarrow \infty.$

 $T(x_n) \to T(x) \text{ as } n \to \infty.$

 \Rightarrow T is continuous. Hence the theorem.

<u>Definition</u>: Let N and N' be any two normed linear spaces, and T be a bounded linear transformation of N into N'. Define $||T|| = \sup \{||T(x)|| : x \in N, ||x|| \le 1\}$.

Theorem 5: Let N and N' be any two normed linear spaces, and T be a bounded linear transformation of N into N'. Put a = $Sup\{||T(x)||: x \in N, ||x|| = 1\}$, b = $Sup\{\frac{||T(x)||}{||x||}: x \in N, x \neq 0\}$, c = $Inf\{k: k > 0, ||T(x)|| \leq k||x||\}$. Then ||T|| = a = b = c and $||T(x)|| \leq ||T|||x|| \forall x \in N$. **Proof**: Since $\{x \in N, ||x|| = 1\} \subseteq \{x \in N, ||x|| \leq 1\}$, $a = Sup\{||T(x)||: x \in N, ||x|| = 1\}$ $\leq Sup\{||T(x)||: x \in N, ||x|| \leq 1\} = ||T||$ ie. $a \leq ||T|| \dots$ (i) Since T is a linear transformation, $b = Sup\{\frac{||T(x)||}{||x||}: x \in N, x \neq 0\}$ $= Sup\{||T(y)||: y = \frac{x}{||x||} \in N, ||y|| = 1\} = a$ ie $b = a \dots$ (ii) From definition of $b, b \geq \frac{||T(x)||}{||x||} \forall x \in N, x \neq 0 \Rightarrow ||T(x)|| \leq b||x||$ $\Rightarrow c = Inf\{k: k > 0, ||T(x)|| \leq k||x||\} \leq b$. Ie. $c \leq b \dots$ (iii). From the definition of $c, ||T(x)|| \leq c||x|| \forall x \in N \Rightarrow ||T(x)|| \leq c \forall x \in N$ with $||x|| \leq 1$.

 \Rightarrow c is an upper bound of { $||T(x)|| : x \in \mathbb{N}, ||x|| \le 1$ }.

∴ $||T|| = \sup\{||T(x)|| : x \in N, ||x|| \le 1\} \le c$. Ie. $||T|| \le c$...(*iv*)

 $\therefore ||T|| \le c \le b = a \le ||T||$. Hence ||T|| = a = b = c.

Since $||T(x)|| \le b ||x||$ and b = ||T||, it follows that $||T(x)|| \le ||T|| ||x||$.

Theorem 6: (6*): Let N and N' be any two normed linear spaces, and $\mathfrak{B}(N, N')$ denote the set of all bounded linear transformation of N into N'. Then $\mathfrak{B}(N, N')$ is itself a normed linear space with respect to pointwise linear operator $(T + U)(x) = T(x) + U(x), (\alpha T)(x) = \alpha \{T(x)\}$ and the norm defined by $||T|| = \sup\{||T(x)||: x \in N, ||x|| \le 1\}$. Further if N' is a Banach space then so is $\mathfrak{B}(N, N')$.

Proof: Claim: $\mathfrak{B}(N, N')$ is a linear space.

Clearly the set S of all linear transformations from a linear space N into another linear space is itself a linear space with respect to pointwise operations.

Let $T_1, T_2 \in \mathfrak{B}(N, N')$. Then T_1, T_2 are bounded and so \exists real numbers $k_1 \ge 0$, $k_2 \ge 0 \ni ||T_1(x)|| \le k_1 ||x||$ and $||T_2(x)|| \le k_2 ||x|| \forall x \in N$.

If α , β are any two scalars then $\|(\alpha T_1 + \beta T_2)(x)\| = \|(\alpha T_1)(x) + (\beta T_2)(x)\|$ = $\|\alpha \{T_1(x)\} + \beta \{T_2(x)\}\| \le \|\alpha \{T_1(x)\}\| + \|\beta \{T_2(x)\}\|$ = $|\alpha| \|T_1(x)\| + |\beta| \|T_2(x)\| \le (|\alpha|k_1 + |\beta|k_2)\|x\|.$

Thus, $\alpha T_1 + \beta T_2$ is bounded and so $\alpha T_1 + \beta T_2 \in \mathfrak{B}(N, N')$. Thus $\mathfrak{B}(N, N')$ is a linear subspace of S. **<u>Claim</u>**: $\mathfrak{B}(N, N')$ is a normed linear space. Let $T \in \mathfrak{B}(N, N')$. $||T|| \ge 0$ since $||T|| = Sup\{||T(x)|| : x \in N, ||x|| \le 1\}$ and $||T(x)|| \ge 0 \forall x \in N$. ||T|| = 0 iff Sup $\left\{\frac{||T(x)||}{||x||} : x \in N, x \neq 0\right\} = 0$ iff $\frac{||T(x)||}{||x||} = 0, x \in N, x \neq 0$ iff $||T(x)|| = 0, x \in N, x \neq 0$ iff $T(x) = 0 \forall x \in N$ iff T = 0 zero transformation. Let T, $U \in \mathfrak{B}(N, N')$. Then $||T + U|| = Sup\{||(T + U)(x)||: x \in N, ||x|| \le 1\}$ $= Sup\{||T(x) + U(x)|| : x \in N, ||x|| \le 1\}$ $\leq Sup\{||T(x)|| + ||U(x)||: x \in N, ||x|| \leq 1\}$ $= Sup\{||T(x)||: x \in N, ||x|| \le 1\} + Sup\{||U(x)||: x \in N, ||x|| \le 1\}$ = ||T|| + ||U||Let $T \in \mathfrak{B}(N, N')$, $\alpha \in K$. Then $||\alpha T|| = Sup\{||(\alpha T)(x)|| : x \in N, ||x|| \le 1\}$ $= Sup \{ \|\alpha T(x)\| : x \in N, \|x\| \le 1 \} = Sup \{ \|\alpha\| \|T(x)\| : x \in N, \|x\| \le 1 \}$ $= |\alpha| Sup\{||T(x)||: x \in N, ||x|| \le 1\} = |\alpha|||T||$ Hence $\mathfrak{B}(N, N')$ is a normed linear space.

<u>Claim</u>: $\mathfrak{B}(N, N')$ is complete if N' is complete. Suppose N' is complete. Let $\{T_n\}$ be any Cauchy sequence in $\mathfrak{B}(N, N')$. Then $||T_m - T_n|| \to 0$ as m, $n \to 0...(1)$. For each $x \in N$ we have $||T_m(x) - T_n(x)|| = ||(T_m - T_n)(x)|| \le ||T_m - T_n|| ||x|| \to 0$ by (1).

Hence {T_n(x)} is a Cauchy sequence in N' for each $x \in N$. Since N' is complete, \exists a vector in N', which we denote by T(x) \ni T_n(x) \rightarrow T(x). This defines a mapping T of N into N'. Let α , $\beta \in K$, $x, y \in N$. Then T($\alpha x + \beta y$) = $\lim_{n \to \infty} T_n(\alpha x + \beta y) = \lim_{n \to \infty} \{\alpha T_n(x) + \beta T_n(y)\}$ = $\alpha \lim_{n \to \infty} T_n(x) + \beta \lim_{n \to \infty} T_n(y)\} = \alpha T(x) + \beta T(y)$. \therefore T is linear. Now $||T(x)|| = ||\lim_{n \to \infty} T_n(x)|| = \lim_{n \to \infty} ||T_n(x)|| \le \lim_{n \to \infty} ||T_n|| ||x|| \le Sup\{||T_n||||x||\}$ = $(Sup||T_n||)||x|| \dots (2)$. Now $||T_m|| - ||T_n||| \le ||T_m - T_n|| \rightarrow 0$ as m, n $\rightarrow \infty$. $\therefore \{||T_n||\}$ is a Cauchy sequence of real numbers and hence convergent and bounded. So, $\exists k \ge 0 \ni Sup||T_n|| \le k \dots (3)$. From (2) and (3) we have $||T(x)|| \le k ||x||$ showing that T is bounded. $\therefore T \in \mathfrak{B}(N, N')$. Claim: To show that T_n \rightarrow T. Let $\varepsilon > 0$. Then \exists a positive integer m₀ \ni n, m \ge m₀ $\Rightarrow ||T_m - T_n|| < \varepsilon \dots (4)$. Let $x \in N$ be $\ni ||x|| \le 1$. Then we can choose a +ve integer $m_x > m_0 \ni ||T(x) - T_{m_k}|| \le \frac{\varepsilon}{2} \dots (5)$. Hence $\forall n \ge m_0$ and $||x|| \le 1$, $||T_n(x) - T(x)|| = ||T_n(x) - T_m(x) + T_m(x) - T(x)|| = ||T_n(x) - T_m(x)|| + ||T_m(x) - T(x)|| = ||T_n - T_m)(x)|| + ||T_m(x) - T(x)|| \le ||T_n - T_m|||x|| + ||T_m(x) - T(x)|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Thus $||T_n(x) - T(x)|| \le \varepsilon \forall n \ge m_0$ and $x \in N \ni ||x|| \le 1$. Hence $Sup\{||T_n(x) - T(x)|| : x \in N, ||x|| \le 1\} < \varepsilon \forall n \ge m_0$. $\Rightarrow Sup\{||(T_n - T)(x)|| : x \in N, ||x|| \le 1\} < \varepsilon \forall n \ge m_0$. Ie. $||T_n - T|| < \varepsilon \forall n \ge m_0$. $\Rightarrow T_n \to T$.

Example 8: (3*): If M is a closed linear subspace of a normed linear space N, and if T is a natural mapping of N onto $\frac{N}{M}$ defined by T(x) = x + M show that T is a continuous linear transformation for which $||T|| \le 1$.

Solution: Let M be a closed linear subspace of a normed linear space N, and T be a natural mapping of N onto N/M defined by $T(x) = x + M \forall x \in N$. Clearly $\frac{N}{M}$ is a normed linear space with norm $||x + M|| = \inf \{||x + m||: m \in M\}$. T is linear: Let $x, y \in N$; α, β be scalars. Then $T(\alpha x + \beta y) = \alpha x + \beta y + M$ $= (\alpha x + M) + (\beta y + M) = \alpha (x + M) + \beta (y + M) = \alpha T(x) + \beta T(y)$. T is continuous: $||Tx|| = ||x + M|| = \inf \{||x + m||: m \in M\} \le ||x + m|| \forall m \in M$. \therefore For $m = \overline{0}$, $||Tx|| \le ||x|| = 1$. $||x|| \therefore$ T is continuous. Further $||T|| = \sup \{||Tx||: x \in N, ||x|| \le 1\} \le \sup \{||x||: x \in N, ||x|| \le 1\} \le 1$.

Example 9: Let N, and N' be normed linear spaces and T be a continuous linear transformation of N into N'. If M is the null space of T, show that T induces a natural linear transformation T' of N/M into N' and that ||T'|| = ||T||.

Solution: Since T is continuous, M is a closed linear subspace of N. So, N/M is a normed linear space with the norm defined by $||x + M|| = \inf \{||x + m||: m \in M\}$. We define T': N/M \rightarrow N' by T'(x + M) = T(x) $\forall x + M \in N/M$. Claim: T' is linear. Let x + M, $y + M \in N/M$ and α,β be scalars. Then T'{ $\alpha(x + M) + \beta(y + M)$ } = T'($\alpha x + \beta y + M$) = T($\alpha x + \beta y$) = α T(x) + β T(y) = α T'(x + M) + β T'(y + M). Claim: ||T'|| = ||T||. $||T'|| = \sup\{||T'(x + M)||: x \in N, ||x + M|| \le 1\}$ $= \sup\{||T(x)||: x \in N, inf\{||x + m||: m \in M\} \le 1\}$ $= \sup\{||T(x) + T(m)||: x \in N, m \in M, ||x + m|| \le 1\}$ $= \sup\{||T(x + m)||: x + m \in N, ||x + m|| \le 1\} = ||T||$.

HAHN BANACH THEOREM

Linear functional: We know that \mathbb{R} and \mathbb{C} are Banach Spaces. If we take \mathbb{R} or \mathbb{C} for N' then $\mathfrak{B}(N, \mathbb{R})$ and $\mathfrak{B}(N, \mathbb{C})$ denote respectively the set of all continuous linear transformations from N into \mathbb{R} or \mathbb{C} . We denote either of these sets by N* and call N* the conjugate space (or adjoint space or dual space). Members of N* are called *continuous linear functionals or simply functionals*. Note: (i) N* is a Banach space. (ii) All the theorems hold good for $\mathfrak{B}(N, N')$ also hold for $\mathfrak{B}(N, \mathbb{R})$ and $\mathfrak{B}(N, \mathbb{C})$. (iii) $||f|| = \sup \{|f(x)|: x \in N, ||x|| \le 1\}$

Lemma: (1*): Let M be a linear subspace of a normed linear space N and let f be a functional defined on M. If $x_0 \notin M$ and if $M_0 = M + \langle x_0 \rangle = \{x + \alpha x_0 : x \in M, \alpha \text{ real}\}$ is the linear subspace spanned by M and x_0 , then f can be extended to a functional f_0 defined on M_0 such that $||f_0|| = ||f||$.

Proof: Case (i): Let N be a real normed linear space. Since x_0 is not in M, each vector ω in M₀ is uniquely expressible in the form $\omega = x + \alpha x_0$ with $x \in M$. Define f_0 by setting $f_0(\omega) = f_0(x + \alpha x_0) = f(x) + \alpha r_0$ where r_0 is any real number. Claim: For any choice of the real number r_0 , f_0 is linear on $M_0 \ni f_0(x) = f(x) \forall x \in$ M. Let β , γ be scalars and x, $y \in M$. Then $f_0\{\beta(x + \alpha x_0) + \gamma(y + \alpha x_0)\} = f_0\{\beta x + \gamma y + (\beta + \gamma)\alpha x_0\}$ $= f(\beta x + \gamma y) + (\beta + \gamma)\alpha r_0.$ $=\beta f(x) + \gamma f(y) + \beta \alpha r_0 + \gamma \alpha r_0$ $= \beta \{f(x) + \alpha r_0\} + \gamma \{f(y) + \alpha r_0\} \\= \beta \{f_0(x + \alpha x_0)\} + \gamma \{f_0(y + \alpha x_0)\}$ \therefore f₀ is linear on M₀. Also for $x \in M$, f₀(x) = f₀(x + 0x₀) = f(x) + 0r₀ = f(x). So, f_0 extends f linearly to M_0 . Claim: $||f_0|| = ||f||$. We have $||f_0|| = \sup \{|f_0(x)| : x \in M_0, ||x|| \le 1\}$ $\geq \sup \{ |f_0(x)| : x \in M, ||x|| \leq 1 \} :: M_0 \supseteq M.$ $= \sup \{ |f(x)| : x \in M, ||x|| \le 1 \} :: f_0 = f \text{ on } M.$ = ||f||Thus, $||f_0|| \ge ||f|| \dots (A)$ To choose $r_0 \ni ||f_0|| \le ||f||$. If x_1, x_2 are any two vectors in M_1 then $f(x_2) - f(x_1) = f(x_2 - x_1) \le |f(x_2 - x_1)|$ $\leq ||f|| ||x_2 - x_1|| = ||f|| ||x_2 + x_0 - (x_1 + x_0)|| \leq ||f|| \{ ||x_2 + x_0|| + ||-(x_1 + x_0)|| \}$ $= ||f|| ||x_2 + x_0|| + ||f|| ||x_1 + x_0||$ Thus, $-f(x_1) - ||f|| ||x_1 + x_0|| \le -f(x_2) + ||f|| ||x_2 + x_0||$

Since this inequality holds for arbitrary $x_1, x_2 \in M$, we see that Sup $\{-f(y) - ||f||||y + x_0||\} \le \inf \{-f(y) + ||f||||y + x_0||\}.$ Choose r_0 to be any real number such that $\sup_{y \in M} \{-f(y) - \|f\| \|y + x_0\|\} \le r_0 \le \inf_{y \in M} \{-f(y) + \|f\| \|y + x_0\|\}$ $y \in M$ $\Rightarrow -f(y) - ||f|| ||y + x_0|| \le r_0 \le -f(y) + ||f|| ||y + x_0|| \forall y \in M.... (ii).$ With this choice of r_0 we show that $||f_0|| \le ||f||$. Let $\omega = x + \alpha x_0$ be any arbitrary vector in M₀. Put $\frac{x}{\alpha}$ for y in (ii) to get $-f\left(\frac{x}{\alpha}\right) - \|f\| \left\|\frac{x}{\alpha} + x_0\right\| \le r_0 \le -f\left(\frac{x}{\alpha}\right) + \|f\| \left\|\frac{x}{\alpha} + x_0\right\| \dots$ (iii). If $\alpha > 0$, then $\mathbf{r}_0 \le -\frac{1}{\alpha}f(x) + \frac{1}{\alpha}||f|| ||x + \alpha x_0||$ \Rightarrow f(x) + $\alpha r_0 \leq ||f|| ||x + \alpha x_0||$ \Rightarrow f₀(x + α x₀) \leq ||f||||x + α x₀||. If $\alpha < 0$, then $-\frac{1}{\alpha}f(x) + \frac{1}{\alpha}||f|| ||x + \alpha x_0|| \le r_0$ \Rightarrow f(x) + $\alpha r_0 \leq ||f|| ||x + \alpha x_0||$ $\Rightarrow f_0(\omega) \leq ||f|| ||\omega||$ Thus, when $\alpha \neq 0$. $f_0(\omega) \leq ||f|| ||\omega|| \forall \omega \in M_0$ (iv). When $\omega = 0$, $||f_0|| = ||f||$. Replacing ω by $-\omega$, $f_0(-\omega) \le ||f|| ||-\omega|| \Rightarrow -f_0(\omega) \le ||f|| ||\omega|| \dots (v)$ From (iv) and (v), $|f0(\omega)| \le ||f|| ||\omega|| \dots$ (vi). \therefore f₀ is a linear bounded functional on M₀. Since $||f_0|| = \sup \{|f_0(\omega)| : \omega \in M_0, ||\omega|| \le 1\}$. $||f_0|| \le ||f|| \dots (B)$ Hence $||f_0|| = ||f||$. Case (ii) Let N be a complex normed linear space over C. Let g = R. P. of f, h = I. P. of f so that $f(x) = g(x) + ih(x) \forall x \in M$. Let x, y \in M. Then f(x + y) = f(x) + f(y) since f is linear. \Rightarrow g(x + y) + ih(x + y) = g(x) + ih(x) + g(y) + ih(y). Comparing the real and imaginary parts g(x + y) = g(x) + g(y), h(x + y) = h(x) + g(y)h(y). Let $\alpha \in \mathbb{R}$, $x \in M$. Then $f(\alpha x) = \alpha f(x) \Longrightarrow g(\alpha x) + i h(\alpha x) = \alpha \{g(x) + i h(x)\}$ Comparing the real and imaginary parts $g(\alpha x) = \alpha \{g(x), and h(\alpha x) = \alpha \{h(x)\}$. Thus, g, and h are linear on M. Further $|g(x)| \le |f(x)| \le ||f|| ||x||$, and $|h(x)| \le ||f(x)| \le ||f|| ||x||$. \therefore g, and h are bounded. Thus, g, and h are real valued linear bounded functionals on M.

Also, we have g(ix) + ih(ix) = f(ix) = if(x) = -h(x) + ig(x), for all $x \in M$. Comparing the real and imaginary parts, g(ix) = -h(x), h(ix) = g(x). Consequently, f(x) = g(x) - ig(ix) = h(ix) + ih(x). Since g is real functional on M, by case (i) g can be extended to a functional g_0 defined on $M_0 \ni ||g_0|| = ||g||$. Now define f_0 for $x \in M_0$ by $f_0(x) = g_0(x) - ig_0(ix)$. Then f_0 is linear on $M_0 \ni f_0 = f$ on M. [Let x, $y \in M_0$, $\alpha + i\beta \in K$. So, $f_0(x + y) = g_0(x + y) - ig_0(ix + iy)$ $= g_0(x) + g_0(y) - ig_0(ix) - ig_0(iy)$ $= f_0(x) + f_0(y)$ and $f_0\{(\alpha + i\beta)x\} = g_0(\alpha x + i\beta x) - ig_0(-\beta x + i\alpha x)$ $= \alpha g_0(\mathbf{x}) + \beta g_0(\mathbf{i}\mathbf{x}) - \mathbf{i} \{-\beta g_0(\mathbf{x}) + \alpha g_0(\mathbf{i}\mathbf{x})\}$ $= \alpha g_0(x) + i\beta g_0(x) + \beta g_0(ix) - i\alpha g_0(ix)$ $= (\alpha + i\beta) \{g_0(x) - ig_0(ix)\}$ $= (\alpha + i\beta)f_0(x).$ Thus, f_0 is linear on M_0 . Also, $g_0 = g$ on $M \Longrightarrow f_0 = f$ on M]. Let $x \in M_0$ be arbitrary and write $f_0(x) = r e^{i\theta}$ where $r \ge 0$ and θ is real. Then $|f_0(x)| = r = e^{-i\theta} r e^{i\theta} = e^{-i\theta} f_0(x) = f_0(e^{-i\theta}x) = g_0(e^{-i\theta}x) \le |g_0(e^{-i\theta}x)|$ $\leq ||g_0(e^{-i\theta}x)|| \leq ||g_0|| ||e^{-i\theta}x|| = ||g_0|| ||x|| = ||g|| ||x|| \leq ||f|| ||x||.$

 \therefore f₀ is bounded and $||f_0|| \le ||f||$

Also, as in case (i) it is obvious that $||f_0|| \ge ||f||$. Hence $||f_0|| = ||f||$

Hahn Banach Theorem 8: (5*): Let M be a linear subspace of a normed linear space N and let f be a functional defined on M. Then f can be extended to a functional F defined on the whole space N such that ||F|| = ||f||. **Proof**: Let P denote the set of all ordered pairs $(f_{\lambda}, M_{\lambda})$ where f_{λ} is an extension of f to the subspace $M_{\lambda} \supseteq M$ and $||f_{\lambda}|| = ||f||$. Relation \leq is defined on P by $(f_{\lambda}, M_{\lambda}) \leq (f_{\mu}, M_{\mu})$ iff $M_{\lambda} \subseteq M_{\mu}$ and $f_{\lambda} = f_{\mu}$ on M_{λ} . P is evidently non-empty, for, certainly $(f, M) \in P$. Clearly \leq is a partially ordering on P. $\therefore (P, \leq)$ is a poset. Let $Q = \{(f_i, M_i)\}$ be a chain in P. Then Q has an upper bound $(\phi, \cup M_i)$ where $\phi(x) = f_i(x) \forall x \in M_i$ as detailed below. Claim: $\cup M_i$ is a subspace of N where $(f_i, M_i) \in Q$. Let $x, y \in \cup M_i$ and α, β be any scalars. Let $x \in M_i, y \in M_i$ for some i and j.

Since Q is totally ordering either $M_i \subseteq M_j$ or $M_j \subseteq M_i$. Without loss of generality assume $M_i \subseteq M_i$. $\therefore x, y \in M_i$. $\Rightarrow \alpha x + \beta y \in M_i \subset \bigcup M_i$. $\therefore \cup M_i$ is a subspace of N. Claim: ϕ is well defined. Suppose $x \in M_i$ is such that $x \in M_i$ and $x \in M_i$. Then by definition, $\varphi(x) = f_i(x)$ and $\varphi(x) = f_i(x)$. By total ordering of Q, either f_i extends f_i or vice versa. In either case $f_i(x) = f_i(x)$. Thus, ϕ is well defined. $(\phi, \cup M_i)$ is an upper bound of Q. By Zorn's lemma \exists maximal element (F, H) in P. Claim: H = N. Suppose, if possible, N contains H properly. Then $\exists x_0 \in N$ -H and so, by the above lemma, f can be extended to a functional F_0 on $H_0 = H + \langle x_0 \rangle$ which contains H properly. But this contradicts the maximality of (F, H)

 \therefore H = N.

Theorem 9: (3*): Let N be a normed linear space and x_0 be a non-zero vector in N. Then there exists a functional F in N* \ni F(x_0) = $||x_0||$ and ||F|| = 1. In particular, if x, y \in N and $x \neq y$, then there exists a functional $f \in N^* \ni f(x) \neq f(y)$.

Proof: Let $M = \langle x_0 \rangle$ be the linear subspace of N spanned by x_0 . Define f_0 on M by $f_0(\alpha x_0) = \alpha ||x_0||$. Claim: f_0 is a functional on M $\ni ||f_0|| = 1$. Let $y_1, y_2 \in M$ so that $y_1 = \alpha x_0, y_2 = \beta x_0$ for some scalars α, β . If γ , δ are any two scalars then $f_0(\gamma y_1 + \delta y_2) = f_0(\gamma \alpha x_0 + \delta \beta x_0) = f_0\{(\gamma \alpha + \delta \beta) x_0\}$ $= (\gamma \alpha + \delta \beta) ||x_0|| = \gamma \alpha ||x_0|| + \delta \beta ||x_0|| = \gamma f_0(\alpha x_0) + \delta f_0(\beta x_0) = \gamma f_0(y_1) + \delta f_0(y_2).$ \therefore f₀ is linear. Let $y = \alpha x_0 \in M$ so that $||y|| = ||\alpha x_0|| = |\alpha|||x_0||$. Now $|f_0(y)| = |f_0(\alpha x_0)| = |\alpha||x_0|| = |\alpha|||x_0|| = |y||$. \therefore f₀ is bounded. Hence f_0 is a functional on M. Further $||f_0|| = \sup \{|f_0(y)| : y \in M, ||y|| \le 1\} = \sup \{||y|| : y \in M, ||y|| \le 1\} = 1.$ Also, $f_0(x_0) = ||x_0||$ by definition of f_0 . Hence by Hahn Banach theorem, f₀ can be extended to norm preserving functional $F \in N^*$ so that $F(x_0) = f_0(x_0) = ||x_0||$ and $||F|| = ||f_0|| = 1$. In the particular case, since $x \neq y$, $x - y \neq \overline{0}$ and by the above part of this theorem,

 $\exists f \in N^* \text{ such that } f(x - y) = ||x - y|| \neq 0$ $\Rightarrow f(x) - f(y) \neq 0$ $\Rightarrow f(x) \neq f(y).$

Theorem 10: (1*): Let M be a closed linear subspace of a normed linear space N and x_0 a vector not in M. Then there exists a functional F in N* such that $F(M) = \{0\}$ and $F(x_0) \neq 0$.

<u>Proof</u>: Consider the natural map φ : N $\rightarrow \frac{N}{M}$ such that $\varphi(x) = x + M$. Then ϕ is a continuous linear transformation and if $m \in M$, then $\phi(m) = m + M = 0$ (Here 0 denotes zero element in $\frac{N}{M}$ which is M.) In other words, $\varphi(M) = \{0\}\dots(i)$. Also, since $x_0 \notin M$, we have $\varphi(x_0) = x_0 + M \neq 0$ (\neq zero element in M/N which is Hence, by the previous theorem, \exists a M). functional $f \in \left(\frac{N}{M}\right)^* \ni f(x_0 + M) = ||x_0 + M|| \neq 0 \because x_0 + M \neq 0$ (zero element in N/M ie. M) and ||f|| = 1... (ii). We now define F by $F(x) = f{\phi(x)}$. Then F is a linear functional on N with the desired properties as shown below. F is linear: $F(\alpha x + \beta y) = f\{\phi(\alpha x + \beta y)\}$ $= f{\alpha x + \beta y + M}$ $= f\{\alpha(x + M) + \beta(y + M)\}$ $= \alpha f(x + M) + \beta f(y + M)$: f is linear on $\frac{N}{M}$ $= \alpha [f\{\phi(x)\}] + \beta [f\{\phi(y)\}]$ $= \alpha F(\mathbf{x}) + \beta F(\mathbf{y}).$ F is bounded: $|F(x)| = |f\{\varphi(x)\}|$ $\leq \|f\|\|\varphi(x)\|$ $\leq \|f\|\|\varphi\|\|x\|$ $\leq ||f|| ||x|| :: ||\varphi|| \leq 1$ by example 8. \therefore F is bounded. Thus, F is a functional on N ie. F \in N*. Further, if $m \in M$, then $F(m) = f\{\phi(m)\} = f(0) = 0$ so that $F(M) = \{0\}$. and $F(x_0) = f\{\phi(x_0)\}.$ $= f(x_0 + M) \neq 0$ by (ii).

Example 11: Let M be a closed linear subspace of a normed linear space N and let x_0 be a point not in M. If d is the distance of x_0 from M, show that \exists a functional F in N* such that $F(M) = \{0\}, F(x_0) = 1$ and $||F|| = \frac{1}{d}$.

Solution: By definition, $d = \inf \{ ||x_0 - x|| : x \in M \} \dots$ (i). Since M is closed and $x_0 \notin M$, d > 0.

Now consider the subspace $M_0 = \{x + \alpha x_0 : x \in M, \alpha \in \mathbb{R}\}$ spanned by M and x_0 . Since $x_0 \notin M$, the representation of each vector y in M_0 in the form $y = x + \alpha x_0$ is unique.

Define the map
$$f_0$$
 on M_0 by $f_0(x + \alpha x_0) = \alpha$.
The map f_0 is well defined and linear on M_0 .
Also, $f_0(x_0) = f_0(0 + 1 x_0) = 1$
and if $m \in M$, then $f_0(m) = f_0(m + 0 x_0) = 0$, $\ni f_0(M) = \{0\}$.
Now $||f_0|| = Sup \left\{ \frac{|f_0(y)|}{||y||} : y \in M_0, y \neq 0 \right\} = Sup \left\{ \frac{|f_0(x + \alpha x_0)|}{||x + \alpha x_0||} : x \in M, \alpha \in \mathbb{R}, \alpha \neq 0 \right\}$
 $= Sup \left\{ \frac{|\alpha|}{||x + \alpha x_0||} : x \in M, \alpha \in \mathbb{R}, \alpha \neq 0 \right\} = Sup \left\{ \frac{1}{\left\| \frac{x}{\alpha} + x_0 \right\|} : x \in M, \alpha \in \mathbb{R}, \alpha \neq 0 \right\}$
 $M, \alpha \in \mathbb{R}, \alpha \neq 0 \right\}$

 $\mathbb{R}, \alpha \neq 0 \bigg\} = \frac{1}{\inf\{\|x_0 - z\| \colon z \in M\}} = \frac{1}{d}$

Thus, f_0 is linear functional on M_0 such that $f_0(M) = \{0\}$, $f_0(x_0) = 1$ and $||f_0|| = \frac{1}{d}$ \therefore By Hahn Banach Theorem $\exists F \in N^*$ such that $F(y) = f_0(y) \forall y \in M_0$ and $||F|| = ||f_0||$. Hence it follows that $F(M) = \{0\}$, $F(x_0) = 1$ and $||F|| = \frac{1}{d}$.

Example 12: Let M be a closed linear subspace of a normed linear space N and let x_0 be a point not in M. If d is the distance of x_0 from M, show that \exists a functional F in N* such that $F(M) = \{0\}, F(x_0) = d$ and ||F|| = 1.

Solution: By definition, $d = \inf \{ ||x_0 - x|| : x \in M \} \dots$ (i). Since M is closed and $x_0 \notin M$, d > 0.

Now consider the subspace $M_0 = \{x + \alpha x_0 : x \in M, \alpha \in \mathbb{R}\}$ spanned by M and x_0 . Since $x_0 \notin M$, the representation of each vector y in M_0 in the form $y = x + \alpha x_0$ is unique.

Define the map f_0 on M_0 by $f_0(x + \alpha x_0) = \alpha d$.

By the uniqueness of y, the map f_0 is well defined and also linear on M_0 .

Also, $f_0(x_0) = f_0(0 + 1 x_0) = 1.d$ and if $m \in M$, then $f_0(m) = f_0(m + 0 x_0) = 0$, $\Im = \{0\}$.

Now
$$||f_0|| = Sup\left\{\frac{|f_0(y)|}{||y||}: y \in M_0, y \neq 0\right\}$$

= $Sup\left\{\frac{|f_0(x+\alpha x_0)|}{||x+\alpha x_0||}: x \in M, \alpha \in \mathbb{R}, x \neq 0, \alpha \neq 0\right\}$

$$= Sup \left\{ \frac{|\alpha d|}{||x + \alpha x_0||} : x \in M, \alpha \in \mathbb{R}, \alpha \neq 0 \right\} = Sup \left\{ \frac{d}{\left\|\frac{x}{\alpha} + x_0\right\|} : x \in M, \alpha \in \mathbb{R}, \alpha \neq 0 \right\}$$
$$= d Sup \left\{ \frac{1}{||x_0 - z||} : z = -\frac{x}{\alpha} \in M, \alpha \in \mathbb{R}, \alpha \neq 0 \right\} = \frac{d}{\inf\{||x_0 - z||: z \in M\}} = 1$$

Thus, f_0 is linear functional on M_0 such that $f_0(M) = \{0\}$, $f_0(x_0) = d$ and $||f_0|| = 1$ \therefore by Hahn Banach Theorem $\exists F \in N^*$ such that $F(y) = f_0(y) \forall y \in M_0$ and $||F|| = ||f_0||$. Hence it follows that $F(M) = \{0\}$, $F(x_0) = d$ and ||F|| = 1.

Example 13: (3*): Prove that a normed linear space is separable if its conjugate space is separable.

Solution: Let N be a normed linear space whose conjugate space N* is separable. Consider $S = \{f: f \in N^*, ||f|| = 1\}$.

Since every subspace of a metric space is separable, S must be separable. Hence S contains countable dense subset, say, $A = \{f_1, f_2, ..., f_n, ...\}$.

Since each $f_n \in S$ we have $||f_n|| = 1 \forall n$.

Since $||f_n|| = \sup \{|f_n(x)|: ||x|| = 1\}$, for each n there must exist some vector x_n with $||x_n|| = 1 \Rightarrow |f_n(x_n)| > \frac{1}{2}$. [If such x_n does not exist, this would contradict the fact that $||f_n|| = 1$].

Let M be the closed linear subspace in N generated by the sequence $\{x_n\}$. We assert that M = N. Suppose, if possible, that $M \neq N$ and let $x_0 \in N - M$. Then \exists a functional $F \in N^* \ni ||F|| = 1$, $F(x_0) \neq 0$ and F(x) = 0 if $x \in M$. Since ||F|| = 1, $F \in S$ and since each $x_n \in M$, we have $F(x_n) = 0$ for n = 1, 2, ...Now $\frac{1}{2} < |f_n(x_n)| = |f_n(x_n) - F(x_n) + F(x_n)| \le |f_n(x_n) - F(x_n)| + |F(x_n)|$ $= |(f_n - F)(x_n)| \because F(x_n) = 0$. $\le ||f_n - F|| ||x_n|| = ||f_n - F|| \because ||x_n|| = 1$.

Thus, $||f_n - F|| > \frac{1}{2} \forall n$. Now since A is dense in S, every point of S is an adherent point of A so that each sphere centered at arbitrary $f \in S$ must contain a point of A. But the open sphere $\{f: ||f - F|| < \frac{1}{2}\}$ centered at $F \in S$ contains no point of A by (i).

We thus arrive at a contradiction and so we must have M = N.

It then follows that the set of all linear combinations of the x_n 's whose coefficients are rational or if N is complex have rational real and imaginary parts, contribute a countable set everywhere dense in N and consequently N is separable.

THE NATURAL IMBEDDING OF N IN N**

Since N* is a normed linear space, whenever N is, $(N^*)^*$ is called a second conjugate of N and is denoted by N**. **Definition**: A normed linear space is said to be reflexive if N = N**.

Definition: Week topology on a normed linear space N:

Definition: Let N and N' be normed linear spaces. An isometric isomorphism of N into N' is a one – to – one linear transformation T of N into N' such that ||T(x)|| = ||x|| for every x in N; and N is said to be isometrically isomorphic to N' if there exists an isometric isomorphism of N onto N'.

<u>**Theorem 11**</u>: (4*): Let N be an arbitrary normed linear space. Then, each vector x in N induces a functional F_x on N* defined by $F_x(f) = f(x) \forall f \in N^* \ni ||F_x|| = ||x||$. Further the mapping J: N \rightarrow N** \ni J(x) = $F_x \forall x \in N$ defines an isometric isomorphism of N into N**.

Proof: Let $x \in N$ and $f \in N^*$. Define a function $F_x: N^* \to K$ by $F_x(f) = f(x) \forall f \in I$ N*. Claim: F_x is linear and bounded. Let f, $g \in N^*$ and α , β be scalars ($\in K$). Now $F_x(\alpha f + \beta g) = (\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x) = \alpha F_x(f) + \beta F_x(g)$ and $|F_{x}(f)| = |f(x)| \le ||f|| ||x|| \dots (1)$ where the constant ||x|| is a bound for F_{x} . Thus F_x ($\in N^{**}$) is a functional on N^* . Claim: $||F_{x}|| = ||x||$. $||F_{\gamma}|| = \sup \{|F_{\gamma}(f)|: f \in N^*, ||f|| \le 1\}$ $= \sup \{ \|f\| \|x\| : f \in N^*, \|f\| \le 1 \} \le \|x\| \dots (2).$ Again, when x = 0, by (2) $||F_0|| \le ||0|| = 0$. But for any x, $||F_x|| \ge 0$. Thus $||F_0|| = 0$ and so $||F_x|| = ||x||$ when x = 0. Let x be any non – zero vector in N. By a theorem \exists a function $F \in N^* \ni F(x) = ||x||$ and ||F|| = 1. But $||F_x|| = \sup \{|F_x(f)|: f \in N^*, ||f|| = 1\} = \sup \{|f(x)|: f \in N^*, ||f|| = 1\}$ and since $||x|| = F(x) = |F(x)| \le \sup \{|F(x)| : x \in N, F \in N^*, ||F|| = 1\}$ we have $||F_{\mathbf{x}}|| \geq ||\mathbf{x}|| \dots (3).$ From (2) and (3) $||F_{x}|| = ||x|| \dots (4)$. Claim: The mapping J: $N \rightarrow N^{**} \ni J(x) = F_x \forall x \in N$ is linear. For any $x, y \in N$, $f \in N^*$ and $\alpha \in K$, $F_{x+y}(f) = f(x+y) = f(x) + f(y) = F_x(f) + F_y(f)$ $= (F_x + F_y)(f)$. and $F_{\alpha x}(f) = f(\alpha x) = \alpha f(x) = \alpha F_x(f) = (\alpha F_x)(f) \forall f \in N^*$. Thus, $F_{x+y} = F_x + F_y$ and $F_{\alpha x} = \alpha F_x$. $\forall x, y \in N$, and $\alpha \in K$. Now $J(x + y) = F_{x+y} = F_x + F_y = J(x) + J(y)$ and $J(\alpha x) = F_{\alpha x} = \alpha F_x = \alpha J(x)$. Thus, J is linear. Claim: J is an isometry

Let x, y \in N. Then $||J(x) - J(y)|| = ||F_x - F_y|| = ||F_{x-y}|| = ||x - y|| \dots (5)$ by (4) Thus J preserves norm and hence it is an isometry. Also, from (5), $J(x) - J(y) = 0 \Rightarrow x - y = 0$. Ie. $J(x) = J(y) \Rightarrow x = y$ so that J is oneone. Also $||J(x)|| = ||F_x|| = ||x||$ Hence J defines isometric isomorphism of N into N**.

OPEN MAPPING THEOREM:

Lemma: (3^*) : If B and B' are Banach Spaces, and if T is a continuous linear transformation of B onto B', then the image of each open sphere centered on the origin in B contains an open sphere centered on the origin in B'.

<u>Proof:</u> We denote by S_r and S_r' the open spheres with radius r centered at origin in B and B' respectively. Then $S_r = rS_1$.

Then clearly $T{S_r} = T{rS_1} = rT{S_1}$ so that it suffices to show that $T{S_1}$ contains some S_s' .

We begin by proving that $\overline{T\{S_1\}}$ contains some $S_{s'}$.

For each positive integer n, consider the open sphere S_n in B.

Then clearly $B = \bigcup_{n=1}^{\infty} S_n$. Since T is onto, we see that $B' = T[B] = T[\bigcup_{n=1}^{\infty} S_n] = \bigcup_{n=1}^{\infty} T\{S_n\}$.

Since B' is complete, Baire's theorem implies that for some n_0 , $\overline{T\{S_{n_0}\}}$ has an interior point y_0 , which may be assumed to lie in $T\{S_{n_0}\}$.

The mapping $y \to y - y_0$ is a homeomorphism of B' onto itself, so $\overline{T\{S_{n_0}\}} - y_0$ has the origin as an interior point.

Since y_0 is in $T\{S_{n_0}\}$, we have $T\{S_{n_0}\} - y_0 \subseteq T\{S_{2n_0}\}$; and from this we obtain $\overline{T\{S_{n_0}\}} - y_0 = \overline{T\{S_{n_0}\}} - y_0 \subseteq \overline{T\{S_{2n_0}\}}$, which shows that the origin is an interior point of $\overline{T\{S_{2n_0}\}}$.

Multiplication by any non-zero scalar is a homeomorphism of B' onto itself, so $\overline{T\{S_{2n_0}\}} = \overline{2n_0T\{S_1\}} = 2n_0 \overline{T\{S_1\}}$; and it follows from this that the origin is an interior point of $\overline{T\{S_1\}}$.

So for some $\varepsilon > 0$, $S_{\varepsilon}' \subseteq \overline{T\{S_1\}}$.

We conclude the proof by showing that $S_{\varepsilon}' \subseteq T\{S_3\}$, which is clearly equivalent to $S_{\varepsilon}' \subseteq T\{S_1\}$.

Let y be a vector in B' so that $||y|| < \varepsilon$.

Since y is in $\overline{T\{S_1\}}$, \exists a vector x₁ in B $\ni ||x_1|| < 1$ and $||y - y_1|| < \frac{\varepsilon}{2}$, where y₁ = T(x₁). We next observe that $S_{\frac{\varepsilon}{3}}' \subseteq T\left\{S_{\frac{1}{2}}\right\}$, so \exists a vector x_2 in $B
ightarrow \|x_2\| < \frac{1}{2}$ and $\|(y - y_1) - y_2\| < \frac{\varepsilon}{4}$, where $y_2 = T(x_2)$. Continuing in this way, we obtain a sequence $\{x_n\}$ in B such that $\|x_n\| < \frac{1}{2^{n-1}}$, and $\|y - (y_1 + y_2 + \dots + y_n)\| < \frac{\varepsilon}{2^n}$, where $y_n = T(x_n)$. If we put $s_n = x_1 + x_2 + \dots + x_n$, then it follows from $\|x_n\| < \frac{1}{2^{n-1}}$, that $\{s_n\}$ is a Cauchy sequence in B for which $\|s_n\| \le \|x_1\| + \|x_2\| + \dots + \|x_n\| < 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 2$. Since B is complete, so there exists a vector x in B such that $s_n \to x$; and

 $||x|| = ||\lim s_n|| = \lim ||s_n|| \le 2 < 3$ shows that x is in S₃. All that remains is to notice that the continuity of T yields T(x) = T($\lim s_n$) $= \lim T(s_n) = \lim (y_1 + y_2 + ... + y_n) = y$, from which we see that y is in T(S₃). Hence the lemma.

Open Mapping theorem: 1*: Let B and B' be Banach Spaces and T be a continuous linear transformation of B onto B'. Then T is an open mapping.

<u>Proof:</u> Let G be an open set in B.

Let $y \in T(G)$ be an arbitrary point.

Since T is onto $\exists x \in G \ni T(x) = y$.

 $\Rightarrow \exists$ an open sphere $x + S_r(0) = S_r(x) \subseteq G$ for some r > 0...(1).

Now by the above lemma, \exists an open sphere S_{ϵ}' in $B' \ni S_{\epsilon}' \subseteq T\{S_r\}$ for some $\epsilon > 0$. Now $y + S_{\epsilon}' \subseteq y + T\{S_r\} = T(x) + T\{S_r\} = T\{x + S_r\} \subseteq T(G)$ by (1).

Thus, to each $y \in T(G) \exists$ an open sphere in B' centered at y and contained in T(G) and consequently T(G) is an open set.

So, T(G) is open in B' whenever G is open in B.

Hence T is an open map.

<u>**Theorem</u>**: (2*): (Banach's Theorem) Let B and B' be Banach Spaces and T be a continuous one – one linear transformation of B onto B'. Then T is a homeomorphism.</u>

<u>Proof</u>: Let G be an open set in B. Let $y \in T(G)$ be an arbitrary point.

Since T is onto $\exists x \in G \ni T(x) = y$.

 $\Rightarrow \exists$ an open sphere $S_r(x) = x + S_r(0) \subseteq G$ for some r > 0...(1).

Now by the above lemma, \exists an open sphere $S_{\epsilon}'(0)$ in $B' \ni S_{\epsilon}' \subseteq T\{S_r(0)\}$ for some $\epsilon > 0$. Now $y + S_{\epsilon}' \subseteq y + T\{S_r\} = T(x) + T\{S_r\} = T\{x + S_r(0)\} \subseteq T(G)$ by (1).

Thus, to each $y \in T(G) \exists$ an open sphere in B' centered at y and contained in T(G) and consequently T(G) is an open set.

So, T(G) is open in B' whenever G is open in B.

Hence T is an open map.

Since T is also one to one, onto and continuous T is a homeomorphism.

Projections:

<u>Definition</u>: A projection E on a linear space L is simply an idempotent ($E^2 = E$) linear transformation of L into itself.

Note: Projection on L can be described geometrically as follows.

(1) a projection E determines a pair of linear subspaces M and N such that $L = M \oplus N$ where $M = \{E(x): x \in L\}$ and $N = \{x \in L: E(x) = 0\}$ are the range and null spaces of E respectively.

(2) A pair of linear subspaces M and N such that $L = M \oplus N$ determines a projection E whose range and null space are M and N (If z = x + y is a unique representation of a vector in L as a sum of vectors in $x \in M$ and $y \in N$, then E is defined by E(z) = x.

Definition: Projection on a Banach space is an idempotent operator E on B. ie. (i) It is a projection on B if $E^2 = E$ ie. E is a projection in the algebraic sense (ii) E is continuous.

<u>Theorem</u>: If P is a projection on a Banach space B, and M and N are it's range and null space, then M and N are closed linear subspaces of B such that $B = M \oplus N$.

<u>Proof</u>: Let P is a projection on a Banach space B, and M and N be it's range and null spaces. So, $P^2 = P$, P is continuous, $M = \{P(z): z \in B\}$ and $N = \{z \in B: P(z) = 0\}$.

Let $z \in B$. Then for identity operator I, z = I(z) + P(z) - P(z) = P(z) + (I - P)(z). Now $P(z) \in M$ and since $P\{(I - P)(z)\} = P(z) - P^2(z) = P(z) - P(z) = 0, (I - P)(z) \in N$. So, that B = M + N. Let z = x + y where $x \in M$, and $y \in N$. Then P(z) = P(x + y) = P(x) + P(y) = P(x) + 0 = P(x)... (i). Again since, $P(x) = P^2(x)$, P(I - P)(x) = 0 so that $(I - P)(x) = x - P(x) \in N$. But $(I - P)(x) = x - P(x) \in M$. $\therefore x - P(x) \in M \cap N = \{0\} \Rightarrow P(x) = x \in M$... (ii). (I - P)(z) = z - Pz = x + y - P(x) = x + y - x = y ... (iii). From (i), (ii) and (iii) z = x + y = P(z) + (I - P)(z) where $P(z) \in M$, $(I - P)(z) \in N$. $\therefore B = M \oplus N$. Moreover P(z) = P(x + y) = x. Since Null space of any continuous linear transformation is closed N is closed.
$$\begin{split} &[\text{Let } z \in \overline{N} . \Rightarrow \exists \{z_n\} \text{ in } N \ni \{z_n\} \to z. \\ &\text{Now } P(z) = P\{\lim (z_n)\} = \lim P(z_n) = 0 \text{ since } z_n \in N \Rightarrow z \in N. \\ &\therefore \overline{N} \subseteq N \Rightarrow \overline{N} = N]. \\ &\text{Now } M = \{P(z) : z \in B\} = \{z \in B : z = P(z)\} = \{z : (I - P)(z) = 0\}. \\ &\therefore M \text{ is null space of linear operator } I - P. \text{ Hence } M \text{ is closed. Hence the theorem.} \end{split}$$

Theorem: Let B be a Banach space and M, N be closed linear subspaces of B such that $B = M \oplus N$. If z = x + y is the unique representation of a vector in B as a sum of vectors in M and N, then the mapping P defined by P(z) = x is a projection on B whose range and null space are M and N.

<u>Proof</u>: Since $B = M \oplus N$, every element z of B can be uniquely expressed as z = x + y where $x \in M, y \in N$. P: B \rightarrow B is defined by P(z) = P(x + y) = x $\forall z \in B$. Clearly $P(x) = x \forall x \in M$ and $P(y) = 0 \forall y \in N$. P is linear, for, $P(\alpha z_1 + \beta z_2) = P\{\alpha(x_1 + y_1) + \beta(x_2 + y_2)\}.$ $= P(\alpha x_1 + \beta x_2 + \alpha y_1 + \beta y_2) = \alpha x_1 + \beta x_2 = \alpha P(z_1) + \beta P(z_2).$ Range of $P = {P(z) : z \in B} = {P(x + y) : x \in M, y \in N} = {x : x \in M} = M.$ Null space of $P = \{z \in B : Pz = 0\} = \{x + y \in M \oplus N : P(x + y) = 0\}$ $= \{ x + y \in M \oplus N : x = 0 \} = \{ y : y \in N \} = N.$ Let $z = x + y \in M \oplus N$. Then $P^2z = P\{P(z)\} = P(x + 0) = x = P(z)$ ie. $P^2(z) = P(z) \forall z \in B$. So, $P^2 = P$. Thus, P is idempotent. If B' denotes the linear space B equipped with the norm defined by ||z||' = ||x|| + $\|y\|$ Then, B' is a Banach space and since for $z = x + y \in M \oplus N$, ||P(z)||' = ||x|| $\leq ||x|| + ||y|| = 1 ||z||' \forall z \in B'$, P is continuous as a mapping of B' into B. If I denotes the identity mapping of B' onto B, then $||I(z)|| = ||z|| = ||x + y|| \le ||x|| + ||z|| \le ||z||$ $||y|| = 1 ||z||' \forall z \in B'$ shows that I is continuous as a one to one, linear transformation of B' onto B. : I is a homeomorphism and so B' and B have the

Graph of a mapping:

same topology. Hence the theorem.

<u>Definition</u>: Let X, Y be any two non – empty sets and f: $X \rightarrow Y$ be a mapping. Then the graph of f, denoted by f_G , is defined as $\{(x, f(x)): x \in X\}$.

<u>**Remark**</u>: Let N, N' be normed linear spaces. Then N × N' is a normed linear space with coordinate wise linear operations and the norm $||(x, y)|| = (||x||^p + ||y||^p)^{\frac{1}{p}}$ where $x \in N, y \in N'$ and $1 \le p \le \infty$.

Moreover, this norm induces the product topology on $N \times N'$ and $N \times N'$ is complete iff both N and N' are complete. In future we mostly use norm when p = 1.

Definition: Let B, B' be Banach spaces and T: $B \rightarrow B'$ be a linear transformation. $T_G = \{(x, T(x)): x \in B\}$ is called *graph* of T. **Note**: T_G is a subspace of $B \times B'$.

Definition: Let N, N' be normed linear spaces and D be a subspace of N. Then a linear transformation T: D \rightarrow N' is said to be *closed linear transformation* if $x_n \in$ D, $x_n \rightarrow x$ and $T(x_n) \rightarrow y$ implies $x \in D$ and y = T(x).

Theorem: Let N, N' be normed linear spaces and D be a subspace of N. Then a linear transformation T: D \rightarrow N' is closed if and only if the graph of T_G is closed.

Proof: Given that N and N' are normed linear spaces and D is a subspace of N. Suppose the linear transformation T: $D \rightarrow N'$ is a closed. Required to prove that T_G is closed. Let (x, y) be a limit point of T_G. We prove that $(x, y) \in T_G$.

By definition of limit point, \exists a sequence $(x_n, T(x_n))$ of points in T_G , where $x_n \in D$, converging to (x, y).

Now $(\mathbf{x}_n, \mathbf{T}(\mathbf{x}_n)) \to (\mathbf{x}, \mathbf{y}) \Rightarrow ||(\mathbf{x}_n, \mathbf{T}(\mathbf{x}_n)) - (\mathbf{x}, \mathbf{y})|| \to 0.$ $\Rightarrow ||(x_n - x, T(x_n) - y)|| \to 0.$

 $\Rightarrow ||x_n - x|| + ||(T(x_n) - y)|| \to 0 :: ||(x, y)|| = ||x|| + ||y||$

 $\Rightarrow ||x_n - x|| \rightarrow 0, ||(T(x_n) - y)|| \rightarrow 0$

 \Rightarrow x_n \rightarrow x, T(x_n) \rightarrow y.

 \Rightarrow x \in D and T(x) = y since T is closed linear transformation.

 \Rightarrow (x, y) = (x, T(x)) \in T_G. \therefore T_G is closed.

Conversely suppose T_G is closed. Let $\{x_n\}$ be a sequence in D $\ni x_n \rightarrow x$ and $T(x_n) \rightarrow y$. To prove T is closed we have to show that $x \in D$ and y = T(x). Now (x, y) is an adherent point of T_G so that $(x, y) \in \overline{T_G}$. But $T_G = \overline{T_G}$ since T_G is closed. $\Rightarrow (x, y) \in T_G$ Then, by the definition of T_G , $x \in D$ and T(x) = y. \therefore T is a closed linear transformation.

The Closed Graph Theorem: 4*: Let B, B' be Banach spaces and T: $B \rightarrow B'$ be a linear transformation. Then T is continuous mapping if and only if it's graph is closed.

Proof: Suppose T: B → B' be a continuous linear transformation and T_G be it's graph. Ie. $x_n \to x \Rightarrow T(x_n) \to T(x)$. Claim: T_G = {(x, T(x)) : x ∈ B} is closed. Let (x, y) be a limit point of T_G. $\Rightarrow \exists$ a sequence $(x_n, T(x_n)) \in T_G \ni (x_n, T(x_n)) \to (x, y)$. $\Rightarrow (x_n, T(x_n)) - (x, y) \to 0$ $\Rightarrow ||(x_n, T(x_n)) - (x, y)|| \to 0$. $\Rightarrow ||(x_n - x, T(x_n) - y)|| \to 0$ since ||(x, y)|| = ||x|| + ||y|| $\Rightarrow ||x_n - x|| + ||(T(x_n) - y)|| \to 0$ since ||(x, y)|| = ||x|| + ||y|| $\Rightarrow ||x_n - x|| \to 0$, $||(T(x_n) - y)|| \to 0$ $\Rightarrow x_n \to x, T(x_n) \to y$. But $x_n \to x \Rightarrow T(x_n) \to T(x)$ since T is continuous linear transformation. $\Rightarrow y = T(x)$. ∴ limit point $(x, y) = (x, T(x)) \in T_G$. $\Rightarrow T_G$ contains all its limit points... T_G is closed.

Conversely suppose
$$T_G$$
 is closed.
Then T_G is a subspace of $B \times B'$.
For, $T_G = \{(x, T(x)): x \in B\} \subseteq B \times B'$
and $(x_1, T(x_1)), (x_2, T(x_2)) \in T_G$ and $\alpha, \beta \in K$ implies that
 $\alpha(x_1, T(x_1)) + \beta(x_2, T(x_2)) = (\alpha x_1, \alpha T(x_1)) + (\beta x_2, \beta T(x_2))$
 $= (\alpha x_1 + \beta x_2, \alpha T(x_1) + \beta T(x_2))$
 $= (\alpha x_1 + \beta x_2, T(\alpha x_1 + \beta x_2)) \in T_G$.

Now T_G is complete, and so Banach space. Define a map φ : $T_G \rightarrow B$ by $\varphi(x, T(x)) = x \forall (x, T(x)) \in T_G$. φ is one- one, for, let $\varphi(x_1, T(x_1)) = \varphi(x_2, T(x_2))$ $\Rightarrow x_1 = x_2$ $\Rightarrow (x_1, T(x_1)) = (x_2, T(x_2))$.

 φ is onto, for, let $\mathbf{x} \in \mathbf{B}$. Then $\exists (\mathbf{x}, \mathbf{T}\mathbf{x}) \in \mathbf{T}_{G}$ and then $\varphi (\mathbf{x}, \mathbf{T}\mathbf{x}) = \mathbf{x}$. φ is linear. For, $\varphi \{\alpha(\mathbf{x}_{1}, \mathbf{T}\mathbf{x}_{1}) + \beta(\mathbf{x}_{2}, \mathbf{T}\mathbf{x}_{2})\} = \varphi\{\alpha\mathbf{x}_{1} + \beta\mathbf{x}_{2}, \alpha\mathbf{T}\mathbf{x}_{1} + \beta\mathbf{T}\mathbf{x}_{2})\} = \alpha\mathbf{x}_{1} + \beta\mathbf{x}_{2}$ $\beta\mathbf{x}_{2} = \alpha\varphi(\mathbf{x}_{1}, \mathbf{T}\mathbf{x}_{1}) + \beta\varphi(\mathbf{x}_{2}, \mathbf{T}\mathbf{x}_{2})$. Also φ is continuous. For, $\|\varphi(x, Tx)\| = \|x\| \le \|x\| + \|Tx\| = \|(x, Tx)\| \Rightarrow \|\varphi(x, Tx)\| \le 1 \|(x, Tx)\| \forall (\mathbf{x}, \mathbf{T}\mathbf{x}) \in \mathbf{T}_{G}$. Thus, φ : $\mathbf{T}_{G} \to \mathbf{B}$ is one-one, onto and continuous linear transformation. Then by a theorem following open mapping theorem φ is a homeomorphism. So, φ^{-1} : $\mathbf{B} \to \mathbf{T}_{G}$ is bounded (continuous). Now $\|Tx\| \le \|x\| + \|Tx\| = \|(x, Tx)\| = \|\varphi^{-1}(x)\| \le \mathbf{k} \|x\|$. I.e. $\|Tx\| \le \mathbf{k} \|x\| \forall x \in B$. \therefore T is continuous. Hence the theorem. **Lemma**: (3^*) (In detail) If B and B' are Banach Spaces, and if T is a continuous linear transformation of B onto B', then the image of each open sphere centered on the origin in B contains an open sphere centered on the origin in B'.

<u>Proof:</u> We denote by S_r and S_r' the open spheres with radius r centered at origin in B and B' respectively. Then $S_r = rS_1$.

Then clearly $T[S_r] = T[rS_1] = rT[S_1]$ so that it suffices to show that $T[S_1]$ contains some S_s' .

We begin by proving that $\overline{T[S_1]}$ contains some $S_{s'}$. For each positive integer n, consider the open sphere S_n in B. Then clearly $B = \bigcup_{n=1}^{\infty} S_n$. Since T is onto, we see that $B' = T[B] = T[\bigcup_{n=1}^{\infty} S_n] = \bigcup_{n=1}^{\infty} T[S_n]$. Since B' is complete, by Baire's theorem, for some n_0 , $T[S_{n_0}]$ has an interior point y_0 , which may be assumed to lie in $T[S_{n_0}]$. [y is an interior point of $\overline{T[S_{n_0}]} \Rightarrow \exists$ open set $G \ni y \in G \subseteq \overline{T[S_{n_0}]}$. $y \in \overline{T[S_{n_0}]} \Rightarrow y$ is a limit point of $T[S_{n_0}] \Rightarrow x$ the nbd G of y must contain a point y_0 of $T[S_{n_0}]$. Thus $y_0 \in T[S_{n_0}] \ni y_0 \in G \subseteq \overline{T[S_{n_0}]}$. \Rightarrow y₀ is an interior point of $T[S_{n_0}]$. The mapping f: B' \rightarrow B' \rightarrow f(y) = y - y_0 is a homeomorphism. For, f is clearly one – one, onto and if $y_n \in B'$ is $\ni y_n \to y$ then $f(y_n) = y_n - y_0 \to y - y_0$ $y_0 = f(y)$ and $f^{-1}(y_n) = y_n + y_0 \rightarrow y + y_0 = f^{-1}(y)$ so that f and f^{-1} are both Claim: $T[S_{n_0}] - y_0$ has the origin continuous. as an interior point. y_0 is an interior point of $\overline{T[S_{n_0}]}$ $\Rightarrow \exists open$ set G \ni y₀ \in G \subseteq $\overline{T[S_{n_0}]} \Longrightarrow$ f(y₀) \in f(G) \subseteq f[$\overline{T\{S_{n_0}\}}$]. $\Rightarrow 0 = y_0 - y_0 \in f(G) \subseteq \overline{T[S_{n_0}]} - y_0 \Rightarrow 0 \text{ is an interior point of } \overline{T[S_{n_0}]} - y_0 \dots$ (2). $T[S_{n_0}] - y_0 \subseteq T[S_{2n_0}].$ Claim: Let $y \in T[S_{n_0}] - y_0$. Then $\exists x \in S_{n_0} \ni y = T(x) - y_0$. But $y_0 \in T[S_{n_0}] \Rightarrow y_0 = T(x_0)$ for some $x_0 \in S_{n_0}$. Thus $y = T(x) - T(x_0) = T(x - x_0) \dots (3)$ where $x, x_0 \in S_{n_0}$. Also x, $x_0 \in S_{n_0} \Longrightarrow ||x|| < n_0$ and $||x_0|| < n_0$.

 $\Rightarrow ||x - x_0|| \le ||x|| + ||x_0|| < 2n_0.$ $\Rightarrow x - x_0 \in S_{2n_0} \Rightarrow T(x - x_0) \in T[S_{2n_0}] \Rightarrow y \in T[S_{2n_0}] \text{ by } (3).$ Thus we have $T[S_{n_0}] - y_0 \subseteq T[S_{2n_0}] = 2n_0 T[S_1]$ Since f is a homeomorphism, $f[\overline{T[S_{n_0}]}] = \overline{f[T[S_{n_0}]]}$ $\Rightarrow \overline{T[S_{n_0}]} - y_0 = \overline{T[S_{n_0}] - y_0} \subseteq \overline{T[S_{2n_0}]} = 2n_0 \overline{T[S_1]} \text{ and it follows from (2) that}$ the origin is an interior point of $\overline{T[S_1]}$. \Rightarrow for some $\varepsilon > 0$, $S_{\varepsilon}' \subset T[S_1] \dots (4)$ We conclude the proof by showing that $S_{\varepsilon} \subseteq T[S_3]$, which is clearly equivalent to $S_{\frac{\varepsilon}{2}}' \subseteq T[S_1]$ Let $y \in S_{\varepsilon}'$. So $||y|| < \varepsilon$. \therefore y is in $\overline{T[S_1]} \Rightarrow$ y is a limit point of $T[S_1] \Rightarrow \exists y_1 \in T[S_1] \Rightarrow \|y - y_1\| < \frac{\varepsilon}{2}$ But $y_1 \in T[S_1] \Rightarrow \exists$ a vector x_1 in $S_1 \neq ||x_1|| < 1$ and $||y - y_1|| < \frac{\varepsilon}{2}$, where $y_1 =$ From (4), $S' \varepsilon_{/_2} \subseteq T[S_{1/2}]$ and since $T(x_1)$. $\|y-y_1\| < \frac{\varepsilon}{2}, y-y_1 \in S'_{\varepsilon/2} \subseteq T \left| S_{\frac{1}{2}} \right|.$ ∴ as above $\exists y_2 \in T\left[S_{1/2}\right] \ni \|(y - y_1) - y_2\| < \frac{\varepsilon}{4} \text{ where } y_2 = T(x_2) \text{ and } \|x_2\| < \frac{1}{2}$ $T\left[S_{1/2}\right] \ni \|(y-y_1)-y_2\| < \frac{\varepsilon}{4} \text{ where } y^2 = T(x^2), x^2 \in S_{1/2} \& \|x_2\| < \frac{1}{2}.$ Continuing in this way, we obtain a sequence $\{x_n\}$ in B such that $||x_n|| < \frac{1}{2^{n-1}}$ and $||y - (y_1 + y_2 + \dots + y_n)|| < \frac{\varepsilon}{2^n}$... (5) where $y_n = T(x_n)$. If we put $s_n = x_1 + x_2 + ... + x_n$, then $||s_n|| \le ||x_1|| + ||x_2|| + ... + ||x_n||$ $<1+\frac{1}{2}+\frac{1}{2^2}+\dots+\frac{1}{2^{n-1}}<2\dots(6)$ Also for n > m, $||s_n - s_m|| = ||x_{m+1} + x_{m+2} + \dots + x_n||$ $\leq ||x_{m+1}|| + ||x_{m+2}|| + \dots + ||x_n||$ $<\frac{1}{2^{m}}+\frac{1}{2^{m+1}}+\cdots+\frac{1}{2^{n-1}}=\frac{\frac{1}{2^{m}}\left(1-\frac{1}{2^{n-m}}\right)}{1-\frac{1}{2}}=\frac{1}{2^{m-1}}-\frac{1}{2^{n-m-1}}\to 0 \text{ as m, } n\to\infty.$ \therefore {s_n} is a Cauchy sequence in B. Since B is complete, so there exists a vector x in B such that $s_n \rightarrow x$; and so $||x|| = ||\lim s_n|| = \lim ||s_n|| \le 2 < 3$. $\Rightarrow x \in S_3$. Now $y_1 + y_2 + ... + y_n = T(x_1) + T(x_2) + ... + T(x_n)$

 $= T(x_1 + x_2 + ... + x_n) = T(s_n).$

Since T is continuous, $x = \lim s_n$ $\Rightarrow T(x) = T(\lim s_n) = \lim T(s_n) = \lim (y_1 + y_2 + ... + y_n) = y$, by (5) Thus y = T(x) where ||x|| < 3, so that $y \in T[S_3]$. $\therefore S_{\varepsilon}' \subseteq T[S_3]$. Hence the lemma.

Fax: 08816-227318 off: 08816-224072, 224119,228342 Mobile: 9491334119 **ANTULURI NARAYANA RAJU COLLEGE**

(Autonomous) BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

E – CONTENT PAPER: M 301, FUNCTIONAL ANALYSIS M. Sc. II YEAR, SEMESTER - III UNIT – II: HILBERT SPACES

PREPARED BY K, C. TAMMI RAJU, M. Sc. HEAD OF THE DEPARTMENT DEPARTMENT OF MATHEMATICS, PG COURSES DNR COLLEGE (A), BHIMAVARAM – 534202

301, FUNCTIONAL ANALYSIS UNIT – II

THE CONJUGATE OF AN OPERATOR

Theorem: 5 *: (The uniform bounded theorm or Banach Steinhaus theorem).

Let B be a Banach space and N be a normed linear space. If $\{T_i\}$ is a non-empty set of bounded (i.e, continuous) linear transformation of B into N having the property that $\{T_i(x)\}$ is a bounded subset of N for each vector x in B, then $\{||T_i||\}$ is a bounded set of numbers ie. $\{T_i\}$ is bounded as a subset of \mathfrak{B} (B, N).

<u>Proof</u>: For each positive integer n, define $F_n = \{x \in B : ||T_i(x)|| \le n \forall i\} \dots (1)$. Then F_n is a closed subset of B as shown below.

$$\mathbf{x} \in \mathbf{F}_{\mathbf{n}} \text{ iff } \|T_i(\mathbf{x})\| \le \mathbf{n} \ \forall \ \mathbf{i}$$

$$\Leftrightarrow T_i(x) \in S_n[0] \ \forall \ i$$

$$\Leftrightarrow \mathbf{x} \in \mathbf{T}_{i}^{-1}\{\mathbf{S}_{n}[\mathbf{0}]\} \ \forall \ i$$

$$\Leftrightarrow \mathbf{x} \in \bigcap_i T_i^{-1}\{s_n[0]\}$$

so that $F_n = \bigcap_i T_i^{-1} \{s_n[0]\}$ which is closed being intersection of closed sets. [Note that \because each T_i is continuous and $S_n[0]$ is closed in N each $T_i^{-1} \{S_n[0] \text{ is closed in } B\}$

Further, $\mathbf{B} = \bigcup_{n=1}^{\infty} F_n$

For, if $B \neq \bigcup_{n=1}^{\infty} F_n$ then \exists some $x \in B$ such that $x \notin F_n$ for any n.

$$\Rightarrow ||T_i(x)|| > n \forall n by (1)$$

 \Rightarrow The set {T_i(x)} is not bounded, which contradicts hypothesis.

Hence, we must have $B = \bigcup_{n=1}^{\infty} F_n$, so that this complete space B is the union of a sequence of its subsets.

...By Baire's category theorem, \exists an integer $n_0 \ni \overline{F_{n_0}}$ has non empty interior. Since F_{n_0} is closed $\overline{F_{n_0}} = F_{n_0}$ and so F_{n_0} must have non empty interior, i.e., \exists some

 $x_0 \in F_{n_0}^{o}$ so that F_{n_0} is a nbd of x_0 .

Since F_{n_0} is closed, \exists a closed sphere $S = \{x \in \mathbf{B} \colon ||x - x_0|| \le r_0\} \subseteq F_{n_0} \dots (2)$ Now if $||y|| \le 1$, and $z = r_0 y$ then, $||z + x_0 - x_0|| = ||r_0 y|| = r_0 ||y|| \le r_0$ so that $z + x_0 \in S \subseteq F_{n_0}$, and $x_0 \in S \subseteq F_{n_0}$ Now for arbitrary but fixed i,

$$\begin{aligned} \|T_{i}(y)\| &= \left\| T_{i}\left(\frac{z}{r_{0}}\right) \right\| = \frac{1}{r_{0}} \|T_{i}(z)\| \\ &= \frac{1}{r_{0}} \|T_{i}(z + x_{0} - x_{0})\| \\ &= \frac{1}{r_{0}} \|T_{i}(z + x_{0}) - T_{i}(x_{0})\| \\ &\leq \frac{1}{r_{0}} [\|T_{i}(z + x_{0})\| + \|T_{i}(x_{0})\| \\ &\leq \frac{1}{r_{0}} (n_{0} + n_{0}) = \frac{2n_{0}}{r_{0}} \text{ since } z + x_{0} \text{ and } x_{0} \in F_{n_{0}}. \end{aligned}$$

Thus $||T_i(y)|| \le \frac{2n_0}{r_0}$ if $||y|| \le 1$

 $\|T_i\| = \sup\{\|T_i(y)\| : \|y\| \le 1\} \le \frac{2n_0}{r_0}$

It follows that $\{||T_i(y)||\}$ is a bounded set of numbers.

Theorem: 2*: A nonempty subset S of a normed linear space N is bounded if and only if f(S) is a bounded set for each $f \in N^*$.

Proof: Let S be a bounded subset of N. $\therefore \exists \text{ real } k > 0 \ni ||x|| \le k \forall x \in S$. Now for each $f \in N^*$, since f is bounded linear functional $\exists \text{ real } k_1 > 0 \ni$ for all $x \in S$, $|f(x)| \le ||f|| ||x|| \le k k_1$. $\therefore f(S)$ is bounded for each $f \in N^*$. Conversely let f(S) be bounded set for each $f \in N^*$. Claim: S is bounded.

For convenience we exhibit vectors in S by $S = \{x_i\}$.

By assumption $f(S) = \{f(x_i): x_i \in S\}$ is a bounded set for each $f \in N^*$.

Now by a theorem, each vector x_i in N induces a functional F_{x_i} on N* defined by $F_{x_i}(f) = f(x_i) \forall f \in N^* \ni ||F_{x_i}|| = ||x_i||.$

- ∴ { $F_{x_i}(f)$ } is a bounded set of numbers for each $f \in N^*$.
- \Rightarrow By uniform bounded theorem, { $||F_{x_i}||$ } is a bounded set of numbers $\forall f \in N^*$.
- $\Rightarrow \{ \|x_i\| \}$ is a bounded set of numbers $\forall f \in N^* \Rightarrow S$ is a bounded subset of N.

Notation: Let N be a normed linear space and denote by Ns, the linear space of all scalar valued functions defined on N.

Definition: Let N be a normed linear space and T be an operator on N i.e, T be a continuous linear transformation of N into itself. Define a linear transformation T* of N* into itself as follows.

If $f \in N^*$ then $T^*(f)$ is given by $[T^*(f)](x) = f\{T(x)\} \forall x \in N...(1)$ We call T* the conjugate (or adjoint) of T.

Theorem: 2*: Let T be an operator on a normed linear space N, then its conjugate T*, defined by T*: N* \rightarrow N* such that T*(f) = f oT and [T*(f)](x) = f{T(x)} \forall f \in N* and $\forall x \in N$ is an operator on N* and the mapping $\phi: \mathcal{B}(N) \to \mathcal{B}(N^*) \to \phi(T) =$ $T^* \forall T \in \mathcal{B}(N)$ is an isometric isomorphism of $\mathcal{B}(N)$ into $\mathcal{B}(N^*)$ which reverses products and preserves the identity transformation. **Proof**: Claim: T* is linear on N*. Let $\alpha, \beta \in K$, f, $g \in N^*$. Then for each $x \in N$, $T^*(\alpha f + \beta g)](x) = (\alpha f + \beta g) \{T(x)\} = (\alpha f) \{T(x)\} +$ $= \alpha [f \{T(x)\}] + \beta [g \{T(x)\}] = \alpha [T^{*}(f)](x) + \beta [T^{*}(g)](x)$ $(\beta g) \{T(x)\}$ $= [\alpha \{T^{*}(f)\} + \beta \{T^{*}(g)\}](x)$ Thus, $T^*(\alpha f + \beta g) = \alpha T^*(f) + \beta T^*(g)$ \therefore T* is linear on N*. Claim: T* is continuous operator on N* $||T^*|| = \sup \{||T^*(f)||: ||f|| \le 1\}$ $= \sup \{ \| [T^*(f)](\mathbf{x}) \| : \| f \| \le 1, \| \mathbf{x} \| \le 1 \}$ $= \sup \{ |f[T(x)]| : ||f|| \le 1, ||x|| \le 1 \} \text{ by } (1)$ $\leq \sup \{ \|f\| \|T\| \|x\| : \|f\| \leq 1, \|x\| \leq 1 \} \leq \|T\| \dots (2).$ Since T is bounded, T* is bounded \therefore T* is an operator on N* Claim: $||T^*|| = ||T||$ For each $x \in N$, $x \neq \overline{0} \exists$ a functional $f \in N^* \ni ||f|| = 1$ and $f(T(x)) = ||T(x)|| \dots (3)$ by a theorem. Therefore $||T|| = \sup \left\{ \frac{||T(x)||}{||x||} : x \neq \overline{0} \right\}.$ $= \sup\left\{\frac{|f[T(x)]|}{\|x\|} : \|f\| = 1, x \neq \overline{0}\right\} \text{ by } (3)$ $= \sup\left\{\frac{|[T^*(f)](x)]|}{\|x\|} \colon \|f\| = 1, x \neq \overline{0}\right\} \text{ by } (1)$ $\leq \sup \left\{ \frac{\|T^*(f)\| \|x\|}{\|x\|} : \|f\| = 1, x \neq \overline{0} \right\}.$ $= \sup \{ \|T^*(f)\| : \|f\| = 1 \} = \|T^*\| \dots (4).$ From (2) and (4) $||T^*|| = ||T|| \dots (5)$ Claim: ϕ is linear: Let T, U be arbitrary elements of $\mathcal{B}(N)$ and α , β be scalar. Then $\varphi(\alpha T + \beta U) = (\alpha T + \beta U)^*$ by def But for any $f \in N^*$, $x \in N$, $[(\alpha T + \beta U)^*(f)](x) = f[(\alpha T + \beta U)(x)]$ by (1) $= f[\alpha T(x) + \beta U(x)]$

 $= \alpha f[T(x)] + \beta f[U(x)] : f is linear$ $= \alpha [T^{*}(f)](x) + \beta [U^{*}f](x)$ from (1) $= \{ \alpha [T^{*}(f)] + \beta [U^{*}f] \}(x) = [(\alpha T^{*} + \beta U^{*})(f)](x)$ $\therefore (\alpha T + \beta U)^*(f) = (\alpha T^* + \beta U^*)(f) \forall f \in N^* \text{ so that } (\alpha T + \beta U)^* = \alpha T^* + \beta U^* \dots (6)$ $\therefore \phi (\alpha T + \beta U) = (\alpha T + \beta U)^* = \alpha T^* + \beta U^* = \alpha \phi(T) + \beta \phi(U)$ $\therefore \phi$ is linear. Claim: ϕ is one-one: Let $\phi(T) = \phi(U)$ for $T, U \in \mathcal{B}(N)$ \Rightarrow T* = U* $\Rightarrow ||T^* - U^*|| = 0$ $\Rightarrow ||(T-U)^*|| = 0 \Rightarrow ||T-U|| = 0$ \Rightarrow T = U $\therefore \phi$ is one-one. Claim: $\|\varphi(T)\| = \|T\|$: Now $\|\varphi(T)\| = \|T^*\|$ by def = ||T|| by (5) $\therefore \phi$ is isometric isomorphism. Claim: φ reverses products. $[(TU)^{*}(f)](x) = f[(TU)(x)]$ by (1) $= f[T{U(x)}]$ $= [T^{*}(f)] \{ U(x) \}$ by (1) $= [U^{*} \{T^{*}(f)\}](x) by (1)$ $= [U^{*}T^{*}(f)](x).$ So, $[(TU)^*(f)] = (U^*T^*)(f) \forall f \in N^*$. Hence $(TU)^* = U^*T^*...(7)$. Now $\phi(TU) = (TU)^* = U^*T^* = \phi(U) \phi(T)$ Thus, φ reverses products. Claim: ϕ preserves identity: Let $f \in N^*$, $x \in N$. Then $[I^*(f)](x) = f[I(x)]$ by (1) = f(x) = (If)(x) so that $I^*(f) = I(f) \forall f \in N^*$ Hence, $I^* = I$ so that $\phi(I) = I^* = I$ Thus, φ preserves Identity.

HILBERT SPACES

Definition: Let H be a complex Banach Space. Then H is said to be a Hilbert Space if a complex number (x, y), called the inner product of x and y, is associated to each of the two vectors x and y in such a way that (i) $\overline{(x, y)} = (y, x)$, (ii) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ and (iii) $(x, x) = ||x||^2$.

Example 1: Consider the Banach Space l_2^n consisting of all n – tuples of complex numbers with the norm of a vector $\mathbf{x} = (x_1, x_2, ..., x_n)$ defined by $||\mathbf{x}|| = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}$. If the inner product of two vectors $\mathbf{x} = (x_1, x_2, ..., x_n)$, $\mathbf{y} = (y_1, y_2, ..., y_n)$ is defined by $(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n x_i \overline{y_i}$ then l_2^n is a Hilbert Space.

Example 2: Consider the Banach Space ℓ_2 consisting of all infinite sequences of complex numbers $\mathbf{x} = \langle \mathbf{x}_n \rangle = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \dots) \ni \sum_{i=1}^n |x_i|^2 < \infty$ with the norm of a vector defined by $||\mathbf{x}|| = (\sum_{i=1}^\infty |x_i|^2)^{\frac{1}{2}}$. If the inner product of two vectors $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \dots)$, $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n, \dots)$ is defined by $(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^\infty x_i \overline{y_i}$ then ℓ_2 is a Hilbert Space.

Theorem: In a Hilbert Space H prove that

(i) $(\alpha x - \beta y, z) = \alpha(x, z) - \beta(y, z).$ (ii) $(x, \alpha y + \beta z) = \overline{\alpha}(x, y) + \overline{\beta}(x, z).$ (iii) $(x, \alpha y - \beta z) = \overline{\alpha}(x, y) - \overline{\beta}(x, z).$ (iv) $(x, \overline{0}) = 0 \quad \forall x \in H \text{ and } (\overline{0}, x) = 0 \quad \forall x \in H.$ Proof: In what follows let $\alpha, \beta \in K$ and x, y, and $z \in H.$ (i) $(x, -\beta y, z) = (x + \beta - \beta)y(z) = (x - \beta) + (-\beta)(y - \beta) = (x - \beta) - \beta(y - \beta)$

- (i) $(\alpha x \beta y, z) = (\alpha x + \{-\beta\}y, z) = \alpha(x, z) + (-\beta)(y, z) = \alpha(x, z) \beta(y, z).$
- (ii) $(x, \alpha y + \beta z) = \overline{(\alpha y + \beta z, x)} = \overline{\alpha(y, x) + \beta(z, x)} = \overline{\alpha(y, x)} + \overline{\beta(z, x)}$ = $\overline{\alpha(y, x)} + \overline{\beta(z, x)} = \overline{\alpha(x, y)} + \overline{\beta(x, z)}$.
- (iii) $(x, \alpha y \beta z) = (x, \alpha y + \{-\beta\}z) = \overline{\alpha}(x, y) + (-\overline{\beta})(x, z) = \overline{\alpha}(x, y) \overline{\beta}(x, z).$
- (iv) $(\overline{0}, x) = (0\overline{0}, x) = 0(\overline{0}, x) = 0 \quad \forall x \in H \text{ and } (x, \overline{0}) = \overline{(\overline{0}, x)} = \overline{0} = 0 \quad \forall x \in H.$

<u>Schwartz Inequality</u>: 4*: If x and y are any two vectors in a Hilbert Space H then $|(x, y)| \le ||x|| ||y||$

<u>Proof</u>: If $y = \overline{0}$, then ||y|| = 0 and $(x, y) = (x, \overline{0}) = 0$ so that both sides vanish and the equality holds.

Now let $y \neq \overline{0}$.

For any scalar λ , $(x + \lambda y, x + \lambda y) \ge 0$ $\Rightarrow (x, x + \lambda y) + \lambda(y, x + \lambda y) \ge 0$ $\Rightarrow (x, x) + \overline{\lambda}(x, y) + \lambda(y, x) + \lambda \overline{\lambda}(y, y) \ge 0.$ $\Rightarrow \|uy\|_{2}^{2} + \overline{\lambda}(y, y) + \lambda(y, x) + \lambda \overline{\lambda}(y, y) \ge 0.$

 $\Rightarrow \|x\|^2 + \overline{\lambda}(\mathbf{x}, \mathbf{y}) + \lambda(\mathbf{y}, \mathbf{x}) + \lambda \overline{\lambda} \|y\|^2 \ge 0... (1)$

Since
$$y \neq \overline{0}$$
, $\|y\| \neq 0$. \therefore Put $\lambda = \frac{-(x,y)}{\|y\|^2}$.
 $\Rightarrow \|x\|^2 - \frac{\overline{(x,y)}}{\|y\|^2} (x, y) - \frac{(x,y)}{\|y\|^2} (y, x) + \frac{(x,y)}{\|y\|^2} \frac{\overline{(x,y)}}{\|y\|^2} \|y\|^2 \ge 0$
 $\Rightarrow \|x\|^2 - \frac{\overline{(x,y)}}{\|y\|^2} (x, y) - \frac{(x,y)}{\|y\|^2} \overline{(x,y)} + \frac{(x,y)}{\|y\|^2} \frac{\overline{(x,y)}}{\|y\|^2} \|y\|^2 \ge 0$
 $\Rightarrow \|x\|^2 - \frac{|(x,y)|^2}{\|y\|^2} - \frac{|(x,y)|^2}{\|y\|^2} + \frac{|(x,y)|^2}{\|y\|^2} \ge 0$
 $\Rightarrow \|x\|^2 - \frac{|(x,y)|^2}{\|y\|^2} \ge 0$. $\Rightarrow \|x\|^2 \|y\|^2 \ge |(x,y)|^2$
 $\Rightarrow |(x,y)| \le \|x\| \|y\|$

Theorem: In a Hilbert space the inner product is jointly continuous i.e., $x_n \rightarrow x, y_n \rightarrow y \Rightarrow (x_n, y_n) \rightarrow (x, y)$. **Proof**: Let $x_n \rightarrow x, y_n \rightarrow y$. $|(x_n, y_n) - (x, y)| = |(x_n, y_n) - (x_n, y) + (x_n, y) - (x, y)|$ $= |(x_n, y_n - y) + (x_n - x, y)| \le |(x_n, y_n - y)| + |(x_n - x, y)|$ $\le ||x_n|| ||y_n - y|| + ||x_n - x|| ||y||$ by Schwartz inequality, But $||y_n - y|| \rightarrow 0$ and $||x_n - x|| \rightarrow 0$ as $n \rightarrow \infty$ ($\because x_n \rightarrow x, y_n \rightarrow y$) $\therefore |(x_n, y_n) - (x, y)| \rightarrow 0$ as $n \rightarrow \infty$. Hence $(x_n, y_n) \rightarrow (x, y)$.

Theorem: 2*: If x and y are any two vectors in a Hilbert space then (1) $||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$ (parallelogram law) (2) $4(x, y) = ||x + y||^2 - ||x - y||^2 + i ||x + iy||^2 - i ||x - iy||^2$ (Polarization identity) **Proof (i)** $||x + y||^2 = (x + y, x + y) = (x, x + y) + (y, x + y)$ = (x, x) + (x, y) + (y, x) + (y, y) $= \|x\|^2 + (x, y) + (y, x) + \|y\|^2 \dots (1)$ $||x - y||^2 = (x - y, x - y) = (x, x - y) + (y, x - y)$ = (x, x) - (x, y) - (y, x) + (y, y) $= ||x||^2 - (x, y) - (y, x) + ||y||^2 \dots (2)$ Adding (1) and (2), $||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$ (ii) Subtracting (2) from (1) $||x + y||^2 - ||x - y||^2 = 2(x, y) + 2(y, x) \dots (3)$ Replacing y by iy in (3) $||x + iy||^2 - ||x - iy||^2 = 2(x, iy) + 2(iy, x)$ $=2\overline{\iota}(x, y) + 2i(y, x)$ $= -2i(x, y) + 2i(y, x) \dots (4)$ Multiplying both sides of (4) by i we get $||x + iy||^2 - ||x - iy||^2 = 2(x, y) - 2(y, x) \dots (5)$

Adding (3) and (5) $||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2 = 4(x, y)$

Theorem: 4*: If B is a complex Banach space whose norm obeys the parallelogram law and if the inner product is defined on B by 4 (x, y) = $||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2$ then B is a Hilbert space. **Proof**: Given that parallelogram law $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2 \|\mathbf{x}\|^2 + 2 \|\mathbf{y}\|^2 \dots (1)$ Also, $4(x, y) = ||x + y||^2 - ||x - y||^2 + i ||x + iy||^2 - i||x - iy||^2 \dots (2)$ Claim: $(x, x) = \|x\|^2$ Replace, y by x in (2) $4(\mathbf{x}, \mathbf{x}) = \|\mathbf{x} + \mathbf{x}\|^2 - \|\overline{\mathbf{0}}\|^2 + i \|(1+i)\mathbf{x}\|^2 - i \|(1-i)\mathbf{x}\|^2$ $= 4\|\mathbf{x}\|^2 + i|\mathbf{1} + i|^2\|\mathbf{x}\|^2 - i|\mathbf{1} - i|^2\|\mathbf{x}\|^2$ $= 4\|\mathbf{x}\|^{2} + 2i\|\mathbf{x}\|^{2} - 2i\|\mathbf{x}\|^{2} \because |1 + i|^{2} = |1 - i|^{2} = 1 + 1 = 2$ $= 4 \|\mathbf{x}\|^2$ Thus, $(x, x) = ||x||^2$ Claim: $\overline{(x, y)} = (y, x)$ Taking the complex conjugate on both sides of (2) $4\overline{(x, y)} = ||x + y||^2 - ||x - y||^2 - i||x + iy||^2 + i||x - iy||^2$ $= \|y + x\|^{2} - \|-(y - x)\|^{2} - i\|i(y - ix)\|^{2} + i\|-i(y + ix)\|^{2}$ $= \|y + x\|^{2} - \|y - x\|^{2} - i|i|^{2}\|y - ix\|^{2} + i|-i|^{2}\|y + ix\|^{2}$ $= ||y + x||^{2} - ||y - x||^{2} - i||y - ix||^{2} + i||y + ix||^{2}$ = 4(y, x) $\therefore \overline{(x, y)} = (y, x)$ Claim: (x + y, z) = (x, z) + (y, z)Replacing x by x + y and y by z in (2) $4(x + y, z) = \|x + y + z\|^2 - \|x + y - z\|^2 + i \|x + y + iz\|^2 - i\|x + y - iz\|^2 \dots (3)$ Replacing x by x + z in (1) $\|\mathbf{x} + \mathbf{z} + \mathbf{y}\|^2 + \|\mathbf{x} + \mathbf{z} - \mathbf{y}\|^2 = 2\|\mathbf{x} + \mathbf{z}\|^2 + 2\|\|\mathbf{v}\|^2$ (or) $\|\mathbf{x} + \mathbf{y} + \mathbf{z}\|^2 = 2\|\mathbf{x} + \mathbf{z}\|^2 + 2\|\mathbf{y}\|^2 - \|\mathbf{x} + \mathbf{z} - \mathbf{y}\|^2 \dots (4)$ Again $||x + z - y||^2 = ||z - y + x||^2 = 2||z - y||^2 + 2||x||^2 - ||z - y - x||^2$ by (1) $= 2\|\mathbf{y} - \mathbf{z}\|^2 + 2\|\mathbf{x}\|^2 - \|\mathbf{x} + \mathbf{y} - \mathbf{z}\|^2 \dots (5)$ Substituting the value of $||x + z - y||^2$ from (5) in (4) $\|\mathbf{x} + \mathbf{y} + \mathbf{z}\|^{2} = 2\|\mathbf{x} + \mathbf{z}\|^{2} + 2\|\mathbf{y}\|^{2} - \{2\|\mathbf{y} - \mathbf{z}\|^{2} + 2\|\mathbf{x}\|^{2} - \|\mathbf{x} + \mathbf{y} - \mathbf{z}\|^{2}\}$ (or) $\|\mathbf{x} + \mathbf{y} + \mathbf{z}\|^2 - \|\mathbf{x} + \mathbf{y} - \mathbf{z}\|^2 = 2\|\mathbf{x} + \mathbf{z}\|^2 + 2\|\mathbf{y}\|^2 - 2\|\mathbf{y} - \mathbf{z}\|^2 - 2\|\mathbf{x}\|^2 \dots$ (6) Interchanging x and y in (6) we get $\|\mathbf{x} + \mathbf{y} + \mathbf{z}\|^{2} - \|\mathbf{x} + \mathbf{y} - \mathbf{z}\|^{2} = 2\|\mathbf{y} + \mathbf{z}\|^{2} + 2\|\|\mathbf{x}\|^{2} - 2\|\mathbf{x} - \mathbf{z}\|^{2} - 2\|\|\mathbf{y}\|^{2} \dots (7)$ Adding (6) and (7) we get

$$\begin{split} \|x + y + z\|^2 - \|x + y - z\|^2 = \|x + z\|^2 - \|x - z\|^2 + \|y + z\|^2 - \|y - z\|^2 ... (8) \\ \text{Replacing z by iz in (8) and multiplying both sides by i} \\ i \|x + y + iz\|^2 - i\|x + y - iz\|^2 = i\|x + iz|^2 - i\|x - iz|^2 + i\|y + iz|^2 - i\|y - iz|^2 ... (9) \\ \text{Adding (8) and (9)} \\ \|x + y + z\|^2 - \|x + y - z\|^2 + i\|x + y + iz\|^2 - i\|x + y - iz\|^2 = \|x + z\|^2 - \|x - z\|^2 + i\|x + iz|^2 - i\|x - iz|^2 + \{|y + z|^2 - |y - z|^2 + i\|y + iz|^2 - i|y - iz|^2\} ... (10) \\ \text{By (3) and (10) we get 4(x + y, z) = 4(x, z) + 4(y, z) \\ i.e., (x + y, z) = (x, z) + (y, z) ... (11) \\ \text{Claim: (ax, y) = (x, y) = (x, y) ... (12) \\ \text{Claim: (ax, y) = (x, y) = (x, y) + (x, y) \\ \Rightarrow (2x, y) = 2(x, y) so that result is true for n = 2 \\ \text{Assume the result is true for n i.e., (nx, y) = n(x, y) ... (12) \\ \text{Then } (1 + 1\}x, y) = (nx + x, y) = (nx, y) + (x, y) \\ = n(x, y) + (x, y) = (nx + x, y) = n(x, y) ... (12) \\ \text{Then } (1 + 1]x, y) = (nx + x, y) = (nx, y) + (x, y) \\ = n(x, y) + (x, y) = (n + 1)(x, y). \\ \therefore \text{ Result is true for n 1 if if were true for n } \\ \therefore \text{ By induction result is true for all positive integral values of } \alpha \\ \text{Replacing x by - x in (2) we get,} \\ 4(-x, y) = 1 - x + y|^2 - 1 - x - y|^2 + i |x - iy|^2 - i|x - iy|^2 \\ = |x - y|^2 - |x + y|^2 + i |x - iy|^2 - i|x + iy|^2 (\because 1 - x | = ||x|) \\ = -4(x, y) \\ \therefore (-x, y) = -(x, y) ... (13) \\ \text{Let } \alpha \text{ be negative integer. Then $\exists \text{ a positive integers and } q \neq 0 \\ \therefore (ax, y) = (-\beta_x, y) = (-(\beta_x, y) = -(\beta_x, y) = -\beta(x, y) = \alpha(x, y) \\ \text{(c) Let } \alpha \text{ be rational say } \alpha = \frac{p}{q} \text{ where } p, \text{ qare integers and } q \neq 0 \\ \therefore (ax, y) = \frac{q}{q}(qz, y) ... (14) \\ \text{Now } (qz, y) = q(z, y) \\ \therefore (z, y) = \frac{1}{q}(qz, y) ... (15) \\ \text{Substituting the value of } (z, y) \text{ from (15) in (14) we get } (ax, y) = \frac{p}{q}(qz, y) = \alpha(x, y) \\ \text{Similarly, we can prove the result if α is any real number.} \\ \text{(d) Let α be a complex number.} \\ \text{Replacing x by ix in (2),} \\ 4(ix, y) = \lim_{x} + y|^2 - \lim_{x} - y|^2 + i \lim_{x} + y|^2 - i \lim_{x} - y|^2 \\ = |x - iy|^2 - |x + iy|^2 + i \lim_{x} + y|^$$$

$$= i\{\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2\} = i4(x, y) \text{ so that } (ix, y) = i(x, y) = i(x,$$

y)

Now let $\alpha = a + ib$ where a, b are real numbers. $(\alpha x, y) = (\{a + ib\}x, y) = (ax, y) + i(bx, y)$ $= a(x, y) + ib(x, y) = (a + ib)(x, y) = \alpha(x, y)$ I.e. $(\alpha x, y) = \alpha(x, y)$ when α is a complex number Hence B is a Hilbert space

Hence B is a Hilbert space.

<u>Convex Set</u>: Let L be a real or complex linear Space. A non-empty subset S of L is said to be convex if x, $y \in S \Rightarrow (1 - \alpha)x + \alpha y \in S$ where α is any real number $\Rightarrow 0 \le \alpha \le 1$.

<u>Note</u>: Taking $\alpha = \frac{1}{2}$ we see that if S is a convex subset of a linear space L, then x, y $\in S \qquad \Rightarrow \frac{x+y}{2} \in S.$

Theorem: 8*: A closed convex subset C of a Hilbert Space H contains a unique vector of smallest norm.

Proof: Let $d = \inf \{ \|x\| : x \in C \}$. Then \exists a sequence $\{x_n\}$ of vectors in C $\ni ||x_n|| \rightarrow d$ Consider two vectors x_m and x_n belonging to sequence $\{x_n\}$ Since C is a convex subset of H and $x_m, x_n \in C, \frac{x_m + x_n}{2} \in C$. : By the definition of d, $\left\|\frac{x_m + x_n}{2}\right\| \ge d$ so that $\|x_m + x_n\| \ge 2d \dots (1)$. Appling parallelogram law for the vectors x_m and x_n we get $||x_m + x_n||^2 + ||x_m - x_n||^2 = 2||x_m||^2 + 2||x_n||^2$ $\Rightarrow ||x_m - x_n||^2 = 2||x_m||^2 + 2||x_n||^2 - ||x_m + x_n||^2$ $\leq 2||x_m||^2 + 2||x_n||^2 - 4d^2...(2).$ Since $||x_m|| \rightarrow d$ and $||x_n|| \rightarrow d$, we have $2||x_m||^2 + 2||x_n||^2 - 4d^2 \rightarrow 2d^2 + 2d^2 - 2d^2$ $4d^2 = 0$ \therefore {x_n} is a Cauchy sequence in C. Since H is complete and C is closed, C is also complete. Hence Cauchy sequence $\{x_n\}$ converges in C. $\therefore \exists x \text{ in } C \ni x_n \rightarrow x$. Now $||x|| = ||lt x_n|| = |t ||x_n||$ since norm is a continuous mapping = d \therefore x is vector in C with smallest norm. Uniqueness of x: If possible, suppose y is another vector in C ightarrow ||y|| = d. Then $\frac{x+y}{2} \in C$ and again by parallelogram law,

$$\left\|\frac{x+y}{2}\right\|^{2} = 2\left\|\frac{x}{2}\right\|^{2} + 2\left\|\frac{y}{2}\right\|^{2} - \left\|\frac{x-y}{2}\right\|^{2} < \frac{\|x\|^{2}}{2} + \frac{\|y\|^{2}}{2} = \frac{d^{2}}{2} + \frac{d^{2}}{2} = d^{2}$$

which contradicts the definition of d.

 \therefore A closed convex subset C of a Hilbert Space H contains a unique vector of smallest norm.

Theorem: 3*: Let M be a closed linear subspace of a Hilbert space H, x be a vector not in M and d be the distance of M from x. Then \exists a unique vector y_0 in M \ni $||x - y_0|| = d.$ **<u>Proof</u>**: Let $d(x, M) = d = \inf \{ ||x - z|| : z \in M \}$ by definition. $\therefore \exists$ a sequence $\{y_n\}$ of vectors in M $\ni ||x - y_n|| \to d$ Consider two vectors y_m and y_n belonging to sequence $\{y_n\}$. Since M is a linear subspace of H, $\frac{y_m + y_n}{2} \in M$. $\left\| x - \frac{y_m + y_n}{2} \right\| \ge d \Rightarrow \|2x - (y_m + y_n)\| \ge 2d \dots (1).$ Appling parallelogram for the vectors $x - y_m$ and $x - y_n$ we get $||x - y_m - (x - y_n)||^2 = 2||x - y_m||^2 + 2||x - y_n||^2 - ||x - y_m + x - y_n||^2$ $\Rightarrow ||y_n - y_m||^2 = 2||x - y_m||^2 + 2||x - y_n||^2 - ||2x - (y_m + y_n)||^2$ $\leq 2||x - y_m||^2 + 2||x - y_n||^2 - 4d^2$ Since $||x - y_m|| \rightarrow d$ and $||x - y_n|| \rightarrow d$ we have $||y_n - y_m||^2 \le 2||x - y_m||^2 + 2||x - y_n||^2 - 4d^2 \rightarrow 2d^2 + 2d^2 - 4d^2 = 0$ \therefore {y_n} is a Cauchy sequence in M. $\therefore \exists y_0 \in M \ni y_n \rightarrow y_0 \quad \because M \text{ is complete being closed subspace of complete space.}$ Now $||x - y_0|| = ||x - lt y_n|| = ||lt(x - y_n)|| = |t ||x - y_n|| = d$ \therefore y₀ is vector in M $ightarrow ||x - y_0|| = d$ Uniqueness of y_0 : If possible, suppose y is another vector in M ightarrow ||x - y|| = dThen $\frac{y_0+y}{2} \in M$ and again by parallelogram law $\left\|\frac{x-y_0+x-y}{2}\right\|^2 = 2\left\|\frac{x-y_0}{2}\right\|^2 + 2\left\|\frac{x-y}{2}\right\|^2 - \left\|\frac{x-y_0-(x-y)}{2}\right\|^2 < \frac{d^2}{2} + \frac{d^2}{2} = d^2 \Rightarrow$ $||2x - (y_0 + y)|| < 2d$ which is a contradiction to (1). Hence y₀ is unique. **Example**: For the special Hilbert space l_2^n use Cauchy's inequality to prove Schwartz inequality. **Solution**: Let $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$ be any two members of the Hilbert space l_2^n .

By Cauchy's inequality, $\sum_{i=1}^{n} |x_i y_i| \le (\sum_{i=1}^{n} |x_i|^2)^{\frac{1}{2}} (\sum_{i=1}^{n} |y_i|^2)^{\frac{1}{2}}$

But
$$(x, y) = \sum_{i=1}^{n} x_i \overline{y}_i$$

 $\therefore |(x, y)| = |\sum_{i=1}^{n} x_i \overline{y}_i| \le \sum_{i=1}^{n} |x_i \overline{y}_i| = \sum_{i=1}^{n} |x_i y_i|$
 $\le (\sum_{i=1}^{n} |x_i|^2)^{\frac{1}{2}} (\sum_{i=1}^{n} |y_i|^2)^{\frac{1}{2}} = \sqrt{(x, x)} \sqrt{(y, y)} = ||x|| ||y||$

ORTHOGONAL COMPLEMENT:

Orthogonality: Definition

Let x and y be vectors in a Hilbert space H. Then x is said to be *orthogonal* to y if (x, y) = 0 (written as $x \perp y$). Note: 1. If x, y \in H and x \perp y then y \perp x.

Solution: Let x, $y \in H$ and $x \perp y$

 \Rightarrow (x, y) = 0 \Rightarrow (y, x) = $\overline{(x, y)}$ = 0 so that y \perp x.

2. If x is orthogonal to y, then every scalar multiple of x is orthogonal to y. Solution: Let x, $y \in H$ and $x \perp y$. \therefore (x, y) = 0. Let α be any scalar

Then $(\alpha x, y) = \alpha(x, y) = \alpha 0 = 0$ so that $\alpha x \perp y$

3. The zero vector is orthogonal to every vector.

Solution: Let $x \in H$. Then $(\overline{0}, x) = 0$. $\therefore \overline{0} \perp x$. Thus, $\overline{0} \perp x \forall x \in H$.

4. The zero vector is the only vector which is orthogonal to itself. I.e. $x \perp x$ iff $x = \overline{0}$.

Solution: Let $x \in H$. Then $x \perp x$ iff (x, x) = 0 iff $||x||^2 = \overline{0}$ iff ||x|| = 0 iff $x = \overline{0}$.

5. \perp is not transitive. ie. x, y, $z \in H$, $x \perp y$ and $y \perp z \Rightarrow x \perp z$.

Solution: Consider $x = (1, 0, 0), y = (0, 1, 0), z = (1, 0, 1) \in \mathbb{C}^3$. Then (x, y) = 1(0) + 0(1) + 0(0) = 0 and (y, z) = 0(1) + 1(0) + 0(1) = 0 so that $x \perp y$ and $y \perp z$. But $1(1) + 0(0) + 0(1) = 1 \neq 0$. So, x is not orthogonal to z.

The Pythagorean theorem: If x and y are any two orthogonal vectors in a Hilbert Space H, then $||x + y||^2 = ||x - y||^2 = ||x||^2 + ||y||^2$ Proof: Let $x \perp y$ ie. (x, y) = 0 then (y, x) = 0. Now $||x + y||^2 = (x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y)$. $= ||x||^2 + 0 + 0 + ||y||^2 = ||x||^2 + ||y||^2$ and $||x - y||^2 = (x - y, x - y) = (x, x) - (x, y) - (y, x) + (y, y) = ||x||^2 + ||y||^2$.

Definition: A vector x is said to be orthogonal to a non – empty subset S of a Hilbert Space H (written $x \perp S$) if $x \perp y \forall y \in S$. Two non – empty subsets S₁ and S₂ of a Hilbert space H are said to be orthogonal (written S₁ \perp S₂) if $x \perp y \forall x \in S_1$ and $\forall y \in S_2$. **<u>Definition</u>**: Let S be a non-empty subset of a Hilbert Space H. The orthogonal complement of S (written as S^{\perp}) is defined by $S^{\perp} = \{x \in H: x \perp y \forall y \in S\}$.

<u>**Theorem</u>**: 4*: Let S be a non – empty subset of a Hilbert Space H then S^{\perp} is a closed linear subspace of H.</u>

Proof: Claim: S^{\perp} is linear subspace of H. S^{\perp} is non-empty, since $(\overline{0}, x) = 0 \forall x \in S$. Let $x_1, x_2 \in S^{\perp}$ and α, β be any scalars. Let $y \in S$ then, $(x_1, y) = 0 = (x_2, y)$. $\therefore (\alpha x_1 + \beta x_2, y) = \alpha(x_1, y) + \beta(x_2, y) = \alpha 0 + \beta 0 = 0$. $\therefore (\alpha x_1 + \beta x_2, y) = 0 \forall y \in S$ so that $\alpha x_1 + \beta x_2 \perp S^{\perp}$. $\therefore S^{\perp}$ is a subspace of H. Claim: S^{\perp} is closed. Let x be a limit point of S^{\perp} . $\therefore \exists$ a sequence $\{x_n\}$ of points of $S^{\perp} \ni x_n \rightarrow x$. Then for every n, $(x_n, y) = 0 \forall y \in S$. Now let $y \in S$. Then $(x, y) = (\operatorname{lt} x_n, y) = \operatorname{lt} (x_n, y) = \operatorname{lt} 0 = 0$. $\therefore x \in S^{\perp}$. Hence S^{\perp} is closed subspace of H. Note: S^{\perp} is complete. $\therefore S^{\perp}$ is a Hilbert Space.

Orthogonal complement of an orthogonal complement.

<u>Definition</u>: Let S be any non-empty subset of a Hilbert Space H. We define $(S^{\perp})^{\perp} = S^{\perp \perp} = \{x \in H: (x, y) = 0 \forall y \in S^{\perp}\}.$

Theorem: 1*: If S, S₁, S₂ are non-empty subsets of a Hilbert Space H, then (i) (ii) $H^{\perp} = \{0\}, (iii) \mathbb{S} \cap S^{\perp} \subseteq \{\overline{0}\} (iv) \mathbb{S}_1 \subseteq \mathbb{S}_2 \Longrightarrow \mathbb{S}_2^{\perp} \subseteq \mathbb{S}_1^{\perp}$ $\{0\}^{\perp} = H.$ and (v) S $\subset S^{\perp\perp}$. **Proof**: (i) Clearly $\{0\}^{\perp} \subset H$, Let $x \in H$. Then $(x, \overline{0}) = 0$. $\therefore x \in \{0\}^{\perp}$ so that $H \subset \mathbb{C}$ $\{0\}^{\perp}$. Hence $\{0\}^{\perp} = H$. (ii) Let $\mathbf{x} \in H^{\perp}$. $(\mathbf{x}, \mathbf{y}) = 0 \forall \mathbf{y} \in \mathbf{H}$. $(\mathbf{x}, \mathbf{x}) = 0$. $\Rightarrow \|\mathbf{x}\|^2 = 0 \Rightarrow \mathbf{x} = 0$ $\therefore H^{\perp} \subseteq \{\overline{0}\}. \text{ Since } (\overline{0}, x) = 0 \quad \forall x \in H, \{\overline{0}\} \subseteq H^{\perp}. \text{ Hence } H^{\perp} =$ <u>0</u>. {**0**}. (iii) Let $x \in S \cap S^{\perp}$. Then $x \in S$ and $x \in S^{\perp}$. $\Rightarrow x \in S$ and $x \perp y \forall y \in S$. \Rightarrow In particular $\mathbf{x} \perp \mathbf{x}$. \Rightarrow $(\mathbf{x}, \mathbf{x}) = 0 \Rightarrow ||\mathbf{x}||^2 = 0 \Rightarrow \mathbf{x} = \overline{\mathbf{0}}$. $\therefore \mathbf{S} \cap S^{\perp} \subseteq \{\overline{\mathbf{0}}\}$. (iv) Let $S_1 \subseteq S_2$ and $x \in S_2^{\perp}$ $\therefore x \perp y \ \forall y \in S_2 \Rightarrow x \perp y \ \forall y \in S_1 \text{ since } S_1 \subseteq S_2.$ $\Rightarrow \mathbf{x} \in S_1^{\perp}$. $\therefore S_2^{\perp} \subseteq S_1^{\perp}$ (v) Let $x \in S$. Let $y \in S^{\perp}$. Then $x \perp y$. $\therefore x \perp y \forall y \in S^{\perp} \Rightarrow x \in (S^{\perp})^{\perp} = S^{\perp \perp}$. \therefore S \subseteq S^{$\perp \perp$}.

<u>Theorem</u>: 7*: If M is a proper closed linear subspace of a Hilbert Space H, then \exists a non – zero vector z_0 in H $\ni z_0 \perp M$.

Proof: Since M is a proper closed linear subspace of a Hilbert Space H, \exists a vector $x \in H$ which is not in M. Let d be the distance of M from x. Then $d = \inf \{ ||x - y|| : y \in M \}$. Since $x \neq y \forall y \in M, d > 0$. Since M is a closed linear subspace of H, \exists a vector y_0 in M $ightarrow ||x - y_0|| = d$. Now we set $z_0 = x - y_0$. : We have $||z_0|| = ||x - y_0|| = d > 0$ so that z_0 is non-zero vector. Let y be any arbitrary vector in M. For any scalar α , we have $z_0 - \alpha y = x - (y_0 + z_0)$ α y). Since M is a subspace of H and $y_0, y \in M, y_0 + \alpha y \in M$. By definition of d, $||x - (y_0 + \alpha y)|| \ge d$. Now $||(z_0 - \alpha y)|| = ||x - (y_0 + \alpha y)|| \ge d = ||z_0||$ $\|z_0 - \alpha y\|^2 \ge \|z_0\|^2$ $\Rightarrow (z_0 - \alpha y, z_0 - \alpha y) - (z_0, z_0) \ge 0$ $\Rightarrow -\bar{\alpha}(z_0, y) - \alpha(\overline{z_0, y}) + \alpha\bar{\alpha}(y, y) \ge 0 \dots (1).$ The relation (1) is true \forall scalars α . Let us take $\alpha = \beta(z_0, y)$ where β is real number. Then $\overline{\alpha} = \beta(\overline{z_0, y})$. Putting the values of α , $\bar{\alpha}$ in (1), $-\beta\overline{(z_0,y)}(z_0,y) - \beta(z_0,y)\overline{(z_0,y)} + \beta^2(z_0,y)\overline{(z_0,y)} \|y\|^2 \ge 0$ $\Rightarrow -2\beta |(z_0, y)|^2 + \beta^2 |(z_0, y)|^2 ||y||^2 \ge 0$ $\Rightarrow \beta |(z_0, y)|^2 (\beta ||y||^2 - 2) \ge 0 \dots (2).$ The relation (2) is true \forall real β . Suppose that $(z_0, y) \neq 0$. Then choose β positive and so small that $\beta ||y||^2 < 2$. $\therefore \beta |(z_0, y)|^2 (\beta ||y||^2 - 2) < 0 \text{ which contradicts (2)}$ \therefore (z_0, y) = 0 \Rightarrow z₀ \perp y. ie y \in M \Rightarrow z₀ \perp y \therefore $z_0 \perp y \forall y \in M.$ Hence $z_0 \perp M$.

Theorem: 2*: If M is a linear subspace of Hilbert Space H, show that M is closed if and only if $M = M^{\perp \perp}$. **Proof**: Let M be a subspace of a Hilbert Space H and $M = M^{\perp \perp}$. We know that $(M^{\perp})^{\perp}$ is a closed subspace of H. \therefore M is a closed subspace of H. Conversely suppose that M is closed subspace of H.

As proved earlier $M \subseteq M^{\perp \perp}$.

If possible, suppose that M is a proper subset of $M^{\perp\perp}$.

Now $M^{\perp\perp}$ is a Hilbert Space and M is a proper closed subspace of $M^{\perp\perp}$.

 \therefore By previous theorem, \exists non-zero vector z_0 in $M^{\perp \perp} \ni z_0 \perp M$.

$$\Rightarrow$$
 z₀ \in M^{\perp} .

 \therefore $z_0 \in M^{\perp}$ and $z_0 \in M^{\perp \perp}$

 $\Rightarrow z_0 \in M^{\perp} \cap M^{\perp \perp} \subseteq \{\overline{\mathbf{0}}\}.$

 $\therefore z_0 = \overline{0}$ which is a contradiction. Hence $M = M^{\perp \perp}$.

Theorem: 2*: If M and N are closed linear subspaces of a Hilbert Space H suchthat $M \perp N$, then the linear subspace M + N is also closed.**Proof**: Let z be a limit point of M + N.

 \therefore \exists a sequence $\{z_n\}$ of points of M + N $\ni z_n \rightarrow z$.

Since $M \perp N$, $M \cap N = \{\overline{0}\}$ and so the subspace M + N is the direct sum of the subspaces M and N.

 \therefore each z_n can be uniquely written as $z_n = x_n + y_n$ where $x_n \in M$, $y_n \in N$.

Consider two vectors $z_m = x_m + y_m$ and $z_n = x_n + y_n$ belonging to $\{z_n\}$.

Since $x_m - x_n \in M$ and $y_m - y_n \in N$ and $M \perp N$, $(x_m - x_n) \perp (y_m - y_n)$.

By Pythogorian theorem, $||x_m - x_n + y_m - y_n||^2 = ||x_m - x_n||^2 + ||y_m - y_n||^2$. $\Rightarrow ||z_m - z_n||^2 = ||x_m - x_n||^2 + ||y_m - y_n||^2 \dots (i)$

Now $\{z_n\}$ is a convergent sequence in the Hilbert Space H.

 \therefore {z_n} is a Cauchy sequence in the Hilbert Space H.

 $\therefore \text{ as } m, n \to \infty, \text{ we have } \|z_m - z_n\|^2 \to 0 \Rightarrow \|x_m - x_n\|^2 + \|y_m - y_n\|^2 \to 0.$ $\Rightarrow \|x_m - x_n\|^2 \to 0, \|y_m - y_n\|^2 \to 0.$

 \Rightarrow {x_n} and {y_n} are Cauchy sequences in M and N respectively.

But M and N are complete being closed subspaces of a complete space.

 \therefore {x_n} and {y_n} in M and N are convergent sequences in M and N.

 $\therefore \exists x \in M \text{ and } y \in N \ni x_n \rightarrow x \text{ and } y_n \rightarrow y.$

Now $z = \lim z_n = \lim (x_n + y_n) = \lim x_n + \lim y_n = x + y \in M + N$.

Thus, if z is a limit point of M + N then $z \in M + N$.

 \therefore M + N is closed.

Projection Theorem: 6*: If M is a closed linear subspace of a Hilbert Space H,
then $H = M \oplus M^{\perp}$.**Proof**: Let M be a closed linear subspace of a Hilbert Space H. $\therefore M \cap M^{\perp} = \{\overline{0}\}$ since M is a subspace of H.Now M^{\perp} is a closed subspace of H.

M is given to be a closed subspace of H. ∴ By the preceding theorem M + M[⊥] is closed subspace of H. Put N = M + M[⊥] ... (i) Then, By (i), M ⊆ N and M[⊥] ⊆ N. ∴ N[⊥]⊆ M[⊥] and N[⊥] ⊆ M^{⊥⊥}. ⇒ N[⊥]⊆ M[⊥] ∩ M^{⊥⊥} = { $\overline{0}$ }. ∴ N[⊥] = { $\overline{0}$ } ⇒ N^{⊥⊥} = { $\overline{0}$ }[⊥] = H ⇒ N = H since N = M + M[⊥] is a closed subspace of H ⇒ N^{⊥⊥} = N Thus, N = M + M[⊥] = H. Finally, H = M + M[⊥] and M ∩ M[⊥] = { $\overline{0}$ }. ⇒ H = M ⊕ M[⊥].

Example 1: 2*: If S is a non-empty subset of a Hilbert Space H, show that $S^{\perp} = S^{\perp \perp \perp}$.

Solution: We know that if M is a closed subspace of a Hilbert Space H then $M = M^{\perp \perp}$. Since S^{\perp} is a closed subspace of Hilbert Space H, $S^{\perp} = S^{\perp \perp \perp}$.

Example 2: 1*: If S is a non-empty subset of a Hilbert Space H, show that the set of all linear combinations of vector in S is dense in H if and only if $S^{\perp} = \{\overline{0}\}$. **Solution**: Put M = [S]. Suppose M is dense in H. ie. \overline{M} = H. Let z be a limit point of M. Then \exists a sequence $\{z_n\}$ of points of M $\ni z_n \rightarrow z$. Let $x \perp M$. Then $x \perp z_n \forall n$ since $z_n \in M \forall n$. \Rightarrow (x, z_n) = 0 \forall n. $\therefore 0 = lt (x, z_n) = (x, lt z_n) = (x, z)$. ie. (x, z) = 0. So, $x \perp z$. Thus, $x \perp M \Rightarrow x \perp z$ where z is a limit point of M. $\therefore x \perp \overline{M} (\Rightarrow x \in \overline{M}^{\perp})$. Now let $x \in S^{\perp}$. Then $x \perp S \Rightarrow x$ is orthogonal to every vector in [S] = M. \Rightarrow x $\perp \overline{M} \Rightarrow$ x \perp H. In particular x \perp x which \Rightarrow x = $\overline{0}$. $\therefore S^{\perp} = \{\overline{0}\}$. Conversely suppose $S^{\perp} = \{\overline{0}\}.$ Claim: $\overline{M} = H$. Clearly, $\overline{M} \subseteq H$. If possible, suppose H $\not\subseteq \overline{M}$. Then \exists a vector x in H \ni x $\notin \overline{M}$. Since \overline{M} is a closed subspace of H, H = $\overline{M} \oplus \overline{M}^{\perp}$. \therefore we can write x = y + z where $y \in \overline{M}$ and $z \in \overline{M}^{\perp}$. Now z cannot be zero vector. If $z = \overline{0}$, then $x = y \in \overline{M}$ which is a contradiction. Then \exists non-zero vector $z \ni z \in \overline{M}^{\perp} \Rightarrow z \perp M^{\perp} :: M \subset \overline{M}$. Thus, $z \in \overline{M}^{\perp} \implies z \in \overline{M}$ which is a contradiction. Hence $H = \overline{M}$.

Example 3: 1*: If S is a non-empty subset of a Hilbert Space H, show that $S^{\perp\perp} = \overline{[S]}$. **Solution**: We know that $S \subseteq S^{\perp\perp}$. Also $S^{\perp\perp}$ is a closed subspace of H. Closed subspace of H containing S. $\therefore \overline{[S]} \subseteq S^{\perp\perp}$... (1) Now $S \subseteq [S]$ and $[S] \subseteq \overline{[S]} \therefore S \subseteq \overline{[S]}$. $\therefore \overline{[S]^{\perp}} \subseteq S^{\perp}$ by a theorem $\Rightarrow S^{\perp\perp} \subseteq \overline{[S]^{\perp\perp}}$... (2) Since $\overline{[S]}$ is the closed subspace of H, $\overline{[S]} = \overline{[S]^{\perp\perp}}$. From (2) we get $S^{\perp\perp} \subseteq \overline{[S]}$... (3) From (1) and (3) $S^{\perp\perp} = \overline{[S]}$.

ORTHONORMAL SETS

Definition: A non-empty set $\{e_i\}$ of a Hilbert Space H is said to be an orthonormal set if (i) $||e_i|| = 1$ for every i (ii) $i \neq j \Rightarrow e_i \perp e_j$. **Note**: (i) Orthonormal set cannot contain $\overline{0}$ vector.

(ii) Every Hilbert Space which is not equal to zero space possesses an orthonormal set. For, $\overline{0} \neq x \in H \ni \frac{x}{\|x\|}$ is a unit vector and so $\left\{\frac{x}{\|x\|}\right\}$ is an orthonormal set of H. (iii) If $\{x_i\}$ is a non-empty set of mutually orthogonal non-zero vectors in H, then $\{e_i\}$ where $e_i = \frac{x_i}{\|x_i\|}$ is an orthonormal set in H.

Example: In the Hilbert Space l_2^n , $\{e_1, e_2, ..., e_n\}$ of l_2^n where $e_i = (x_1, x_2, ..., x_n)$ such that $x_i = 1$ and $x_j = 0$ if $j \neq i$ is an orthonormal set, exactly it is an orthonormal basis of l_2^n .

Bessel's inequality for finite sets

<u>**Theorem</u></u>: 4*: Let \{e_1, e_2, ..., e_n\} be a finite orthonormal set in a Hilbert Space H. If x is any vector in H, then \sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2. Further, x - \sum_{i=1}^{n} (x, e_i)e_i \perp e_j for each j.</u>**

<u>Proof</u>: Given that $\{e_1, e_2, ..., e_n\}$ be a finite orthonormal set in a Hilbert Space H and x be any vector in H. Consider the vector $y = x - \sum_{i=1}^{n} (x, e_i) e_i$.

$$\therefore 0 \le ||y||^{2} = (y, y) = (x - \sum_{i=1}^{n} (x, e_{i})e_{i}, x - \sum_{j=1}^{n} (x, e_{j})e_{j})$$

$$= (x, x) - \sum_{i=1}^{n} (x, e_{i})(e_{i}, x) - \sum_{j=1}^{n} \overline{(x, e_{j})}(x, e_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{n} (x, e_{i})\overline{(x, e_{j})}(e_{i}, e_{j})$$

$$= ||x||^{2} - \sum_{i=1}^{n} (x, e_{i})\overline{(x, e_{i})} - \sum_{j=1}^{n} \overline{(x, e_{j})}(x, e_{j}) + \sum_{i=1}^{n} (x, e_{i})\overline{(x, e_{i})}$$

$$= ||x||^{2} - \sum_{i=1}^{n} |(x, e_{i})|^{2} = ||x||^{2} - \sum_{i=1}^{n} |(x, e_{i})|^{2}$$

 $\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2 \dots (i)$ Further, for each $1 \le j \le n$, $(x - \sum_{i=1}^{n} (x, e_i) e_i, e_j) = (x, e_j) - \sum_{i=1}^{n} (x, e_i) (e_i, e_j)$ = $(x, e_j) - (x, e_j) = 0.$ $x - \sum_{i=1}^{n} (x, e_i) e_i \perp e_j$ for each $j \ge 1 \le j \le n.$

<u>Theorem</u>: If $\{e_i\}$ is an orthonormal set in a Hilbert Space H, and if x is any vector in H, then the set $S = \{e_i: (x, e_i) \neq 0\}$ is either empty or countable.

<u>Proof</u>: For each positive integer n, consider $S_n = \left\{ e_i : |(x, e_i)|^2 > \frac{||x||^2}{n} \right\}$.

If the set S_n contains n or more than n vectors, then $\sum_{e_i \in S_n} |(x, e_i)|^2 > n \frac{||x||^2}{n} = ||x||^2$

... (1) which is a contradiction since by a theorem $\sum_{e_i \in S_n} |(x, e_i)|^2 \le ||x||^2$.

 \therefore S_n contains at most n – 1 vectors.

Thus, for each + ve integer n, the set S_n is finite.

Now suppose $e_i \in S$. Then $(x, e_i) \neq 0$.

However small may be the value of $|(x, e_i)|^2$, we can take n so large that $|(x, e_i)|^2 > \frac{||x||^2}{||x||^2}$

$$|(x,e_i)|^2 > \frac{1}{n}.$$

 \therefore If $e_i \in S$, then e_i must belong to some S_n .

 \therefore S = $\bigcup_{n=1}^{\infty} S_n$. \therefore S is a countable being countable union of finite sets. If (x, e_i) = 0 for every i, then S is empty. Otherwise, S is a finite or a countable infinite set.

Theorem: 2*: Bessel's inequality.

If {e_i} is an orthonormal set in a Hilbert Space H, then $\sum |(x, e_i)|^2 \le ||x||^2$ for each vector $x \in H$. **Proof**: Let $x \in H$ and $S = \{e_i: (x, e_i) \neq 0\}$. Then S is either empty or countable. If S is empty then $(x, e_i) = 0 \forall i$. In this case define $\sum |(x, e_i)|^2$ to be 0 and we have $0 \le ||x||^2$. Thus, $\sum |(x, e_i)|^2 \le ||x||^2$. Now suppose $S \neq \phi$. \therefore either S is finite or countably infinite. If S is finite $S = \{e_1, e_2, ..., e_n\}$ for some + ve integer n. In this case we can define $\sum |(x, e_i)|^2$ to be $\sum_{i=1}^{n} |(x, e_i)|^2$ which is $\le ||x||^2$ by Bessel's inequality for finite cases. Finally suppose that S be arranged in a definite order say $S = \{e_1, e_2, ..., e_n, ...\}$. For each n, the set $\{e_1, e_2, ..., e_n\}$ is an orthonormal set and by Bessel's inequality for finite cases $\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2$. This says that the infinite series $\sum_{i=1}^{\infty} |(x, e_i)|^2$ is absolutely convergent since all terms of this series are + ve, and so $\sum_{i=1}^{\infty} |(x, e_i)|^2 \le ||x||^2 \dots$ (i). Also, it's sum will not change by any rearrangement of it's terms. In this case we

can define $\sum |(x, e_i)|^2$ to be $\sum_{i=1}^{\infty} |(x, e_i)|^2$ and from (i) this is $\leq ||x||^2$.

<u>Theorem</u>: 2*: If $\{e_i\}$ is an orthonormal set in a Hilbert Space H, and if x is an arbitrary vector in H, then $x - \sum (x, e_i)e_i \perp e_i$ for each j. **Proof**: Let $S = \{e_i: (x, e_i) \neq 0\}$. Then S is either empty or countable. If S is empty then $(x, e_i) = 0 \forall i$. In this case define $\sum (x, e_i)e_i$ to be vector $\overline{0}$ and then $x - \sum (x, e_i)e_i = x - \overline{0} = x$. Since $S = \varphi$, $(x, e_i) = 0 \forall j$ so that $x \perp e_i \forall j$ and hence the result. Now suppose $S \neq \phi$. \therefore either S is finite or countably infinite. If S is finite $S = \{e_1, e_2, ..., e_n\}$ for some + ve integer n. In this case define $\sum (x, e_i)e_i = \sum_{i=1}^n (x, e_i)e_i$ and we have already proved that $x - \sum_{i=1}^{n} (x, e_i) e_i \perp e_i$ for each j. Finally suppose S be countably infinite and be arranged in a definite order say, $S = \{e_1, e_2, \dots, e_n, \dots\}.$ Put $s_n = \sum_{i=1}^n (x, e_i) e_i$. For m > n, $||s_n - s_m||^2 = ||\sum_{i=n+1}^m (x, e_i)e_i||^2 = \sum_{i=n+1}^m |(x, e_i)|^2$. But by Bessel's inequality the series $\sum_{i=1}^{\infty} |(x, e_i)|^2$ is convergent. \therefore m, n $\rightarrow \infty$, we have $\sum_{i=n+1}^{\infty} |(x, e_i)|^2 \rightarrow 0 \Rightarrow ||s_n - s_m||^2 \rightarrow 0$. \therefore the sequence $\{s_n\}$ is a Cauchy sequence in H. Since H is complete, $\{s_n\}$ is convergent in H. $\therefore \exists$ a vector $s \in H \ni s_n \rightarrow s$ which we write $s = \sum_{n=1}^{\infty} (x, e_n) e_n$. Now define $\sum (x, e_i)e_i = \sum_{n=1}^{\infty} (x, e_n)e_n$. $\therefore (x - \sum (x, e_i) e_i, e_j) = (x - s, e_i) = (x, e_i) - (s, e_i) = (x, e_i) - (lt s_n, e_i)$ $=(x,e_i)-lt(s_n,e_i).$ If $e_j \notin S$ then $(s_n, e_j) = \left(\sum_{i=1}^n (x, e_i)e_i, e_i\right) = 0$. \therefore $lt(s_n, e_i) = 0$ in this case. $\therefore (x - \sum (x, e_i)e_i, e_i) = (x, e_i) = 0 \text{ since } e_i \notin S.$ If $e_j \in S$, then $(s_n, e_j) = \left(\sum_{i=1}^n (x, e_i)e_i, e_j\right) = (x, e_j)$ for n > j. \therefore lt (s_n, e_i) = (x, e_i) in this case. So that $(x - \sum (x, e_i)e_i, e_j) = (x, e_j) - (x, e_j) = 0.$ Thus, we have $(x - \sum (x, e_i)e_i, e_i) = 0$ for each j.

ie. $x - \sum (x, e_i) e_i \perp e_i$ for each j.

Claim: Definition of $\sum (x, e_i)e_i$ is valid. Let the vectors in S be arranged in any manner say $S = \{f_1, f_2, ..., f_n, ...\}$. Put $s_n' = \sum_{i=1}^n (x, f_i)f_i$. As shown above $\{s_n'\}$ will converge to vector say s' in H. We write $s' = \sum_{n=1}^{\infty} (x, f_n)f_n$. For any $\varepsilon > 0$, let n_0 be a + ve integer so large that if $n \ge n_0$, then $||s_n - s|| < \varepsilon$, $||s_n' - s'|| < \varepsilon$ and $\sum_{i=n_0+1}^{\infty} ||(x, e_i)|^2 < \varepsilon^2$. For some + ve integer $m_0 > n_0$, all terms of s_{n_0} occur among those of s_{m_0}' . $\therefore s_{m_0}' - s_{n_0}$ is a finite sum consisting of the type $(x, e_i)e_i$ for $i = n_0 + 1, n_0 + 2, ...$ This gives $||s_{m_0}' - s_{n_0}||^2 \le \sum_{i=n_0+1}^{\infty} ||(x, e_i)|^2 < \varepsilon^2$. Consequently, $||s_{m_0}' - s_{n_0}|| < \varepsilon$. Now, $||s' - s|| = ||s' - s_{m_0}' + s_{m_0}' - s_{n_0} + s_{n_0} - s|| < 3\varepsilon$. Since ε is arbitrary, $||s' - s|| < 3\varepsilon$ gives s' = s.

COMPLETE ORTHONORMAL SET

Definition: An orthonormal set is said to be complete if it is not contained in any larger orthonormal set.

Theorem: 2*: Every orthonormal set in a Hilbert Space is contained in some complete orthonormal set. Further every non – zero Hilbert Space contains a complete orthonormal set.

Proof: Let S be an orthonormal set in a Hilbert Space H. Let \mathcal{P} be the class of orthonormal sets containing S. Then \mathcal{P} is non-empty since $S \in \mathcal{P}$. Now \mathcal{P} is partially ordered set w. r. t. set inclusion. Let T be any totally ordered subset of \mathcal{P} and let $T = \{A_{\lambda}: \lambda \in \Lambda\}$. Obviously for every $\lambda, A_{\lambda} \subseteq \cup \{A_{\lambda}, \lambda \in \Lambda\}$. Since each A_{λ} contains S, $\cup A_{\lambda}$ contains S. Let x, y be any two distinct vectors belonging to $\cup A_{\lambda}, \lambda \in \Lambda$. Then $\exists A_{\alpha}$ and $A_{\beta} \in T \ni x \in A_{\alpha}$ and $y \in A_{\beta}$. But T is totally ordered. \therefore either $A_{\alpha} \subseteq A_{\beta}$ or $A_{\beta} \subseteq A_{\alpha}$. Without loss of generality let us take $A_{\alpha} \subseteq A_{\beta}$. Then x, $y \in A_{\beta}$. But A_{β} is an orthonormal set. $\therefore x \perp y$ and ||x|| = 1, ||y|| = 1. $\therefore \cup A_{\lambda}, \lambda \in \Lambda$ is an orthonormal set.

Thus, $\cup A_{\lambda}$, $\lambda \in \Lambda$ is an orthonormal set containing S and each $A_{\lambda} \subseteq \cup A_{\lambda}$, $\lambda \in \Lambda$. $\therefore \cup A_{\lambda}$, $\lambda \in \Lambda$ is an upper bound for T in \mathcal{P} .

Thus, \mathcal{P} satisfies all the conditions of Zorn's lemma.

 \therefore there must exist a maximal element in \mathcal{P} . Let it be M.

Then M is a complete orthonormal set containing S.

For, if it is not so, then \exists an orthonormal set containing S and also containing M properly. This will contradict the maximality of M.

Further, let H be a non-zero Hilbert Space.

Let x be a non-zero vector in H.

Then $S = \left\{\frac{x}{\|x\|}\right\}$ is an orthonormal set in H.

 \therefore By the above part of this theorem \exists a complete orthonormal set in H containing S.

<u>**Theorem</u>**: 5*: Let H be a Hilbert Space, and let $\{e_i\}$ be an orthonormal set in H. Then the following are equivalent.</u>

(i) $\{e_i\}$ is complete. (ii) $x \perp \{e_i\} \Rightarrow x = 0$. (iii) If x is an arbitrary vector in H, then $x = \sum (x, e_i)e_i$. (iv) If x is an arbitrary vector in H, then $||x||^2 = \sum |(x, e_i)|^2$. **<u>Proof</u>**: Claim: (i) \Rightarrow (ii). Let $\{e_i\}$ be an orthonormal set. Suppose $x \perp \{e_i\}$ and $x \neq \overline{0}$. Then $e = \frac{x}{\|x\|}$ is a unit vector $\mathbf{y} \in \mathcal{L}\{e_i\}$. ie. $(e, e_i) = 0$ for each i. Then $\{e, e_i\}$ is an orthonormal set containing $\{e_i\}$ which contradicts the fact that $\{e_i\}$ is complete. $\therefore x \perp \{e_i\} \Rightarrow x = \overline{0}.$ Claim: (ii) \Rightarrow (iii). Let $x \perp \{e_i\} \Rightarrow x = \overline{0}$ and $x \in H$. Then by a theorem $x - \sum (x, e_i) e_i$ is orthogonal to every vector in the set $\{e_i\}$. I.e. $x - \sum (x, e_i) e_i \perp \{e_i\}.$ By (ii) $x - \sum (x, e_i) e_i = \overline{0}$. $\Rightarrow x = \sum (x, e_i) e_i$. Claim: (iii) \Rightarrow (iv). Assume (iii). Let $x \in H$. Then $x = \sum (x, e_i) e_i$ by (iii). $\therefore \|x\|^2 = (\mathbf{x}, \mathbf{x}) = \left(\sum_i (x, e_i) e_i, \sum_i (x, e_i) e_i\right) = \sum_i \sum_i (x, e_i) \overline{(x, e_i)} (e_i, e_i)$ $=\sum_{i}(x,e_{i})\overline{(x,e_{i})} = \sum_{i}|(x,e_{i})|^{2}$ Claim: (iv) \Rightarrow (i). Assume (iv). Ie $||x||^2 = \sum |(x, e_i)|^2 \forall x \in H$. If possible, suppose $\{e_i\}$ is not complete.

Then $\{e_i\}$ is a proper subset of an orthonormal set $\{e, e_i\}$. $\therefore ||e||^2 = \sum |(e, e_i)|^2 = 0$ which is a contradiction to the fact that e is a unit vector.

Standard Terminology. Let $\{e_i\}$ be a complete orthonormal set in a Hilbert Space H and x be any vector in H. Then w.r.t this complete orthonormal set the scalars (x, e_i) are called the Fourier coefficients of x, the expression $x = \sum (x, e_i)e_i$ is called the Fourier expansion of x, and the equation $||x||^2 = \sum |(x, e_i)|^2$ is called Parseval's equation or Parseval's identity.

Gram – Schmidth Orthogonalisation

Theorem: 1*: Let $S = \{x_1, x_2, ..., x_n, ...\}$ be a linearly independent set of vectors in a Hilbert Space H. Then \exists an orthonormal set of vectors $S_o = \{e_1, e_2, ..., e_n, ...\}$ such that for each n, $[\{x_1, x_2, ..., x_n\}] = [\{e_1, e_2, ..., e_n\}]$ ie, for any n, the linear subspace spanned by $\{x_1, x_2, ..., x_n\}$ is same as that spanned by $\{e_1, e_2, ..., e_n\}$. **Proof**: We prove it by induction on n.

Let n = 1. Then $x_1 \neq \overline{0}$ since S is linearly independent. Put $e_1 = \frac{x_1}{\|x_1\|}$.

Then e_1 is a unit vector and so $\{e_1\}$ is an orthonormal set.

Since e_1 and x_1 are non-zero vectors and they are linearly dependent, the subspace spanned by $\{x_1\}$ is the same as that spanned by $\{e_1\}$.

Thus, the theorem is true for n = 1.

Now assume that we have constructed an orthonormal set $\{e_1, e_2, ..., e_{n-1}\}$ such that $[\{x_1, x_2, ..., x_i\}] = [\{e_1, e_2, ..., e_i\}]$ for any integer $i \ni 1 \le i \le n-1$.

Now consider
$$y = x_n - \sum_{i=1}^{n-1} (x_n, e_i) e_i$$

Then y is orthogonal to each of vectors $e_1, e_2, ..., e_{n-1}$ by a known theorem.

Further, $y \neq \overline{0}$. For, if $y = \overline{0}$, then $x_n = \sum_{i=1}^{n-1} (x_n, e_i) e_i$.

ie. x_n is a linear combination of $e_1, e_2, ..., e_{n-1}$.

 \Rightarrow x_n is a linear combination of x₁, x₂, ..., x_{n-1} by induction hypothesis which is contrary to the fact that {x₁, x₂, ..., x_n} is linearly independent.

Now take $e_n = \frac{y}{\|y\|}$.

Then e_n is a unit vector orthogonal to each of $e_1, e_2, ..., e_{n-1}$ so that $\{e_1, e_2, ..., e_n\}$ is an orthonormal set. Now $e_n = \frac{y}{\|y\|} = \frac{x_n - \sum_{i=1}^{n-1} (x_n, e_i)e_i}{\|y\|} \dots$ (i).

So, e_n is a linear combination of $e_1, e_2, ..., e_{n-1}, x_n$

 \Rightarrow e_n is a linear combination of x₁, x₂, ..., x_{n-1}, x_n by induction.

Also from (i), $x_n = \|y\|e_n + \sum_{i=1}^{n-1} (x_n, e_i)e_i$

Thus, x_n is a linear combination of $e_1, e_2, ..., e_n$. \therefore the linear subspace of H spanned by $\{x_1, x_2, ..., x_n\}$ is same as that spanned by the set $\{e_1, e_2, ..., e_n\}$. The proof of the theorem is complete by induction.

Example 1: Show that in the Hilbert space l_2^n the set $\{e_1, e_2, \dots, e_n\}$ where e_i is the n-tuple with 1 in the ith place and 0 elsewhere is a complete orthonormal set. **Solution**: Let $S = \{e_1, e_2, \dots, e_n\}$ where $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$. If $x = (x_1, x_2, \dots, x_n) \in l_2^n$ then by definition of norm in l_2^n , $\|x\| = \{\sum_{i=1}^n |x_i|^2\}^{\frac{1}{2}}$. Also if $y = (y_1, y_2, \dots, y_n) \in l_2^n$ then by definition of inner product in l_2^n we have $(x, y) = \sum_{i=1}^n x_i \overline{y_i}$. Now $\|e_i\| = 1$ for each i. Also, if $i \neq j$ then, $(e_i, e_j) = 0$. \therefore S is an orthonormal set. $x \perp e_i$ for each $i = 1, 2, \dots, n \Rightarrow x_1 0 + x_2 0 + \dots + x_{i-1} 0 + x_i 1 + x_{i+1} 0 + \dots + x_n 0 = 0$. $\Rightarrow x_i = 0$ for each $i = 1, 2, \dots, n$.

Example 2: Show that in the Hilbert space l_2 the set $\{e_1, e_2, ..., e_n, ...\}$ where e_i is the n-tuple with 1 in the ith place and 0 elsewhere is a complete orthonormal set. **Solution**: Let $S = \{e_1, e_2, ..., e_n, ...\}$. If $x = (x_1, x_2, ..., x_n, ...) \in l_2$ then by

definition of norm in l_2 , $||x|| = \{\sum_{i=1}^{\infty} |x_i|^2\}^{\frac{1}{2}}$. Also if $y = (y_1, y_2, ..., y_n, ...) \in l_2$ then by definition of inner product in l_2 we have $(x, y) = \sum_{i=1}^{\infty} x_i \overline{y_i}$. Now $||e_i|| = 1$ for each i. Also, if $i \neq j$ then, $(e_i, e_j) = 0$. \therefore S is an orthonormal set. $x \perp e_n$ for each $n = 1, 2, ..., \Rightarrow x_10 + x_20 + ... + x_{n-1}0 + x_n1 + x_{n+1}0 + ... = 0$. $\Rightarrow x_n = 0$ for each n = 1, 2, ... $\therefore x \perp S \Rightarrow x = \overline{0}$. \therefore S is complete.

Example 3: Prove that an orthonormal set in a Hilbert Space is linearly independent.

Solution: Let S be any orthonormal set of vectors in a Hilbert Space H. Let $S_n = \{e_1, e_2, ..., e_n\}$ be a finite subset of S.

Let $\sum_{i=1}^{n} \alpha_i e_i = \overline{0}$ for scalars α_i , $1 \le i \le n$(i).

Now for each j, $1 \le j \le n$, $0 = (\overline{0}, e_j) = (\sum_{i=1}^n \alpha_i e_i, e_j) = \sum_{i=1}^n \alpha_i (e_i, e_j) = \alpha_j$. ie. $\alpha_j = 0$ for each j, $1 \le j \le n$.

 \therefore the set S_n is linearly independent. Thus, every finite subset of S is linearly independent. \therefore S is linearly independent.

Fax: 08816-227318 off: 08816-224072, 224119,228342 Mobile: 9491334119 DANTULURI NARAYANA RAJU COLLEGE (Autonomous) BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202.

(Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

E – CONTENT PAPER: M 301, FUNCTIONAL ANALYSIS M. Sc. II YEAR, SEMESTER - III UNIT – III : HILBERT SPACES - 2

PREPARED BY K, C. TAMMI RAJU, M. Sc. HEAD OF THE DEPARTMENT DEPARTMENT OF MATHEMATICS, PG COURSES DNR COLLEGE (A), BHIMAVARAM - 534202

FUNCTIONAL ANALYSIS UNIT III K. C. TAMMI RAJU

THE CONJUGATE SPACE H*

Let H be a Hilbert Space. A continuous linear transformation from H into \mathbb{C} is called a functional on H. The set $\mathfrak{B}(H, \mathbb{C})$ of all functionals on H is denoted by H* and is called conjugate space of H. If we define addition and scalar multiplication in H* pointwise and if the norm of a functional f is defined by ||f|| = Sup { $||f(x)|: ||x|| \le 1$ }, then H* is a Banach Space. To give H* the structure of a Hilbert Space we can define a suitable inner product on H*. Consequently by the same process (H*)* will also become a Hilbert Space.

Theorem 1: 3^* : Let y be a fixed vector in a Hilbert Space H and let f_y be a scalar valued function on H defined by $f_y(x) = (x, y) \forall x \in H$. Then f_y is a functional in H*. Further show that $||y|| = ||f_y||$. **<u>Proof</u>**: By definition $f_y(x) = (x, y) \forall x \in H$. Since (x, y) is a scalar, f_y is a mapping from H into C. f_v is linear: For, let $x_1, x_2 \in H$ and $\alpha, \beta \in K$. Then $f_v(\alpha x_1 + \beta x_2) = (\alpha x_1 + \beta x_2, y) = \alpha(x_1, y) + \beta(x_2, y) = \alpha f_v(x_1) + \beta f_v(x_2)$. f_y is continuous: For, $x \in H \Rightarrow |f_y(x)| = |(x, y)| \le ||x|| ||y|| \dots (1)$ by Schwartz inequality. $= \mathbf{k} \| \mathbf{x} \|$ $\left\| f_{y}(x) \right\| \leq k \|x\| \ \forall \ x \in$ where $||y|| = k \ge 0$. H so that f_v is bounded and hence continuous. Thus, f_v is a functional on H. ie. $f_y \in H^*$. Now $||f_y|| = \sup \{|f_y(x)| : ||x|| \le 1\} \le ||y||$ from (1). Ie. $||f_y|| \le ||y|| \dots (2)$. If $y = \overline{0}$, then ||y|| = 0 so that $f_y(x) = (x, \overline{0}) = 0 \forall x \in H$. i.e. zero functional Also $\|f_{\gamma}\| = 0.$ Let $y \neq \overline{0}$. Then H is not a zero space. $\therefore ||f_y|| = \sup \{ |f_y(x)| : ||x|| = 1 \}...(3).$ Since $y \neq \overline{0}$, $\frac{y}{\|y\|}$ is a unit vector. Taking $x = \frac{y}{\|y\|}, \|f_y\| \ge |f_y(\frac{y}{\|y\|})| = (\frac{y}{\|y\|}, y) = \frac{1}{\|y\|}(y, y) = \frac{1}{\|y\|} \|y\|^2 = \|y\|.$ Thus $||f_y|| \ge ||y|| \dots (4)$. From (2) and (4) $||f_y|| = ||y||$.

<u>Note</u>: $\psi : H \to H^*$ defined by $\psi(y) = f_y \forall y \in H$ is a norm preserving map.

Theorem 2: 7*: (Riesz Representation theorem) Let H be a Hilbert space and f be an arbitrary functional in H*. Then \exists a unique vector y in H \ni f = f_y ie. f(x) = (x, y) $\forall x \in H.$ **Proof**: Case (i): If f is zero functional, so $f(x) = 0 \forall x \in H$. Also, if $y = \overline{0}$ then $(x, y) = (x, \overline{0}) = 0 \forall x \in H$. $x \in H$. Thus, $\exists y = \overline{0} \Rightarrow f(x) = (x, y) \forall x \in H$. Case (ii): Now suppose f is not a zero functional ie. $f(x) \neq 0$ for some $x \in H$. Then the null space of f is $N = \{x \in H: f(x) = 0\}$. Then N is a proper subspace of H. Since f is also continuous N is proper closed subspace of H. \therefore \exists a non-zero vector $y_0 \in H \ni y_0 \perp N$ ie. $y_0 \in N^{\perp}$. Now define $v = f(x)y_0 - f(y_0)x \forall x \in H$ Then $f(v) = f(x)f(y_0) - f(y_0)f(x) = 0 \forall x \in H$. \Rightarrow v \in N. \Rightarrow (v, y₀) = 0 \Rightarrow (f(x)y₀ - f(y₀)x, y₀) = 0. \Rightarrow (f(x)y₀, y₀) - (f(y₀)x, y₀) = 0. \Rightarrow f(x)(y₀, y₀) = f(y₀)(x, y₀). $\Rightarrow \mathbf{f}(\mathbf{x}) = \frac{f(y_0)}{\|y_0\|^2} (x, y_0) = \left(x, \frac{\overline{f(y_0)}}{\|y_0\|^2} y_0\right)$ Let $y = \frac{f(y_0)}{\|y_0\|^2} y_0$. Then $f(x) = (x, y) \forall x \in H$ [Let α be any scalar $\exists y = \alpha y_0$. If $x \in N$, then f(x) = 0 and $(x, y) = (x, \alpha y_0) = \overline{\alpha}(x, y_0) = 0 \forall y_0 \perp N$. \therefore If $x \in N$ and $y = \alpha y_0$ then, f(x) = (x, y). Now choose α in such a way that $y = \alpha y_0$ satisfies f(x) = (x, y) for $x = y_0$. Ie. $f(y_0) = (y_0, \alpha y_0) = \overline{\alpha}(y_0, y_0) = \overline{\alpha} ||y_0||^2$ If we take $\alpha = \frac{f(y_0)}{\|y_0\|^2}$ then, $y = \alpha y_0$ satisfies f(x) = (x, y) for every x in N and for x = y_0 . Now let $x \in H$. Since $N \cap N^{\perp} = \{\overline{0}\}$ and y_0 is a non-zero vector belonging to $N^{\perp}, y_0 \notin N$. $\therefore f(y_0) \neq 0$. Now $f(x) = \frac{f(x)}{f(y_0)} f(y_0) = \beta f(y_0)$ where $\beta = \frac{f(x)}{f(y_0)}$. Then f(x) $\Rightarrow f(x) - \beta f(y_0) = 0 \Rightarrow f(x - \beta y_0) = 0 \Rightarrow x - \beta y_0$ $=\beta f(y_0).$ $\in N \Rightarrow x - \beta y_0 = n$ for some $n \in N$. Thus, $x \in H \Rightarrow x = n + \beta y_0$ where β is some scalar and $n \in N$. Now f(x) $= f(n + \beta y_0) = f(n) + \beta f(y_0) = (n, y) + \beta(y_0, y) = (n, y) + (\beta y_0, y) = (n + \beta y_0, y)$ = (x, y). $\therefore \exists y = \alpha y_0$ where $\alpha = \frac{\overline{f(y_0)}}{\|y_0\|^2}$ $\Rightarrow f(x) = (x, y) \ \forall x \in H$] **Uniqueness of y**:

If possible, suppose y and z are two vectors in H \ni f(x) = (x, y) $\forall x \in$ H and f(x) = (x, z) $\forall x \in$ H. Then (x, y) = (x, z) $\forall x \in$ H. \Rightarrow (x, y - z) = 0 $\forall x \in$ H. \Rightarrow (y - z, y - z) = 0. \Rightarrow y - z = $\overline{0} \Rightarrow$ y = z. Hence the Theorem.

Theorem 3: Show that the mapping $\psi : H \to H^*$ defined by $\psi(y) = f_y$ where $f_v(x) = (x, y) \forall x \in H$ is one to one, onto additive but not linear but an isometry. **Proof**: (i) ψ is one to one. For let y, $z \in H$ and $\psi(y) = \psi(z)$. $\Rightarrow f_v = f_z$ \Rightarrow f_v(x) = f_z(x) \forall x \in H. \Rightarrow (x, y) = (x, z) \forall x \in H. \Rightarrow (x, y) – (x, z) = 0 \forall x \in H. \Rightarrow (x, y – z) = 0 \forall x \in H. \Rightarrow (y - z, y - z) = 0. \Rightarrow y - z = $\overline{0}$ \Rightarrow y = z. (ii) ψ is onto: For, let f be an arbitrary functional in H^{*}. \exists a unique vector y \Rightarrow f = f_v. Then $\psi(y) = f_v = f$. (iii) ψ is additive: For, let $y, z \in H$. $f_{v+z}(x) = (x, y+z) \forall x \in H$ $= (x, y) + (x, z) \forall x \in H$ $= f_{v}(x) + f_{z}(x) \forall x \in H$ $=(f_v + f_z)(x) \forall x \in H.$ $\therefore \mathbf{f}_{\mathbf{v}+\mathbf{z}} = \mathbf{f}_{\mathbf{v}} + \mathbf{f}_{\mathbf{z}} \dots (1).$ Now $\psi(y + z) = f_{y+z} = f_y + f_z = \psi(y) + \psi(z) \dots (2)$ (iv) ψ is not linear: For, let $y \in H$, and $\alpha \in K$. Then $f_{\alpha y}(x) = (x, \alpha y) \forall x \in H$ $= \overline{\alpha}(\mathbf{x}, \mathbf{y}) \ \forall \ \mathbf{x} \in \mathbf{H}$ $= \overline{\alpha} f_{v}(x) \forall x \in H.$ $\therefore \mathbf{f}_{\alpha \mathbf{v}} = \bar{\alpha} \mathbf{f}_{\mathbf{v}} \dots (3).$ Now $\psi(\alpha y) = f_{\alpha y} = \overline{\alpha} f_y = \overline{\alpha} \psi(y) \dots (4)$. Thus, ψ is not linear. Such a mapping is called a conjugate linear map.

(v) ψ is an isometry: For, let $y, z \in H$. Then $\|\psi(y) - \psi(z)\| = \|f_y - f_z\| = \|f_y + f_{-z}\| = \|f_{y-z}\| = \|y - z\|$ by theorem (1). $\therefore \psi$ is an isometry.

Theorem 4: If H is a Hilbert Space, then show that H* is also a Hilbert Space with respect to the inner product defined by $(f_x, f_y) = (y, x)$.

<u>Proof</u>: We know that H* is a Banach Space with suitable definitions of addition and scalar multiplication in H* and norm of a functional in H*.

- (i) Claim: $(\alpha f_x + \beta f_y, f_z) = \alpha(f_x, f_z) + \beta(f_y, f_z).$ We know that $f_{\alpha y} = \overline{\alpha} f_y.$ $(\alpha f_x + \beta f_y, f_z) = (f_{\overline{\alpha}x} + f_{\overline{\beta}y}, f_z) = (f_{\overline{\alpha}x + \overline{\beta}y}, f_z) = (z, \overline{\alpha}x + \overline{\beta}y)$ $= \overline{\alpha}(z, x) + \overline{\beta}(z, y) = \alpha(f_x, f_z) + \beta(f_y, f_z).$ (ii) Claim: $\overline{(f_x, f_y)} = (f_y, f_x).$
 - $\overline{\left(f_x, f_y\right)} = \overline{\left(y, x\right)} = (x, y) = (f_y, f_x)$
- (iii) Claim: $(f_x, f_x) = ||f_x||^2$. $(f_x, f_x) = (x, x) = ||x||^2 = ||f_x||^2$

Hence H* is a Hilbert Space with inner product $(f_x, f_y) = (y, x)$.

Corollary: If we denote the elements of H^{**} by F_f , F_g etc. where f, g are their corresponding elements in H^{*}, then by theorem 4, H^{**} is also a Hilbert Space with respect to inner product defined by $(F_f, F_g) = (g, f)$.

Theorem 5: 1*: If H is a Hilbert Space, then H is reflexive.

<u>Proof</u>: Let H be a Hilbert Space.

We prove that there exists a natural isometric isomorphism from H onto H**. For this we will define two natural mappings from H to H** which are equal. Let x be any fixed vector in H.

Let F_x be a scalar valued function defined on H^* by $F_x(f) = f(x) \forall f \in H^*$. Then F_x is a functional on H^* .

 F_x is called functional on H* induced by x.

Now define T: $H \rightarrow H^{**}$ by $T(x) = F_x \forall x \in H$.

Since T is linear and therefore T is isometric isomorphism from H onto H**.

Let T_1 be a mapping from H into H* defined by $T_1(x) = f_x$ where $f_x(y) = (y, x) \forall y \in H$.

Let T_2 be a mapping from H* into H** defined by $T_2(f_x) = F_{f_x}$ where $F_{f_x}(f) = (f, f_x)$ $\forall f \in H^*$.

Then T_2T_1 is a mapping of H into H**.

Then T_2T_1 is also one-one and onto, since T_1 , T_2 are one-one and onto. Claim: $T = T_2T_1$. Both T and T_2T_1 are mappings from H into H**. By definition of T, $T(x) = F_x$. Also, $T_2T_1(x) = T_2\{T_1(x)\} = T_2(f_x) = F_{f_x}$. Now we have to prove that $F_x = F_{f_x}$ Clearly both F_x and F_{f_x} are scalar valued functions defined on H^{*}. Let f be an arbitrary element of H*. Then \exists unique y in H such that $f = f_v$. Now $F_{f_x}(f) = (f, f_x) = (f_y, f_x) :: f = f_y$ $= (\mathbf{x}, \mathbf{y}) = \mathbf{f}_{\mathbf{y}}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) :: \mathbf{f} = \mathbf{f}_{\mathbf{v}}.$ $= F_x(f)$. Thus, $F_{f_x}(f) = F_x(f) \forall f \in H^*$. $\therefore F_{f_x} = F_x$ \therefore T = T₂T₁ \therefore T is a mapping of H onto H**. Hence H is reflexive.

THE ADJOINT OF AN OPERATOR:

Theorem 1: 5*: Let T be an operator on a Hilbert Space H. Then \exists a unique operator T* on H \ni (Tx, y) = (x, T*y) \forall x, y \in H. The operator T* is called adjoint of the operator T.

Proof: *Existence*: Let y be a fixed vector in H.

Define a scalar valued function $f_y : H \to K$ such that $f_y(x) = (Tx, y) \forall x \in H$. f_y is linear: For, If $x_1, x_2 \in H$, $\alpha, \beta \in K$; then $f_y(\alpha x_1 + \beta x_2) = (T(\alpha x_1 + \beta x_2), y)$ $= (\alpha Tx_1 + \beta Tx_2, y) \because T$ is linear.

 $= \alpha (Tx_1, y) + \beta (Tx_2, y)$

$$= \alpha f_y(x_1) + \beta f_y(x_2)$$

 f_y is continuous: For, If $x \in H$, then $|f_y(x)| = |(Tx, y)|$

 $\leq ||Tx|| ||y||$ by Schwartz inequality.

 $\leq ||T|| ||y|| ||x|| \dots$ (i) as T is bounded.

Hence $f_y \in H^*$.

Now by Riesz representation theorem \exists a unique vector $z \in H \ni f_y(x) = (x, z) \forall x \in H$.

Ie. \exists a unique vector $z \in H \ni (Tx, y) = (x, z) \forall x \in H \dots$ (ii).

And $||f_v|| = ||z|| \dots$ (iii). Thus, for each y in H \exists a unique vector z in H \ni (Tx, y) = (x, z) \forall x \in H. Hence, we get a mapping (say) $T^*: H \rightarrow H \ni T^*y = z \forall y \in H$. So, from (ii), we have $(Tx, y) = (x, T^*y) \forall x, y \in H...(iv)$. Thus, existence of T*: $H \rightarrow H \ni (Tx, y) = (x, T^*y) \forall x, y \in H$ is established. We call this new mapping $T^*: H \rightarrow H$, the adjoint of T. Claim: T* is linear. Let y_1 , y_2 be any two vectors in H and α , β be any scalars. For any vector $x \in H$, $(x, T^*(\alpha y_1 + \beta y_2) = (Tx, \alpha y_1 + \beta y_2)$ by (1) $= \overline{\alpha} (\mathrm{Tx}, \mathrm{y}_1) + \overline{\beta} (\mathrm{Tx}, \mathrm{y}_2)$ $= \bar{\alpha}(x, T^*y_1) + \bar{\beta}(x, T^*y_2)$ by (1) $= (\mathbf{x}, \alpha T^* \mathbf{y}_1 + \beta T^* \mathbf{y}_2)$ Thus, $(x, T^*(\alpha y_1 + \beta y_2) = (x, \alpha T^* y_1 + \beta T^* y_2) \forall x \in H.$ \therefore T*($\alpha y_1 + \beta y_2$) = α T* $y_1 + \beta$ T* y_2 . \therefore T* is linear Claim: T* is continuous. For any vector $y \in H$, $||T^*y||^2 = (T^*y, T^*y) = (TT^*y, y)$ by (1) $= |(TT^*y, y)| :: ||T^*y||^2$ is real ≥ 0 $\leq ||TT^*y|| ||y||$ by Schwartz inequality. $\leq ||T|| ||T^*y|| ||y||$ Thus, $||T^*y||^2 \le ||T|| ||T^*y|| ||y|| \forall y \in H \dots (2).$ If $||T^*y|| = 0$ then $||T^*y|| \le ||T|| ||y|| : ||T|| ||y|| \ge 0$. If $||T^*y|| \neq 0$ then from (2), $||T^*y|| \leq ||T|| ||y|| \forall y \in H$. Let ||T|| = k then, $k \ge 0$ and $||T^*y|| \le k ||y|| \forall y \in H$. \therefore T* is bounded and hence continuous. \therefore T* is an operator on H. *Uniqueness*: Suppose \exists another mapping T': H \rightarrow H \ni (Tx, y) = (x, T'y) \forall x, y \in H. Thus, (Tx, y) = (x, T'y) and $(Tx, y) = (x, T^*y) \forall x, y \in H$. \Rightarrow (x, T'y) = (x, T*y) \forall x, y \in H. \Rightarrow T'y = T*y \forall y \in H. \Rightarrow T' = T*. **Theorem 2**: The adjoint operator $T \rightarrow T^*$ on $\mathfrak{B}(H)$ has the following properties. (1) $(T_1 + T_2)^* = T_1^* + T_2^*$ 4^{*} (2) $(\alpha T)^* = \bar{\alpha} T^*$ 1* (3) $(T_1T_2)^* = T_2^* T_1^*$ 4*(4) $T^{**} = T$ 3* (5) $||T^*|| = ||T||$ 3* (6) $||T^*T|| = ||T||^2$ 5*

<u>Proof</u>: (1) For every $x, y \in H$, $(x, (T_1 + T_2)^* y) = (\{T_1 + T_2\}x, y) = (T_1x + T_2x, y)$

 $= (T_1x, y) + (T_2x, y)$ $=(x, T_1*y) + (x, T_2*y)$ $=(x, {T_1*+T_2*}y)$ \therefore From Uniqueness of T*, $(T_1 + T_2)^* = T_1^* + T_2^*$ (2) For every $x, y \in H$, $(x, \{\alpha T^*\}y) = (\{\alpha T\}x, y)$ $=(\alpha \{Tx\}, y)$ $= \alpha$ (Tx, y) $= \alpha(x, T^*y)$ $=(\mathbf{x}, \bar{\alpha}\{\mathbf{T}^*\mathbf{y}\})$ $=(\mathbf{x}, \{\bar{\alpha}\mathbf{T}^*\}\mathbf{y})$: From uniqueness $(\alpha T)^* = \overline{\alpha}T^*$. (3) For every $x, y \in H$, $(x, \{T_1T_2\}^*y) = (\{T_1T_2\}x, y)$ $=(T_1{T_2x}, y)$ $=(T_2x, T_1*y)$ $=(x, T_2*{T_1*y})$ $=(x, \{T_2 * T_1 * \}y)$ \therefore From uniqueness $(T_1T_2)^* = T_2^* T_1^*$ (4) For every $x, y \in H$, $(x, T^{**}y) = (x, \{T^*\}^*y)$ $=(T^{*}x, y)$ $=\overline{(y,T^*x)}$ $=\overline{(Ty,x)}$ $=(\mathbf{x},\mathbf{T}\mathbf{y})$ \therefore From uniqueness T^{**} = T. (5) For every $y \in H$, $||T^*y||^2 = (T^*y, T^*y)$ =(TT*y, y) $= |(TT^*y, y)| :: (TT^*y, y) = ||T^*y||^2 \ge 0.$ $\leq ||TT^*y|| ||y||$ by Schwartz inequality. $\leq ||T|| ||T^*y|| ||y||$ Thus, $||T^*y||^2 \le ||T|| ||T^*y|| ||y|| \forall y \in H.$ $\Rightarrow ||T^*y|| \le ||T|| ||y|| \forall y \in H...(A)$ Now $||T^*|| = \sup \{||T^*y|| : ||y|| \le 1\} \le ||T|| \Rightarrow ||T^*|| \le ||T|| \dots (B)$ Now apply result (B) for T* in p[lace of T. $||(T^*)^*|| \le ||T^*||$ $\Rightarrow ||T^{**}|| \le ||T^*||$ $\Rightarrow ||T|| \le ||T^*|| \dots (C).$ From (B) and (C), $||T^*|| = ||T||$ (6)We have $||T^*T|| \le ||T^*|| ||T|| : ||ST|| \le ||S|| ||T||$ $= ||T|| ||T|| = ||T||^2.$

Thus, $||T^*T|| \le ||T||^2 \dots (D)$. Further for every $x \in H$, $||Tx||^2 = (Tx, Tx)$ $=(T^{*}Tx, x)$ $= |(T^*Tx, x)|$ $\leq ||T^*Tx|| ||x||$ by Schwartz inequality $\leq ||T^*T|| ||x|| ||x|| = ||T^*T|| ||x||^2$ Thus, $||Tx||^2 \le ||T^*T|| ||x||^2 \forall x \in H...$ (E). Now $||T|| = \sup \{ ||Tx|| : ||x|| \le 1 \}$ $\therefore ||T||^{2} = [\sup \{||Tx||: ||x|| \le 1\}]^{2} = \sup \{||Tx||^{2}: ||x|| \le 1\} \le ||T^{*}T||$ $\Rightarrow ||T||^2 \le ||T^*T|| \dots$ (F). From (D) and (F), $||T^*T|| = ||T||^2$. Theorem 3: If O and I be zero and identity operators on a Hilbert Space H, then $O^* = O$ and $I^* = I$. Hence show that if T is a non-singular operator on H then T* is also non-singular and in this case $(T^*)^{-1} = (T^{-1})^*$. **Proof**: For every x, y \in H, (x, O*y) = (Ox, y) = ($\overline{0}$, y) = 0 = (x, $\overline{0}$) = (x, Oy). \therefore O* = O (: adjoint operator is unique). Again $(x, I^*y) = (Ix, y) = (x, y) = (x, Iy)$. $\therefore I^* = I$. Now suppose that T is non-singular operator on H. Let T^{-1} be the inverse of T. Then T^{-1} is also an operator on H and $TT^{-1} = I = T^{-1}T \dots (1)$. Taking adjoint of (1), $(TT^{-1})^* = I^* = (T^{-1}T)^*$ or $(T^{-1})^*T^* = I = T^*(T^{-1})^*$. \therefore T* is invertible and hence non-singular. Inverse of T* is $(T^{-1})^*$. ie. $(T^*)^{-1} = (T^{-1})^*$.

Example 1: Show that the adjoint operator is one-to-one, onto as a mapping of $\mathfrak{B}(H)$ into itself. **Solution**: Let $\psi: \mathfrak{B}(H) \to \mathfrak{B}(H)$ defined by $\psi(T) = T^* \forall T \in \mathfrak{B}(H)$. Claim: ψ is one-one. Let $T_1, T_2 \in \mathfrak{B}(H)$ and $\psi(T_1) = \psi(T_2) \Rightarrow T_1^* = T_2^*$. $\Rightarrow (T_1^*)^* = (T_2^*)^* \Rightarrow T_1^{**} = T_2^{**}$. $\Rightarrow T_1 = T_2$. $\therefore \psi$ is one-one. Claim: ψ is onto. Let T be any arbitrary member of $\mathfrak{B}(H)$. Then $T^* \in \mathfrak{B}(H)$ and $\psi(T^*) = (T^*)^* = T^{**} = T$. $\therefore \psi$ is onto.

Example 2: Show that $||TT^*|| = ||T||^2$.

Solution: We have $||T^*T|| = ||T||^2 \dots$ (i). Take the operator T* in place of the operator T. $\therefore ||T^{**}T^*|| = ||T^*||^2 = ||T||^2 \therefore ||T^*|| = ||T||.$ $\Rightarrow ||TT^*|| = ||T||^2.$

SELF - ADJOINT OPERATORS

<u>Definition</u>: An operator T on a Hilbert Space H is said to be *self-adjoint* if $T^* = T$ ie. $(Tx, y) = (x, Ty) \forall x, y \in H$. Note: O and I are self-adjoint operators.

Theorem 1: 3^* : The self-adjoint operators in $\mathfrak{B}(H)$ form a closed real linear subspace of $\mathfrak{B}(H)$ and therefore a real Banach Space which contains the identity transformation. **Proof**: Let S be the collection of all self-adjoint operators on a Hilbert Space H. Claim: S is real linear subspace Clearly S is a non-empty subset of $\mathfrak{B}(H)$. Let $A_1, A_2 \in S$ and α, β be any two real numbers. \mathbb{R} Then $A_1^* = A_1$ and $A_2^* = A_2$. Then $(\alpha A_1 + \beta A_2)^* = (\alpha A_1)^* + (\beta A_2)^* = \bar{\alpha} A_1^* + \bar{\alpha} A_2^* = \alpha A_1 + \beta A_2$. $\therefore \alpha A_1 + \beta A_2$ is also self-adjoint operator on H. \therefore S is a real linear subspace of $\mathfrak{B}(H)$. S is closed: Let A be any limit point of S. \exists a sequence $\{A_n\}$ of distinct points of S $\ni A_n \rightarrow A$. $||A - A^*|| = ||A - A_n + A_n - A_n^* + A_n^* - A^*||$ $\leq ||A - A_n|| + ||A_n - A_n^*|| + ||A_n^* - A^*||$ $= \|(A_n - A)\| + \|A_n - A_n\| + \|(A_n - A)^*\|$ $= \|(A_n - A)\| + \|(A_n - A)\|$ $= 2 ||(A_n - A)|| \rightarrow 0 \text{ as } A_n \rightarrow A.$ $\therefore ||A - A^*|| = 0 \implies A - A^* = O \implies A = A^*$ \Rightarrow A is self-adjoint. \therefore A \in S. Thus, S is closed. \therefore S is complete $\therefore \mathfrak{B}(H)$ is complete. : S is real Banach Space. Since $I^* = I$, S contains Identity transformation. **Theorem 2**: If A_1 and A_2 are self-adjoint operators on H, then their product A_1A_2 is self- adjoint if and only if $A_1A_2 = A_2A_1$. **Proof**: Let A₁, A₂ be self-adjoint operators on a Hilbert Space H. Then $A_1^* = A_1$ and $A_2^* = A_2$.

Suppose $A_1A_2 = A_2A_1$ Then $(A_1A_2)^* = A_2^*A_1^* = A_2A_1 = A_1A_2$. $\therefore A_1A_2$ is self-adjoint. Conversely suppose A_1A_2 is self-adjoint. Then $A_1A_2 = (A_1A_2)^* = A_2^*A_1^* = A_2A_1$. Ie. $A_1A_2 = A_2A_1$.

<u>Theorem</u> 3: If T is an arbitrary operator on a Hilbert Space H, then T = O if and only if $(Tx, y) = 0 \forall x, y$. **<u>Proof</u>**: Suppose T = O. Then $\forall x, y$; $(Tx, y) = (Ox, y) = (\overline{0}, y) = 0$. I.e. $(Tx, y) = 0 \forall x, y$. Conversely suppose $(Tx, y) = 0 \forall x, y \in H$ $\Rightarrow (Tx, Tx) = 0 \forall x \in H$ $\Rightarrow ||Tx||^2 = 0 \forall x \in H$ $\Rightarrow Tx = 0 \forall x \in H$. $\Rightarrow T = O$.

Theorem 4: 4*: If T is an operator on a Hilbert Space H, then $(Tx, x) = 0 \forall x \in H$ if and only if T = O. **Proof**: Suppose T = O. Then $\forall x \in H$, $(Tx, x) = (Ox, x) = (\overline{0}, x) = 0$. Conversely suppose that $(Tx, x) = 0 \forall x \in H$. Let α , β be any scalars and x, $y \in H$. Then $0 = (T\{\alpha x + \beta y\}, \alpha x + \beta y) = (\alpha Tx + \beta Ty, \alpha x + \beta y)$ $= \alpha \overline{\alpha}(Tx, x) + \alpha \overline{\beta}(Tx, y) + \beta \overline{\alpha}(Ty, x) + \beta \overline{\beta}(Ty, y)$. $\Rightarrow \alpha \overline{\beta}(Tx, y) + \beta \overline{\alpha}(Ty, x) = 0 \dots (1) \forall \text{ scalars } \alpha, \beta \text{ and } x, y \in H$. Put $\alpha = 1, \beta = 1$ in (1). Then $(Tx, y) + (Ty, x) = 0 \dots (2)$. Put $\alpha = i, \beta = 1$ in (1). Then $i(Tx, y) - i(Ty, x) = 0 \dots (2)$. (2) + (3) gives $2(Tx, y) = 0 \forall x, y \in H$. $\Rightarrow (Tx, y) = 0 \forall x, y \in H$. $\Rightarrow (Tx, Tx) = 0 \forall x \in H$. $\Rightarrow Tx = 0 \forall x \in H$. $\Rightarrow T = O$.

Theorem 5: 3*: An operator T on a Hilbert Space H is self-adjoint if and only if (Tx, x) is real $\forall x \in H$. **Proof**: Suppose T is a self-adjoint operator on a Hilbert Space H. Let $x \in H$. Then $(Tx, x) = (x, T^*x) = (x, Tx) = \overline{(Tx, x)} \therefore (Tx, x)$ is real $\forall x \in H$. Conversely suppose that (Tx, x) is real $\forall x \in H$. Then $(Tx, x) = \overline{(Tx, x)} = \overline{(x, T^*x)} = (T^*x, x)$ $\Rightarrow (Tx, x) - (T^*x, x) = 0 \forall x \in H$. $\Rightarrow (Tx - T^*x, x) = 0 \forall x \in H$. $\Rightarrow (\{T - T^*\}x, x) = 0 \forall x \in H$ $\Rightarrow T - T^* = 0 \text{ by Theorem (4)}$ $\Rightarrow T = T^*.$

Definition: Let S be the set of all self-adjoint operators on a Hilbert Space H. We define \leq on S as follows. We write $A_1 \leq A_2$ for $A_1, A_2 \in S$, if $(A_1x, x) \leq (A_2x, x) \forall x \in H$.

Theorem 6: 1*: The real Banach Space of all self-adjoint operators on a Hilbert Space H is a partially ordered set whose linear structure and order structure are related by the following properties. (a) If $A_1 \leq A_2$ then $A_1 + A \leq A_2 + A$ for every A. (b) If $A_1 \leq A_2$ and $\alpha \geq 0$ then $\alpha A_1 \leq \alpha A_2$. **Proof**: Let S denote the set of all self-adjoint operators on H. For $A_1, A_2 \in S$, define \leq on S by $A_1 \leq A_2$ if $(A_1x, x) \leq (A_2x, x) \forall x \in H$. \leq is reflexive: For, let A \in S. Observe that (Ax, x) = (Ax, x) \forall x \in H. \therefore we may say $(Ax, x) \leq (Ax, x) \forall x \in H. \Rightarrow A \leq A.$ Thus, $A \leq A \forall A \in S$. \leq is antisymmetric: For, let $A_1, A_2 \in S \ni A_1 \leq A_2$ and $A_2 \leq A_1$. \therefore (A₁x, x) \leq (A₂x, x) and (A₂x, x) \leq (A₁x, x) \forall x \in H. \Rightarrow (A₁x, x) = (A₂x, x) \forall x \in H. \Rightarrow (A₁x – A₂x, x) = 0 \forall x \in H. $\Rightarrow (\{A_1 - A_2\}x, x) = 0 \forall x \in H.$ \Rightarrow A₁ - A₂ = 0. \Rightarrow A₁ = A₂. \leq is transitive: For, let A₁, A₂, A₃ \in S \Rightarrow A₁ \leq A₂ and A₂ \leq A₃. \therefore (A₁x, x) \leq (A₂x, x) and (A₂x, x) \leq (A₃x, x) \forall x \in H. \Rightarrow (A₁x, x) \leq (A₃x, x) \forall x \in H. \Rightarrow A₁ \leq A₃. Thus, \leq is a partial order relation on S. (a) Let A, $A_1, A_2 \in S \ni A_1 \leq A_2$. Then $(A_1x, x) \leq (A_2x, x) \forall x \in H$. $(A_1x, x) + (Ax, x) \le (A_2x, x) + (Ax, x) \forall x \in H.$ \Rightarrow (A₁x + Ax, x) \leq (A₂x + Ax, x) \forall x \in H. $\Rightarrow (\{A_1 + A\}x, x) \leq (\{A_2 + A\}x, x) \forall x \in H.$ \Rightarrow A₁ + A \leq A₂ + A. (b) Let $A_1, A_2 \in S$ and a scalar $\alpha \ge 0 \Rightarrow A_1 \le A_2$. Then $(A_1x, x) \leq (A_2x, x) \forall x \in H$.

 $\therefore \alpha(A_1x, x) \leq \alpha(A_2x, x) \ \forall \ x \in H. \\ \Rightarrow (\alpha A_1x, x) \leq (\alpha A_2x, x) \ \forall \ x \in H. \\ \Rightarrow (\{\alpha A_1\}x, x) \leq (\{\alpha A_2\}x, x) \ \forall \ x \in H. \\ \Rightarrow \alpha A_1 \leq \alpha A_2.$

POSITIVE OPERATORS

<u>Definition</u>: A self-adjoint operator A on a Hilbert Space H is said to be *positive* if A $\ge O$. ie. if $(Ax, x) \ge 0 \forall x \in H$.

Note: O, I are positive operators.

<u>Note</u>: Let T be any arbitrary operator on H. Then both TT* and T*T are positive operators.

For, $(TT^*)^* = (T^*)^*T^* = TT^*$ so that TT^* is self-adjoint. Again $(T^*T)^* = (T^*)(T^*)^* = T^*T$ so that T^*T is self-adjoint. Now $(TT^*x, x) = (T^*x, T^*X) = ||T^*x||^2 \ge 0$ and $(T^*Tx, x) = (Tx, \{T^*\}^*X) = (Tx, Tx) = ||Tx||^2 \ge 0$.

Theorem 7: 2*: If T is a positive operator on a Hilbert Space H, then I + T is nonsingular. **Proof**: Claim: I + T is one – one. Let $x \in \text{Ker}(I + T)$ ie. (I + T)x = 0 \Rightarrow Ix + Tx = 0 \Rightarrow x + Tx = 0 \Rightarrow Tx = - x \Rightarrow (Tx, x) = (-x, x) = - $||x||^2 \ge 0$: T is positive. $\Rightarrow ||x||^2 \leq 0.$ $\Rightarrow \|x\|^2 = 0 :: \|x\|^2 \ge 0.$ $\Rightarrow \mathbf{x} = \overline{\mathbf{0}}.$ $\therefore \text{Ker}(I+T) = \{\overline{0}\}.$ Hence, I + T is one-one. Claim: I + T is onto. Let M be the range of I + T. First, we prove that M is closed. For any vector $x \in H$, $||(I + T)x||^2 = ||x + Tx||^2 = (x + Tx, x + Tx)$ $= (x, x) + (x, Tx) + (Tx, x) + (Tx, Tx) = ||x||^{2} + \overline{(Tx, x)} + (Tx, x) + ||Tx||^{2}$ $= ||x||^2 + 2(Tx, x) + ||Tx||^2$ [: T is +ve \Rightarrow T is self-adjoint \Rightarrow (Tx, x) is real.] $\geq ||x||^2 : T$ is positive. Thus, $||x|| \le ||(I + T)x|| \forall x \in H.$ Now let $\{(I + T)x_n\}$ be a Cauchy sequence in M. For any 2 positive integers m, n; $||x_m - x_n|| \le ||(I + T)(x_m - x_n)||$

 $= ||(I+T)x_m - (I+T)x_n|| \rightarrow 0 :: \{(I+T)x_n\}$ be a Cauchy sequence. $\therefore \|x_m - x_n\| \to 0$ \Rightarrow {x_n} is a Cauchy sequence in H. \Rightarrow {x_n} converges to say x \in H :: H is complete. \therefore lt {(I + T)x_n} = (I + T)(lt x_n) \therefore I + T is continuous. $= (I + T)x \in M.$ Thus, the Cauchy sequence $\{(I + T)x_n\}$ in M converges to (I + T)x in M. Thus, M is complete. Hence M is closed. :: complete subspace of a complete space is closed. To prove I + T is onto it suffices if we prove that M = H. If possible, suppose $M \neq H$. Then \exists a non-zero vector \mathbf{x}_0 in H $\ni \mathbf{x}_0 \perp \mathbf{M}$. $\Rightarrow (\{I+T\}x_0, x_0) = 0 :: x_0 \perp M$ \Rightarrow (x₀ + Tx₀, x₀) = 0. \Rightarrow (x₀, x₀) + (Tx₀, x₀) = 0 $\Rightarrow ||x_0||^2 + (\mathrm{T}x_0, x_0) = 0.$ $\Rightarrow - \|x_0\|^2 = (\mathrm{T} \mathrm{x}_0, \mathrm{x}_0).$ $\Rightarrow - ||x_0||^2 \ge 0$: T is positive. $\Rightarrow ||x_0||^2 \le 0 \Rightarrow ||x_0||^2 = 0.$ \Rightarrow x₀ = $\overline{0}$ which contradicts the fact that x₀ is a non-zero vector. \therefore M = H and so I + T is onto. Claim: I + T is non-singular. Since I + T is a bijection, I + T is invertible. Hence, I + T is non-singular.

<u>**Corollary**</u>: If T is an arbitrary operator on H, then the operators $I + TT^*$ and $I + T^*T$ are non-singular.

<u>**Proof**</u>: For an arbitrary operator T on H, T*T and TT* are both positive operators. Hence by the above theorem both the operators I + TT* and I + T*T are non-singular.

NORMAL AND UNITARY OPERATORS

Normal Operator: Definition: An operator T on a Hilbert Space H is said to be *normal* if it commutes with it's adjoint. Ie. $TT^* = T^*T$. **Note**: Obviously every self-adjoint operator is normal. For if T is a self-adjoint operator ie. $T^* = T$. Then $T^*T = TT = TT^*$ **Theorem 1**: 2*: The set of all normal operators on a Hilbert Space H is a closed subset of $\mathfrak{B}(H)$ which contains the set of all self – adjoint operators and is closed under scalar multiplication.

Proof: Let M be the set of all normal operators on a Hilbert Space H. Let T be a limit point of M. ∃ a sequence {Tn} of distinct points of M ∋ T_n → T. $\therefore ||T_n^* - T^*|| = ||(T_n - T)^*|| = ||T_n - T|| \to 0.$ $\therefore ||T_n^* - T^*|| \to 0. \Rightarrow T_n^* \to T^*$ Now $||TT^* - T^*T|| = ||TT^* - T_nT_n^* + T_nT_n^* - T_n^*T_n + T_n^*T_n - T^*T||$ $\leq ||TT^* - T_nT_n^*|| + ||T_nT_n^* - T_n^*T_n|| + ||T_n^*T_n - T^*T||$ $= ||TT^* - T_nT_n^*|| + ||T_n^*T_n - T^*T|| \to 0 \because T_n^* \to T^* \text{ and } T_n$ $\rightarrow T.$

Thus, $||TT^* - T^*T|| \rightarrow 0 \Rightarrow TT^* - T^*T = 0$

 $\Rightarrow TT^* = T^*T \Rightarrow T$ is normal operator on H.

 \therefore T \in M and so M is closed.

Since every self-adjoint operator is normal, M contains the set of all self – adjoint operators on H.

Let $T \in M$ and α be any scalar.

Now $(\alpha T)(\alpha T)^* = (\alpha T)(\overline{\alpha}T^*) = \alpha \overline{\alpha} (TT^*) = \alpha \overline{\alpha} (T^*T) = (\overline{\alpha} T^*)(\alpha T) = (\alpha T)^*(\alpha T).$ $\therefore \alpha T$ is normal ie. $\alpha T \in M$.

: M is closed under scalar multiplication.

<u>Theorem 2</u>: 3*: If N_1 and N_2 are normal operators on a Hilbert Space H with the property that either commutes with the adjoint of the other, then $N_1 + N_2$ and N_1N_2 are also normal operators.

<u>Proof</u>: Let N_1 and N_2 be normal operators so that $N_1N_1^* = N_1^*N_1$ and $N_2N_2^* = N_2^*N_2$

Also given $N_1N_2^* = N_2^*N_1$ and $N_2N_1^* = N_1^*N_2$. Now $(N_1 + N_2)(N_1 + N_2)^* = (N_1 + N_2)(N_1^* + N_2^*)$ $= N_1N_1^* + N_1N_2^* + N_2N_1^* + N_2N_2^*$ $= N_1^*N_1 + N_2^*N_1 + N_1^*N_2 + N_2^*N_2$. $= N_1^*(N_1 + N_2) + N_2^*(N_1 + N_2)$ $= (N_1^* + N_2^*)(N_1 + N_2)$. $= (N_1 + N_2)^*(N_1 + N_2)$.

 \therefore N₁ + N₂ is normal.

Again $(N_1N_2)(N_1N_2)^* = (N_1N_2)(N_2^*N_1^*)$ = $N_1(N_2N_2^*)N_1^*$ = $N_1(N_2^*N_2)N_1^*$ = $(N_1N_2^*)(N_2N_1^*)$ = $(N_2^*N_1)(N_1^*N_2)$

$$= N_2^*(N_1N_1^*)N_2$$

= N_2^*(N_1^*N_1)N_2
= (N_2^*N_1^*)(N_1N_2)
= (N_1N_2)^*(N_1N_2).

 \therefore N₁N₂ is normal.

Theorem 3: 3*: An operator T on a Hilbert Space H is normal if and only if $||T^*x|| = ||Tx|| \forall x \in \mathbf{H}.$

<u>Proof</u>: T is normal iff $TT^* = T^*T$ iff $TT^* - T^*T = O$ iff $((TT^* - T^*T)x, x) = 0 \forall x \in H.$ iff $((TT^*)x, x) = ((T^*T)x, x) \forall x \in H$ iff $(T^*x, T^*x) = (Tx, T^{**}x) \forall x \in H$. iff $(T^*x, T^*x) = (Tx, Tx) \forall x \in H$. iff $||T^*x||^2 = ||Tx||^2 \forall x \in H$ $\inf \|T^*x\| = \|Tx\| \forall x \in H.$

Theorem 4: 2*: If N is a normal operator on Hilbert Space H, then $||N^2|| = ||N||^2$ **Proof**: Let N be a normal operator on H. $\therefore ||Nx|| = ||N^*x|| \forall x \in H \dots$ (i) Replace x by Nx, we have, $||NNx|| = ||N^*Nx|| \forall x \in H$. $\Rightarrow ||N^2 x|| = ||N^* N x|| \ \forall \ x \in H... \ (ii).$

Now $||N^2|| = \sup\{||N^2x|| : ||x|| \le 1\} = \sup\{||N^*Nx|| : ||x|| \le 1\} = ||N^*N|| =$ $||N||^2$.

Theorem 5: 1*: Any arbitrary operator T on a Hilbert Space H can be uniquely expressed as $T = T_1 + iT_2$ where T_1 and T_2 are self – adjoint operators on H. **<u>Proof</u>**: Let $T_1 = \frac{T+T^*}{2}$ and $T_2 = \frac{T-T^*}{2i}$. Then $T = T_1 + iT_2$ Now $T_1^* = \left(\frac{T+T^*}{2}\right)^* = \frac{T^*+T^{**}}{2} = \frac{T+T^*}{2} = T_1$ so that T_1 is self - adjoint. Again $T_2^* = \left(\frac{\overline{T}-T^*}{2i}\right)^* = \frac{\overline{T^*}-T^{**}}{2\overline{i}} = -\frac{\overline{T^*}-T}{2i} = T_2$ so that T_2 is self - adjoint. If possible, let $T = U_1 + iU_2$ where U_1 and U_2 are self – adjoint. Then $T^* = (U_1 + iU_2)^* = U_1^* + (iU_2)^* = U_1^* + \overline{\iota} U_2^* = U_1^* - iU_2^* = U_1 - iU_2$. Now $T + T^* = U_1 + iU_2 + U_1 - iU_2 = 2 U_1$. $\therefore \mathbf{U}_1 = \frac{T+T^*}{2} = \mathbf{T}_1$ Again $T - T^* = U_1 + iU_2 - U_1 + iU_2 = 2i U_2$. $\therefore \mathbf{U}_2 = \frac{T - T^*}{2i} = \mathbf{T}_2$

Hence the expression $T = T_1 + iT_2$ is unique where T_1 and T_2 are self – adjoint.

Theorem 6: 2*: If T is an operator on a Hilbert Space H, then T is normal if and only if it's real and imaginary parts commute.

<u>Proof</u>: Let $T = T_1 + iT_2$ where T_1 and T_2 are the real and imaginary parts of T. Then T_1 and T_2 are self – adjoint operators and

 $T^* = (T_1 + iT_2)^* = T_1^* + (iT_2)^* = T_1^* + \bar{\iota} T_2^* = T_1^* - iT_2^* = T_1 - iT_2.$ Now $TT^* = (T_1 + iT_2)(T_1 - iT_2) = T_1^2 + T_2^2 + i(T_2T_1 - T_1T_2) \dots (i)$ Again $T^*T = (T_1 - iT_2)(T_1 + iT_2) = T_1^2 + T_2^2 + i(T_1T_2 - T_2T_1) \dots (ii)$ Suppose T is normal then $TT^* = T^*T$ $\Rightarrow T_1^2 + T_2^2 + i(T_2T_1 - T_1T_2) = T_1^2 + T_2^2 + i(T_1T_2 - T_2T_1)$ $\Rightarrow T_2T_1 - T_1T_2 = T_1T_2 - T_2T_1$ $\Rightarrow T_1 and T_2 commute.$ Conversely suppose T_1 and T_2 commute. Ie. $T_1T_2 = T_2T_1$. Then from (i) and (ii), $TT^* = T_1^2 + T_2^2 = T^*T$ \therefore T is normal.

<u>Unitary Operator: Definition</u>: An operator U on a Hilbert Space H is said to be *unitary* if $UU^* = U^*U = I$.

<u>Note</u>: (i) Obviously every unitary operator is normal.

(ii) U is unitary iff U is invertible and $U^{-1} = U^*$.

Theorem 7: If T is an operator on a Hilbert Space H, then the following are equivalent:

(i) $T^*T = I$ (ii) $(Tx, Ty) = (x, y) \forall x, y \in H$

(iii) $||Tx|| = ||x|| \forall x \in H.$ **Proof**: Assume (i). ie. $T^*T = I.$ Then for x, $y \in H$, $(Tx, Ty) = (x, T^*Ty) = (x, Iy) = (x, y). \therefore$ (i) \Rightarrow (ii) Assume (ii). Ie $(Tx, Ty) = (x, y) \forall x, y \in H.$ $\Rightarrow (Tx, Tx) = (x, x) \forall x \in H.$ $\Rightarrow ||Tx||^2 = ||x||^2 \forall x \in H.$ $\Rightarrow ||Tx|| = ||x|| \forall x \in H.$ \therefore (ii) \Rightarrow (iii). Assume (iii). Ie. $||Tx|| = ||x|| \forall x \in H.$ $\Rightarrow ||Tx||^2 = ||x||^2 \forall x \in H.$ $\Rightarrow ||Tx||^2 = ||x||^2 \forall x \in H.$ $\Rightarrow (Tx, Tx) = (x, x) \forall x \in H.$ $\Rightarrow (T^*Tx, x) = (Ix, x) \forall x \in H.$ $\Rightarrow ((T^*T - I) x, x) = 0 \forall x \in H.$ $\Rightarrow T^*T - I = O.$ $\Rightarrow T^*T = I$

 \therefore (iii) \Rightarrow (i). Hence the theorem.

Theorem 8: 2*: An operator T on a Hilbert Space H is unitary if and only if it is an isometric isomorphism of H onto itself.

Proof: Suppose T is unitary operator on H.

T is invertible and so T is onto.

Also, $TT^* = I$.

 \therefore By the above theorem, $||Tx|| = ||x|| \forall x \in H$.

Thus, T preserves norm and so T is an isometric isomorphism of H onto itself. Conversely suppose T is an isometric isomorphism of H onto itself.

Then T is one-one and onto.

 \therefore T⁻¹ exists.

Also, T is an isometric isomorphism.

 $\Rightarrow ||Tx|| = ||x|| \forall x \in \mathbf{H}.$

 \Rightarrow T*T = I by the above theorem

 \Rightarrow (T*T)T⁻¹ = I T⁻¹

 \Rightarrow T*I = T⁻¹

 \Rightarrow T* = T⁻¹

 \therefore TT* = I = T*T

Hence T is unitary.

Example 1: 3*: If T is any arbitrary operator on a Hilbert Space H, and if α , β are scalars $\vartheta |\alpha| = |\beta|$, then $\alpha T + \beta T^*$ is normal. **Solution**: $(\alpha T + \beta T^*)^* = (\alpha T)^* + (\beta T^*)^* = \overline{\alpha} T^* + \overline{\beta} T^{**} = \overline{\alpha} T^* + \overline{\beta} T$ Now $(\alpha T + \beta T^*)(\alpha T + \beta T^*)^* = (\alpha T + \beta T^*)(\overline{\alpha} T^* + \overline{\beta} T)$ $= \alpha \overline{\alpha} T T^* + \alpha \overline{\beta} T^2 + \beta \overline{\alpha} (T^*)^2 + \beta \overline{\beta} T^* T.$ $= |\alpha|^2 T T^* + \alpha \overline{\beta} T^2 + \beta \overline{\alpha} (T^*)^2 + |\beta|^2 T^* T... (i)$ Also $(\alpha T + \beta T^*)^*(\alpha T + \beta T^*) = (\overline{\alpha} T^* + \overline{\beta} T) (\alpha T + \beta T^*)$ $= \overline{\alpha} \alpha T^* T + \overline{\beta} \alpha T^2 + \overline{\alpha} \beta (T^*)^2 + \overline{\beta} \beta T T^*.$ $= |\alpha|^2 T^* T + \alpha \overline{\beta} T^2 + \beta \overline{\alpha} (T^*)^2 + |\beta|^2 T T^*... (ii)$ Since $|\alpha| = |\beta|$, RHS's of (i) and (ii) are same. $\therefore (\alpha T + \beta T^*)(\alpha T + \beta T^*)^* = (\alpha T + \beta T^*)^*(\alpha T + \beta T^*).$ Hence $\alpha T + \beta T^*$ is normal.

Example 2: If T is a normal operator on a Hilbert Space H and λ is any scalar, then $T - \lambda I$ is also normal.

Solution: Let T be a normal operator. $\therefore TT^* = T^*T.$ Now $(T - \lambda I)^* = T^* - (\lambda I)^* = T^* - \overline{\lambda} I^* = T^* - \overline{\lambda} I.$ $\therefore (T - \lambda I) (T - \lambda I)^* = (T - \lambda I)(T^* - \overline{\lambda} I) = TT^* - \overline{\lambda} T - \lambda T^* + |\lambda|^2 I...(i)$ Also $(T - \lambda I)^* (T - \lambda I) = (T^* - \overline{\lambda} I) (T - \lambda I) = T^*T - \lambda T^* - \overline{\lambda} T + |\lambda|^2 I...(ii).$ Since $TT^* = T^*T$, RHS of (i) and (ii) are equal. $\therefore T - \lambda I$ is normal.

Example 3: If H is a finite dimensional Hilbert Space, show that every isometric isomorphism of H into itself is unitary.

<u>Solution</u>: Let T be an isometric isomorphism of a finite dimensional Hilbert Space H into itself.

Since H is a finite dimensional linear space and T is an isomorphism of H into itself. ∴ T must be onto.

 \therefore T is unitary.

Example 4: 3^* : Show that the unitary operators on a Hilbert space H form a group. **Solution**: Closure: Let T₁, T₂ be two unitary operators.

Then T₁ and T₂ are invertible and $T_1^{-1} = T_1^*$ and $T_2^{-1} = T_2^*$.

Since the mappings T_1 , T_2 are continuous, T_1T_2 is also continuous.

 \therefore T₁T₂ is an operator on H.

Also, T_1 , T_2 are invertible \Rightarrow T_1T_2 is also invertible.

 $\therefore (T_1 T_2)^{-1} = T_2^{-1} T_1^{-1} = T_2^* T_1^* = (T_1 T_2)^*$

 \therefore T₁T₂ is also unitary.

Associativity: We know that product of mappings is associative.

Existence of Identity: The identity operator I on H, is one – one, and onto so that I is invertible.

Also $I^{-1} = I = I^*$. \therefore I is unitary.

Existence of inverse: Let T be unitary on H. Then T is invertible and $T^{-1} = T^*$.

The mapping T^{-1} is continuous. \therefore T* is an operator on H.

Also, T^{-1} is invertible and $(T^{-1})^{-1} = (T^*)^{-1} = (T^{-1})^*$

 $\therefore T^{-1}$ is unitary.

Hence unitary operators on a Hilbert Space form a group.

Example 5: 5*: Show that an operator T on a Hilbert Space H is unitary if and only if $T({e_i})$ is a complete orthonormal set whenever ${e_i}$ is.

Solution: Suppose T is unitary operator on H and $\{e_i\}$ is a complete orthonormal set in H.

 \therefore TT* = I \therefore T is unitary.

 $\therefore \text{By a theorem (Te_i, Te_j)} = (e_i, e_j) = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}.$ \therefore {T(e_i)} is orthonormal set in H. To show that {T(e_i)} is complete let x \perp {T(e_i)} \Rightarrow (x, Te_i) = 0 \forall e_i \Rightarrow (T*x, e_i) = 0 \forall e_i \Rightarrow T*x \perp {e_i} \Rightarrow T*x = $\overline{0}$ by theorem 6. \Rightarrow TT*x = T $\overline{0}$ \Rightarrow Ix = $\overline{0}$ \Rightarrow x = $\overline{0}$. Thus, $x \perp T(\{e_i\}) \Rightarrow x = \overline{0}$. \therefore The orthonormal set {T(e_i)} is complete. Conversely suppose that $\{T(e_i)\}$ is a complete orthonormal set whenever $\{e_i\}$ is. Claim: T is isometry. If $x = \overline{0}$ then obviously ||Tx|| = ||x||. Let $x \neq \overline{0}$. Obviously $\left\{\frac{x}{\|x\|}\right\}$ is an orthonormal set. \therefore \exists a complete orthonormal set in H containing singleton set $\left\{\frac{x}{\|x\|}\right\}$. By hypothesis T maps this complete orthonormal set onto a complete orthonormal set. $T\left(\frac{x}{\|x\|}\right)$ is a unit vector. Ie. $\left\|T\left(\frac{x}{\|x\|}\right)\right\| = 1$. $\Rightarrow \frac{1}{\|x\|} \|Tx\| = 1$ ie. $\|Tx\| = \|x\|$ \therefore T preserves norms and so T is also one-one. To show T: $H \rightarrow H$ is onto. Let T(H) = M. We show that M is closed subspace of H. Let y be a limit point of M. \therefore \exists a sequence {T(x_n)} of distinct points of M \ni Tx_n \rightarrow y. Now $||x_m - x_n||^2 = ||T(x_m - x_n)||^2 = ||Tx_m - Tx_n||^2$: T is linear. $\rightarrow 0$:: {T(x_n)} is a convergent sequence in H. \Rightarrow {x_n} is a Cauchy sequence in H. \therefore {x_n} is convergent \because H is complete. $\therefore \exists x \in H \ni x_n \rightarrow x.$ Now $y = lt Tx_n = T(lt x_n) :: T$ is continuous. = Tx.But y = Tx \Rightarrow y is in the range of T which is M. \therefore M is closed. Let $M \neq H$.

Then M is a proper closed subspace of H. $\therefore \exists$ non-zero $y_0 \in M \ni y_0 \perp M$. M itself is a Hilbert Space because M is a closed subspace of H. If M is zero space, then T is one-one \Rightarrow H itself is a zero space. \therefore In this case everything is trivial. So let $M \neq \{\overline{0}\}$. Then M must contain a complete orthonormal set. Since $y_0 \perp M$, y_0 is also orthonormal to this complete orthonormal set. Then $y_0 = 0$ by theorem 6 which is a contradiction. $\therefore M = H$. \therefore T is onto.

 \therefore T is unitary.

PROJECTIONS

Definition: A projection P on a Hilbert Space H is said to be a *perpendicular projection* on H if the range M and the null space N of P are orthogonal.

Theorem 1: 2*: If P is a projection on a Hilbert Space H with range M and null space N then $M \perp N$ if and only if P is self-adjoint; and in this case, $N = M^{\perp}$. **Proof**: Suppose P is a projection on a Hilbert Space H with range M and null Space N. Then $H = M \oplus N$. Assume M \perp N. Let $z \in H$. Then z can be uniquely written as z = x + y where $x \in I$ M and $y \in N$. \therefore (Pz, z) = (x, z) = (x, x + y) = (x, x) + (x, y) = (x, x) \therefore M \perp N Also $(P^*z, z) = (z, Pz) = (z, x) = (x + y, x) = (x, x) + (y, x) = (x, x).$ \therefore (Pz, z) = (P*z, z) $\forall z \in H$. \Rightarrow ((P – P*)z, z) = 0 \forall z \in H. \Rightarrow P - P* = O \Rightarrow P = P* \Rightarrow P is self-adjoint. Conversely suppose, P is self- adjoint. Let $x \in M$, $y \in N$. Then $(x, y) = (Px, y) = (x, P^*y) = (x, Py) = (x, 0) = 0$. $\therefore M \perp N$. Finally let P be a projection on a H with range M and null Space N. Then $M \perp N$ by above part. Suppose $y \in N$, then $N \perp M \Rightarrow y \in M^{\perp}$. \therefore N \subset M^{\perp}. Suppose N is a proper subset of M^{\perp} . \therefore N is a proper closed linear subspace of the Hilbert Space M^{\perp}. \therefore \exists a non-zero vector $z_0 \in M^{\perp} \ni z_0 \perp N$.

But $z_0 \in M^{\perp} \Longrightarrow z_0 \perp M$. $\therefore z_0 = \overline{0}$ which contradicts the fact that $z_0 \neq \overline{0}$. $\therefore N = M^{\perp}$.

Note: From now onwards by a projection P on H we mean a perpendicular projection on H

: An operator P on a Hilbert Space is a projection on H iff P is linear, continuous, $P^2 = P$ and $P^* = P$.

Note: The zero operator O and identity operator I are projections on H.

Note: If M is a closed linear subspace of H then $H = M \oplus M^{\perp}$. $\therefore \exists$ a projection P on H with range M defined by P(x + y) = x where $x \in M, y \in M^{\perp}$.

Remark: If P is a projection on a Hilbert Space H with range M, then the null space of P is uniquely determined and is always M^{\perp} .

Theorem 2: P is a projection on a closed linear subspace M of H if and only if I – P is the projection on M^{\perp} . **Proof**: Suppose P is a projection on M. \therefore P² = P and P* = P, P is linear & continuous. Clearly I – P is linear and continuous. Now $(I - P)^* = I^* - P^* = I - P$. Also $(I - P)^2 = (I - P)(I - P) = I - P - P + P^2 = I - P - P + P = I - P$. \therefore I – P is a projection. Let M be the range of P, N be the range of I - P. Now $x \in N$, $(I - P)x = x \Rightarrow x - Px = x$ \Rightarrow Px = 0. \Rightarrow x is in the null space of P \Rightarrow x \in M^{\perp}. \therefore N \subseteq M^{\perp}. Again $x \in M^{\perp}$. \Rightarrow Px = 0 \Rightarrow x - Px = x ie. (I - P)x = x. \Rightarrow x is in the range of I – P. $\Rightarrow x \in N.$ $\therefore M^{\perp} \subset N$ Hence $M^{\perp} = N$.

∴ If P is the projection on the closed linear subspace M of H, then I – P is the projection on M[⊥]. Conversely suppose that I – P is the projection on M[⊥]. \Rightarrow I – (I – P) ie. P is the projection on $(M^{\perp})^{\perp}$ ie. M^{⊥⊥}. Since M is closed M^{⊥⊥} = M. ∴ P is a projection on M.

Theorem 3: If P is a projection on the closed linear subspace M of H, then $x \in M$ if and only if Px = x if and only if ||Px|| = ||x||. **Proof**: Let P be a projection on a closed linear subspace M of H. Claim: $x \in M$ iff Px = xSuppose Px = x. Then x is in the range of P :: Px is in the range of P. $\therefore x \in M.$ Conversely suppose that $x \in M$. Let Px = y. $\Rightarrow P(Px) = Py \Rightarrow P^2x = Py \Rightarrow Px = Py :: P^2 = P$. \Rightarrow P(x - y) = 0 \Rightarrow x - y is in the null space of P. \Rightarrow x - y = z \in M^{\perp}. $\Rightarrow x = y + z$ Now $y = Px \implies y$ is in the range of P i.e $y \in M$. Thus, x = y + z where $y \in M, z \in M^{\perp}$. But x is in M. So, $x = x + \overline{0}$ where $x \in M, \overline{0} \in M^{\perp}$. But $H = M \oplus M^{\perp}$. \therefore y = x, z = $\overline{0}$. Claim: Px = x iff ||Px|| = ||x||. If Px = x then obviously ||Px|| = ||x||. Conversely suppose ||Px|| = ||x||. $\therefore ||x||^2 = ||Px + (I - P)x||^2 \dots (i)$ Now $Px \in M$. Also, P is the projection on M \Rightarrow I – P is the projection. \therefore Px and (I - P)x are orthogonal vectors. Then, by Pythagorean theorem, $||Px + (I - P)x||^2 = ||Px||^2 + ||(I - P)x||^2 \dots$ (ii) From (i) and (ii) $||x||^2 = ||Px||^2 + ||(I-P)x||^2$ $\Rightarrow ||(I-P)x||^2 = 0 \because ||Px|| = ||x||.$ $\Rightarrow ||(I-P)x|| = 0$ \Rightarrow Px = x.

Theorem 4: If P is a projection on a Hilbert Space H, then

P is a positive vector ie. $P \ge O$. (i) $O \leq P \leq I$ (ii) $\|Px\| \le \|x\| \ \forall \ x \in H.$ (iii) (iv) $||P|| \leq 1.$ **Proof**: Let P be a projection on a Hilbert Space H. Then, $P^2 = P$, $P^* = P$. Let M be the range of P. (i) Let x be any vector in H. Then $(Px, x) = (PPx, x) = (Px, P^*x) = (Px, Px) = ||Px||^2 \ge 0.$ Thus, $(Px, x) \ge 0 \forall x \in H$. \therefore P is a positive operator. Ie. P \ge O. Note: If P is a projection on a Hilbert Space H and $x \in H$, then $(Px, x) = ||Px||^2$. (ii) Since P is a projection on H, I – P is also a projection on H. Thus, by part (i) we have $I - P \ge O$ ie. $P \le I$. But $P \ge O$. $\therefore 0 < P < I$ (iii)Let $x \in H$. If M is the range of P, then M^{\perp} is the range of I - P. Now $Px \in M$ and $(I - P)x \in M^{\perp}$. \therefore Px and (I – P)x are orthogonal vectors. :. By Pythagorean theorem, $||Px + (I - P)x||^2 = ||Px||^2 + ||(I - P)x||^2$ $\Rightarrow ||x||^2 = ||Px||^2 + ||(I-P)x||^2$ $\Rightarrow ||x||^2 \ge ||Px||^2 \Rightarrow ||Px|| \le ||x||.$ (iv) $||P|| = Sup\{||Px||: ||x|| \le 1\} \le 1 :: ||Px|| \le ||x|| \forall x \in H.$ $\therefore \|P\| \leq 1.$

INVARIANCE AND REDUCIBILITY.

Definition: Let T be an operator on a Hilbert Space H. If M is a closed linear subspace of H, then M is said to be *invariant* under T if $x \in M \Rightarrow Tx \in M$. ie. if $T(M) \subseteq M$. Since M is closed linear subspace of H, M itself is a Hilbert Space. T may be regarded as an operator on M. Thus, the operator T on H induces an operator T_M on M defined by $TM(x) = Tx \forall x \in M$. The operator T_M is called the restriction of T on M.

<u>Reducibility: Definition</u>: Let T be an operator on a Hilbert Space H. If M is a closed linear subspace of H, then T is said to be reducible by M if both M and M^{\perp} are invariant under T.

Theorem 5: 2*: A closed linear subspace M of a Hilbert Space H is invariant under an operator T if and only if M^{\perp} is invariant under T*. **Proof**: Suppose M is invariant under T. Let $y \in M^{\perp}$ and $x \in M$. Then $Tx \in M :: M$ is invariant under T. Also, $y \in M^{\perp}$. \Rightarrow y is orthogonal to every vector in M. \therefore y \perp Tx. Ie. (Tx, y) = 0. \Rightarrow (x, T*y) = 0. \therefore T*y \perp x \forall x \in M. \therefore T*y \in M[⊥]. \therefore M \perp is invariant under T*. Conversely suppose that $M \perp$ is invariant under T*. Since M^{\perp} is a closed linear subspace of H and invariant under T*, by first case $(M^{\perp})^{\perp}$ is invariant under $(T^*)^*$. But $(M^{\perp})^{\perp} = M^{\perp \perp} = M$ and $(T^*)^* = T^{**} = T$. \therefore M is invariant under T.

Theorem 6: A closed linear subspace M of a Hilbert Space H reduces an operator T if and only if M is invariant under both T and T*.

<u>Proof</u>: Suppose M reduces T.

 \therefore both M and M^{\perp} are invariant under T.

But by theorem 5, M^{\perp} is invariant under both T and T*.

Conversely suppose that M is invariant under both T and T*.

Since M is invariant under T*, by theorem 5, M^{\perp} is invariant under $(T^*)^*$ ie. T.

Thus, both M and M^{\perp} are invariant under T.

 \therefore M reduces T.

Theorem 7: If P is a projection on a closed linear subspace M of a Hilbert SpaceH, then M is invariant under an operator T if and only if TP = PTP.**Proof**: Suppose M is invariant under T.Let $x \in H$. Then Px is in the range of T ie. $Px \in M$. \Rightarrow TPx \in M \therefore M is invariant under T.(\Rightarrow TPx will remain unchanged under P \therefore P is projection, M is the range of P.) \therefore PTPx = TPxHint: Px = xIe. PTPx = TPx $\forall x \in H$. \therefore PTP = TP.Conversely suppose that PTP = TP.

Let $x \in M$. $\therefore Px = x \because P$ is projection with range M. $\Rightarrow TPx = Tx$ $\Rightarrow PTPx = Tx \because PTP = TP$. $\Rightarrow PTPx = TPx \because TPx = Tx$ $\Rightarrow TPx \in M \because P$ is the projection with range M. M. $\Rightarrow Tx \in M \because TPx = Tx$. Thus, $x \in M \Rightarrow Tx \in M$. \therefore M is invariant under T.

Hint: $Tx = x \Rightarrow x \in$

Theorem 8: If P is a projection on a closed linear subspace M of a Hilbert Space H, then M reduces an operator T if and only if PT = TP. **Proof**: Let P be the projection on a closed linear subspace M. Then M reduces T iff M is invariant under both T and T*. Hint: By theorem 6 iff TP = PTP and T*P = PT*PHint By theorem 7 iff TP = PTP and $(T^*P)^* = (PT^*P)^*$ iff TP = PTP and P*T** = P*T**P* iff TP = PTP and PT = PTP :: P is projection, $P^* = P$ ie. M reduces T iff TP = PTP and PT = PTP ... (i) Now suppose M reduces T. Then from (i), TP = PTP and PT = PTP. \therefore TP = PT. Conversely suppose that TP = PT. \Rightarrow PTP = P²T \Rightarrow PTP = PT \therefore P² = P. Similarly, $TP^2 = PTP \implies TP = PTP$. Thus, $TP = PT \Rightarrow TP = PTP$ and PT = PTP \therefore from (i), M reduces T.

Theorem 9: 2*: If M and N are closed linear subspaces of a Hilbert Space H and P and Q are the projections on M and N respectively, then $M \perp N$ if and only if PQ = Oof if and only if QP = O. **Proof**: Let M and N be closed linear subspaces of a Hilbert Space H and P and Q be the projections on M and N respectively. $\therefore P^* = P$ and $Q^* = Q$ Claim: PQ = O iff QP = O. Now PQ = O iff $(PQ)^* = O^*$ iff $Q^*P^* = O^*$ iff QP = O. ie. PQ = O iff QP = OClaim: $M \perp N$ iff PQ = O. Now suppose $M \perp N$. Let $y \in N$. Then $y \perp M$ ie. $y \in M^{\perp}$ Thus, $y \in N \Rightarrow y \in M^{\perp}$...(i) Now let $z \in H$. Then Qz is in the range of Q ie. $Qz \in N$. From (i), $Qz \in M^{\perp}$ which is the null space of P. $\therefore P(Qz) = \overline{0}.$ Thus, $PQz = \overline{0} \forall z \in H$. $\therefore PQz = Oz \forall z \in H$. Hence PO = O. Conversely suppose, that PQ = O and $x \in M$ and $y \in N$. \therefore Px = x \therefore M is the range of P. And Qy = y :: N is the range of Q. \therefore (x, y) = (Px, Qy) =(x, P*Oy) $= (x, PQy) :: P^* = P.$ = (x, Oy) :: PQ = O $=(\mathbf{x}, \overline{\mathbf{0}})$ = 0. $\therefore M \perp N$

ORTHOGONAL PROJECTIONS

Definition: Two projections P and Q on a Hilbert Space H are said to be orthogonal if PQ = O.

By theorem 9, P and Q are orthogonal iff their ranges M and N are orthogonal.

Theorem 10: 1*: If P₁, P₂, ..., P_n are the projections on closed linear subspaces M₁, M₂, ..., M_n of a Hilbert Space H, then P = P₁ + P₂ + ... + P_n is a projection if and only if the P_i's are pairwise orthogonal. Also, then P is the projection on M = M₁ + M₂ + ... + M_n. **Proof**: Let P₁, P₂, ..., P_n be pairwise orthogonal projections on H. \therefore P_i's linear, continuous, P_i² = P_i = P_i* for each i = 1, 2, ..., n. and P_iP_j = O if i ≠ j. Let P = P₁ + P₂ + ... + P_n. Then clearly P is linear and continuous. Also P* = (P₁ + P₂ + ... + P_n)* = P₁* + P₂* + ... + P_n* = P₁ + P₂ + ... + P_n = P. And P² = (P₁ + P₂ + ... + P_n)² = $\sum_{i=1}^{n} P_i^2 + \sum_{1 \le i \ne j \le n} P_i P_j = \sum_{i=1}^{n} P_i = P$. Thus, P is linear, continuous, P² = P = P*. \therefore P is a projection on H. Conversely suppose P is a projection on H. ie. let P is linear, continuous P² = P = P*.

To prove $P_iP_i = O \forall i \neq j$ it suffices to prove that $M_i \perp M_i \forall i \neq j$ in view of theorem 9. Let T be any projection on H and $z \in H$. Then $(Tz, z) = (TTz, z) = (Tz, T^*z) = (Tz, Tz) = ||Tz||^2 \dots (i).$ Let $x \in M_i$, and $y \in M_i$. Since M_i is range of P_i , $P_i x = x \forall i = 1, 2, ..., n$. Then $||x||^2 = ||P_i x||^2 \le \sum_{j=1}^n ||P_j x||^2$ $=\sum_{i=1}^{n} (P_j x, x)$ by (i). $= (P_1x, x) + (P_2x, x) + \dots + (P_nx, x).$ $=((P_1 + P_2 + ... + P_n)x, x)$ $= (Px, x) = ||Px||^2$ by (i). $\leq ||x||^2$ by using projection theorem (or theorem 4) ... (ii). Ie. $||x||^2 = ||P_ix||^2 \le \sum_{j=1}^n ||P_jx||^2 \le ||x||^2$. $\Rightarrow \|P_i x\|^2 = \sum_{j=1}^n \|P_j x\|^2.$ $\Rightarrow \|P_j x\|^2 = 0 \forall j \neq i.$ \Rightarrow P_ix = 0 \forall j \neq i. \Rightarrow x is in the null space of P_i \forall j \neq i. $\Rightarrow x \in M_i^{\perp} \forall i \neq i.$ \Rightarrow M_i \subset M_i^{\perp} \forall j \neq i. \Rightarrow M_i \perp M_i. Hence $P_iP_i = O$ whenever $i \neq j$. Claim: P is a projection on $M = M_1 + M_2 + ... + M_n$. ie. Range of P = P. Let $x \in M$. Then $x = x_1 + x_2 + \ldots + x_n$ where $x_i \in M_i$, $1 \le i \le n$. Now $Px = P(x_1 + x_2 + ... + x_n) = Px_1 + Px_2 + ... + Px_n$ $= (P_1 + P_2 + ... + P_n)x_1 + (P_1 + P_2 + ... + P_n)x_2 + ... + (P_1 + P_2 + ... + P_n)x_n$ $= P_1 x_1 + P_2 x_2 + \ldots + P_n x_n$ $= \mathbf{x}_1 + \mathbf{x}_2 + \ldots + \mathbf{x}_n = \mathbf{x}$ Ie. Px = xSo, $x \in Range of P$. \therefore M \subseteq Range of P. Now suppose $x \in Range of P$. Then Px = x \Rightarrow (P₁ + P₂ + ... + P_n)x = x. \Rightarrow P₁x + P₂x + ... + P_nx = x. But $P_1 x \in M_1, P_2 x \in M_2, ..., P_n x \in M_n$. $\therefore x \in M_1 + M_2 + \ldots + M_n = M$ \therefore Range of P \subseteq M. \therefore M = Range of P. Hence P is a projection on M.

Example 1: 3*: If P and Q are the projections on a closed linear subspaces M and N of H, then prove that PQ is projection if and only if PQ = QP. In this case, show that PQ is the projection on $M \cap N$. Solution: Let P and Q be the projections on closed linear subspaces M and N. \therefore P, Q are linear, continuous, $P^2 = P = P^*$ and $Q^2 = Q = Q^*$. Suppose PQ is a projection on H. \therefore (PQ)* = PQ \Rightarrow Q*P* = PQ \Rightarrow QP = PQ. Conversely suppose PQ = QP. Since P, Q are Projections, they are linear and continuous so that PQ is linear and continuous. $\therefore (PQ)^* = Q^*P^* = OP = PO$ Also $(PQ)^2 = (PQ)(PQ) = P(QP)Q = P(PQ)Q = (PP)(QQ) = P^2Q^2 = PQ$. Ie. $(PQ)^2 = PQ^2 = PQ^2$. PO \therefore PQ is a projection. Claim: Range of PQ, denoted by R(PQ), is $M \cap N$. Let $x \in M \cap N \Rightarrow x \in M$ and $x \in N$. Then (PQ)x = P(Qx) = Px :: N = R(Q) and $x \in N \Longrightarrow Qx = x$. = x :: M = R(P) and $x \in M \Longrightarrow Px = x$ Thus, (PQ)x = x $\therefore x \in R(PQ).$ \therefore M \cap N \subset R(PQ)...(a) Now suppose that $x \in R(PQ)$. Then $(PQ)x = x \dots (i)$ $\Rightarrow P[(PQ)x] = Px$ \Rightarrow (P²Q)x = Px. \Rightarrow (PQ)x = Px...(ii) \therefore from (i) and (ii), $Px = x \implies x \in R(P) = M$ Ie, $x \in M...(iii)$ As, PQ = QP, from (i), $(QP)x = x \dots (iv)$ $\Rightarrow Q[(QP)x = Qx]$ $\Rightarrow (Q^2P)x = Qx$ \Rightarrow (QP)x = Qx. ... (v) From (iv) and (v) Qx = x $\Rightarrow x \in N.$ From (iii) and (v) $x \in M \cap N$. \therefore R(PQ) \subset M \cap N... (b) Hence, from (a) and (b) $R(PQ) = M \cap N$.

Example 2: 2*: If P and Q are the projections on closed linear subspaces M and N of H, prove the following statements are all equivalent to one another.

- $P \leq Q$ (i)
- $||Px|| \leq ||Qx||$ for every $x \in H$. (ii)
- (iii) $M \subseteq N$.
- (iv) QP = P.
- (v) PQ = P.

Solution: Remember if P is any projection on H, then $(Px, x) = ||Px||^2 \forall x \in H$. Claim: (i) \Rightarrow (ii). Let $P \leq Q$. \Rightarrow (Px, x) \leq (Qx, x) \forall x \in H.

 $\Rightarrow \|Px\|^2 \le \|Qx\|^2 \ \forall \ \mathbf{x} \in \mathbf{H}.$

```
\Rightarrow ||Px|| \le ||Qx|| for every x.
```

Claim: (ii) \Rightarrow (iii)

```
Assume ||Px|| \le ||Qx|| for every x in H.
```

```
Let x \in M.
```

```
\Rightarrow \mathbf{P}\mathbf{x} = \mathbf{x}
```

```
\Rightarrow ||Px|| = ||x||.
```

```
\Rightarrow ||x|| \leq ||Qx||
```

```
\Rightarrow ||x|| = ||Qx|| : ||Qx|| \le ||x|| \forall x \in H \text{ by theorem 4.}
```

```
\Rightarrow Qx = x by theorem 3.
```

```
\Rightarrow x \in N. \therefore M \subset N.
```

```
Claim: (iii) \Rightarrow (iv).
```

```
Assume M \subset N.
```

```
Let x \in H. Then (QP)x = Q(Px).
```

```
Since Px \in M, M \subseteq N \Rightarrow Px \in N.
```

```
\therefore (QP)x = Px \forall x \in H.
```

```
\therefore QP = P.
```

```
Claim: (iv) \Rightarrow (v).
```

```
Let QP = P
```

```
\Rightarrow (\mathbf{QP})^* = \mathbf{P}^* \Rightarrow \mathbf{P}^*\mathbf{Q}^* = \mathbf{P}^*
```

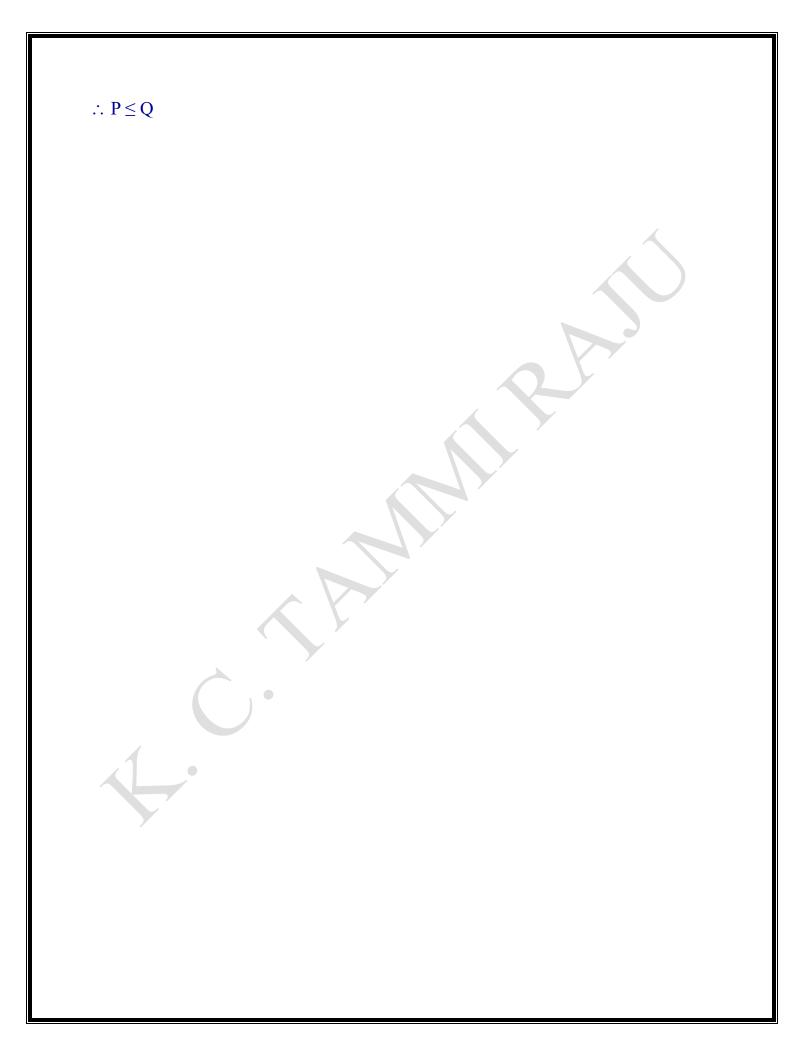
```
\Rightarrow PQ = P.
```

```
Claim: (v) \Rightarrow (i).
```

```
Let PQ = P.
```

```
Let x \in H. Then (Px, x) = ||Px||^2 = ||PQx||^2 :: PQ = P.
                                    = \|P(Ox)\|^2
```

```
\leq \|Qx\|^2 :: \|Px\| \leq \|x\| \forall x \in \mathbf{H}.
=(Qx, x)
```



Fax: 08816-227318 off: 08816-224072, 224119,228342 Mobile: 9491334119 DANTULURI NARAYANA RAJU COLLEGE

(Autonomous) BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

E – CONTENT PAPER: M 301, FUNCTIONAL ANALYSIS M. Sc. II YEAR, SEMESTER - III UNIT – IV: FIN DIM SPECTRAL THEORY

PREPARED BY K, C. TAMMI RAJU, M. Sc. Kead of the department department of mathematics, PG courses DNR college (A), BHIMAVARAM – 534202

FUNCTIONAL ANALYSIS K. C. TAMMI RAJU, M.Sc. UNIT IV FINITE DIMENSIONAL SPECTRAL THEORY

EIGEN VALUES AND EIGEN VECTORS

Definition:- Let T be an operator on a Hilbert Space H. Then a scalar λ is called an *eigen value or Characteristic value, or proper value or latent value* of T if \exists non-zero vector x in H \ni Tx = λ x.

Also, if λ is an eigen value of T, then any non-zero vector x in H \ni Tx = λ x is called an *eigen vector or Characteristic vector, or proper vector or latent vector* of T corresponding to the eigen value λ .

The set of all eigen values of T is called the *spectrum* of T and is denoted by $\sigma(T)$.

<u>Note</u>: Eigen vector is always a non-zero vector. If $H = \{\overline{0}\}$, then H has no eigen vector and hence no eigen value. So, here after we assume that $H \neq \{\overline{0}\}$.

<u>**Therom-1**</u>: If x is an eigen vector of T corresponding to eigen value λ , then αx is also an eigen vector of T corresponding to the same eigen value λ where α is any non-zero scalar.

<u>**Proof**</u>: Let x be an eigen vector of T corresponding to the eigen value λ . Then $x \neq \overline{0}$ and $Tx = \lambda x$

If α is any non - zero scalar, then $\alpha x \neq \overline{0}$ and $T(\alpha x) = \alpha T x = \alpha(\lambda x) = \lambda(\alpha x)$ $\therefore \alpha x$ is an eigen vector of T corresponding to the eigen value λ .

<u>**Theorem-2**</u>: If x is an eigen vector of T, then x cannot correspond to more than one eigen value of T.

<u>**Proof**</u>: If possible, suppose x is an eigen vector of T corresponding to two distinct eigen values λ_1 and λ_2 of T.

Then $Tx = \lambda_1 x$ and also $Tx = \lambda_2 x$

$$\Rightarrow \lambda_1 x = \lambda_2 x$$

 $\Rightarrow (\lambda_1 - \lambda_2) x = \bar{0}$

 $\Rightarrow \lambda_1 - \lambda_2 = 0$ (since, $x \neq \overline{0}$).

 $\Rightarrow \lambda_1 = \lambda_2$ which is a contradiction.

 \therefore x cannot correspond to more than one eigen value of T.

<u>Theorem-3</u>: Let λ be an eigen value of an operator T on a Hilbert space H. If M_{λ} is the set consisting of all eigen vectors of T which corresponds to the eigen value of λ together with the null vector \bar{o} , then M_{λ} is a non-zero closed linear subspace of H invariant under T. M_{λ} is called the *eigen space* of T corresponding to the eigen value λ .

<u>Proof</u>: Since, by definition, an eigen vector is a non-zero vector, M_{λ} necessarily contains some non-zero vector. Also given that the vector $\bar{o} \in M_{\lambda}$.

 $\therefore x \in M_{\lambda}$ if and only if $Tx = \lambda x$.

 $\therefore M_{\lambda} = \{x \in H: Tx = \lambda x\} = \{x \in H: (T - \lambda I)x = \overline{0}\}.$

Thus, M_{λ} is the null space of the linear transformation T – λ I on H.

 $\therefore M_{\lambda}$ is a linear sub space of H.

Recall that the null space of a continuous linear transformation is closed.

Since the linear transformation $T - \lambda I$ is a continuous mapping, M_{λ} is closed Claim: M_{λ} is invariant under T.

Let $x \in M_{\lambda}$. Then $Tx = \lambda x$ But $\lambda x \in M_{\lambda}$ (since M_{λ} is linear subspace of H) $\therefore Tx \in M_{\lambda}$ Thus, $T(M_{\lambda}) \subseteq M_{\lambda}$ $\therefore M_{\lambda}$ is invariant under T.

We assume that H is a finite dimensional Hilbert space with dimension n throughout the remaining part of this chapter.

Note: Every linear transformation on H is continuous and so is an operator on H. $\mathfrak{B}(H)$ is the collection of all linear transformations.

Total Matrix Algebra of degree n:

Let A_n be the set of all $n \times n$ matrices over the field \mathbb{C} . Then A_n is a Complex Algebra with identity with respect to matrix addition, scalar multiplication and matrix multiplication. It is called the total matrix algebra of degree n.

MATRIX OF LINEAR TRANSFORMATION:

Definition: Let H be an n-dimensional Hilbert space and let $B = \{e_1, e_2, \dots, e_n\}$ be an ordered basis for H. Let T be an operator on H. Since each $T(e_j) \in H$ and B is a basis, \exists scalars α_{ij} , $i = 1, 2, 3, ..., n \ni T(e_j) = \alpha_{1j}e_1 + \alpha_{2j}e_2 + + \alpha_{nj}e_n = \sum_{i=1}^n \alpha_{ij}e_i$

Then n × n matrix whose j^{th} column (j = 1, 2, 3, ..., n) consists of the scalars $\alpha_{1j}, \alpha_{2j}, ..., \alpha_{nj}$ is called the matrix of the operator T relative to the ordered basis B.

∴ $[T]_B$ = Matrix of T relative to the ordered basis B is $[\alpha_{ij}]_{n \times n}$ where T(e_j) = $\sum_{i=1}^n \alpha_{ij} e_i$ for each j = 1, 2, ..., n.

Matrices of identity and zero operator :

Theorem 1:- Let H be an n-dimensional Hilbert space and B be an ordered basis for H. If I is an identity operator and O be the zero operator on H then

(i) $[I]_B = I = [\delta_{ij}]_{n \times n}$, unit matrix of order n. (ii) $[O]_B = O$, Null matrix of the type n × n. **Proof**: Let B = $\{e_1, e_2, \dots, e_n\}$ be an ordered basis for H. (i) I(e_j) = e_j = $\sum_{i=1}^n \delta_{ij} e_i$ where $\delta_{ij} = \begin{cases} 1 & if \ i = j \\ 0 & if \ i \neq j \end{cases}$ $\therefore [I]_B = [\delta_{ij}]_{n \times n} = I$, unit matrix of order n. We have O(e_j) = $\overline{0}$ (for j = 1, 2, ..., n) $= 0e_1 + 0e_2 + \dots + 0e_n$ $= \sum_{i=1}^n \alpha_{ij} e_i$ where $\alpha_{ij} = 0 \forall i, j$. $\therefore [O]_B = [\alpha_{ij}]_{n \times n} = O$, null matrix of the type n × n.

Theorem 2: Let H be a finite dimensional Hilbert space of dimension n and let $B = \{e_1, e_2, \ldots, e_n\}$ be an ordered basis for H. If f_1, f_2, \ldots, f_n are any n vectors in H then \exists unique operator T on H \ni T(e_i) = f_i , i = 1, 2, ..., n. **Proof**: Existence of T: Let $x \in H$. Since $B = \{e_1, e_2, \ldots, e_n\}$ is a basis for H \exists unique scalars $\alpha_1, \alpha_2, \ldots$ $\alpha_n \ni \qquad x = \alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n$ Now define T: H \rightarrow H by T(x) = T($\alpha_1 e_1 + + \alpha_n e_n$) = $\alpha_1 f_1 + + \alpha_n f_n$ Clearly T is well defined. Let $e_i \in B$. Then $0e_1 + + 0e_{i-1} + 1e_i + 0e_{i+1} + ... + 0e_n$ for i = 1, 2, ..., n. \therefore T(e_i) = $0f_1 + + 0f_{i-1} + 1f_i + 0f_{i+1} + ... + 0f_n = f_i$ for i = 1, 2, ..., n. Let α , β be any scalars and x, y \in H. Then \exists scalars $\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \beta_2, \ldots, \beta_n \ni$ $x = \alpha_1 e_1 + \alpha_2 e_2 + ... + \alpha_n e_n$ and $y = \beta_1 e_1 + \beta_2 e_2 + ... + \beta_n e_n$ Then T($\alpha x + \beta y$) = T{ $\alpha(\alpha_1 e_1 + ... + \alpha_n e_n) + \beta(\beta_1 e_1 + + \beta_n e_n)$ } $= T{(<math>\alpha \alpha_1 + \beta \beta_1)e_1 + ... + (\alpha \alpha_n + \beta \beta_n)e_n$ } $= (\alpha \alpha_1 f_1 + \beta \beta_1 f_1 + ... + (\alpha \alpha_n + \beta \beta_n)f_n$ $= \alpha \alpha_1 f_1 + \beta \beta_1 f_1 + ... + \alpha_n f_n + \beta \beta_n f_n$ $= \alpha T(x) + \beta T(y)$ \therefore T is a linear transformation

Thus, \exists an operator T on H \ni T(e_i) = f_i for i = 1, 2, ..., n. Uniqueness of T:

Let T' be an operator on H \ni T'(e_i) = f_i for i = 1, 2, ..., n. Now for the vector $\mathbf{x} = \alpha \cdot \alpha + \dots + \alpha \cdot \alpha \in \mathbf{H}$. T'(\mathbf{x}) = T'($\alpha \cdot \alpha + \dots + \alpha \cdot \alpha \in \mathbf{H}$.

Now for the vector
$$\mathbf{x} = \alpha_1 e_1 + \dots + \alpha_n e_n \in \mathbf{H}$$
, $\Gamma'(\mathbf{x}) = \Gamma(\alpha_1 e_1 + \dots + \alpha_n e_n)$

$$= \alpha_1 T'(e_1) + \dots + \alpha_n T'(e_n)$$

$$= \alpha_1 f_1 + \dots + \alpha_n f_n$$

$$= T(\mathbf{x})$$

Thus, $T'(x) = T(x) \quad \forall x \in H$ $\therefore T' = T$. Note: Two operators on H are equal if

Note: Two operators on H are equal if they agree on a basis of H.

<u>Theorem 3:</u> 3*: If B is an ordered basis for a finite dimensional Hilbert space H of dimension n then the mapping $T \rightarrow [T]$ which assigns to each operator T it's matrix relative to B is an isomorphism of the algebra \mathfrak{B} (H) onto the total matrix algebra A_n . <u>Proof</u>: Let B = $\{e_1, e_2, \ldots, e_n\}$.

Define $\psi : \mathfrak{B} (\mathrm{H}) \to A_n$ by $\psi(\mathrm{T}) = [T]_B \forall \mathrm{T} \in \mathrm{B}(\mathrm{H}).$ Let $T_1, T_2 \in \mathfrak{B}(\mathrm{H})$ and let $[T_1]_B = [\alpha_{ij}]_{n \times n}$ and $[T_2]_B = [\beta_{ij}]_{n \times n}$ where $T_1(e_j) = \sum_{i=1}^n \alpha_{ij}e_i, j = 1, 2, ..., n. ... (1).$ and $T_2(e_j) = \sum_{i=1}^n \beta_{ij}e_i, j = 1, 2, ..., n. ... (2).$

Claim: ψ is one-one: Let $\psi(T_1) = \psi(T_2)$ $\Rightarrow [T_1]_B = [T_2]_B$ $\Rightarrow [\alpha_{ij}]_{n \times n} = [\beta_{ij}]_{n \times n}$ $\Rightarrow \alpha_{ij} = \beta_{ij}$ for i = 1, 2, ..., n, j = 1, 2, ..., n $\Rightarrow \sum_{i=1}^{n} \alpha_{ij} e_i = \sum_{i=1}^{n} \beta_{ij} e_i \text{ for } j = 1, 2, ..., n.$ \Rightarrow $T_1(e_i) = T_2(e_i)$ for j = 1, 2, ..., n. \Rightarrow $T_1 = T_2$ ψ is onto: Let $[\gamma_{ij}]_{n \times n}$ be any matrix in A_n Then for each j = 1, 2, ..., n, $\sum_{i=1}^{n} \gamma_{ij} e_i \in H$ By theorem 2, \exists a unique operator T on H \ni T(e_j) = $\sum_{i=1}^n \gamma_{ij} e_i$ for j = 1, 2, ..., n. $\therefore [T]_B = [\gamma_{ij}]_{n \times n} \Longrightarrow \psi(T) = [\gamma_{ij}]_{n \times n}$ ψ preserves addition: Let $T_1, T_2 \in \mathfrak{B}$ (H). From (1) and (2), $(T_1 + T_2)(e_i) = T_1(e_i) + T_2(e_i)$ for j = 1, 2, ..., n. $= \sum_{i=1}^{n} \alpha_{ij} e_i + \sum_{i=1}^{n} \beta_{ii} e_i$ $=\sum_{i=1}^{n}(\alpha_{ii}+\beta_{ii})e_{i}$ $\therefore [T_1 + T_2] = [\alpha_{ii} + \beta_{ii}]_{n \times n}$ $= [\alpha_{ii}]_{n \times n} + [\beta_{ii}]_{n \times n}$ $= [T_1] + [T_2]$ $\therefore \psi(T_1 + T_2) = [T_1 + T_2] = [T_1] + [T_2] = \psi[T_1] + \psi[T_2]$ ψ preserves scalar multiplication: Let α be any scalar then $(\alpha T_1)(e_i) = \alpha T_1(e_i)$ for j = 1, 2, ..., n. $= \alpha \sum_{i=1}^{n} \alpha_{ii} e_i$ $=\sum_{i=1}^{n} \alpha \alpha_{ii} e_i$ $\therefore [\alpha T_1] = [\alpha \alpha_{ij}]_{n \times n} = \alpha [\alpha_{ij}]_{n \times n} = \alpha [T_1]$ $\therefore \psi(\alpha T_1) = [\alpha T_1] = \alpha [T_1] = \alpha \psi[T_1]$ ψ preserves multiplication: We have $(T_1T_2)(e_i) = T_1(T_2(e_i)), j = 1, 2, ..., n$. $=T_1(\sum_{k=1}^n \beta_{ki} e_k)$ $=\sum_{k=1}^n\beta_{ki}T_1(e_k)$

$$= \sum_{k=1}^{n} \beta_{kj} (\sum_{i=1}^{n} \alpha_{ik} e_i)$$

$$= \sum_{i=1}^{n} (\sum_{j=1}^{n} \alpha_{ik} \beta_{kj}) e_i$$

$$\therefore [T_1 T_2] = [\sum_{j=1}^{n} \alpha_{ik} \beta_{kj})]_{n \times n}$$

$$= [\alpha_{ij}]_{n \times n} [\beta_{ij}]_{n \times n}$$

$$= [T_1][T_2]$$

$$\therefore \psi(T_1 T_2) = [T_1 T_2]$$

$$= [T_1][T_2]$$

$$= \psi[T_1] \psi[T_2].$$

 $\therefore \psi$ is an isomorphism of the algebra \mathfrak{B} (H) onto the Matrix algebra A_n .

Theorem 4: 2*: Let B be an ordered basis for a finite dimensional Hilbert space H of dimension n and T an operator on H whose matrix relative to B is $[\alpha_{ij}]$. Then T is non-singular if and only if $[\alpha_{ij}]$ is non-singular and in this case $[\alpha_{ij}]^{-1} = [T^{-1}]$. **Proof**: T is non-singular iff \exists an operator T^{-1} on H $\ni T^{-1}T = I = TT^{-1}$ iff $[T^{-1}T] = [I] = [TT^{-1}]$ iff $[T^{-1}][T] = [\delta_{ij}] = [T][T^{-1}]$ iff $[T^{-1}][\alpha_{ij}] = [\delta_{ij}] = [\alpha_{ij}][T^{-1}]$ iff the matrix $[\alpha_{ij}]$ is non-singular and $[\alpha_{ij}]^{-1} = [T^{-1}]$

SIMILARITY OF MATRICES:

Definition: Let A and B be square matrices of order n over the field of complex numbers. Then B is said to be similar to A if there exists an $n \times n$ non-singular matrix C over the field of complex numbers $\Im B = C^{-1}A C$.

<u>Note</u>: The relation of similarity on the set of all $n \times n$ matrices over the field of complex numbers is an equivalence relation.

<u>Theorem 5</u>: Similar matrices have the same determinant. <u>Proof</u>: Suppose A and B are similar matrices. Then there exists a non-singular matrix C such that $B = C^{-1}AC$ Then det $B = \det (C^{-1}AC)$ $= (\det C^{-1})(\det A)(\det C)$ $= (\det C^{-1})(\det C)(\det A)$ = $(\det C^{-1}C)(\det A)$ = $(\det [\delta_{ij}])(\det A)$ = 1. det A = det A Thus, det B = det A Hence the result.

Similarity of operators:

Definition: Let A and B be operator on a Hilbert space H. Then B is said to be similar to A if there exists a non-singular operator C on $H \ni B = C^{-1}AC$. **Note**: The relation of similarity on B(H) is an equivalence relation.

Theorem 6: 2*: Two matrices in A_n are similar if and only if they are the matrices of a single operator on H relative to (possibly) different bases.

<u>Proof</u>: [First we prove that if T is an operator on an n - dimensional Hilbert Space H and if B and B' are two ordered bases for H, then the matrix of T relative to B is similar to the matrix of T relative to B']

Suppose T is an operator on an n-dimensional Hilbert space H.

Let B = { e_1, e_2, \ldots, e_n } and B' = { f_1, f_2, \ldots, f_n } be two ordered bases for H. Let $[T]_B = [\alpha_{ij}]_{n \times n}$ and $[T]_{B'} = [\beta_{ij}]_{n \times n}$ so that $T(e_j) = \sum_{i=1}^n \alpha_{ij}e_i$, j = 1, 2, ..., n. n. ... (1) $T(f_j) = \sum_{i=1}^n \beta_{ij}f_i$, j = 1, 2, ..., n. ... (2). Let S be an operator in H defined by $S(e_j) = f_j$, j = 1, 2, ..., n. ... (3). Then S is non-singular since S maps a basis B onto a basis B'.

Let $[\gamma_{ij}]_{n \times n}$ be the matrix of S relative to B.

Then $[\gamma_{ij}]_{n \times n}$ is also non-singular, (by theorem 4.) Also $S(e_j) = \sum_{i=1}^n \gamma_{ij} e_i$, j = 1, 2, ..., n. ... (4). We have $T(f_j) = T\{S(e_j)\}$ [from (3) $= T(\sum_{k=1}^n \gamma_{kj} e_k)$ [from (4) on replacing i by k] $= \sum_{k=1}^n \gamma_{kj} T(e_k)$ $= \sum_{k=1}^n \gamma_{kj} \sum_{i=1}^n \alpha_{ik} e_i$ [from (1) on replacing j by k] $= \sum_{i=1}^n (\sum_{k=1}^n \alpha_{ik} \gamma_{kj}) e_i \dots$ (5) Again $T(f_j) = \sum_{k=1}^n \beta_{kj} f_k$ [from (2) on replacing i by k] $= \sum_{k=1}^n \beta_{kj} S(e_k)$ [from (3)] $= \sum_{k=1}^n \beta_{kj} \sum_{i=1}^n \gamma_{ik} e_i$ [from (4), on replacing j by k] $= \sum_{i=1}^n (\sum_{k=1}^n \gamma_{ik} \beta_{kj}) e_i \dots (6)$ From (5) and (6), $\sum_{i=1}^n (\sum_{k=1}^n \alpha_{ik} \gamma_{kj}) e_i = \sum_{i=1}^n (\sum_{k=1}^n \gamma_{ik} \beta_{kj}) e_i$ $\sum_{k=1}^n \alpha_{ik} \gamma_{kj} = \sum_{k=1}^n \gamma_{ik} \beta_{kj} \text{ since } e_1, e_2, \dots e_n \text{ are linearly independent}$ $\Rightarrow [\alpha_{ij}]_{n \times n} [\gamma_{ij}]_{n \times n} = [\gamma_{ij}]_{n \times n} [\beta_{ij}]_{n \times n}$ $\Rightarrow [\gamma_{ij}]^{-1} [\alpha_{ij}][\gamma_{ij}] = [\gamma_{ij}]^{-1} [\gamma_{ij}][\beta_{ij}] \text{ since } [\gamma_{ij}] \text{ is non-singular.}$ $\Rightarrow [\gamma_{ij}]^{-1} [\alpha_{ij}][\gamma_{ij}] = [\beta_{ij}] \dots (7)$ $\Rightarrow [\alpha_{ij}] \text{ and } [\beta_{ij}] \text{ are similar matrices}$ $\Rightarrow [T]_B \text{ is simialr to } [T]_{B'}$ From (7) we note that $[\beta_{ij}] = [\gamma_{ij}]^{-1} [\alpha_{ij}][\gamma_{ij}]$ $[T]_{B'} = [\gamma_{ij}]^{-1} [T]_B [\gamma_{ij}] \dots (8)$

where $[\gamma_{ij}]$ is the matrix of the operators S relative to the basis B.

[The relation (8) gives us a formula which enables us to write the matrix of T relative to basis B['] when we already know the matrix of T relative to the basis B.] Converse: Suppose that $[\alpha_{ij}]$ and $[\beta_{ij}]$ are two $n \times n$ similar matrices.

Then \exists a non-singular matrix $[\gamma_{ij}]_{n \times n}$ such that $[\gamma_{ij}]^{-1} [\alpha_{ij}][\gamma_{ij}] = [\beta_{ij}] \dots (9)$ Let B = { e_1, e_2, \dots, e_n } be any ordered basis for H and let T be the operator on H whose matrix relative to B is $[\alpha_{ij}]$. *i.e.*, $[T]_B = [\alpha_{ij}]$.

Let S be the operator on H whose matrix relative to B is $[\gamma_{ii}]$.

Then S is also non-singular since $[\gamma_{ii}]$ is non-singular.

Let B' = $\{Se_1, Se_2, ..., Se_n\}$.

Then B' is also a basis since non-singular S carries basis onto a basis We have $[S]_B = [\gamma_{ij}]$

By the result (8), proved in this theorem, $[T]_{B'} = [\gamma_{ij}]^{-1} [T]_B [\gamma_{ij}]$ $= [\gamma_{ij}]^{-1} [\alpha_{ij}] [\gamma_{ij}]$ $= [\beta_{ij}] \text{ by } (9)$ Thus, $[\alpha_{ij}]$ and $[\beta_{ij}]$ are the matrices of T relative to the basis B and B' respectively.

Definition: Let T be an operator on an n-dimensional Hilbert space H. Then the determinant of the operator T is the determinant of the matrix of T relative to any ordered basis for H.

<u>**Theorem** – 7</u>: 1*: Let S and T be operators on a finite dimensional Hilbert space H of dimension n. Then (i) det (I) = 1 where I is the identity operator

- (ii) det (ST) = (det S)(det T)
- (iii) det $T \neq 0$ iff T is non-singular.

<u>Proof:</u> Let B be any ordered basis for H. We have det $T = det [T]_B$.

(i) det (I) = det ([I]_B) = det ([δ_{ij}]) = 1

(ii) det $(ST) = det ([ST]_B)$

= det ($[S]_B [T]_B$)

 $= (det [S]_B)(det [T]_B)$

$$=$$
 (det S)(det T)

(iii) T is non-singular iff $[T]_B$ is non-singular iff det $[T]_B \neq 0$ iff det $(T) \neq 0$.

<u>**Theorem – 8**</u>: An operator T on a finite dimensional Hilbert space H is singular if and only if there exists a non-zero vector x in H \ni Tx = $\overline{0}$.

<u>Proof</u>: Suppose \exists a non-vector x in H \ni Tx = $\overline{0}$

But $T\overline{0} = \overline{0}$). I.e. Two distinct elements in H have the same image.

 \therefore T is not one – one.

 \therefore T is not non-singular.

i.e., T is singular.

Conversely suppose that T is singular.

If possible, suppose there exists no non-zero vector $\mathbf{x} \ni \mathbf{T}\mathbf{x} = \mathbf{\overline{0}}$.

i.e., $Tx = \overline{0} \Rightarrow x = \overline{0}$. Let y, $z \in H \Rightarrow Ty = Tz \Rightarrow T(y - z) = \overline{0}$. $\Rightarrow y - z = \overline{0}$. $\Rightarrow y = z$

 \therefore T is one – one.

Since H is finite dimensional and T is one – one, \Rightarrow T is onto and so, T is nonsingular which is a contradiction. Hence there must exist a non-zero vector x \Rightarrow Tx = $\overline{0}$.

Theorem -9: 1*: If T is an arbitrary operator on a finite dimensional Hilbert space H, then the eigen values of T constitute a non-empty finite subset of the complex plane. Furthermore, the number of points in this does not exceed the dimension n of the space H.

<u>Proof</u>: Let T be an operator on a finite dimensional Hilbert space H of dimension n.

A scalar λ is an eigen value of T iff \exists a non-zero vector x in H \Rightarrow Tx = λ x

iff \exists a non-zero vector x \mathbf{i} (T – λ I)x = $\mathbf{\overline{0}}$.

iff the operator $T - \lambda I$ is singular [by theorem 8]

iff det $(T - \lambda I) = 0$ [by theorem 7]

Thus, λ is an eigen value of T iff λ satisfies the equation det $(T - \lambda I) = 0$. Let B be any ordered basis for H.

Then det $(T - \lambda I) = det ([T - \lambda I]_B)$ $= det ([T]_B - \lambda [I]_B)$ $= det ([T]_B - \lambda [\delta_{ij}]_{n \times n})$ Let $[T]_B = [\alpha_{ij}]_{n \times n}$ Then det $(T - \lambda I) = 0$ takes the form $\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0 \dots (1)$

The equation (1) is called the characteristic equation of the operator T. If we expand the determinant on the left hand side of (1), then (1) is a polynomial equation with complex coefficients of degree n in the complex variable λ . By fundamental theorem of Algebra, the equation (1) has a root in the field of complex coefficients of degree n in the complex variable λ . \therefore equation (1) has a root in the field of complex numbers. Hence every operator T on H has an eigen value.

Also, the equation (1) has exactly n roots in the complex field. Some of these roots may be repeated.

Hence T has an eigen value and the number of distinct eigen values of $T \le n$.

Theorem 1: 1*: If T is a normal operator on a Hilbert Space H, then x is an eigen vector of T with eigen value λ if and only if x is an eigen vector of T* with eigen value $\overline{\lambda}$.

<u>Proof</u>: Let T be a normal operator on H.

Now for any scalar
$$\lambda$$
, $(T - \lambda I)(T - \lambda I)^* = (T - \lambda I)(T^* - \overline{\lambda} I^*)$

$$= (T - \lambda I)(T^* - \overline{\lambda} I)$$

$$= T T^* - \overline{\lambda} T I - \lambda T^* I + \lambda \overline{\lambda} I^2.$$

$$= T^* T - \lambda T^* I - \overline{\lambda} T I + |\lambda|^2 I^2$$

$$= T^* (T - \lambda I) - \overline{\lambda} I (T - \lambda I)$$

$$= (T^* - \overline{\lambda} I)(T - \lambda I)$$

$$= (T - \overline{\lambda} I)^* (T - \lambda I)$$

$$= (T - \overline{\lambda} I)^* (T - \lambda I)$$

$$\therefore T - \lambda I \text{ is also a normal operator on H where } \lambda \text{ is any scalar.}$$
Recall that T is normal iff $||Tx|| = ||T^*x||.$
Since $T - \lambda I$ is normal, $||(T - \lambda I)x|| = ||(T - \lambda I)^*x|| \forall x \in H$

$$\inf ||(T - \lambda I)x|| = ||(T^* - \overline{\lambda} I)x|| \forall x \in H.$$

$$\inf ||Tx - \lambda x|| = ||T^*x - \overline{\lambda}x|| \forall x \in H.$$

$$(1).$$

$$\therefore Tx - \lambda x = \overline{0} \text{ iff } T^*x - \overline{\lambda}x = \overline{0}.$$

 \therefore x is an eigen vector of T with eigen value λ iff it is the eigen vector of T* with eigen value $\overline{\lambda}$.

<u>**Theorem 2**</u>: If T is a normal operator on a Hilbert Space H, then eigen spaces of T are pairwise orthogonal.

<u>**Proof**</u>: Let M_i , M_j be eigen Spaces of a normal operator T on H corresponding to the distinct eigen values λ_i , λ_j

Let x_i be any vector in M_i and x_j be any vector in M_j .

Then
$$Tx_i = \lambda_i x_i$$
 and $Tx_j = \lambda_j x_j$.
 $\therefore \lambda_i(x_i, x_j) = (\lambda_i x_i, x_j)$
 $= (Tx_i, x_j)$
 $= (x_i, T^*x_j)$
 $= (x_i, \overline{\lambda_j} x_j)$
 $= \lambda_j(x_i, x_j)$.
 $\therefore (\lambda_i - \lambda_j)(x_i, x_j) = 0$
 $\Rightarrow (x_i, x_j) = 0 \because \lambda_i \neq \lambda_j$.
 $\Rightarrow x_i \perp x_j$.
Thus, $x_i \perp x_j \forall x_i \in M_i$ and $x_j \in M_j$.
 $\therefore M_i \perp M_j$.

Theorem 3: If T is a normal operator on a Hilbert Space H, then each eigen space of T reduces T.

<u>Proof</u>: Let T be a normal operator on a Hilbert Space H and M be an eigen space of T corresponding to the eigen value λ .

Claim: M is invariant under T.

Let $x \in M$. Then $Tx = \lambda x$.

But $\lambda x \in M :: M$ is a linear subspace.

 \Rightarrow Tx \in M. ie. T(M) \subseteq M.

 \therefore M is invariant under T.

Claim: M is invariant under T*.

Let $x \in M$. Then $Tx = \lambda x$.

 \therefore T*x = $\overline{\lambda}$ x by Theorem 1.

But $\overline{\lambda}x \in M :: M$ is a linear subspace.

 \Rightarrow T*x \in M. ie. T*(M) \subseteq M.

... M is also invariant under T*. Hence M reduces T.

THE SPECTRAL THEOREM

Theorem: 9*: Let T be an operator on a finite dimensional Hilbert Space H. Let $\lambda_1, \lambda_2, ..., \lambda_m$ be the distinct eigen values of T and $M_1, M_2, ..., M_m$ be their corresponding eigen spaces, and $P_1, P_2, ..., P_m$ be the projections on these spaces. Then the following statements are all equivalent to one another.

- (i) The M_i's are pairwise orthogonal and span H.
- (ii) The P_i's are pairwise orthogonal, $\sum_{i=1}^{m} P_i = I$ and $T = \sum_{i=1}^{m} \lambda_i P_i$.
- (iii) T is normal.

<u>Proof</u>: Claim: (i) \Rightarrow (ii). Assume (i).

Let $x \in H$. Then x can be uniquely expressed as $x = x_1 + x_2 + ... + x_m ...$ (1) where $x_i \in M_i$ for each i = 1, 2, ..., m, since M_i 's are pairwise orthogonal and span H. $P_iP_j = O$ if $i \neq j$, since P_i 's are projections on M_i 's which are pairwise orthogonal. Then from (1), for each i, $P_ix = P_i(x_1 + x_2 + ... + x_m) = P_ix_1 + P_ix_2 + ... + P_ix_m ...$ (2).

Now $P_i x_i = x_i :: x_i \in M_i$ which is the range of P_i .

Further, $P_i x_j = 0$ if $j \neq i \because x_j \in M_i^{\perp}$ which is null space of P_i . $M_j \perp M_i$. \therefore From (2), $P_i x = x_i \dots$ (3).

Now
$$\forall x \in H$$
, $Ix = x = x_1 + x_2 + ... + x_m = P_1 x + P_2 x + ... + P_m x$ from (3)
= $(P_1 + P_2 + ... + P_m) x$.

:. $P_1 + P_2 + ... + P_m = I$. Again, $\forall x \in H$, $Tx = T(x_1 + x_2 + ... + x_m) = Tx_1 + Tx_2 + ... + Tx_m$

$$\begin{split} &=\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_m x_m \because x_i \in M_i \Rightarrow T x_i = \lambda_i x_i, \\ &=\lambda_i P_1 x_i + \lambda_2 P_2 x_1 \ldots + \lambda_m P_m x_i from (3) \\ &= (\lambda_i P_1 + \lambda_2 P_2 + \ldots + \lambda_m P_m) x_i \\ \vdots T = \lambda_i P_1 + \lambda_2 P_2 + \ldots + \lambda_m P_m. \\ &Claim: (ii) \Rightarrow (iii) \\ &Assume (ii). \\ &Since each P_i is a projection, P_i^* = P_i = P_i^2. Also, P_i P_j = 0 if i \neq j. \\ &Now T^* = (\lambda_i P_1 + \lambda_2 P_2 + \ldots + \lambda_m P_m)^* \\ &= \overline{\lambda_1} P_1 + \overline{\lambda_2} P_2^* + \ldots + \overline{\lambda_m} P_m^* \\ &= \overline{\lambda_1} P_1 + \overline{\lambda_2} P_2^* + \ldots + \overline{\lambda_m} P_m^* \\ &= \overline{\lambda_1} P_1 + \overline{\lambda_2} P_2 + \ldots + \lambda_m P_m (\lambda_1 P_1 + \overline{\lambda_2} P_2 + \ldots + \overline{\lambda_m} P_m) \\ &= |\lambda_1|^2 P_1^2 + |\lambda_2|^2 P_2^2 + \cdots + |\lambda_m|^2 P_m^2 \because P_i P_i = 0 \text{ for } i \neq j. \\ &= |\lambda_1|^2 P_1 + |\lambda_2|^2 P_2^* + \cdots + |\lambda_m|^2 P_m^* ? P_i = P_i^2. \\ &Similarly, T^*T = |\lambda_i|^2 P_1 + |\lambda_2|^2 P_2^* + \cdots + |\lambda_m|^2 P_m^* \\ &Hence TT^* = T^* T so that T is normal. \\ &Claim: (iii) \Rightarrow (i). \\ &Assume (iii). Since T is a normal, M_i's are pairwise orthogonal. By Theorem 2 \\ &\therefore (By theorem 9,)P_i's are pairwise orthogonal ? P_i's are projections on M_i's and M_i's are pairwise orthogonal. \\ &Let M = M_1 + M_2 + \ldots + M_m. \\ &Then M is a closed linear subspace of H and its associated projection is P = P_1 + P_2 + \\ &\ldots + P_m (by theorem 10). \\ &Since T is normal, each eigen space M_i of T reduces T (by theorem 3). \\ &Also, P_i is the projection on the closed linear subspace M_i of H. \\ &\therefore M_i reduces T \Rightarrow P_i T = TP_i (by theorem 8). \\ &Thus, P_i T = TP_i for each P_i. \\ &\therefore TP = T(P_1 + P_2 + \ldots + P_m) \\ &= P_1 T + P_2 T + \ldots + P_m T = P_i. \\ &M_i enduces T and so M^{\perp} is invariant under T. \\ &Let U be the restriction of T to M^4. \\ &Then U is an operator on a finite dimensional Hilbert Space M^{\perp} and Ux = Tx \forall x \in M^{\perp}. \\ &It x is an eigen vector for U corresponding to the eigen value \lambda, then x \in M^{\perp} and Ux = \lambda x. \\ &\therefore Tx = \lambda x$$
 and so x is also an eigen vector for T. \\ &

 \therefore each eigen vector for U is also an eigen vector for T.

But T has no eigen vector in M^{\perp} since all the eigen vectors for T are on M and $M \cap M^{\perp} = \{ \overline{0} \}.$

So U is an operator on a finite dimensional Hilbert Space M^{\perp} and U has no eigen vector and so no eigen value.

 \therefore M^{\perp} = { $\overline{0}$ } because if M^{\perp} \neq { $\overline{0}$ } then every operator on a nonzero finite dimensional Hilbert Space must have an eigen value.

Now $M^{\perp} = \{ \overline{0} \} \Longrightarrow M = H$.

Thus, $M_1 + M_2 + \ldots + M_m = H$ and so M_i 's span H.

SPECTRAL RESOLUTION.

Definition: Let T be an operator on a Hilbert Space H. If there exist distinct complex numbers $\lambda_1, \lambda_2, ..., \lambda_m$ and pairwise orthogonal projections $P_1, P_2, ..., P_m$ such that $T = \lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_m P_m ... (i)$ and $P_1 + P_2 + ... + P_m =$ I, then the expression (i) for T is called *Spectral Resolution* for T.

<u>Note</u>: Every normal operator T on a non-zero finite dimensional Hilbert Space H has a spectral resolution.

<u>**Theorem 5**</u>: The spectral resolution of a normal operator on a finite dimensional non – zero Hilbert Space is unique.

<u>Proof</u>: Let T be a normal operator on a finite dimensional non – zero Hilbert Space H.

Let $T = \lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_m P_m \ldots$ (i) be a spectral resolution of T. Then $\lambda_1, \lambda_2, \ldots, \lambda_m$ are distinct complex numbers and P_i's are non-zero pairwise orthogonal projections such that $P_1 + P_2 + \ldots + P_m = I \ldots$ (ii)

Claim: $\lambda_1, \lambda_2, ..., \lambda_m$ are precisely the distinct eigen values of T.

Since $P_i \neq O$, \exists a non-zero vector x in the range of P_i .

But P_i is a projection. $\therefore P_i x = x$.

Now $Tx = (\lambda_1 P_1 + \lambda_2 P_2 + \dots + \lambda_m P_m)x$ = $(\lambda_1 P_1 + \lambda_2 P_2 + \dots + \lambda_m P_m)P_ix$

$$=\lambda_1 P_1 P_i x + \lambda_2 P_2 P_i x + \ldots + \lambda_m P_m P_i x$$

 $=\lambda_i P_i^2 x = \lambda_i P_i x = \lambda_i x.$

Thus, x is a non-zero vector $\Im Tx = \lambda_i x$.

 $\therefore \lambda_i$ is an eigen value of T.

Since T is an operator on a finite dimensional Hilbert Space, T must possess an eigen value.

Let λ be an eigen value of T.

Then \exists a non – zero vector x such that $Tx = \lambda x$.

 $\Rightarrow Tx = \lambda Ix \Rightarrow (\lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_m P_m)x = \lambda (P_1 + P_2 + \ldots + P_m)x.$

 $\Rightarrow (\lambda_1 - \lambda)P_1 x + (\lambda_2 - \lambda)P_2 x + \ldots + (\lambda_m - \lambda)P_m x = \overline{0}.$

Operating on this with P_i and remembering that $P_i^2 = P_i$ and $P_iP_j = O$ if $i \neq j$ we get $(\lambda_i - \lambda)P_i x = \overline{0}$ for i = 1, 2, ..., m.

If $\lambda_i \neq \lambda$ for each i, then we have $P_i x = \overline{0}$ for each i.

 $\therefore P_1 x + P_2 x + \ldots + P_m x = \overline{0} \Longrightarrow (P_1 + P_2 + \ldots + P_m) x = \overline{0} \Longrightarrow I x = \overline{0}$

 \Rightarrow x = $\overline{0}$ which is a contradicts that x $\neq \overline{0}$.

Hence λ must be equal to λ_i for each i.

Thus, we have proved that in the spectral resolution (i) of T the scalars λ_i 's are precisely the distinct eigen values of T.

:. If $T = \alpha_1 Q_1 + \alpha_2 Q_2 + ... + \alpha_m Q_m ...$ (iii) is another spectral resolution of T, then scalars α_i 's are precisely distinct eigen value of T.

: Renaming the projections Q_i 's, if necessary, we can write (iii) in the form $T = \lambda_1 Q_1 + \lambda_2 Q_2 + ... + \lambda_m Q_m$.

We have
$$T^0 = I = P_1 + P_2 + ... + P_m$$

$$\mathbf{T} = \lambda_1 \mathbf{P}_1 + \lambda_2 \mathbf{P}_2 + \ldots + \lambda_m \mathbf{P}_m.$$

 $T^{2} = (\lambda_{1}P_{1} + \lambda_{2}P_{2} + \dots + \lambda_{m}P_{m})(\lambda_{1}P_{1} + \lambda_{2}P_{2} + \dots + \lambda_{m}P_{m}) = \lambda_{1}^{2}P_{1} + \lambda_{2}^{2}P_{2} + \dots + \lambda_{m}^{2}P_{m}$

Similarly, $T^n = \lambda_1^n P_1 + \lambda_2^n P_2 + \dots + \lambda_m^n P_m$ where n is a non-negative integer. \therefore If g(t) is any polynomial with complex coefficients in the complex variable t, then taking linear combinations of the above relations, we get g(T) = g(\lambda_1)P_1 + g(\lambda_2)P_2 + \dots + g(\lambda_m)P_m = \sum_{j=1}^m g(\lambda_j)P_j.

Now suppose that p_i is a polynomial such that $p_i(\lambda_j) = \delta_{ij}$. Ie. $p_i(\lambda_i) = 1$ and $p_i(\lambda_j) = 0$ if $j \neq i$.

Taking p_i in the place of g, p_i(T) = $\sum_{j=1}^{m} p_i(\lambda_j) P_j = \sum_{j=1}^{m} \delta_{ij} P_j = P_i$.

Thus, for each i, $P_i = p_i(T)$ which is a polynomial in T. But we must show the existence of such a polynomial p_i over the field of complex numbers.

Obviously, $p_i(t) = \frac{(t-\lambda_1)\dots(t-\lambda_{i-1})(t-\lambda_{i+1})\dots(t-\lambda_m)}{(\lambda_i-\lambda_1)\dots(\lambda_i-\lambda_{i-1})(\lambda_i-\lambda_{i+1})\dots(\lambda_i-\lambda_m)}$ serves the purpose i.e $p_i(\lambda_i) = 1$ and $p_i(\lambda_i) = 0$ if $j \neq i$.

If we apply the above discussion for Q_i 's then we shall get $Q_i = p_i(T)$ for each i. $\therefore P_i = Q_i$ for each i.

Hence the two spectral resolutions of T are the same.

Theorem 6: 2*: If T is a normal operator on a finite dimensional Hilbert Space H, then prove that there exists an orthonormal basis for H relative to which the matrix of T is diagonal.

<u>Proof</u>: Let $T = \lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_m P_m$ be the spectral resolution of normal operator T.

Then $\lambda_1, \lambda_2, ..., \lambda_m$, are precisely the distinct eigen values of T and P₁, P₂, ..., P_m, are the projections on M₁, M₂, ..., M_m which are the eigen spaces of the eigen values $\lambda_1, \lambda_2, ..., \lambda_m$ respectively.

Also, $P_1 + P_2 + ... + P_m = I$.

Now $M_i \perp M_j$ if $i \neq j$; since M_i 's are eigen spaces of a normal operator. Now each M_i is a finite dimensional non-zero Hilbert Space.

 \therefore each M_i contains a complete orthonormal set which will be a basis for it.

Let $B_1, B_2, ..., B_m$ be orthonormal basis for the spaces $M_1, M_2, ..., M_m$ respectively.

Claim: $B = \bigcup B_i$ is an orthonormal basis for H

Obviously, B is an orthonormal set since each B_i is an orthonormal set and any vector in B_i is orthonormal to any vector in B_j , if $i \neq j$.

Note that the vectors in B_i are some elements of M_i and the vectors in B_j are some elements of M_j .

The eigen spaces M_i and M_j are orthogonal if $i \neq j$.

Since B is an orthonormal set, B is linearly independent.

Now B will be a basis for H if we prove that B generates H.

Let $x \in H$.

Then $x = Ix = (P_1 + P_2 + ... + P_m)x = P_1x + P_2x + ... + P_mx$.

 $= x_1 + x_2 + \ldots + x_m$ where $x_i = P_i x$.

Since $P_i x$ is in the range of P_i , x_i is in M_i . So for each i, the vector x_i can be expressed as a linear combination of vectors in B_i which is a basis for M_i .

 \therefore x can be expressed as a linear combination of the vectors in B.

Hence H is generated by B.

 \therefore B is an orthonormal basis for H.

Since each non-zero vector in M_i is an eigen vector of T, each vector in B_i is an eigen vector for T.

Consequently, each vector in B is an eigen vector of T.

Then B is an orthonormal basis for H and each vector in B is an eigen vector for T. Let us find the matrix of T relative to the basis B.

Let $B = \{e_1, e_2, ..., e_n\}.$

Since each vector in B is an eigen vector of T, $Te_1 = \alpha_1 e_1$, $Te_2 = \alpha_2 e_2$, ..., $Te_n = \alpha_n e_n$ where $\alpha_1, \alpha_2, ..., \alpha_n$ are some scalars.

Now $Te_1 = \alpha_1 e_1 = \alpha_1 e_1 + 0 e_2 + \ldots + 0 e_n$.

$$Te_{2} = \alpha_{2}e_{2} = 0e_{1} + \alpha_{2}e_{2} + 0e_{3} + \dots + 0e_{n}.$$

$$Te_{n} = \alpha_{n}e_{n} = 0e_{1} + 0e_{2} + \dots + 0e_{n-1} + \alpha_{n}e_{n}.$$

$$[T]_{B} = \begin{bmatrix} \alpha_{1} & 0 & \dots & 0 \\ 0 & \alpha_{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \alpha_{n} \end{bmatrix}$$
 which is a diagonal matrix.

Example 1: 2*: Let T is an operator on a finite dimensional Hilbert Space H. Prove that

(a) T is singular if and only if $0 \in \sigma$ (T) and (b) if T is non – singular then $\lambda \in \sigma(T)$ if and only if $\lambda^{-1} \in \sigma(T^{-1})$. (c) If A is non – singular, then $\sigma(ATA^{-1}) = \sigma(T)$ (d) If $\lambda \in \sigma(T)$ and if p is any polynomial, then $p(\lambda) \in \sigma\{p(T)\}$. Here $\sigma(T)$ denotes the spectrum of T i.e. the set of all eigen values of T. **Solution**: (a) T is singular iff \exists a non – zero vector x \exists Tx = $\overline{0}$. iff \exists a non – zero vector x \ni Tx = 0x iff 0 is an eigen value of T iff $0 \in \sigma(T)$. (b) Suppose T is non – singular and $\lambda \in \sigma$ (T). $\Rightarrow \lambda \neq 0$ by part (a) So, λ^{-1} exists. \exists a non – zero vector x \in H \ni Tx = λ x $:: \lambda \in \sigma$ (T). $\Rightarrow \exists a \text{ non} - \text{zero vector } x \in H \ni T^{-1}(Tx) = T^{-1}(\lambda x)$ $\Rightarrow \exists a \text{ non} - \text{zero vector } x \in H \ni (T^{-1}T)x = \lambda T^{-1}(x)$ $\Rightarrow \exists a \text{ non} - \text{zero vector } x \in H \ni I(x) = \lambda T^{-1}(x)$ $\Rightarrow \exists a \text{ non} - \text{zero vector } x \in H \ni x = \lambda T^{-1}(x)$ $\Rightarrow \exists a \text{ non} - \text{zero vector } x \in H \ni \lambda^{-1}x = T^{-1}(x)$ $\Rightarrow \lambda^{-1}$ is the eigen value of T^{-1} ie. $\lambda^{-1} \in \sigma(T^{-1})$. Conversely suppose λ^{-1} is the eigen value of T^{-1} . $\Rightarrow (\lambda^{-1})^{-1}$ is the eigen value of $(T^{-1})^{-1}$. $\Rightarrow \lambda$ is an eigen value of T. ie $\lambda \in \sigma$ (T). (c) Let $ATA^{-1} = S$. Then S – $\lambda I = ATA^{-1} - \lambda I = ATA^{-1} - A(\lambda I) A^{-1} = A(T - \lambda I) A^{-1}$. $\therefore \det (S - \lambda I) = \det \{A(T - \lambda I) A^{-1}\} = \det A \det (T - \lambda I) \det A^{-1} = \det (AA^{-1}) \det$ $(T - \lambda I)$.

= det (T – λ I). \therefore det (S – λ I) = 0 iff det (T – λ I) = 0. But λ is an eigen value of T iff det $(T - \lambda I) = 0$. \therefore S and T have the same eigen values. Ie. $\sigma(T) = \sigma(S) = \sigma(ATA^{-1})$ (d) Let $\lambda \in \sigma(T)$. \therefore \exists a non-zero vector $x \in H \ni Tx = \lambda x$. $\Rightarrow \exists$ a non-zero vector $x \in H \ni T(Tx) = T(\lambda x)$. $\Rightarrow \exists$ a non-zero vector $x \in H \Rightarrow T^2 x = \lambda T x$ $\Rightarrow \exists a \text{ non-zero vector } x \in H \Rightarrow T^2 x = \lambda(\lambda x)$ $\Rightarrow \exists$ a non-zero vector $x \in H \Rightarrow T^2 x = \lambda^2 x$. $\therefore \lambda^2 \in \sigma(T^2).$ Repeating k times we get $T^k x = \lambda^k x$. $\therefore \lambda^k \in \sigma(T^k)$ where k is any + ve integer. Let $p(t) = \alpha_0 + \alpha_1 t + ... + \alpha_m t^m$ where α 's are scalars. Then $p(T) = \alpha_0 + \alpha_1 T + \ldots + \alpha_m T^m$. We have $[p(T)]x = \alpha_0 Ix + \alpha_1 Tx + \ldots + \alpha_m T^m x$. $= \alpha_0 \mathbf{x} + \alpha_1(\lambda \mathbf{x}) + \ldots + \alpha_m(\lambda^m \mathbf{x})$ $= (\alpha_0 + \alpha_1 \lambda + \ldots + \alpha_m \lambda^m) \mathbf{x}.$ \therefore p(λ) = $\alpha_0 + \alpha_1 \lambda + \ldots + \alpha_m \lambda^m$ is an eigen value of p(T). ie. p(λ) $\in \sigma$ {p(T)}.

Example 2: 2*: If T is any arbitrary operator on a finite dimensional Hilbert Space H, and N, a normal operator on H. Show that if T commutes with N, then T also commutes with N*.

 $\begin{array}{l} \underline{Solution}: \mbox{ Let }T \mbox{ be any arbitrary operator on a finite dimensional Hilbert Space H, and N, a normal operator on H such that T commutes with N. Ie. TN = NT. Claim: TN^k = N^kT \forall k \in \mathbb{N}. \\ \mbox{Obviously, the result is true for }k = 1. \\ \mbox{Suppose }TN^{k-1} = N^{k-1} T. \\ \mbox{Then }TN^k = (TN^{k-1})N = N^{k-1}T)N = N^{k-1}(TN) = N^{k-1}(NT) = N^kT. \\ \hdots By induction TN^k = N^kT \forall + ve integral values of k. \\ \mbox{Claim: }T \mbox{ commutes with every polynomial in N} \\ \mbox{Now let }p(t) = \alpha_0 + \alpha_1 t + \ldots + \alpha_s t^s \mbox{ be any polynomial with complex coefficients.} \\ \mbox{Then }p(N) = T(\alpha_0 I + \alpha_1 N + \ldots + \alpha_s N^s). \\ = \alpha_0 TI + \alpha_1 TN + \ldots + \alpha_s N^sT. \end{array}$

$$= (\alpha_0 I + \alpha_1 N + \ldots + \alpha_s N^s)T$$
$$= p(N)T.$$

Thus, T commutes with every polynomial in N.

Now let $N = \lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_m P_m$ be the spectral resolution of the normal operator N.

Then N* =
$$(\lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_m P_m)^*$$

= $\overline{\lambda_1} P_1^* + \overline{\lambda_2} P_2^* + ... + \overline{\lambda_m} P_m^*$
= $\overline{\lambda_1} P_1 + \overline{\lambda_2} P_2 + ... + \overline{\lambda_m} P_m$.

But, for each i, the operator P_i is a polynomial in N.

 \therefore N* is also a polynomial in N.

 \therefore T also commutes with N* \therefore T commutes with every polynomial in N.

Example 3: 3*: Show that an operator T on a finite dimensional Hilbert Space H is normal if and only if its adjoint T* is a polynomial in T.

Solution: Suppose T* is a polynomial in T.

Let $T^* = \alpha_0 I + \alpha_1 T + \ldots + \alpha_k T^k$.

Then $T^*T = (\alpha_0 I + \alpha_1 T + \ldots + \alpha_k T^k) T = \alpha_0 IT + \alpha_1 T^2 + \ldots + \alpha_k T^{k+1}$

$$= T(\alpha_0 I + \alpha_1 T + \ldots + \alpha_k T^k) = TT^*$$

 \therefore T is normal.

Conversely suppose that T is normal.

Let $T = \lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_m P_m$ be a spectral resolution of T.

Then $T^* = \overline{\lambda_1} P_1^* + \overline{\lambda_2} P_2^* + \ldots + \overline{\lambda_m} P_m^* = \overline{\lambda_1} P_1 + \overline{\lambda_2} P_2 + \ldots + \overline{\lambda_m} P_m$.

But, for each i, the operator P_i is a polynomial in T.

 \therefore T* is also a polynomial in T.

Example 4: 1*: Let T be a normal operator on a finite dimensional Hilbert Space H with spectrum $\{\lambda_1, \lambda_2, ..., \lambda_m\}$. Then prove that (a)* T is a self – adjoint if and only if each λ_i is real (b) T is positive if and only if each eigen value λ_i of T is ≥ 0 . (c) T is unitary if and only if $|\lambda_i| = 1$ for each i. **Solution**: Let $T = \lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_m P_m$ be the spectral resolution of P. Then $\lambda_1, \lambda_2, ... + \lambda_m$ are preciously the distinct eigen values of T, $P_i \neq O$ and $P_i P_j = O$ if $i \neq j$. Also, $P_1 + P_2 + ... + P_m = I$ (a) $T^* = (\lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_m P_m)^* = \overline{\lambda_1} P_1^* + \overline{\lambda_2} P_2^* + ... + \overline{\lambda_m} P_m^*$ $= \overline{\lambda_1} P_1 + \overline{\lambda_2} P_2 + ... + \overline{\lambda_m} P_m ... (1)$ Suppose each λ_i is real. Then $\overline{\lambda_i} = \lambda_i$ for each i. From (1), $T^* = \lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_m P_m = T$. Hence T is self – adjoint.

Conversely suppose T is self – adjoint. Then $T^* = T$. $\therefore \text{ from (i) } \overline{\lambda_1}P_1 + \overline{\lambda_2}P_2 + \ldots + \overline{\lambda_m}P_m = \lambda_1P_1 + \lambda_2P_2 + \ldots + \lambda_mP_m.$ $\Rightarrow (\overline{\lambda_1} - \lambda_1)P_1 + (\overline{\lambda_2} - \lambda_2)P_2 + \ldots + (\overline{\lambda_m} - \lambda_m)P_m = O.$ $\Rightarrow (\overline{\lambda_1} - \lambda_1) P_i P_1 + (\overline{\lambda_2} - \lambda_2) P_i P_2 + \dots + (\overline{\lambda_m} - \lambda_m) P_i P_m = P_i O = O \text{ for each i.}$ $\Rightarrow (\overline{\lambda_i} - \lambda_i) P_i = O$ for each i. $\Rightarrow \overline{\lambda_i} = \lambda_i$ for each i. $\Rightarrow \lambda_i$ is real. (b)For each x in H, $(Tx, x) = (Tx, Ix) = (\sum_{i=1}^{m} \lambda_i P_i x, \sum_{j=1}^{m} P_j x)$ $= \sum_{i=1}^{m} \sum_{i=1}^{m} \lambda_i (P_i x, P_i x)$ $=\sum_{i=1}^{m}\sum_{j=1}^{m}\lambda_{i}(x,P_{i}^{*}P_{j}x)$ $=\sum_{i=1}^{m}\sum_{j=1}^{m}\lambda_{i}(x,P_{i}P_{j}x)$ $= \sum_{i=1}^{m} \lambda_i(x, P_i P_i x)$ = $\sum_{i=1}^{m} \lambda_i(P_i^* x, P_i x)$ $=\sum_{i=1}^m \lambda_i(P_i x, P_i x)$ $= \sum_{i=1}^{m} \lambda_i ||P_i x||^2 \dots (2).$ Now suppose that each eigen value λ_i of T is ≥ 0 . Then each λ_i is real. \therefore T is self-adjoint by part (a). Also $||P_i x||^2 \ge 0$ for each i. \therefore if $\lambda_i \ge 0$ for each i, $(Tx, x) \ge 0 \forall x \in H$. \therefore T is positive. Conversely suppose that T is positive. $\therefore \sum_{i=1}^{m} \lambda_i \|P_i x\|^2 \ge 0 \ \forall \ \mathbf{x} \in \mathbf{H} \dots (3)$ Now for any fixed i, suppose x is in the range of P_i. Then $P_i x = x$ and $P_i x = \overline{0}$ for $j \neq i$. \therefore from (3), $\lambda_i ||x||^2 \ge 0 \Rightarrow \lambda_i \ge 0$ for each i. (c) We have $TT^* = (\lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_m P_m)(\overline{\lambda_1} P_1 + \overline{\lambda_2} P_2 + ... + \overline{\lambda_m} P_m)$ $= |\lambda_1|^2 P_1 + |\lambda_2|^2 P_2 + \dots + |\lambda_m|^2 P_m \dots (4).$ Suppose each eigen value λ_i of T is of unit modules ie. $|\lambda_i| = 1$ for each i. Then, from (4), $TT^* = P_1 + P_2 + ... + P_m = I$. Similarly, $T^*T = I$. Hence T is unitary. Conversely suppose T is unitary. Then $TT^* = I$. From (4), $|\lambda_1|^2 P_1 + |\lambda_2|^2 P_2 + \dots + |\lambda_m|^2 P_m = I.$ $\Rightarrow P_i\{|\lambda_1|^2 P_1 + |\lambda_2|^2 P_2 + \dots + |\lambda_m|^2 P_m\} = P_i \text{ for each i.}$ $\Rightarrow |\lambda_i|^2 P_i^2 = P_i$ for each i. $\Rightarrow |\lambda_i|^2 P_i = P_i$ for each i. $\Rightarrow (|\lambda_i|^2 - 1)P_i = 0$ for each i. $\Rightarrow |\lambda_i|^2 = 1 \text{ or } |\lambda_i| = 1 \text{ for each i.}$