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M.Sc. Paper: 104, TOPOLOGY, UNIT: I,  

METRIC SPACES 

 

Definition: Let X be a nonempty set and d: X  X → ℝ be a function. d is said to 

be a metric on X if  

(i) d(x, y)  0  x, y  X and d(x, y) = 0 iff x = y. (Non negativity) 

(ii) d(x, y) = d(y, x)  x, y  X. (symmetry) 

(iii) d(x, y)  d(x, z) + d(z, y)  x, y, z  X (Triangle in equality). 

If d is a metric on X then (X, d) is called a metric space. d(x, y) is called the 

distance between x and y. 

 

Example: Define d: ℝ × ℝ → ℝ by d(x, y) = |𝑥 − 𝑦|  where ℝ is the set of all real 

numbers. Then d is a metric called usual metric on ℝ. 

Solution: (i) d(x, y) = |𝑥 − 𝑦|  0. d(x, y) = 0 iff  |𝑥 − 𝑦| = 0 iff x = y.                                     

(ii) d(x, y) = |𝑥 − 𝑦| = |𝑦 − 𝑥|  = d(y, x)                                                                                 

(iii) d(x, y) = |𝑥 − 𝑦| =  |𝑥 − 𝑧 + 𝑧 − 𝑦|  |𝑥 − 𝑧| + |𝑧 − 𝑦| = d(x, z) + d(z, y). 

Hence d is a metric on ℝ.  

 

Example: Define d: ℂ × ℂ → ℝ by d(z1, z2) = |𝑧1 − 𝑧2| where ℂ is the set of all 

complex numbers. Then d is a metric on ℂ. 

Solution: Let 𝑧1, 𝑧2, 𝑧3  ℂ.                                                                                                              

(i)  d(z1, z2) = |𝑧1 − 𝑧2|  0 and d(z1, z2) = 0 iff |𝑧1 − 𝑧2| = 0 iff z1 = z2.                                                                                                                  

(ii) d(z1, z2) = |𝑧1 − 𝑧2| = |−(𝑧1 − 𝑧2)| = |𝑧2 − 𝑧1| = d(z2, z1).                                                  

(iii) d(z1, z2) = |𝑧1 − 𝑧2| =  |𝑧1 − 𝑧3 + 𝑧3 − 𝑧2|  |𝑧1 − 𝑧3| + |𝑧3 − 𝑧2|                                    

= d(z1, z3) + d(z3, z2).  d is a metric called usual metric on ℂ. 

 

Problem: Let X be a nonempty set and d: X  X → ℝ be a function satisfying the 

following two conditions.  

(i) d(x, y) = 0 if and only if x = y.  

(ii) d(x, y)  d(x, z) + d(y, z)  x, y, z  X. 

Then d is a metric on X. 

Solution: (i) Put y = x in (ii). Then d(x, x)  d(x, z) + d(x, z)  0  2 d(x, z)                           

 d(x, z)  0.                                                                                                                           

(ii) Put x = z in (ii). d(z, y)  d(z, z) + d(y, z)  d(z, y)  0 + d(y, z).                                         

 d(z, y)   d(y, z) and this is true  y, z  X.                                                                                

 d(y, z)   d(z, y) is also true. Hence d(y, z) =  d(z, y)  y, z  X.                            
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(iii) By (ii) d(x, y)  d(x, z) + d(y, z) = d(x, z) + d(z, y) since d(y, z) = d(z, y),            

 d(x, y)  d(x, z) + d(z, y)  x, y, z  X. Hence d is a metric on X. 

Example: Let X  . Define d: X  X → ℝ by d(x, y) = 0 if x = y and                              

d(x, y) = 1 if x  y. Then d is a metric on X called discrete metric and so (X, d) is a 

metric space called discrete metric space. 

Solution: (i) Clearly d(x, y)  0 and d(x, y) = 0 iff x = y.                                                     

(ii) If x = y then d(x, y) = 0 = d(y, x). If x  y, then d(x, y) = 1 = d(y, x).                           

Thus, d(x, y) = d(y, x).   

(iii) Suppose x = y = z, then d(x, y) = 0 = 0 + 0 = d(x, z) + d(z, y).                              

Suppose x = y  z. Then d(x, y) = 0  1 + 1 = d(x, z) + d(z, y).                                                     

Suppose x  y. If x = z, y  z then d(x, y) = 1 = 0 + 1 = d(x, z) + d(z, y).  

Similar is the case when x  y, x  z, y = z.                                                                    

Suppose no two are equal. Then d(x, y) = 1  1 + 1 = d(x, z) + d(z, y). 

Thus, in all the cases d(x, y)  d(x, z) + d(z, y). Hence d is a metric on X. 

 

Problem: Let (X, d) be a metric space. Show that d1 defined by             𝑑1(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
 is a metric on X. Show that X is a bounded set in (X, 𝑑1). 

Solution: Let x, y, z  X. Since d(x, y)  0, 𝑑1(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
 0.           

𝑑1(𝑥, 𝑦) = 0  iff  
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
= 0 iff d(x, y) = 0 iff x = y. 

Also 𝑑1(𝑥, 𝑦) =  
𝑑(𝑥,   𝑦)

1+𝑑(𝑥,   𝑦)
 = 

𝑑(𝑦,   𝑥)

1+𝑑(𝑦,   𝑥)
 = 𝑑1(𝑦, 𝑥).  𝑑1 is symmetric. 

Again 𝑑1(𝑥, 𝑦) =  
𝑑(𝑥,   𝑦)

1+𝑑(𝑥,   𝑦)
  

𝑑(𝑥,   𝑧)

1+𝑑(𝑥,   𝑧)
 + 

𝑑(𝑧,   𝑦)

1+𝑑(𝑧,   𝑦)
 = 𝑑1(𝑥, 𝑧) + 𝑑1(𝑧, 𝑦).                       

Hence 𝑑1 is also a metric on X.  

(ii) For any x, y  X, 0  d(x, y)  1 + d(x, y)                                                                               

 0  
𝑑(𝑥,   𝑦)

1+𝑑(𝑥,   𝑦)
  1                                                                                                                        

 0  𝑑1(𝑥, 𝑦)  1 

 d(X) = sup {𝑑1 (x, y): x, y  X}  1.                                                                                         

This shows that X is bounded in the metric space (X, 𝑑1). 
 

Definition: Let X be a nonempty set and d: X  X → ℝ be a function such that   

(i) d(x, y)  0  x, y  X and x = y   d(x, y) = 0.  

(ii) d(x, y) = d(y, x)  x, y  X.  
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(iii) d(x, y)  d(x, z) + d(z, y)  x, y, z  X.                                                                 

Then d is said to be a pseudo – metric on X. 

 

Note: Every metric is a pseudo – metric. But converse is not true. 

 

Example: Let X be a set with |𝑋|  2. Define d(a, b) = 0  a, b  X. Then d is a  

pseudo metric but not a metric. 

Solution: Clearly d is a pseudo metric. Let a  b. Then also d(a, b) = 0.                           

 d is not a metric. 

 

Example: Let X = {1, 2, 3}. Define d : X X → ℝ by d(1, 1) =  d(2, 2)                                              

= d(3, 3) = d(1, 2) = d(2, 1) = 0; d(2, 3) =  d(3, 2) = d(3, 1) = d(1, 3) = 1.                              

Then d is a pseudo metric but not a metric. 

Solution: Clearly d is a pseudo metric. 1  2 but d(1, 2) = 0. So, d is not a metric. 

 

Example: Give two examples of pseudo – metric which are not metrics. 

 

Problem: Let X be a Pseudo metric on X and define ‘~’ on X by                                                      

x ~ y  d(x, y) = 0. (i) Show that ‘~’ is an equivalence relation (ii) Define a metric 

on the set of all equivalence classes.  

Solution: (i) ~ is reflexive: x ~ x  x  X since d(x, x) = 0.                                                                                        

~ is symmetric: Suppose x ~ y.  

 d(x, y) = 0  d(y, x) = 0.  y ~ x.  

~ is transitive: Suppose x ~ y, y ~ z  

 d(x, y) = 0 and d(y, z) = 0. 

Now d(x, z)  d(x, y) + d(y, z) = 0 + 0 = 0. 

 d(x, z) = 0  x ~ z.  

Hence ~ is an equivalence relation. 

Define d*([x], [y]) = d(x, y).  

Then d*([x], [y]) = d(x, y)  0. 

d*([x], [y]) = 0 iff d(x, y) = 0 iff x ~ y iff [x] = [y]. 

d*([x], [y]) = d(x, y) = d(y, x) = d*([y], [x]). 

d*([x], [y]) = d(x, y)  d(x, z) + d(z, y) = d*([x], [z]) + d*([z], [y]). 

Hence d* is a metric on the set of all equivalence classes {[x] : x  X}. 
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Definition: Let X be a nonempty set. If for each x  X, there corresponds a real 

number ‖𝑥‖, and it satisfies the conditions   

(i) ‖𝑥‖  0 and ‖𝑥‖ = 0 iff x = 0.  

(ii) ‖−𝑥‖= ‖𝑥‖  x  X.  

(iii) ‖𝑥 + 𝑦‖ ≤  ‖𝑥‖ + ‖𝑦‖  x, y  X  

then ‖𝑥‖ is called norm of x  X. 

 

Example : Let ‖𝑥‖ be norm of x  X as defined as above. If we define                      

d(x, y) = ‖𝑥 − 𝑦‖ then (X, d) is a metric space and ‘d’ is called the metric induced 

by the norm.  

Proof: Let x, y  X. (i) Then d(x, y) = ‖𝑥 − 𝑦‖  0.                                                                 

Now d(x, y) = 0 iff ‖𝑥 − 𝑦‖ = 0 iff x – y = 0 iff x = y.  

(ii)d(x, y) = ‖𝑥 − 𝑦‖  =  ‖−(𝑦 − 𝑥)‖ = ‖𝑦 − 𝑥‖ = d(y, x) 

(iii)Let x, y, z  X. Then d(x, y) = ‖𝑥 − 𝑦‖ = ‖𝑥 − 𝑧 + 𝑧 − 𝑦‖  ‖𝑥 − 𝑧‖ + 

‖𝑧 − 𝑦‖ = d(x, z) + d(z, y). 

(X, d) is a metric space. 

 

Define: Let f : [0, 1] → ℝ. F is said to be bounded if there exists k  ℝ such that 

|𝑓(𝑥)| k for every x [0, 1]. 

 

Example: Let X = {f / f: [0, 1] → ℝ, f is bounded and continuous}. Define  ‖𝑓‖ by 

‖𝑓‖ = ∫ |𝑓(𝑥)|𝑑𝑥
1

0
 (here the integral involved is the Riemann integral) Then d 

defined by d(f, g) = ‖𝑓 − 𝑔‖ = ∫ |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥
1

0
 is induced metric. 

Solution: ‖𝑓‖ = ∫ |𝑓(𝑥)|𝑑𝑥
1

0
  0 ⸪ |𝑓(𝑥)|  0.                                                                                      

‖𝑓‖ = 0 iff  ∫ |𝑓(𝑥)|𝑑𝑥
1

0
 = iff |𝑓(𝑥)| = 0  x iff f = 0 (zero function. 

 ‖−𝑓‖ = ∫ |−𝑓(𝑥)|𝑑𝑥
1

0
 = ∫ |𝑓(𝑥)|𝑑𝑥

1

0
 = ‖𝑓‖  

Let f, g  X. Then ‖𝑓 + 𝑔‖ = ∫ |(𝑓 + 𝑔)(𝑥)|𝑑𝑥
1

0
  ∫ {|𝑓(𝑥)| + |𝑔(𝑥)|}𝑑𝑥

1

0
                                           

= ∫ |𝑓(𝑥)|𝑑𝑥
1

0
 +  ∫ |𝑔(𝑥)|𝑑𝑥

1

0
 = ‖𝑓‖ + ‖𝑔‖. ‖𝑓‖ = ∫ |𝑓(𝑥)|𝑑𝑥

1

0
 defines norm on 

X.  

Hence d defined by d(f, g) = ‖𝑓 − 𝑔‖ = ∫ |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥
1

0
 is induced metric. 

 

Example : Let X = {f / f: [0, 1] → ℝ, f is bounded and continuous}. Define  ‖𝑓‖ 

by ‖𝑓‖ = sup {|𝑓(𝑥)|: 𝑥 ∈ [0, 1]}. Then d defined by d(f, g) = ‖𝑓 − 𝑔‖ = sup 
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{|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [0, 1]} is a metric and this metric space is denoted by C[0, 1] 

.  

Solution: Let f  X. Then ‖𝑓‖ = sup {|𝑓(𝑥)|: 𝑥 ∈ [0, 1]}  0 ⸪ |𝑓(𝑥)|  0. 

‖𝑓‖ = 0 iff sup {|𝑓(𝑥)|: 𝑥 ∈ [0, 1]} = 0 iff |𝑓(𝑥)| ∀ 𝑥 ∈ [0, 1] iff f = 0 (zero 

function. 

‖−𝑓‖ = sup {|−𝑓(𝑥)|: 𝑥 ∈ [0, 1]} = sup {|𝑓(𝑥)|: 𝑥 ∈ [0, 1]} = ‖𝑓‖  

Let f, g  X. Then ‖𝑓 + 𝑔‖ = sup {|(𝑓 + 𝑔)(𝑥)|: 𝑥 ∈ [0, 1]}                                               

= sup {|𝑓(𝑥) + 𝑔(𝑥)|}  sup {|𝑓(𝑥)| + |𝑔(𝑥)|}  sup {|𝑓(𝑥)|} + sup {|𝑔(𝑥)|}    = 

‖𝑓‖ + ‖𝑔‖. ‖𝑓‖ = sup {|𝑓(𝑥)|: 𝑥 ∈ [0, 1]} defines norm on X.                           

d defined on X by d(f, g) = ‖𝑓 − 𝑔‖ = sup {|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [0, 1]} is a metric 

on X. 

 

SUBSPACE 

 

Definition: Let (X, d) be a metric space and Y  X. Then the restrictions of ‘d’ to 

Y, then (Y, d) is a metric space and (Y, d) is called subspace of (X, d). 

Definition: Let (X, d) be a metric space and A  X.  

     (i)       If x  X then the distance from x to A, d(x, A) = inf {d(x, a) / a  A}. 

(ii) The diameter of the set A, d(A) = sup {d(x, y) / x, y  A}. 

(iii) If d(A) =  then A is said to have infinite diameter, otherwise, it is said 

to have finite diameter. Note that if A =  then d() = sup {d(x, y) / x, y 

 } = sup  = -  and so  has infinite diameter. 

(iv) A is said to be bounded if d(A) is finite. A mapping f:Y → X where Y  

 and (X, d) is a metric space is said to be bounded if the set f(Y) is 

bounded in (X, d). 

 

Example: Let ℝ𝑘 be the Euclidean space.                                                                               

Define d(x, y) = |𝑥 − 𝑦|  x, y  ℝ𝑘 . Then d is a metric on ℝ𝑘 . 

 

OPEN SETS 

 

Let (X, d) be a metric space. Let x0  X and r be a positive real number. Then 

Nr(x0) = Sr(x0) = {x  X / d(x, x0) < r} is called the open sphere with centre x0 and 

radius r. It is also called neighbourhood of x0 with radius r. 

 

Note: Sr(x0)  .  
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Example: (i) If (X d) is a metric space where X   and ‘d’ is a metric on X, 

defined by d(x. y) = 0 if x = y and 1 if x  y. Then for every x0  X,                                

Sl(xo) = {x0}. 

(ii) Consider (ℝ, d) where ℝ is the set of all real numbers, d is a usual metric 

on ℝ. Then for any x0  ℝ , Sr(x0) = (x0 – r, xo + r). 

 

Definition :  Let X be a metric space. All points and sets mentioned here are 

elements and subsets of X.  

(i) A point p is a limit point of the set E if every neighbourhood of p 

contains a point q such that p  q and q  E; The set of all limit points of 

E is denoted by D(E).  

(ii) If p  E and p is not a limit point of E, then p is called an isolated point 

of E;  

(iii) A set E is said to be closed if every limit point of E is a point of E;   

(iv) A point p of E is said to be an interior point of E if there exists a 

neighbourhood N of p such that p  N  E. The set of all interior points 

of A, is called the interior of A. It is denoted by Int (A);  

(v) A set E is open if every point of E is an interior point. Equivalently, a 

       subset G of the metric space X is called an open set if given x  G          

there exists a positive real number r such that Sr(x)  G;  

(vi) A set E is said to be perfect if E is closed and every point of E is a limit 

point of E;  

(vii) E is bounded if there exists a real number M and a point q  X such that 

d(p, q) < M, for all p  E. 

 

Definition: A subset E of a metric space X is said to be dense in X if every point of 

X is a limit point of E or a point of E, or both. 

 

Note: Consider the set ℝ of real numbers with usual metric d. The set [0, 1)  

is not open as a subset of ℝ, since 0  [0, 1) is not an interior point. If we consider 

[0, l) as a metric space X in its own right, as a subspace of the real line, then [0, 1) 

is open as a subset of X, since from this point of view it is the full space. 

 

Theorem:  In any metric space X the empty set and the full space X are open sets. 
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Proof: To show that  is open, we must show that each point in  is the centre of 

an open sphere contained in ; but since there are no points in , the requirement is 

automatically satisfied. Hence  is open. 

Since every open sphere centred on each of the points in X, is contained in X, we 

have X is open. 

 

Lemma: In a metric space X, x  Sr(xo)  there exists s > 0  Ss(x)  Sr(x0).              

In other words, every open sphere (or neighbourhood) is an open set. 

Proof:  Let Sr(x0) be an open sphere in X. Let x  Sr(x0).                                                                         

Then d(x0, x) < r  r – d(x0, x) > 0.                                                                                                    

Put s = r – d (x0, x). Then s > 0.                                                                                                     

Consider the sphere Ss(x).                                                                                                                     

Let y  Ss(x)                                                                                                                                            

 d(y, x) < s. 

Now d(y, x0)  d(y, x) + d(x, x0) (by triangle inequality)  

                                               < s + d(x, x0) = [r – d(xo, x)] + d(x, x0) = r 

Therefore d(y, x0) < r                                                                                                                      

 y  Sr(x0). Hence Ss(x)  Sr(x0).  Sr(x0) is an open set. 

 

Theorem: Let X be a metric space. A subset G of X is open if and only if it is a 

union of open spheres 

Proof: Suppose G is Open. If G = , then it is the union of the empty class of open 

spheres. If G  , then for any x  G  rx > 0 such that 𝑆𝑟𝑥
(𝑥)  G.                           

Then G = ⋃ 𝑆𝑟𝑥𝑥𝐺 (x) 

Conversely suppose G = ⋃ 𝑆𝑟𝑥𝑥I (x), where {𝑆𝑟𝑥
(𝑥)) / x  I } is a collection of 

open spheres.  

If I = ,  then G =  which is an open set.  

Suppose I  . Let y  G.                                                                                                           

Since G = ⋃ 𝑆𝑟𝑥𝑥I (x), we have y  𝑆𝑟𝑥
(𝑥)  for some x  I.                                                                                                                                               

By above lemma,  r > 0  Sr(y)  𝑆𝑟𝑥
(𝑥).                                                                      

Hence Sr(y)  𝑆𝑟𝑥
(𝑥)  G. This shows that G is open. 

 

Theorem: Let X be a metric space. Then (i) union of open sets in X is open; and 

(ii) finite intersection of open sets in X is open. 

Proof: (i) Let {Gi}iI be a collection of open sets. Write G = ⋃ 𝐺𝑖𝑖𝐼 . We have to 

show that G is open. 

If I =  then the union of the empty class of open sets 𝐺𝑖 is G =  which is open If I 
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 , then by above theorem, each 𝐺𝑖 is a union of open spheres. Again by above 

Theorem G is open.  

               (ii) Let {Gi}1  i  n be a finite collection of open sets in X.  

Claim: G = ⋂ 𝐺𝑖
𝑛
𝑖=1  is open.  

If I =  then the class of {Gi}1  i  n is  and hence ⋂ 𝐺𝑖
𝑛
𝑖=1   = X which is open.                      

Let I  . If G =  then G is open. Suppose G  . Let x  G = ⋂ 𝐺𝑖
𝑛
𝑖=1 . Since each 

Gi is open  ri > 0 such that  𝑆𝑟𝑖
(𝑥)  Gi. Write r = min{r1, r2, ..., rn}. Then Sr(x)  

𝑆𝑟𝑖
(𝑥)  Gi for all 1  i  n, which shows that Sr(x)  ⋂ 𝐺𝑖

𝑛
𝑖=1  = G. Hence G is 

open. 

Remark: Intersection of infinite collection of open sets need not be open. 

For, consider ℝ with usual metric. Write Gi = (−
1

𝑖
,

1

𝑖
). Then G = ⋂ 𝐺𝑖


𝑖=1  = {0} 

which is not open. 

 

Problem: Let G be an open set in ℝ. Define ~ on G as x, y  G, x ~ y if and only 

if  open interval (a, b) such that x, y  (a, b)  G. Then  

(i) ~ is an equivalence relation 

(ii) For any x  G, if Ix =  {(a, b) / x  (a, b)  G}, then Ix is an open 

interval such that x  Ix  G. 

(iii) [x] = Ix and  

(iv) G =  Ix, x  G. 

 

Solution: (i) Let x  G. Since G is open  r > 0  x  Sr(x) = (x – r, x + r)  G.  

x ~ x  x  G. Viz. ~ is reflexive. 

Let x, y  G  x ~ y. Then  open interval (a, b) such that x, y  (a, b)  G. 

   open interval (a, b) such that y, x  (a, b)  G. 

 y ~ x. Viz. ~ is symmetric.  

Let x, y, z  G  x ~ y and y ~ z.                                                                                                     

Then  open intervals (a, b), (c, d)  x, y  (a, b)  G and y, z  (c, d)  G. Since 

y  (a, b)  (c, d) and (a, b)  (c, d) is an interval we get x, z  (a, b)  (c, d)  

G.  x ~ z. Viz. ~ is transitive.                                                                                         

Hence ~ is an equivalence relation.  

(ii) Let x  G and Ix =  {(a, b) / x  (a, b)  G}.                                                                                    

Then Ix is an open set. Since the intersection of all the intervals involved 

in this union contains x, we have that Ix is nonempty.                             

Thus, Ix is an interval such that x  Ix  G. 

(iii) Let u  [x].                                                                                                                      

Then u ~ x    open interval (a, b) such that u, x  (a, b)  G                                   
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 u  (a, b)  Ix.  [x]  Ix.                                                                                  

Let y  Ix. Then y  (a, b) for some (a, b) with x  (a, b)  G                                      

 y, x  (a, b)  G  y ~ x  y  [x]. Hence [x] = Ix. 

(iv) Since the set of equivalence classes [x] = Ix, x  G for some partition for 

G, we have G =  Ix, x  G. 

Theorem: Every non-empty open set on the real line is the union of a countable 

disjoint class of open intervals.  

Proof: Let G be a non-empty open subset of the real line. Let x be a point of G. 

Since G is open, x is the centre of a bounded open interval contained in G. Define 

Ix =  {(a, b) / x  (a, b)  G}. 

Next we observe that if x and y are two distinct points of G then Ix and Iy are either 

disjoint or identical.                                                                                                  

For, suppose z  Ix  Iy. z  Ix and z  Iy.                                                                       

Then Iz = Ix and Iy = Iz (by above problem). Therefore Ix = Iy.                                            

Consider the class I of all distinct sets of the form Ix for some point x in G.                             

This is a disjoint class of open intervals, and G is its union. It remains to prove that 

I is countable.                                                                                                                        

Let Gr be the set of rational points in G. Clearly Gr is non-empty.                                     

Define f: Gr → I as f(r) = [r] = Ir. If Ix  I then Ix contains at least one rational 

number u. Now u  Ix  G  u  Gr. Also f(u) = [u] = Iu = Ix. Hence f is onto. 

Since Gr is countable and f: Gr → I is onto, we have that I is countable. 

 

Definition: Let (X, d) be a metric space, A  X and x  A. Then x is said to be an 

interior point of A if there exists r > 0 such that Sr(x)  A. 

 

The set of all interior points of A is called the interior of A. It is denoted by                

Int (A).  So Int (A) = {x  A and Sr(x)  A for some r}. 

 

Proposition: Write X = ℝ, the set of real numbers with usual metric. Find                    

Int (Q), where Q is the set of all rational numbers.  

 

Solution: Let x  1nt (Q)  there exists a real number r > 0 such that Sr(x)  Q 

 (x – r, x + r)  Q. Since r > 0, we have that x – r  x + r.                                                        

We know that between any two real numbers there is an irrational number.                          

 an irrational number q such that x – r < q < x + r  q  (x – r, x + r)  Q.  Q 

contains an irrational number q, a contradiction. Hence Int Q = . 

 

Result: (i) Int (A) is an open subset of A; (ii) lnt (A) contains every open subset of 

A; (iii) Int (A) is the largest open subset of A. 
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Proof: (i) Clearly Int (A)  A. Let x  Int (A). Then  r > 0 such that Sr(x)  A. 

Let y  Sr(x). Then  s > 0 such that Ss(y)  Sr(x)  A.  y  Int (A).                                    

 Sr(x)  Int (A) for all x  Int (A). Hence Int (A) is an open set. 

(ii) Let G be an open set of A. Let x  G. Since G is open   r > 0 such that Sr(x)  

G. Now Sr(x)  G  A   Sr(x)  A   x  Int (A).                                    

Therefore G  Int (A).  

(iii) From (i), Int (A) is an open set. If Int (A) is not the largest open set contained 

in A, then there exists an open set G in A such that Int (A)  G.                  But 

form (ii), we get G  Int (A).                                                                                      

Therefore G  Int (A)  G  G  G, a contradiction.                                                        

Hence Int (A) is the largest open subset of A. 

 

Result: A is open if and only if A = Int (A). 

Proof: Suppose A is open.                                                                                                        

Then by a result Int (A) is the largest open subset of A.                                                          

Hence A = Int (A).                                                                                                                    

Conversely A = Int (A) implies that A is open since Int (A) is open. 

 

Result : Int (A) is the union of all open subsets of A. 

Proof: Let {Gi / i  I} be the collection of all open subsets contained in A. Since 

each Gi is open and Gi  Int (A).                                                                                         

 ⋃ 𝐺𝑖𝑖𝐼   Int (A). Let x  Int (A)                                                                                          

  r > 0  Sr(x)  A.                                                                                                             

Since Sr(x) is open, we have that Sr(x) = G for some j  I.                                                          

So x  Sr(x) = Gj  ⋃ 𝐺𝑖𝑖𝐼 .                                                                                                   

Hence Int (A)  ⋃ 𝐺𝑖𝑖𝐼  Thus Int(A) = ⋃ 𝐺𝑖𝑖𝐼 . 

                     

                                                   CLOSED SETS  

 

Definition: A subset F of a metric Space X is called a closed set if it contains each 

of its limit points.  

Theorem: In any metric space X, the empty set  and the full space X are closed 

sets.  

 

Proof:  Since  contains no limit points, we have that  is closed. Since X contains 

all points of the metric space, we have that X is closed. 

 

Theorem: A set E is open if and only if  Ec (the complement of E) is closed. 



11 
 

 

Proof: Suppose E is open. Let x be a limit point of Ec. we have to show that 

x  Ec. If x  Ec then x  (Ec)c = E. Since E is open and x  E, there exists r > 0 

such that Sr(x)  E  Sr(x)  Ec = .  x is not a limit point of Ec, a 

contradiction.  x  Ec. Hence Ec is closed. 

Converse: Suppose Ec is closed. Now we show that E is open. Let y  E.  Then y  

Ec  y is not a limit point of Ec   a neighbourhood N of y such that                         

N  Ec =   y  N  E.  y is an interior point of E. Since y is an arbitrary 

point in E, we have that every point of E is interior point of E. Hence E is open. 

 

Corollary: A set F is closed if and only if Fc is open. 

Proof: Follows from the above theorem. 

 

Definition: Let X be a metric space. x0  X, r be a non negative real number. 

Then Sr[x0] = {x / x  X, d(x, x0)  r} is called the closed sphere with centre x0 and 

radius r. 

 

Theorem: In a metric space X, each closed sphere Sr[x0] is a closed set.                      

Proof: First we show that Y = the complement of Sr[x0] is open.                                              

If Y = , then it is open. Suppose Y  . Let x  Y then d(x, x0) > r.                                     

Let s = d(x, x0) – r > 0. Consider Ss(x). Let z  Ss(x). Then d(x, z) < s.                                     

So d(x0, x)  d(x0, z) + d(z, x). 

 d(x0, z)  d(x0, x) – d(x, z) > d(x0, x) – s = r                                                                        

 d(x0, z) > r  z  Sr[x0]                                                                                                       

 z  Y. Hence Ss(x)  Y.                                                                                                             

 for any x  Y,  s > 0  x  Ss(x)  Y.                                                                               

 Y is open. Hence Sr[x0] is closed. 

 

Theorem: (i) Let X be a metric space. Then (i) any intersection of closed sets in X 

is closed; ie. If {F /   I} is a collection of closed sets then  F is closed.                                               

(ii) any finite union of closed sets in X is closed. Ie. For any finite collection F1, F2, 

.., Fn of closed sets, F1   F2   ...  Fn is closed.   

 

Proof:  (i) Let {F /   I} be a collection of closed sets                                                        

Since each F is closed, we have that Fc is open.                                                    

{Fc :   I} is a collection of open sets.                                                                                

By a theorem,   Fc  is open.  (F)c =  Fc is open 

 F is closed.                                                                                                                            

(ii) Let Fi, l  i  n, be closed sets  Fi
c l  i  n, are open sets.                                                                      
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Now (F1  F2  ...  Fn)
c = F1

c  F2
c  ... Fn

c is open                                                                    

 F1  F2  ...  Fn is closed. 

 

Example: Consider the following sub sets of ℝ2 

(i)  {z  ℂ / |𝑧| < 1} is open, not closed, not perfect, bounded.                                                     

(ii) {z  ℂ / |𝑧|  1} is closed, not open, perfect and bounded.  

(iii) A finite set is closed, not open, not perfect, bounded.                                                  

(iv) The set of all integers is closed, not open, not perfect and not 

bounded.                                                                                                                                                

(v) E = {1/n : n ℕ} is not closed, not open, not perfect but bounded.                           

Here note that this set has only limit point 0, and 0  E.                                                                                  

(vi)  ℂ (set of complex numbers) is closed, open, perfect but not bounded. 

(vii) (a, b) as a subset of ℝ2, is not closed, open, not perfect but bounded. 

 

Note:   (i) If { F} is a collection of sets then {(F)c =  Fc.                                                                     

 (ii) An arbitrary union of closed sets need not be closed. 

For, Consider An = [−
1

𝑛
,

1

𝑛
] for n  ℕ. Then ⋃ 𝐴𝑛

∞
𝑛=1 = (0, 1) which is not closed, 

because 0 and 1 are limit points of (0, 1) and these are not in (0, 1). 

 

Theorem: Let E be a nonempty set of real numbers which is bounded above. Let y 

= sup E. Then (i) y  �̅�  and (ii) y  E if E is closed. 

 

Proof: (i) If y  E, then clearly y  E  �̅�.                                                                                          

Suppose y  E.                                                                                                                              

Now y = sup E  for any  > 0, y –  is not an upper bound                                                          

  x  E such that y –  < x < y                                                                                                  

 x  (y – , y + ) = S(y) and x  E  x  {E  S(y)} – {y}                                                      

 y is a limit point of E   y  D(E)  E  D(E) = �̅�. 

(ii) If E is closed then E = �̅�  and hence y  �̅�  = E. 

 

Construction of the CANTOR set. 

 

To construct the Cantor set, we proceed as follows:                                                                                          

Write F1 = [0, 1]. From F1, delete the open interval (
1

3
,

2

3
) which is an open middle 

third of F1.                                                                                                                             

Write F2 = [0, 1] – (
1

3
,

2

3
) = [0,

1

3
] ∪ [

2

3
, 1].                                                                                                

Now from F2, delete the middle thirds of two pieces.                                                                                                                         
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Write F3 = F2 – {(
1

9
,

2

9
) ∪ (

7

9
,

8

9
)} = [0,

1

9
] ∪ [

2

9
,

3

9
] ∪ [

6

9
,

7

9
] ∪ [

8

9
, 1] 

If we continue this process of deleting the open middle third of intervals, we obtain 

a sequence of closed sets Fn such that Fn  Fn+1  ....                                                 

Now write F = ⋂ 𝐹𝑛
∞
𝑛=1  . This F is called the Cantor set. 

 

Note: (i) By above construction, since each Fn is a finite union of closed intervals, 

we have that each Fn is closed. So, F = ⋂ 𝐹𝑛
∞
𝑛=1  is closed. Hence Cantor’s set is 

closed.  

(ii) Since we are deleting the open middle third intervals from each Fn finally F 

contains the end points of the closed intervals of Fn for each n. The end points of 

the closed intervals in F1 are 0, 1. The end points of the closed intervals in F2 are 0, 

1/3, 2/3 and 1. The end points of the closed interval in F3 are 0, 1/9, 2/9, 6/9, 7/9, 

8/9, 1. Therefore F contains 0, 1/3, 2/3, 1/9, 2/9, ... 

Therefore, there are some numbers in F other than the end points.  

(iii) The cardinal number 0f F is c, the cardinal number of the continuum. 

(iv) We can define a bijection f: [0, l) → F. For this, let x  [0, 1).                               

Suppose x = 0.b1b2... be its binary expansion. Now each bn is either 0 or 1. Write tn 

= 2bn for each n, and write f(x) = 0.t1t2...                                                    Now 

consider f(x) = 0. t1t2... .as a number of ternary expansion.                                              

Now f(x)  F. Now it can be verified that f is one to one and onto. 

(v) Let us consider the sum of lengths of the open intervals removed at every stage. 

First stage we removed the open interval (1/3, 2/3) and its length is 1/3. Second 

stage we removed (1/9, 2/9) and (7/9, 8/9). The sum of the length of these two 

intervals is 1/9 + 1/9 = 2/9 and so continuing this way we obtain a sequence of 

lengths 1/3, 2/9, 4/27, ... These numbers form a geometric progression with first 

term 1/3 and common ratio 2/3.                                                                                 

Therefore, the sum is 
1

3
+

2

9
+

4

27
+ ⋯ =

1

3

1−
2

3

= 1 

 

Definition:  Let X be a metric space and A  X. Then the closure of A (denoted by 

�̅�) is defined by  �̅� = A  D(A) where D(A) is the set of all limit points of A. 

 

Result: A is closed if and only if A = �̅�  

Proof: (i) Suppose A is closed   

 all the limit points of A are in A  D(A)   A                                                                                   

 �̅� = A  D(A)  A  �̅�  A. Hence A = �̅� 

Converse: Suppose A = �̅�  
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 A  D(A)  A  D(A)  A                                                                                                 

 all the limit points of A are in A  A is closed.  

 

Result: �̅� is a closed superset of A which is contained in any closed superset of A 

(equivalently, (i) A  �̅� (ii) �̅� =  �̿�; and (iii) B is a closed set such that A  B then 

�̅�  B  (iv)  �̅� equals to the intersection of all closed supersets of A. 

Proof: (i) By the definition of �̅�, we have that A  �̅�. 

(ii) To show that �̅� =  �̿�; Clearly �̅� ⊆ �̿�. Let x  �̿�.                                                                     

Then either x  �̅� or x  D(�̅�) = the set of all limit points of �̅�.                                                      

If x  �̅�, it is clear. Suppose x  D(�̅�)  x is a limit point of �̅�.                                                  

If x  A then clearly x  A  �̅�.                                                                                                  

Suppose x  A, Consider Sr(x) and r > 0. Since it is a limit point of �̅� there exists y 

 �̅�  Sr(x) such that x  y. y  Sr(x)  d(x, y) < r.                                                  

Now y  �̅� = A  D(A). If y  A then y  A  Sr(x).  If y  A then y  D(A)   y 

is a limit point of A. Put s = r - d(x, y). Then s > 0 and  z  A  Ss(y) and z  y. 

Now d(x, z)  d(x, y) + d(y, z) < d(x, y) + s = r.                                                                   

 either y or z is in A and also is in Sr(x).                                                                                      

 x is a limit point of A which implies that x  D(A)  A  D(A) = �̅�.                                        

 �̿� ⊆ �̅�. . Hence �̅� =  �̿�. 

(iii) Let B be a closed set such that A  B.                                                                                   

Now we wish to show that �̅�  B.                                                                                                   

For this, let x  �̅�  x  A or x  D(A) (since A = A  D(A)].                                                        

If x  A then x  B (since A  B).                                                                                                 

If x  D(A), then since D(A)  D(B) we have x  D(B)                                                                          

 x  B  D(B) = �̅� = B  (since B is closed).                                                                           

Hence x  �̅�  x  B. This shows that �̅�  B. 

(iv) Let {Bi / i  I} is the collection of all closed supersets of A.                                                      

By (iii), �̅�  B for all i  I  �̅�  Bi                                                                                                                         

Since �̅� is closed and A  �̅�, we have that �̅� belongs to the collection                                    

{Bi / i  I}  

 Bi  �̅�.  

Hence �̅� = Bi. 

 

Definition: Let X be a metric space, A  X. x  X is said to be a boundary point 

of A if each open sphere centred on the point x intersects both A and A. The set of 

all boundary points of A is called the boundary of A. 
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Note: (i) The boundary of A equals                                                                                           

(ii) The boundary of A is a closed set. (iii) A is closed iff it contains its boundary. 

 

Example: Consider R with usual metric. Write x = 0  R, A = (0, l), B = [0, l]. x is 

a boundary point of both A and B. x  A and x  B. Therefore, a boundary point x 

of a set X need not be in the set X. 

 

Result: Let x  A. Then x is a limit point of A iff x is a boundary point of A. 

Proof: Suppose x  A and x is a limit point of A.  x  D(A) and x  A                                    

 for every r > 0, the nbd Sr(x) intersects both A and A.                                                    

 x is a boundary point of A. 

Conversely, suppose x is a boundary point of A.                                                                           

 Sr(x) intersects A for every r > 0. Also given x  A.  x is a limit point of A. 

 

CONVERGENCE, COMPLETENESS AND BAIRE’S THEOREM 

 

Definition: Let (X, d) be a metric space and {xn} be a sequence of points in X. 

Then {xn} converges if  a point x  X  for each  > 0  a positive integer m                     

 d(xn, x) <   n  m. This fact is denoted by xn → x or lim xn = x.  

or equivalently, for each open sphere 𝑆𝜀(𝑥)  m  ℤ+  xn  𝑆𝜀(𝑥)  n  m. 

 

Note: The following two conditions are equivalent: (i) {xn} converges to x in a 

metric space (X, d) and (ii) {d(xn, x)} converges to a real number 0. 

 

Problem: Let X be a metric space. If {xn}, {yn} are sequences in X  xn →x and yn 

→ y then d(xn, yn) → d(x, y). 

Solution: Let  > 0. Since xn → x  k1ℤ+ d(xn, x) < /2  n  k1.                                    

Since yn → y  k2 ℤ+ d(yn, y) < /2  n  k2.                                                                           

Now take k = max {k1, k2}.                                                                                            

Then d(xn, yn)  d(xn, x) + d(x, y) + d(y, yn)                                                                              

 d(xn, yn) - d(x, y)   d(xn, x) + d(y, yn) < /2 + /2 =   n  k...(i) 

Again d(x, y)  d(x, xn) + d(xn, yn)  + d(yn, y)                                                                              

 d(x, y) - d(xn, yn)   d(x, xn) + d(yn, y) < /2 + /2 =   n  k...(ii) 

From (i) and (ii) |d(xn, yn)  −  d(x, y)| <   n  k. Hence d(xn, yn) → d(x, y). 

 

Definition: A sequence {xn} of points in a metric space (X, d) is said to be a 

Cauchy sequence if for each  > 0  k  ℤ+  d(xn, xm) <   n, m  k. 
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Note: (i) Every convergent sequence is a Cauchy sequence (ii) Is the converse 

true? Justify your answer. 

Proof: (i) Let the sequence {xn} converge to x.                                                                         

Let  > 0. Then corresponding to /2 > 0  k  ℤ+  d(xn, x) < /2  n  k.                

Take n, m  k. Now d(xn, xm)  d(xn, x) + d(x, xm) < /2 + /2 = . 

(ii) The converse is not true.                                                                                                     

Write X = (0, 1]. Consider the usual metric of real numbers on X. Then (X, d) is a 

metric space. Write xn = 1/n for each n  ℕ. Then {xn} is a Cauchy sequence.                                                                                             

For, let  > 0. Take k  ℤ+ k > 1/. Let n  m  k.                                                                              

Then |𝑥𝑛 − 𝑥𝑚| = |
1

𝑛
−

1

𝑚
| =

1

𝑚
−

1

𝑛
 < 

1

𝑚
 < 

1

𝑘
 < . 

The sequence {xn} = {
1

𝑛
} → 0 but 0  X.                                                                                   

Hence {xn} is not a convergent sequence in X. 

 

Note: Let (X, d) be a metric space and {xn} be a sequence in X  xn →x and                            

xn → x in X. Then x = x. 

 

Definition: A metric space X is said to be complete if every Cauchy sequence in X 

is convergent.  

 

Theorem: If a convergent sequence in a metric space has infinitely many distinct 

points then its limit is a limit point of the set of points of the sequence. 

Proof: Let X be a metric space and {xn} be a convergent sequence in X. Suppose 

x X  xn → x. Write A = {xn / n  1}. Then A is an infinite set.                            If 

possible suppose x is ant a limit point of A.                                                                                    

Then  r > 0  Sr(x)  A \ {x} = .                                                                                                    

 Sr(x)  A =  or Sr(x)  A = {x}.  Sr(x)  A  {x}.                                                   

Since r > 0 and xn → x,  k  ℤ+ d(xn, x) < r  n  k.                                                                       

 xn  Sr(x)  xn  Sr(x)  A  xn  Sr(x)  A  {x}  xn = x  n  k.                             

 A = {x1, x2, ..., xk–1, x}.                                                                                                                                    

 A is finite which is a contradiction. Hence X is a limit point of A. 

 

Theorem: Let X be a complete metric space and Y be a subspace of X. Then Y is 

complete iff Y is closed. 

Proof: Let Y be complete. Let y  X be a limit point of Y.                                                             

For each n  ℕ,  yn  𝑆1

𝑛

(y) Y \ {y}.                                                                            

Claim: {yn} → y. Let  > 0. Take k  ℤ+ k > 1/. Let n  k.                                                    

Then d(yn, y) < 1/n < 1/k < . yn → y. {yn} is a Cauchy sequence in Y. Since Y 
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is complete, yn → y for some y in Y.                                                                            

Since yn → y and yn → y, we have y = y   Y. Hence Y is closed. 

         Converse: Suppose Y is closed. Let {yn} be a Cauchy sequence in Y. Since Y 

 X, {yn} is a Cauchy sequence in X.                                                                                 

Since X is complete,  y  X  yn → y. 

Case (i) If the sequence {yn} contains only a finite number of elements then y is a 

member of the sequence which repeats infinite number of times.                                            

So, y = ym for some m and hence y = ym  Y. 

Case (ii): Suppose {yn} contains infinite number of distinct elements.                              

Then y is a limit point of {yn / n  1}. Since {yn / n  1}  Y, y is a limit point of Y. 

Since Y is closed, y  Y. Hence {yn}→ y for some y  Y.                                      

Hence Y is complete. 

 

Definition: A sequence {An} of subsets of a metric space is called a decreasing 

sequence if A1 A2  ...... An  An+1  ... 

 

Cantor Intersection Theorem: Let X be a complete metric space, and {Fn} be a 

decreasing sequence of non – empty closed subsets of X such that d(Fn) → 0. Then 

F = ⋂ 𝐹𝑛
∞
𝑛=1  contains exactly one point. 

Proof:  

Claim: F can not contain more than one element.                                                                                  

If possible suppose x, y  F  x  y.   = d(x, y) > 0.                                                         

Since d(Fn) → 0,  k  ℤ+ d(Fn) <   n  k.                                                                             

Since x, y  F  Fn,  = d(x, y) < d(Fn) <  , a contradiction.                                                   

Hence F can not contain more than one element. 

Claim: F contains at least one point.  

Choose xn in Fn  n  1. Now we show that {xn} is a Cauchy sequence.                          

Let  > 0. Since d(Fn) → 0,  k  ℤ+ d(Fn) <   n  k. Now take m, n  k. 

W.L.G. we may assume that m  n. Now xm  Fm  Fk; xn  Fn  Fk.                                   

Hence xm, xn  Fk and so d(xm, xn)  d(Fk) < .  {xn} is a Cauchy sequence.  

Since X is complete,  x  X  xn →x. 

Case (i):  Suppose {xn: n  1} contains only a finite number of elements. Then x 

repeats in the sequence on and after certain stage. Ie.  k  ℤ+ xn = x  n  k.                                  

Since F1  F2  ..., x  Fn  n.  x  ⋂ 𝐹𝑛
∞
𝑛=1 . 

Case (ii): Suppose {xn: n  1} contains infinite number of elements. Then x is a 

limit point of the set {xn / n  1}.  Clearly x is a limit point of {xn / n  k}  k.  x 

is a limit point of {xn / n  k}  Fk.  x  Fk since each Fk is closed. This is true 

for all k.  x  ⋂ 𝐹𝑛
∞
𝑛=1 . 
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Definition: Let (X, d) be a metric space and A  X. A is said to be nowhere dense 

if Int (�̅�) = 𝜙. 
 

Result: Let X be a metric space and A  X. Then the following are equivalent. 

(i) A is a nowhere dense set. 

(ii) A does not contain any non – empty open set. 

(iii) Each non – empty open set has a non – empty open subset disjoint from 

�̅�. 

(iv) Each non – empty open set has a non – empty open subset disjoint from 

A. 

(v) Each non – empty open set contains a open sphere disjoint from A. 

Proof: (i)  (ii). Suppose A is nowhere dense.  Int (�̅�) = 𝜙.                                                                                                                    
If A contains a non – empty open set G then   G  Int (A)  Int (�̅�) = 𝜙, a 

contradiction.  

           (ii)  (iii). Let G be a non – empty open subset.                                                                  

By (ii) G ⊈ �̅�   x  G \ �̅�  x  G  (�̅�)  Put H = G  (�̅�) 
Since  �̅� is closed (�̅�) 𝑖s open and hence H = G  (�̅�) is a open set and x  H.                                                                                             

 G contains a non – empty open set such that H   �̅� = . 

          (iii)  (iv). Let G be a non – empty open set.                                                                  

By (iii)  a non – empty open subset H of G  H  �̅� = .                                                   

Now H  A  H  �̅� =   H  A = . 

          (iv)  (v). Let G be a non – empty open set.                                                                  

By (iv)  a non – empty open subset H of G with H  A = .                                                

Let x  H. Since H is open  r > 0 such that Sr(x)  H.                                                                            

Now Sr(x)  A  H  A =   Sr(x)  A = .                                                                             

Hence G contains a non – empty open sphere Sr(x) such that Sr(x)  A = .  

              (v)  (1): Suppose each non – empty open set contain a open sphere disjoint 

from A. If possible suppose Int (�̅�)  𝜙. Write G = Int (�̅�).                                            
By (v)  x  X, r > 0 such that Sr(x)  G and Sr(x)  A = .                                                        

Now Sr(x)  A =   x  A and x is not a limit point of A.  x  �̅�.                                                                           

On the other hand, x  Sr(x)  G  Int (�̅�)  �̅� a contradiction.                                                        

Hence Int (�̅�) = 𝜙.  
 

Problem: Show that a closed set A is nowhere dense iff its complement is 

everywhere dense. 

Proof: Suppose A is closed and nowhere dense.                                                                        

Since A is nowhere dense Int (�̅�) = .                                                                                            
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 Int (A) =  since A is closed.                                                                                                      

Let U be any open set with U  A =   U  A.                                                                       

 U  Int (A) since U is open  U = .                                                                                                            

Ie. the only open set disjoint from A is . Hence 𝐴̅ = X. 

Conversely suppose A is dense.                                                                                                       

Int (�̅�) = Int (A)  A  (Int (�̅�))  A =                                                                                     

 Int (�̅�) =  since the only open set disjoint from A is .                                                 

Hence A is nowhere dense. 

 

Baire’s Theorem: If {An} is a sequence of nowhere dense sets in a complete 

metric space X, then there exists a point in X which is not in any of the An’s. 

Proof: Since X is a non – empty open set and A1 is a nowhere dense set,  an  

open sphere Sr(x)  Sr(x)  A1 = .                                                                                              

Let 0 < t1 < 1. Let r1 = min {r, t1}.                                                                                            

Clearly r1 < 1. Since 𝑆𝑟1
(𝑥)  Sr(x) we have  𝑆𝑟1

(𝑥) ∩ 𝐴1 = 𝜙.                                                 

Put G1 = 𝑆𝑟1
(𝑥). Define F1 = 𝑆𝑟1/2[𝑥]. Clearly d(F1) < 1.                                                                                     

Now F1 is closed, G1 is open and F1  G1.                                                                                        

Also Int (F1) = 𝑆𝑟1
2

(𝑥) is open and A2 is nowhere dense, there exists an open sphere 

G2  Int (F1) and G2  A2 = .                                                                                       

Suppose G2 = 𝑆𝑟2
(𝑥1). Define F2 = 𝑆𝑟2/2[𝑥1]. Clearly d(F2) < 1/2.                                                                                     

Now F2 is closed, G2 is open and F2  G2.                                                                                               

Also, Int (F2) = 𝑆𝑟2
2

(𝑥1) is open and A3 is nowhere dense,  an open sphere                     

G3  Int (F2) and G3  A3 = .   

 If we continue this process, we get G1  F1  G2  F2  G3  ...  d(Fn) → 0, Fn is 

closed, Gn is open, Gn  An = .                                                                                       

Since d(Fn) → 0 and each Fn is closed, by Cantor’s intersection theorem, we have 

that ⋂ 𝐹𝑛
∞
𝑛=1  .                                                                                                                  

Let a  ⋂ 𝐹𝑛
∞
𝑛=1 . Since a Fn for each n, Fn  Gn, and Gn  An = , we have that a 

 An for any n.                                                                                                             

Hence a  X and a  An for all n. 

 

Theorem: If a complete metric space is the union of a sequence of its subsets then 

the closure of at least one set in the sequence must have non – empty interior. 

Proof: Let X be a complete metric space and X = ⋃ 𝐴𝑖
∞
𝑖=1 . If possible, suppose that 

Int (�̅�𝑖) =   i. Each Ai is a nowhere dense. So {An} is a sequence of nowhere 

dense sets. By a Baire’s theorem,  a  X  a  ⋃ 𝐴𝑖
∞
𝑖=1 , a contradiction to the fact 

that X = ⋃ 𝐴𝑖
∞
𝑖=1 . Hence Int (Ai)   for some i. 
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Note: A subset A of a metric space X is said to be of first category if it can be 

represented as the union of sequence of nowhere dense sets. A is said to be second 

category if it is not first category. Every complete metric space is second category.  

  

CONTINUOUS MAPPINGS 

 

Definition: Let X and Y be metric spaces with metrics d1 and d2. Let f be a 

mapping of X into Y. F is said to be continuous at a point x0 in X if either of the 

following two conditions is satisfied. 

(i) for each  > 0,   > 0  d1(x, x0) <   d2(f(x), f(x0)) < . 

(ii) for each open sphere S(f(x0)) centered on f(x0),  an open sphere S(x0) 

centred on x0  f(S(x0))  S(f(x0)).  

 

Theorem: Let X and Y be metric spaces and f is a mapping of X into Y.                             

Then f is continuous at x0 if and only if xn → x0  f(xn) → f(x0). 

Proof: Suppose f is continuous at x0. Let {xn} be a sequence in X  xn → x0.       

Let S(f(x0) be an open sphere centred at f(x0).                                                                          

Since f is continuous at x0,  an open sphere S(x0)  f(S(x0))  S(f(x0)).                                                                           

Since xn → x0,  k ℤ+  xn  S(x0)  n  k.                                                                                      

Then xn  S(x0)  f(xn)  f(S(x0))  S(f(x0))  n  k.                                                         

 f(xn) → f(x0). 

 

Converse: Suppose xn → x0  f(xn) → f(x0).                                                                                

If possible, suppose that f is not continuous at x0.                                                                   

Then   > 0  S(f(x0)) does not contain f(S(x0)) for any  > 0.                                                     

For n  ℕ, 
1

𝑛
 > 0  𝑓 (𝑆1

𝑛

(𝑥0)) ⊈ 𝑆𝜀(𝑓(𝑥0)).                                                                

Take xn  𝑆1

𝑛

(𝑥0)  f(xn)  𝑆𝜀(𝑓(𝑥0)).                                                                      

Now {xn} is a sequence of points from X and xn → x0.                                                          

Since xn → x0, we have f(xn) → f(x0) by hypothesis.                                                             

Since  > 0,  k ℤ+  dY(f(xn), f(x0)) <   n  k.                                                                             

 f(xn)  S(f(x0))  n  k, a contradiction. Hence f is continuous.  

 

Definition: Let X and Y be metric spaces. A mapping f: X → Y is said to be 

continuous if f is continuous at every point of X. 
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Theorem: Let X and Y be metric spaces and f a mapping of X into Y. Then f is 

continuous if and only if xn → x  f(xn) → f(x). 

Proof: f is continuous iff f is continuous at x  x  X iff xn → x  f(xn) → f(x)  

x  X. (by above theorem). 

 

Theorem: Let X and Y be metric spaces and f is a mapping of X into Y. Then f is 

continuous iff 𝑓−1(𝐺) is open in X whenever G is open in Y. 

Proof: Suppose f is continuous. Let G be an open set in Y.                                                             

Let p  𝑓−1(𝐺)  f(p)  G.                                                                                                             

Since G is open   > 0, S(f(p))  G.                                                                      

Since f is continuous   > 0,  f(S(p))  G                                                                                              

 S(p)  𝑓−1(𝐺).                                                                                                                            

 p is an interior point of 𝑓−1(𝐺).                                                                                        
every point of 𝑓−1(𝐺) is an interior point. Hence 𝑓−1(𝐺) is open. 

Converse: Suppose 𝑓−1(𝐺) is open for all open sets G in Y. Let p  X.                                

Let  > 0. Since S(f(p)) is open in Y, 𝑓−1(𝑆𝜀𝑓(𝑝)) is open in X.                                                              

Since p 𝑓−1(𝑆𝜀𝑓(𝑝))   > 0  S(p)  𝑓−1(𝑆𝜀𝑓(𝑝))  𝑓(𝑆𝛿(𝑝)) ⊆ 𝑆𝜀𝑓(𝑝).  

This shows that f is continuous at p. Since p is an arbitrary point in X, f is  

continuous on X. 

 

Problem: Let X and Y be metric spaces and   A  X. If f, g are continuous 

mappings from X to Y  f(x) = g(x)  x  A then f(y) = g(y)  y  �̅�.  
Solution: Let y  �̅�. If y  A then g(y) = f(y).                                                              

If y  A, then since A  X, y  �̅�  y is a limit point of A.                                                  

Let yn  A  𝑆1

𝑛

(𝑦) \ {y}. Consider {yn}. Since for each n, yn  𝑆1

𝑛

(𝑦), yn → y. 

Since f is continuous, f(yn) → f(y).  Since g is continuous, g(yn) → g(y).                                  

Hence f(y) = lim f(yn) = lim g(yn) = g(y). 

 

Definition: Let f be a mapping from metric space (X, d1) to a metric space                

(Y, d2). Then f is said to be uniformly continuous on X if given  > 0,   > 0  

d1(x, x) <   d2(f(x), f(x)) < .  

  

Theorem: Let X be a metric space, Y be a complete metric space and let A be a 

dense subspace of X. If f is uniformly continuous mapping of A into Y, then f can 

be extended uniquely to uniformly continuous mapping g: X → Y. 

 

Proof:  If A = X, then the conclusion is obvious. Assume that A  X.                              

Then  point in X which is not in A.                                                                                   
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Define g : X → Y as follows. If x  A then g(x) = f(x).                                                              

If x  A, then since A  X, x  �̅�  x is a limit point of some convergent sequence 

{xn} in A  {xn} is a Cauchy sequence in X  {f(xn)} is a Cauchy sequence in Y 

since f is uniformly continuous. Since Y is complete {f(xn)] is convergent sequence 

in Y. Define g(x) = lim f(xn). 

 

Claim: g is well defined. Let {xn}, {yn} be sequences in A  xn → x, yn → x. We 

know that d1(xn, yn) → d1(x, x) = 0. Since f is uniformly continuous, d2(f(xn), f(yn)) 

→ 0. Since d2(f(xn), f(yn)) → d2(lim f(xn), lim f(yn))  = 0, we have lim f(xn) = lim 

f(yn). Hence g is well defined. 

 

Claim: g is uniformly continuous. 

Let  > 0. Since f is uniformly continuous on A,   > 0  d1(a, a) <                                

 d2(f(a), f(a)) <   a, a  A... (i). 

Let x, x  X with d1(x, x) < /3. 

We show that d2(g(x), g(x)) < 3. 

If x, x  A, then clearly d1(x, x) <   d2(f(x), f(x)) <   d2(g(x), g(x)) < . 

Suppose x, x  A.  Then x, x  �̅�.                                                                                            
  sequences {xn}, {xn} in A  xn → x and xn → x.                                                                    

Since f is uniformly continuous on A, it follows that g(x) = lim f(xn) and                          

g(x) = lim f(xn).                                                                                                                        

Since xn → x, xn → x,  k   n  k, d1(xn, x) < /3 and d1(xn,x) < /3. 

Now d1(xn, xn)   d1(xn, x) + d1(x, x) + d1(x, xn) < /3 + /3 + /3 = . 

 d2(f(xn), f(xn)) <  by (i)  n  k. 

Now d2(g(x), g(x))   d2(g(x), f(xn)) + d2(f(xn), f(xn)) + d2(f(xn), g(x))< 3 for 

sufficiently large n. Hence d1(x, x) <   d2(g(x), g(x)) < 3.                                                      

This is true for all  > 0. Hence g is uniformly continuous. 

 

Claim: g is unique. 

Let g1, g2 be two extensions of f.                                                                                                  

If possible, suppose g1  g2.                                                                                                                   

Since g1(a) = f(a) = g2(a)  a  A. g1(x)  g2(x) for some x  X\A.                                               

Since x  X = �̅�,  sequence {xn} in A  xn → x.                                                                      

Let S1 and S2 be two disjoint spheres with the centers g1(x) and g2(x) respectively.                                                                                                                                    

Since g1 and g2 are uniformly continuous, they are continuous.                                                    

 g1
–1(S1) and g2

–1 (S2) are open sets in X  that x  g1
–1(S1)  g2

–1(S2).                            

 g1
–1(S1)  g2

–1(S2) is open and xn → x  k  xn  g1
–1(S1)  g2

–1(S2) n  k. 
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Since xn  A, g1(xn) = f(xn) = g2(xn)  S1  S2, a contradiction as S1  S2 = . 

Hence g1 = g2. 

 

Definition: Let (X, d1), (Y, d2) be two metric spaces and f: X → Y a bijection.              

f is said to be an isometry if for any x, x  X, d2(f(x), f(x)) = d1(x, x). 

 

SPACES OF CONTINUOUS FUNCTIONS 

 

A normed linear space X is a linear space in which there is defined a real number 

‖𝑥‖ for every element x satisfying, (i) ‖𝑥‖  0 and ‖𝑥‖ = 0 iff x = 0              (ii) 

‖𝑥 + 𝑦‖‖𝑥‖ + ‖𝑦‖, (iii) ‖𝑎𝑥‖ = |𝑎|‖𝑥‖ scalar a and x, y  X. 

 

Definition: A Banach space is a normed linear space which is complete as a metric 

space. 

Lemma: If f and g are continuous real functions defined on a metric space (X, d) 

then f + g and af are also continuous, where a is any real number.  

Proof: Let  > 0. Take x0  X. Since /2 > 0 and f is continuous,  1 > 0                       

x X, d(x, x0) < 1  |𝑓(𝑥) − 𝑓(𝑥0)| < /2.                                                                             

Since g is continuous  2 > 0  x X, d(x, x0) < 2  |𝑔(𝑥) − 𝑔(𝑥0)| < /2.                                                                  

Take  = min {1, 2}. Now d(x, x0) <   |(𝑓 + 𝑔)(𝑥) − (𝑓 + 𝑔)(𝑥0)| |𝑓(𝑥) −

𝑓(𝑥0)| + |𝑔(𝑥) − 𝑔(𝑥0)| <


2
+



2
= .   f + g is continuous.  

Let  > 0. Corresponding to  =  / |𝑎| > 0, since f is continuous,   > 0                    

x X, d(x, x0) <   |𝑓(𝑥) − 𝑓(𝑥0)| < .    

Now let x X, d(x, x0) <                                                                                         

Then |𝑎𝑓(𝑥) − 𝑎𝑓(𝑥0)| = |𝑎||𝑓(𝑥) − 𝑓(𝑥0)| < |𝑎|  = .                                               

Hence af is continuous. 

Note: Consider a non – empty set X. Write L = {f / f: X →ℝ}.                                      

Define (f + g)(x) = f(x) + g(x) for f, g  L and for any a in ℝ, f  L,                              

(af)(x) = a{f(x)}.  With these operations L is a linear space over ℝ.                                                       

Let B = {f / f : X → ℝ, f is bounded}. Then B is a linear subspace of L.                           

Write C(X, ℝ) = {f / f : X → ℝ, f is continuous and bounded} where (X, d) is a 

metric space. Clearly C(X, ℝ)  B. 
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Lemma: C(X, ℝ) is a closed subset of the metric space B.                                          

Proof: Clearly C(X, ℝ)  B. Let f  𝐶(𝑋, ℝ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .                                                                         

Let  > 0 and x0  X. Let d be the metric on X.                                                                                                         

Since /3 > 0 and f  𝐶(𝑋, ℝ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   f0  C(X, ℝ)  ‖𝑓 − 𝑓0‖ < /3.                                    

Now for any x  X, |𝑓(𝑥) − 𝑓0(𝑥)|  sup {|𝑓(𝑥) − 𝑓0(𝑥)| / x  X} = ‖𝑓 − 𝑓0‖ < 

/3.                                                                                                                             

Since f0  C(X, ℝ) it is continuous at x0.                                                                                     

   > 0  d(x, x0) <   |𝑓0(𝑥) − 𝑓0(𝑥0)| < /3.                                                                         

Now d(x, x0) <   |𝑓(𝑥) − 𝑓(𝑥0)|  |𝑓(𝑥) − 𝑓0(𝑥)| + |𝑓0(𝑥) − 𝑓0(𝑥0)| + 

|𝑓0(𝑥0) − 𝑓(𝑥0)| < /3 + /3 +/3= .  f is continuous at x0.                                                

Since x0 is arbitrary we have that f  C(X, ℝ). 𝐶(𝑋, ℝ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = C(X, ℝ).                                   

Hence C(X, ℝ) is closed. 

Theorem: The set C(X, ℝ) of all bounded and continuous real functions defined 

on a metric space X is a real Banach space with respct to pointwise addition and 

scalar multiplication, and the norm defined by ‖𝑓‖ = sup |𝑓(𝑥)|. 

Proof: By a lemma f + g, af  C(X, ℝ) for any f, g  C(X, ℝ) and a ℝ.                           

With respect to these operations C(X, ℝ) is a linear space.                                                                             

Define ‖𝑓‖ = sup |𝑓(𝑥)| for any f  C(X, ℝ). This is a norm.                                                          

 C(X, ℝ) is a normed linear space.                                                                                              

If we define d(f, g) = ‖𝑓 − 𝑔‖ then d is a metric on C(X, ℝ). With respect to this 

metric C(X, ℝ) is a closed subset of B. Since B is complete and C(X, ℝ) is closed 

subset of B, C(X, ℝ) is complete. Hence C(X, ℝ) is a Banach space. 

Note: Let (X, d) be a metric space. Write C(X, ℂ)= {f: f : X→ ℂ, f is bounded and 

continuous}. Define ‖𝑓‖ = sup |𝑓(𝑥)| for any f  C(X, ℂ). Then C(X, ℂ) is a 

normed complex linear space.  

Theorem: The set C(X, ℂ ) of all bounded and continuous complex functions 

defined on a metric space X is a complex Banach space with respct to pointwise 

addition and scalar multiplication, and the norm defined by ‖𝑓‖ = sup |𝑓(𝑥)|. 

EUCLIDEAN AND UNITARY SPACES. 

Note: Let n be a fixed positive integer. Then ℝ𝑛 = {(x1, x2, ..., xn)/ xi  ℝ, 1  i  

n}. Clearly ℝ𝑛 is a linear space over ℝ. For x = (x1, x2, ..., xn) define Euclidean 

norm ‖𝑥‖ = √|𝑥1|2 + |𝑥2|2 + ⋯ + |𝑥𝑛|2. 
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Lemma: (Cauchy Inequality) Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be two n 

– tuples of real (or complex) numbers. Then ∑ |𝑥𝑖𝑦𝑖| ≤ ‖𝑥‖‖𝑦‖𝑛
𝑖=1 .                                                                         

Ie ∑ |𝑥𝑖𝑦𝑖| ≤ (∑ |𝑥𝑖|2𝑛
𝑖=1 )

1

2𝑛
𝑖=1 (∑ |𝑦𝑖|2𝑛

𝑖=1 )
1

2 

Proof: Let a, b be any two non – negative real numbers.                                                  

Then (a – b)2  0  a2 + b2  2ab                                                                                               

 (a + b)2  4ab                                                                                                                              

 
𝑎+𝑏

2
≥ (𝑎𝑏)

1

2...(i). 

If x = 0 or y = 0 then ∑ |𝑥𝑖𝑦𝑖| = 0 = ‖𝑥‖‖𝑦‖𝑛
𝑖=1 .                                                                        

Assume x  0 and y  0. 

Take 𝑎𝑖 =
|𝑥𝑖|2

‖𝑥‖2
 and 𝑏𝑖 =

|𝑦𝑖|2

‖𝑦‖2
.                                                                                                          

From (i) 
|𝑥𝑖||𝑦𝑖|

‖𝑥‖‖𝑦‖
 ≤

|𝑥𝑖|
2

‖𝑥‖2+
|𝑦𝑖|

2

‖𝑦‖2

2
 for 1  i  n.                                                                                              

Now summing ∑
|𝑥𝑖||𝑦𝑖|

‖𝑥‖‖𝑦‖
𝑛
𝑖=1   ≤ ∑

|𝑥𝑖|
2

‖𝑥‖2+
|𝑦𝑖|

2

‖𝑦‖2

2

𝑛
𝑖=1   

= 
∑

|𝑥𝑖|
2

‖𝑥‖2
𝑛
𝑖=1 +∑

|𝑦𝑖|
2

‖𝑦‖2
𝑛
𝑖=1

2
 = 

∑ |𝑥𝑖|
2𝑛

𝑖=1
‖𝑥‖2 +

∑ |𝑦𝑖|
2𝑛

𝑖=1
‖𝑦‖2

2
 = 

‖𝑥‖2

‖𝑥‖2+
‖𝑦‖2

‖𝑦‖2

2
 = 

1+1

2
= 1. 

∴
∑ |𝑥𝑖𝑦𝑖|𝑛

𝑖=1

‖𝑥‖‖𝑦‖
≤ 1  ∑ |𝑥𝑖𝑦𝑖| ≤ ‖𝑥‖‖𝑦‖𝑛

𝑖=1  

Lemma: Minkowski’s inequality. Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be 

two n – tuples of real (or complex) numbers. Then ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖. Or in 

other words (∑ |𝑥𝑖 + 𝑦𝑖|2𝑛
𝑖=1 )

1
2⁄ ≤ (∑ |𝑥𝑖|2𝑛

𝑖=1 )
1

2⁄ + (∑ |𝑦𝑖|2𝑛
𝑖=1 )

1
2⁄ .  

Proof:  If ‖𝑥 + 𝑦‖ = 0 then clearly ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖.                                                      

Suppose ‖𝑥 + 𝑦‖ ≠ 0.                                                                                                               

Then ‖𝑥 + 𝑦‖2 = ∑ |𝑥𝑖 + 𝑦𝑖|2𝑛
𝑖=1                                                                                                        

= ∑ |𝑥𝑖 + 𝑦𝑖||𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1  

 ∑ |𝑥𝑖 + 𝑦𝑖|(|𝑥𝑖| + |𝑦𝑖|)𝑛
𝑖=1  since |𝑥𝑖 + 𝑦𝑖| ≤ |𝑥𝑖| + |𝑦𝑖|                                                                              

= ∑ |𝑥𝑖 + 𝑦𝑖||𝑥𝑖|𝑛
𝑖=1  + ∑ |𝑥𝑖 + 𝑦𝑖||𝑦𝑖|𝑛

𝑖=1                                                                                          

 ‖𝑥 + 𝑦‖‖𝑥‖ + ‖𝑥 + 𝑦‖‖𝑦‖ by Cauchy’s inequality.                                                                

= ‖𝑥 + 𝑦‖(‖𝑥‖ + ‖𝑦‖).                                                                                                                        

ie.  ‖𝑥 + 𝑦‖2 ≤ ‖𝑥 + 𝑦‖(‖𝑥‖ + ‖𝑦‖).                                                                                

Hence ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ since ‖𝑥 + 𝑦‖ ≠ 0. 

Problem: Show that Int F =  where F is the Cantor’s set. 
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TOPOLOGICAL SPACES.  

(104: TOPOLOGY, UNIT II) 

Definition: Let X be a non – empty set. A family  of subsets of X is called a 

topology on X if it satisfies the following conditions:  

(i)  is closed under unions, and  

(ii)  is closed under finite intersections.                                                   

If  is a topology on X, then (X, ) is called a topological space.  The members 

of  are called open sets. 

Note: Since the union of empty class of sets is empty,   .                                           

Since the intersection of empty class of sets is X, X  .                                               

Hence in any topology  on X, , X .  

Definition: Let X be a non – empty set and  be the family of all subsets of X . 

Then  is a topology on X and it is called the discrete topology on X, and (X, ) is 

called discrete topological space. 

Note: in this case every subset of X is open.  

Definition: Let X be a non – empty set and  = {, X}. Then  is a topology on X 

and it is called the indiscrete topology on X, and (X, ) is called indiscrete 

topological space. 

Note: in this case the only open sets are  and X.  

Example: Let X = {a, b, c} where a, b, c are distinct and (i)  = {, {a}, {b}, {a, 

b}, X}. Then  is a topology on X. (ii)  = {, {b}, {c}, {b, c}, X}. Then  is a 

topology on X. (iii)  = {, {a}, {a, b}, X}. Then  is a topology on X. (iv)  = {, 

{a}, X}. Then  is a topology on X. (v)  = {, {a}, {b}, X}. Then  is not a 

topology on X.(vi)  = {, {a, c}, {b, c}, {a, b}, X}. Then  is not a topology on X.                                         

(vii)  = {, {a}, {a, c}, {a, b}, X}. Then  is a topology on X. 
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Example: Let (X, d) be any metric space. Let ℑ be the set of all open sets with 

respect to metric d. Then  ℑ is a topology called usual topology on the metric space 

(X, d).  

Definition: A metrizable space is a topological space X with the property that there 

exists at least one metric on the set X whose class of generated open sets is 

precisely the given topology. 

Problem: Let X be a non – empty set and ℑ be the discrete topology on X. Show 

that (X, ℑ) is a metrizable space.  

Proof: Define d : X  X → ℝ by d(x, y) = 0 if x = y, and d(x, y) = 1 if x  y.                           

Then (X, d) is a metric space. Here 𝑆1
2⁄ (𝑥) is an open set and 𝑆1

2⁄ (𝑥) = {x}.                                 

 {x} is open  x  X. For any subset A of X, since A = ⋃ {𝑎}𝑎∈𝐴 , A is open in                 

(X, d). Hence every subset of X is open in (X, d).                                                                                        

 The open sets in (X, ℑ ) and open sets in (X, d) are same.                                                      

Hence (X, ℑ) is metrizable. 

Problem: Let X be a non – empty set  |𝑋| ≥ 2 and ℑ be indiscrete topology on X. 

Show that (X, ℑ) is not metrizable space.  

Proof: Given ℑ = {, X}.  The only open sets in (X, ℑ) are  and X.                                      

If possible, suppose (X, ℑ ) is metrizable.                                                                                           

  a metric d on X  the open sets in (X, d) are precisely the open sets in (X, ℑ).                                                                                                                                        

Since |𝑋| ≥ 2,  a, b  X  a  b. Take r = d(a, b) > 0.                                                                                                                   

Then 𝑆𝑟
2⁄ (𝑎) and 𝑆𝑟

2⁄ (𝑏) are disjoint non – empty open sets.                                            

Now   𝑆𝑟
2⁄ (𝑎)  ℑ = {, X}   𝑆𝑟

2⁄ (𝑎) = 𝑋                                                                       

 b  X = 𝑆𝑟
2⁄ (𝑎), a contradiction.                                                                                               

Hence (X, ℑ) is not metrizable. 

Theorem: Let ℑ1 and ℑ2 be two topologies on a non – empty set X. Show that 

ℑ1 ∩ ℑ2is a topology on X. 

Proof: Let {Gi}iI be an arbitrary collection of elements from ℑ1 ∩ ℑ2.                                      

Since ℑ1 ∩ ℑ2 ⊆ ℑ1and ℑ1 ∩ ℑ2 ⊆ ℑ2,{Gi}iI is a collection of elements from 

ℑ1as well as ℑ2. Since ℑ1 and ℑ2 are topologies  Gi  ℑ1 and  Gi  ℑ2                           

  Gi  ℑ1 ∩ ℑ2.                                                                                                                   

 ℑ1 ∩ ℑ2 is closed under arbitrary unions. 
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Let Gi , 1  i  n be  a finite collection of elements from ℑ1 ∩ ℑ2.                                      

Since ℑ1 ∩ ℑ2 ⊆ ℑ1and ℑ1 ∩ ℑ2 ⊆ ℑ2, Gi , 1  i  n is a collection of elements 

from ℑ1as well as ℑ2.                                                                                                                

Since ℑ1 and ℑ2 are topologies ⋂ 𝐺𝑖
𝑛
𝑖=1   ℑ1 and ⋂ 𝐺𝑖

𝑛
𝑖=1   ℑ2                                                                                                                    

 ⋂ 𝐺𝑖
𝑛
𝑖=1   ℑ1 ∩ ℑ2.                                                                                                         

 ℑ1 ∩ ℑ2 is closed under finite intersections.                                                                               

Hence ℑ1 ∩ ℑ2is a topology on X. 

Definition: Let (X, ℑ) be a topological space and Y be a non – empty subset of X. 

Let ℑ𝑌= {A / A = Y  G, G  ℑ}. Then (Y,  ℑ𝑌) is a topological space and ℑ𝑌is 

called the relative topology on Y, and (Y, ℑ𝑌) is called subspace of (X, ℑ). 

Example: Let X = {a, b, c} of distinct elements and ℑ = {, {a}, {a, c}, {a, b}, X}. 

Then ℑ is a topology on X. Let Y = {a, b}.                                                                                      

Then ℑ𝑌 = {Y  G / G  ℑ }= {, {a}, Y} is a relative topology on Y. So (Y, ℑ𝑌) 

is   

a subspace of (X, ℑ). 

Problem: Verify that a subspace (Y, ℑ𝑌) of topological space (X, ℑ) is itself a 

topological space. 

Solution: Let {H:   } be a collection of elements from ℑ𝑌.                                                        

 for each , H = Y  G for some G  ℑ.                                                                                            

Since  G  ℑ,  H =  (Y  G) = Y  (G)  ℑ𝑌.                                    

Hence ℑ𝑌 is closed under arbitrary unions.  

Let Hi, 1  i  n be a finite collection of elements from ℑ𝑌.                                                   

Then Hi = Y  Gi for some Gi  ℑ for 1  i  n.                                                                            

Since ⋂ 𝐺𝑖
𝑛
𝑖=1   ℑ , ⋂ 𝐻𝑖

𝑛
𝑖=1  = ⋂ (𝑌 ∩ 𝐺𝑖)𝑛

𝑖=1  = Y  ⋂ 𝐺𝑖
𝑛
𝑖=1   ℑ𝑌.                                                                

 ℑ𝑌 is closed under finite intersections also.                                                                                   

Hence ℑ𝑌 is itself a topology on Y. 

Problem: Let X be an infinite set and ℑ consist of empty set together with all the 

subsets of X whose complements are finite. Show that (X, ℑ) is a topological 

space. This topology is called the topology of finite complements. 

Solution: Given ℑ = {}  {A  X  X \ A is finite}.                                                              

(i) Let {G} be any class of sets from ℑ.                                                                                           

If each G is empty, then G is also empty and hence G  ℑ.                                                         
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Now suppose  0  𝐺𝛼0
  .                                                                                              

Then X \ (G)  X \ 𝐺𝛼0
 since 𝐺𝛼0

   G                                                                                    

 X \ (G) is finite since X \ 𝐺𝛼0
is finite.                                                                              

 G  ℑ.    ℑ is closed under arbitrary unions.                                                            

(ii) Let Gi ℑ for 1  i  n.  Let G = ⋂ 𝐺𝑖
𝑛
𝑖=1 .                                                                          

If at least one Gi =  then G = ⋂ 𝐺𝑖
𝑛
𝑖=1 =   ℑ.                                                               

Suppose Gi    i  1  i  n.                                                                                           

Since   Gi  ℑ, X\Gi is finite  i  1  i  n.                                                                         

Now X \ G = X \ ⋂ 𝐺𝑖
𝑛
𝑖=1  = ⋃ 𝑋\𝐺𝑖

𝑛
𝑖=1  is finite since finite union of finite sets is 

finite.                                                                                                                                          

 G  ℑ .                                                                                                                          

Hence ℑ is closed under finite intersections.                                                                                  

Hence (X, ℑ) is a topological space. 

Problem: Let X be an uncountable set and ℑ consist of empty set together with all 

the subsets of X whose complements are countable. Show that (X, ℑ) is a 

topological space.  

Solution: Let X be an uncountable set.                                                                                     

Given ℑ = {}  {A  X  X \ A is countable}.                                                              

(i) Let {G} be any class of sets from ℑ.                                                                                           

If each G is empty, then G is also empty and hence G  ℑ.                                                         

Now suppose  0  𝐺𝛼0
  .                                                                                              

Then X \ (G)  X \ 𝐺𝛼0
 since 𝐺𝛼0

   G                                                                                    

 X \ (G) is countable since X \ 𝐺𝛼0
is countable.                                                                              

 G  ℑ.    ℑ is closed under arbitrary unions.                                                            

(ii) Let Gi ℑ for 1  i  n.  Let G = ⋂ 𝐺𝑖
𝑛
𝑖=1 .                                                                          

If at least one Gi =  then G = ⋂ 𝐺𝑖
𝑛
𝑖=1 =   ℑ.                                                               

Suppose Gi    i  1  i  n.                                                                                           

Since   Gi  ℑ, X\Gi is countable  i  1  i  n.                                                                         

Now X \ G = X \ ⋂ 𝐺𝑖
𝑛
𝑖=1  = ⋃ 𝑋\𝐺𝑖

𝑛
𝑖=1  is countable since finite union of countable 

sets is countable.                                                                                                                                          

 G  ℑ .                                                                                                                          

Hence ℑ is closed under finite intersections.                                                                                  

Hence (X, ℑ) is a topological space. 
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Definition: Let X and Y be topological spaces and f  a mapping of X into Y.                     

f is called a continuous mapping if f–1 (G) is open in X whenever G is open in Y.                  

f is said to be an open mapping if f(G) is open in Y whenever G is open in X.                               

If f is continuous, then f(X) is called continuous image of X. If f is a bijection, 

continuous mapping and open mapping then f is called a homeomorphism.                                          

If f : X → Y is a homeoporphism then X and Y are said to be  homeomorphic.                            

In this Y is called a homeorphic image of X. 

 

                                      ELEMENTARY CONCEPTS 

Definition: A closed set in a topological space is a set whose complement is open.  

Theorem: Let (X, ℑ) be a topological space. Then (i) any intersection of closed 

sets in X is closed and (ii) any finite union of closed sets in X is closed. 

Proof: (i) Let {Fi} be a class of closed sets in X  Fi  ℑ for all i  I.                                  

 ⋃ 𝐹𝑖
′

𝑖∈𝐼   ℑ                                                                                                                                                   

 (⋃ 𝐹𝑖
′

𝑖∈𝐼 )′  is a closed set                                                                                                 

 [(⋂ 𝐹𝑖𝑖∈𝐼 )′]′ = ⋂ 𝐹𝑖𝑖∈𝐼   is closed.                                                                                                               

 any intersection of closed sets in X is closed                                                                                                                               

(ii) Let Fi, 1  i  n be closed sets                                                                                                    

 Fi  ℑ for 1  i  n.                                                                                                          

 ⋂ 𝐹𝑖
′𝑛

𝑖=1   ℑ                                                                                                                              

 (⋂ 𝐹𝑖
′𝑛

𝑖=1 )′ is a closed set.                                                                                                         

 [(⋃ 𝐹𝑖
𝑛
𝑖=1 )′]′ =  ⋃ 𝐹𝑖

𝑛
𝑖=1  is closed.                                                                                                                      

 any finite union of closed sets in X is closed. 

Definition: Let (X, ℑ) be a topological space and A  X.                                                                           

The intersection of all closed super sets of A, is called the closure of A denoted by 

�̅�. 

Note: A is closed iff A = �̅�. 

Suppose A is closed. Clearly A  �̅�.                                                                                                                                

�̅�  A since A is a closed superset of A and  �̅� is the intersection of all closed super 

sets of A.                                                                                                                                      

Hence A = �̅�.                                                                                                                         

Conversely suppose A = �̅�.                                                                                                   
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�̅� is closed since intersection of closed sets is closed and �̅� is the intersection of all 

closed supersets of A.                                                                                                        

  A is closed. 

Definition: A subset A of X, where (X, ℑ) is a topological space, is called dense 

(everywhere dense) if  �̅� = X.                                                                                                        

A topological space X is said to be a separable space if it has a countable dense 

subset.  

Theorem: Let X be a topological space. If A and B are arbitrary subsets of X, then 

the operation of forming closure has the following four properties.                                

(i) �̅� = 𝜙 (ii) A  �̅�. (iii) �̅̅� = �̅� and (iv) 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∪ �̅�.                                                       

Proof: (i) Since X is open X =  is closed so that �̅� = 𝜙.                                                            

(ii) Since �̅� is the intersection of all closed supersets of A, A  �̅�.                                                      

(iii) Since �̅� is closed �̅̅� = �̅�.                                                                                                 

(iv) A  B  �̅� ∪ �̅� since A  �̅� and B  �̅�.                                                                               

Ie. �̅� ∪ �̅� is a closed superset of A  B.                                                                                      

 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ ⊆ �̅� ∪ �̅�.                                                                                                                    

Again A  A  B  𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅                                                                                                     

ie. 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ is a closed super set of A                                                                                             

and since �̅� is the intersections of all closed super sets of A, �̅�  ⊆ 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅.                          

Similarly �̅� ⊆ 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅.                                                                                                                        

�̅� ∪ �̅� ⊆ 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅                                                                                                                                  

Hence 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∪ �̅�. 

Note: A  B  �̅�  �̅�.                                                                                                                     

Proof: Since A  B, A  B = B                                                                                                        

𝐵 ̅= 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∪ �̅�  �̅�  �̅�. 

Definition: A nbd of x  X, where (X, ℑ) is a topological space, is G  ℑ (an open 

set G)  x  G. A class of nbds of a point x  X is called an open base for the point 

if for each nbd G of x  a nbd H in this class  H  G. 

Example:  

Theorem: Let (X, ℑ)  be a topological space and A be an arbitrary subset of X.                    

Then �̅� = {x / each neighbourhood of x intersects A} 
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Proof: Let x  �̅�.                                                                                                                            

If possible, suppose x  {x / each neighbourhood of x intersects A}.                                             

  a nbd G of x  G  A = .                                                                                                           

 A  G.                                                                                                                                

  �̅�  𝐺′̅̅ ̅ = G since G is closed.                                                                                                                             

 x  G, a contradiction. 

   x {x / each neighbourhood of x intersects A}                                                                                             

Conversely suppose x {x / each neighbourhood of x intersects A}.                                           

If possible, suppose x  �̅�.                                                                                                            

 x   (�̅�)′ and (�̅�)′ is open.                                                                                                  

 (�̅�)′ A  , a contradiction. Hence x  �̅�.  

Definition: Let X be a topological space and A  X. A point x in A is said to be an 

isolated point of A if  nbd G of x  (G  A) \ {x} = . A point x  X is said to be 

a limit point of A if (G  A) \ {x}   for every nbd G of x.                                                             

The derived set denoted by D(A) is the set of all limit points of A. 

Theorem: Let X be a topological space and A  X. Then (i) �̅� = A  D(A) and                    

(ii) A is closed iff D(A)  A.                                                                                                           

Proof: Suppose x  A  D(A).                                                                                                   

If possible suppose x  �̅�.                                                                                                                   

  nbd. G of x  G  A = .                                                                                                    

 x  A and (G  A)\{x} = .                                                                                                         

 x  A and x  D(A)  x  A  D(A) a contradiction.  x  �̅�.  

Conversely suppose x  �̅�.                                                                                                              

If possible, suppose x  A  D(A).  x  A and x  D(A).                                                            

 x  A and x is not a limit point of A.                                                                                      

 x  A and  nbd. G of x  (G  A)\{x} = .                                                                             

 G  A =   x  �̅�, a contradiction.                                                                                     

 x  A  D(A). Hence �̅� = A  D(A).                                                                                  

(ii) A is closed iff A = �̅� iff A = A  D(A) iff D(A)  A. 
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Problem: Let f : X → Y be a mapping of one topological space into another.                                    

Show that (i) f is continuous, iff (ii) f –1(F) is closed in X whenever F is closed in Y, 

iff (iii) 𝑓(�̅�)  𝑓(𝐴)̅̅ ̅̅ ̅̅  for every subset A of X.  

Proof: (i)  (ii). Assume (i).                                                                                                             

Let F be a closed set in Y                                                                                                                       

 F is open                                                                                                                                      

 f –1(F) = [f –1(F)] is open in X, since f is continuous.                                                                       

 f –1(F) is closed.                                                                                                                                 

(ii)  (i). Assume (ii).                                                                                                                                    

Let G be open in Y.                                                                                                                            

 G is closed                                                                                                                                       

 f –1(G) = [f –1(G)] is closed by (ii).                                                                                                    

 f –1(G) is open in X. Hence f is continuous.                                                                                        

(ii)  (iii) Assume (ii).                                                                                                                            

Let A  X. 𝑓(𝐴)̅̅ ̅̅ ̅̅  is closed in Y.                                                                                                                

 𝑓−1𝑓(𝐴)̅̅ ̅̅ ̅̅  is closed in X.                                                                                                            

Since A  𝑓−1𝑓(𝐴)̅̅ ̅̅ ̅̅  , �̅� ⊆ 𝑓−1𝑓(𝐴)̅̅ ̅̅ ̅̅                                                                                                             

 𝑓(�̅�)  𝑓(𝐴)̅̅ ̅̅ ̅̅                                                                                                                                                                 

(iii)  (ii). Assume (iii).                                                                                                       

Let F be a closed set in Y.                                                                                                                  

Write A = 𝑓−1(𝐹)  f(A) = F                                                                                                                         

 𝑓(𝐴)̅̅ ̅̅ ̅̅  = �̅� = F (since F is closed) = f(A). By (iii),  f(�̅�)  ⊆ 𝑓(𝐴)̅̅ ̅̅ ̅̅  = f(A)                                               

  �̅�  A.                                                                                                                                              

 A = �̅�.  A = f –1(F) is closed. 

Theorem: Let X be a non – empty set and there be given a class of subsets of X 

which is closed under the formation of arbitrary intersections and finite unions.                

Then the class of all complements of these sets is a topology on X whose closed 

sets are precisely those initially given.  

Proof: Suppose {Fi} is the collection of given sets which is closed under arbitrary 

intersections and finite unions.                                                                                                       

Write ℑ = {Fi / i  }. Let {Fi}iI where I   be a collection of sets from ℑ.                                   

Now  Fi = (Fi) and since  Fi  {Fi}i, (Fi)  ℑ. ie. Fi  ℑ.                                      

Hence ℑ is closed under arbitrary unions.                                                                                           

Let F1, ..., Fn  ℑ.  F1, ..., Fn  {Fi}i.                                                                                           
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Since the collection is closed under finite unions, F1  ...  Fn is in this collection                                                                                                                            

 (F1  ...  Fn)  ℑ.  F1  F2  ...  Fn  ℑ.                                                                               

Hence ℑ is closed under finite intersections.                                                                                    

Hence ℑ is a topology.                                                                                                                            

Let F be a closed set in (X, ℑ) iff F is open iff F  ℑ iff F = (F) {Fi}i iff F is 

in the collection.                                                                                                                          

Hence the closed sets in (X, ℑ) are precisely the elements in the given collection. 

Theorem: Let X be a non – empty set and there be given a closure operation which 

assigns to each subset A of X a subset �̅� of X in such a manner that                                         

(i) �̅� = 𝜙 (ii) A  �̅�. (iii) �̅̅� = �̅� and (iv) 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∪ �̅�.  If a closed set A is 

defined to be one for which A = �̅�, then the class of all complements of such sets is 

a topology on X whose closure operation is precisely that initially given.  

Proof: Write 𝒢 = {A: A  X and A = �̅�}. It suffices if we prove that 𝒢 is closed 

under arbitrary intersections and finite unions. Let Ai  𝒢 for 1  i  n.                                                                                 

By (iii) 𝐴1 ∪ 𝐴2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐴1

̅̅ ̅ ∪ 𝐴2
̅̅ ̅  = A1  A2.  𝒢 is closed under unions when n = 2.                                                                                                    

Let 𝒢 be closed under unions when n = k – 1.                                                                                 

Assume 𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑘−1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =A1  A2  ...  Ak–1                                                           

Now 𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑘−1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∪ 𝐴𝑘
̅̅̅̅   =  A1  A2  ...  Ak–1  Ak  

 By induction 𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = A1  A2 ...  An  integral values of n.                                                                                                                                                              

 𝒢 is closed under finite unions. 

Now let {Ai}iI be a collection of elements from 𝒢.                                                            

Then Ai = 𝐴�̅� for each i  I.                                                                                                         

Now ⋂ 𝐴𝑖𝑖∈𝐼   ⋂ 𝐴𝑖𝑖∈𝐼
̅̅ ̅̅ ̅̅ ̅̅ ̅ since by (ii) A  �̅� for each subset A of X.                                     

Again since ⋂ 𝐴𝑖𝑖∈𝐼   Ai for each i, ⋂ 𝐴𝑖𝑖∈𝐼
̅̅ ̅̅ ̅̅ ̅̅ ̅  𝐴�̅� = Ai for each i.                                               

 ⋂ 𝐴𝑖𝑖∈𝐼
̅̅ ̅̅ ̅̅ ̅̅ ̅  ⋂ 𝐴𝑖𝑖∈𝐼   ⋂ 𝐴𝑖𝑖∈𝐼

̅̅ ̅̅ ̅̅ ̅̅ ̅ = ⋂ 𝐴𝑖𝑖∈𝐼   ⋂ 𝐴𝑖𝑖∈𝐼   𝒢.                                                      

Hence 𝒢 is closed under arbitrary intersections.                                                                       

 ℑ = { A / A  𝒢} is a topology on X.                                                                                                                           

Now A is closed in X w. r. t. ℑ iff A  ℑ iff A = (A)  𝒢 iff A = �̅� and A is closed         

in the given sense. 

OPEN BASES AND OPEN SUBBASES 

Definition: An open base for X where X is a topological space is a class  of open 

sets in X with the property that every open set in X is a union of sets from . 

Equivalently, if G is a non – empty open set and x  G then  B    x  B  G.  
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Example: Let (X, d) be a metric space and ℑ be the induced topology on X.                           

If  is the set of all open spheres in X, then  is an open base for (X, ℑ).  

Note: If ,  are two collections of open sets of (X, ℑ),  is open base and                          

   then  is also an open base for X. 

Definition: A topological space (X, ℑ) which has a countable open base is said to 

be a second countable space.  

Note: Show that the two conditions are equivalent                                                                    

(i)  is a class  of open sets in X with the property that every open set in X is a 

union of sets from  and                                                                                                                    

(ii)  is a class  of open sets in X  G is a non – empty open set and x  G   B 

   x  B  G.  

Solution: Claim: (i)  (ii).                                                                                           

Assume (i). Let G be a non – empty set and x  G.                                                                        

Since G is open by (i)  Bi    G = ⋃ 𝐵𝑖𝑖∈𝐼 .                                                              

 x  G = ⋃ 𝐵𝑖𝑖∈𝐼    Bi   for some i  x  Bi and hence x  Bi  G, for Bi  

.                                                                                                                                      

Claim: (ii)  (i). Let G be a open set in X.                                                                                         

If G is empty then G is a union of empty class of open sets from .                                                                                                                 

Let G be non – empty and x  G.                                                                                         

Then by (ii)  Bx    x  Bx  G. ⋃ 𝐵𝑥𝑥∈𝐺   G.                                                                  

Again x  G  x  Bx  ⋃ 𝐵𝑥𝑥∈𝐺   G  ⋃ 𝐵𝑥𝑥∈𝐺 .                                                             

Hence G = ⋃ 𝐵𝑥𝑥∈𝐺 . 

LINDELOF’S Theorem: Let X be a second countable space. If a non – empty 

open set G in X is represented as the union of a class {Gi}i I of open sets, then G 

can be represented as a countable union of Gi’s.  

Proof: Since X is a second countable space, X has a countable open base, say, 

{Bn}. Given that G be a nonempty open set  G = ⋃ 𝐺𝑖𝑖∈𝐼 .                                                                                                           

Let x  G. Then x  Gi(x) for some i(x)  I.                                                                               

Since Gi(x) is open and x  Gi(x)  n(x)  x  Bn(x)  Gi(x).                                                              

Since {Bn} is a countable class and {Bn(x)}xG is a subclass of {Bn} we have that 

{Bn(x)}xG  is a countable class.                                                                                                            

For every x  G, corresponding to each Bn(x) we have Gi(x).                                                                      

 {Gi(x)} is also a countable class.  
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Now ⋃ 𝐺𝑖(𝑥) ⊆ ⋃ 𝐺𝑖𝑖∈𝐼 = 𝐺.𝑥∈𝐺                                                                                                 

Let y  G  y  Gi(y)  ⋃ 𝐺𝑖(𝑥).𝑥∈𝐺                                                                                        

Hence G = ⋃ 𝐺𝑖(𝑥)𝑥∈𝐺  and {Gi(x)}xG is a countable class.  

 

Theorem: Let X be a second countable space. Then any open base for X has a 

countable subclass which is also an open base. 

Proof: Given X is second countable.                                                                                           

Let {Bn} be a countable open base for X.                                                                                       

Let {Bi} be any open base for X. Since each Bn can be written as union of some 

Bi’s (because Bn is open and {Bi} is an open base), by Lindelof’s theorem, for each 

non-empty Bn,  a countable subclass {(𝐵𝑖)𝑛𝑘
} of the class {Bi}   Bn = ⋃ (𝐵𝑖)𝑛𝑘𝑘 .                                                                                                                                  

Now the class {(𝐵𝑖)𝑛𝑘
/𝑛  1, 𝑘1} is a countable subclass of {Bi}.                                             

We now show that the class B = {(𝐵𝑖)𝑛𝑘
/𝑛1, 𝑘1} is an open base for X.                                  

Let G be any nonempty open set and x  G.                                                                              

Since {Bn} is an open base  n  x  Bn  G.                                                                                 

We know that x  Bn = ⋃ (𝐵𝑖)𝑛𝑘𝑘   G and so B is an open base.                                               

B = {(𝐵𝑖)𝑛𝑘
/𝑛1, 𝑘1} is a countable subclass of {Bi} which is also an open 

base for X. 

Note: The axiom “topological space has a countable open base at each of its 

points” is called first axiom of countability.  A topological space which satisfies 

this axiom is called a first countable space.  

Theorem: Every second countable space is separable.                                                         

Proof: Let X be second countable space. Let {Bn} be a countable open base for X. 

Choose a point xn from each non – empty set Bn.                                                             

Since {Bn} is countable, A = {xn / n  1} is countable.                                                        

Claim: �̅� = X. Clearly  �̅�  X. Let x  X and G be a nbd of x.                                           

Now  a basic open set Bn  x  Bn  G.                                                                                  

If x = xn then x  A  �̅�.                                                                                                            

If x  xn for any n, then x, xn  Bn  G and so xn  G  A \ {x}.                                                                     

 for any nbd G of x, G  A \ {x}  .  x is a limit point of A and so x  �̅�.   

X  �̅�. Hence �̅� = X.                                                                                                                            

Since, A is countable and �̅� = X, X is separable.  

Note: The converse of the above theorem need not be true.  
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For example, Consider ℝ with topology ℑ of finite complements. Let F be a closed 

set in (ℝ, ℑ). Then F is open  F = , or F = G where G is a finite set  F = 

ℝ or F is a finite set.  Q is neither open nor closed. (Since Q is not a finite set and 

Q is not a finite set Q is not open and not closed.) Since the only closed set 

containing Q is ℝ we have �̅� = ℝ.  ℝ is a separable space.  

Claim: ℝ is not second countable. If possible, suppose ℝ is second countable.                     

Then  a countable open base {Bi}iI.                                                                                  

Consider A = ⋃ 𝐵𝑖
′∞

𝑖=1 .                                                                                                              

Since each Bi is finite A is countable union of finite sets.                                                                 

 A is countable. Since ℝ is not countable ℝ  A.                                                                   

  y  ℝ \ A. Now write G = ℝ \ {y}.                                                                              

Since G = {y} is finite, G  ℑ.                                                                                                   

Let z  G. Since {Bi} is an open base,  Bk  z Bk  G for some k  I. Bk  G                    

 Bk  G = {y}                                                                                                                       

 y  Bk  ⋃ 𝐵𝑖
′

𝑖∈𝐼                                                                                                                        

 y  A, a contradiction to the selection of y.                                                                                                                            

Hence ℝ is not second countable.  

Theorem: Every separable metric space is second countable.  

Proof: Let X be a separable metric space.                                                                                 

Let A be a countable dense subset of X.                                                                                   

Consider Q the set of rational numbers. We know that Q is countable.                                           

Consider {Sr(a) / r  Q} for any a  A.                                                                                        

Clearly this is a countable class of open spheres around a  A.                                                                                        

Since A is countable ℬ = ⋃ {𝑆𝑟(𝑎)/𝑟 ∈ 𝑄}𝑎∈𝐴  = {Sr(a) / a  A, r  Q} is a 

countable union of countable class of sets.                                                                                         

Hence ℬ is a countable class of sets. 

Claim: ℬ is an open base for X.                                                                                                   

Let G be an open set and x  G.                                                                                            

Since G is open  a nbd Sr(x) with some radius r  x  Sr(x)  G.                                   

Consider the open sphere 𝑆𝑟
3⁄ (𝑥).                                                                                       

Since A is dense, �̅� = 𝑋 and so every point of X is a limit point of A.                                          

 x is a limit point of A and so 𝑆𝑟
3⁄ (𝑥)  A  .                                                                    

Choose r1  Q  
𝑟

3
< 𝑟1 <

2𝑟

3
 .                                                                                                   
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Now take a  𝑆𝑟
3⁄ (𝑥)  A.                                                                                                          

Then 𝑆𝑟1
(𝑎)  ℬ and d(a, x) < r/3 < r1.                                                                                    

 x  𝑆𝑟1
(𝑎). 

To show that 𝑆𝑟1
(𝑎)  Sr(x), take y  𝑆𝑟1

(𝑎).                                                                             

Then d(x, y)  d(x, a) + d(a, y)   
𝑟

3
+ 𝑟1 <  

𝑟

3
+

2𝑟

3
 = r.                                                              

 y  Sr(x).                                                                                                                                

 𝑆𝑟1
(𝑎)  Sr(x)  G.                                                                                                                                   

 x  𝑆𝑟1
(𝑎)  G.                                                                                                                       

 ℬ is an open base for X and ℬ is countable.                                                                                      

Hence X is second countable.  

Definition: Let X be a topological space. An open subbase is a class of open 

subsets of X whose finite intersections form an open base.                                                                 

This open base is called the open base generated by the open subbase.                                        

The sets in an open subbase are called subbasic open sets.  

Note: Let (X, ℑ) be a topological space and {Bi} be an open subbase                                    

(say S = {Bi / i  I}).                                                                                                                     

Then S* = {Ai / Ai = ⋂ 𝐵𝑖𝑘

𝑛
𝑘=1  where n  ℕ, 𝐵𝑖𝑘

  S for 1  k  n} is the open base 

generated by S. Now ℑ = {G / G =  Ai where {Ai} is a collection of elements 

from S*}. 

Example: Consider ℝ. Write S = {(a, ) / a  ℝ}  {( - , b) / b  ℝ}.                             

Then S* = S {, ℝ}  {(a, b) / a, b  ℝ}.                                                                           

Now ℑ = {G / G =  Ai where each Ai is from S*} = {G/ G is a union of open 

intervals of ℝ}. Clearly this ℑ is a topology on X induced by the usual metric on ℝ. 
Hence S is an open subbase and S* is an open base generated by S. 

Example:  

Theorem: Let X be a non – empty set and let 𝒞 be an arbitrary class of subsets of 

X. Then 𝒞 can serve an open sub-base for a topology ℑ on X (in the sense that the 

class of all unions of finite intersections of sets in 𝒞 forms a topology on X). 

Proof: Write 𝓑 = the class of all finite intersections of sets of 𝓒.                                                

Write 𝕴 = the class of all arbitrary unions of sets from 𝓑.                                                                       

If  𝒞 = , then ℬ = {X} and ℑ = {, X}.                                                                                             
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In this case clearly ℑ is a topology on X.                                                                                                                                                       

Now assume that 𝒞  .                                                                                                         

Claim: 𝓑 is closed under finite intersections:  

For this we prove B1, B2, ..., Bk  ℬ  B1  B2  ...  Bk  ℬ  for all integral 

values of k using induction.                                                                                                                        

Suppose for k = 2, B1. B2  ℬ.                                                                                              

Then B1 = P1  P2  ...  Pn and B2 = Q1  Q2  ...  Qm, where Pi, Qj  𝒞 for 1 

 i  n and 1  j  m.                                                                                                                        

Now B1  B2 = P1  P2  ...  Pn  Q1  Q2  ...  Qm  ℬ.                                                                                                         

Assume for k = n – 1ie.  B1, B2, ..., Bn–1  ℬ  B1  B2  ...  Bn-1  ℬ.                                                                                                                                        

Let B1, B2, ..., Bn  ℬ                                                                                                             

 B1  B2  ...  Bn = (B1 B2 ... Bn–1)  Bn  ℬ.                                                                

By induction B1, B2, ..., Bk  ℬ  B1  B2  ...  Bk ℬ for all integral values of 

k.                                                                                                                                                    

Hence ℬ is closed under finite intersections.                                              

Next we show that for any x  G  𝕴  B 𝓑  x  B  G.                                                      

For this suppose G  ℑ .                                                                                                       

Then by definition of ℑ, G = ⋃ 𝐵𝑖𝑖∈𝐼  where and Bi  ℬ.                                         

Now x  G  x  Bi for some i  I.                                                                                               

 Bi  ℬ  x  Bi  G.                                                                                   

To show that 𝕴 is closed under finite intersections.                                                               

Let G1, G2, ..., Gn  ℑ and write G* = G1  G2  ...  Gn.                                                           

Let x  G*. Then x  Gi for 1  i  n                                                                                      

  Bi  ℬ,  1  i  n  x  Bi   Gi, for 1  i  n.                                                                     

Write Bx = B1  B2  ...  Bn  ℬ                                                                                            

 x  G*   Bx  ℬ  x  Bx  G*. Hence G* = ⋃ 𝐵𝑥𝑥∈𝐺∗   ℑ.                                          

 ℑ is closed under finite intersections. 

To show that 𝕴 is closed under arbitrary unions:                                                                 

Let {Gi}iI be a collection of elements from ℑ.                                                                           

For each i, Gi  ℑ   {𝐵𝑖𝑗
}  Gi = ⋃ 𝐵𝑖𝑗𝑗  and {𝐵𝑖𝑗

}   ℬ.                                                        

Now ⋃ 𝐺𝑖𝑖  = ⋃ ⋃ 𝐵𝑖𝑗𝑗𝑖  ℑ.                                                                                                                                     

 𝕴 is a topology.                                                                                                               

Already we have shown that for any G  ℑ, x  G  B  ℬ  x  B  G.                                      
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 𝓑 is an open base for 𝕴.                                                                                                     

By construction of ℬ,  𝓒 is open sub-base. 

Definition: Let X be a non-empty set and 𝒞 be any class of subsets of X.                                 

Write ℬ = the class of all finite intersections of sets of 𝒞. Write ℑ = the class of all 

arbitrary unions of sets from ℬ. Then ℑ is a topology on X called topology 

generated by the class 𝓒.               

                                          WEAK TOPOLOGIES 

Definition: If ℑ1, ℑ2 are topologies on a set X such that ℑ1 ℑ2, then ℑ1is said to 

be weaker than ℑ2    

Note: Let X be any non-empty set. Then indiscrete topology is the weakest 

topology and discrete topology is the strongest topology on X.   

Definition: A partially ordered set X is called a complete lattice if every non-

empty subset of X has a greatest lower bound and least upper bound.  

Theorem: Let X be a non-empty set. Then the family of all topologies on X is a 

complete lattice with respect to the relation “is weaker than”. Furthermore, this 

lattice has a least member and a greatest member. 

Proof: Let 𝒢 = { ℑ / ℑ is a topology on X}. Define a relation  on 𝒢 as ℑ1 ℑ2 iff 

ℑ1is weaker than ℑ2 ie. ℑ1 ℑ2. Then (𝒢,  ℑ) is a POset.                                                 

Claim: (𝒢,  ℑ) is a complete lattice.  Let   𝒢1  𝒢. Write ℑ1 = ⋂ ℑℑ∈𝒢1
.                        

Then ℑ1 is a topology on X.                                                                                                  

Since ℑ1 ℑ  ℑ  𝒢1,  ℑ1 ℑ  ℑ  𝒢1.                                                                                        

 ℑ1is a lower bound for 𝒢1.                                                                                                    

Let ℑ* be any lower bound of 𝒢1. Then ℑ*  ℑ  ℑ  𝒢1.   ℑ*  ℑ  ℑ  𝒢1.                

 ℑ*  ⋂ ℑℑ∈𝒢1
  =  ℑ1  ℑ*   ℑ1                                                                                     

Hence  ℑ1  is the glb of  𝒢1.    Let Y = ⋃ ℑℑ∈𝒢1
. Write 𝒯=  { ℑ  𝒢 / Y  ℑ}.                   

Since  𝒯 is the intersection of a collection of topologies, 𝒯 is a topology.                   

Since ⋃ ℑℑ∈𝒢1
  𝒯, ℑ  𝒯  ℑ  𝒢1.  ℑ  𝒯  ℑ  𝒢1                                                                                               

  𝒯 is an upper bound of  𝒢1..                                                                                              

Let 𝒯* be any upper bound for 𝒢1.  ℑ  𝒯*  ℑ  𝒢1 ℑ  𝒯*  ℑ  𝒢1                                                                                                                                                    

 Y = ⋃ ℑℑ∈𝒢1
  𝒯*.                                                                                                               

 𝒯* { ℑ  𝒢 / Y  ℑ}                 𝒯  𝒯*.                                                                    

 𝒯  𝒯* for any upper bound 𝒯* of 𝒢1.                                                                        
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Hence 𝒯 is the least upper bound of 𝒢1.                                                                                                      

Since every subset 𝒢1 of 𝒢 has glb and lub,  𝒢 is complete. 

Note: Let X, Y be topological spaces. If ℑ is the discrete topology on X  (ie. 

(X)),  then any mapping f: X → Y is continuous.  

Definition: Let X be a non-empty set. Let {(Xi, ℑi)iI be a non-empty class of 

topological spaces. For each i  I, suppose fi:X→Xi is a function. If (X) is the 

topology on X then every fi is continuous. Write ℑ* = the intersection of all 

topologies on X which makes every fi : X → Xi is continuous. This topology ℑ* is 

called the weak topology generated by the fi's. 

THE FUNCTION ALGEBRAS 𝓒(X, ℝ), 𝓒(X, 𝕮). 

Definition: An algebra is a linear space whose vectors can be multiplied in such a 

manner that (i) x(yz) = (xy)z; (ii) x(y + z) = xy + xz and (x + y)z = xz + yz and                      

(iii) (xy) = (x)y = x(y) for every scalar . 

          If the scalars are real numbers then it is real algebra. If the scalar are 

complex numbers then the algebra is called complex algebra.  

         A commutative algebra is an algebra if xy = yx  x, y. 

         An algebra with identity is an algebra satisfying the following property:                             

 a non-zero element denoted by 1 called the identity such that 1x = x = x1 for 

every x. 

        A subalgebra of an algebra is a linear subspace, which contains the product of 

each pair of its elements. 

Lemma: If f and g are continuous real or complex functions defined on a 

topological space X, then f + g, af and fg are also continuous.  Furthermore, if f 

and g are real, then f  g and f  g are continuous. 

Proof: (With suitable modifications in similar proof in metric spaces) we can prove 

that f + g, af are continuous.                                                                                                                    

Let  > 0 and x0  X. Take 1 > 0  1{|𝑓(𝑥0)| + |𝑔(𝑥0)|} + 1
2 < ...(i).                                              

Since f, g are continuous at x0, corresponding to 1 > 0  nbds G1 and G2  x  G1,                  

x  G2, |𝑓(𝑥) − 𝑓(𝑥0)| < 1 and |𝑔(𝑥) − 𝑔(𝑥0)| < 1 respectively.                                                           

Then G = G1  G2 is a nbd of x0 and let x  G.                                                                                    

Now |(𝑓𝑔)(𝑥) − (𝑓𝑔)(𝑥0)|  = |𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑥)𝑔(𝑥0) + 𝑓(𝑥)𝑔(𝑥0) −

𝑓(𝑥0)𝑔(𝑥0)|                                         |𝑓(𝑥)||𝑔(𝑥) − 𝑔(𝑥0)| +  
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|𝑔(𝑥0)||𝑓(𝑥) − 𝑓(𝑥0)|                                                                                                                                

< 1 |𝑓(𝑥) − 𝑓(𝑥0)| + |𝑓(𝑥0)|  1 + |𝑔(𝑥0)|  1                                                                                                           

                                      < 1
2  + 1{|𝑓(𝑥0)| + |𝑔(𝑥0)|}  <  by (i). 

 fg is continuous at x0. Since this is true for any x0  X, fg is continuous on X. 

Put A = (a, ) and B = ( - , b).                                                                                                   

Since f, g are continuous f–1(A), g–1(A), f–1(B), g–1(B) are open sets.                                                                                                                                    

Now (f  g)–1(A) = { x / (f  g)(x)  A} = {x / max [f(x), g(x)] > a}                                                    

                                                        = {x / f(x) > a}  {x / g(x) > a}                                                                                                             

                                                        = {x / f(x)  A}  {x / g(x)  A}                                                                                                        

                                                        = f–1(A)  g–1(A) which is an open set. 

(f  g)–1(B) = { x / (f  g)(x)  B} = {x / max [f(x), g(x)] < b}                                                    

                                                        = {x / f(x) < b}  {x / g(x) < b}                                                                                                             

                                                        = {x / f(x)  B}  {x / g(x)  B}                                                                                                        

                                                        = f–1(B)  g–1(B) which is an open set. 

 (f  g)–1(A), (f  g)–1(B) are open sets on sub basic open sets A and B. 

Hence (f  g) is continuous. Similarly, we can show that (f  g) is continuous. 

Lemma: Let X be a topological space, and {fn} be a sequence of real or complex 

functions defined on X which converges uniformly to a function f defined on X. If 

all the fn’s are continuous, then f is also continuous.  

Theorem: Let 𝓒(X, ℝ) be the set of all bounded continuous real functions defined 

on a topological space X. Then (i) 𝓒(X, ℝ) is a real Banach space with respect to 

point wise addition and scalar multiplication and the norm defined by ‖𝑓‖ = sup 

|𝑓(𝑥)| ; (ii) if multiplication is defined pointwise, then 𝓒(X, ℝ) is a commutative 

real algebra with identity, in which ‖𝑓𝑔‖ ≤ ‖𝑓‖‖𝑔‖ and ‖1‖ = 1 and (iii) If f  g 

is defined to mean that f(x)  g(x) for all x, then 𝓒(X, ℝ) is a lattice in which the 

greatest  lower bound and least upper bound of a pair of functions f and g are given 

by                               (fg)(x) = min {f(x), g(x)} and (fg)(x) = max {f(x), g(x)}. 

Proof: (i) follow the proof of “𝓒(X, ℝ) is a real Banach space” in metric spaces 

with relevant changes.                                                                                                            

(ii) Let f, g, h  𝓒(X, ℝ). Then for all x X, f(gh)(x) = f(x)(gh)(x) = 

f(x){g(x)h(x)}      = {f(x)g(x)}h(x) = (fg)(x)h(x) = {(fg)h}(x)                                                        
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f(gh) = (fg)h.                                                                                                               

Similarly we can prove that f(g + h) = fg + fh;  (f + g)h = fh + gh;                                    

(xy) = (x)y = x(y) for every scalar  and fg = gf.                                                                               

 𝒞(X, ℝ) is a commutative algebra.                                                                                

Define 1(x) = 1  x  X.                                                                                                          

Then for any f  𝒞(X, ℝ) and x  X, (f1)(x) = f(x)1(x) = f(x)1 = f(x)  f1 = f.   

Similarly, 1f = f.  1 is the identity element in 𝒞(X, ℝ).  Now ‖1‖ = 𝑠𝑢𝑝|1(𝑥)|                         

= sup |1| = 1.                                                                                                                         

Let f, g  𝒞(X, ℝ). Then ‖𝑓𝑔‖ = sup |(𝑓𝑔)(𝑥)| = sup |𝑓(𝑥)||𝑔(𝑥)|  sup |𝑓(𝑥)|                 

= sup |𝑔(𝑥)| = ‖𝑓‖‖𝑔‖ 

(iii) Define a relation  on 𝒞(X, ℝ) by f  g iff f(x)  g(x)  x  X.                                           

Then clearly  is a partial order on 𝒞(X, ℝ).                                                                               

By a lemma f  g, f  g are continuous  m1  f(x)  M1, m2  g(x)  M2 xX.                      

Take m = min {m1, m2} and M = max {M1, M2}.                                                              

Then m   (f  g)(x)  M and m  (f  g)(x)  M  x  X.                                                    

 f  g, f  g are bounded continuous real valued on X.                                                            

 f  g, f  g  𝒞(X, ℝ).                                                                                                               

Now it can be easily verified that f  g = glb {f, g} and f  g = lub {f, g}.                  

Hence 𝒞(X, ℝ) is a lattice.  

Theorem: Let 𝓒(X, 𝕮) be the set of all bounded continuous real functions defined 

on a topological space X. Then (i) 𝓒(X, 𝕮) is a complex Banach space with respect 

to pointwise addition and scalar multiplication and the norm defined by ‖𝑓‖ = sup 

|𝑓(𝑥)| ; (ii) if multiplication is defined point wise, then 𝓒(X, 𝕮) is a commutative 

complex algebra with identity, in which ‖𝑓𝑔‖ ≤ ‖𝑓‖‖𝑔‖ and ‖𝐼‖ = 1 and                          

(iii) If 𝑓 ̅ is defined by 𝑓(̅𝑥) = 𝑓(𝑥)̅̅ ̅̅ ̅̅  the complex conjugate of f(x), then f →𝑓 ̅is a 

mapping of the algebra 𝓒(X, 𝕮)  into itself which has the following properties: 

𝑓 + 𝑔̅̅ ̅̅ ̅̅ ̅ =  𝑓̅ + �̅�; 𝑎𝑓̅̅̅̅ = �̅�𝑓;̅ 𝑓𝑔̅̅̅̅ = 𝑓�̅̅� ; 𝑓̅̅ = 𝑓; ‖𝑓‖ = ‖𝑓‖̅.   

Proof: (i), (ii) Similar proof as in the above theorem.                                                                                                                           

(iii) Let f  𝓒(X, 𝕮) and define 𝑓(̅x) = 𝑓(𝑥)̅̅ ̅̅ ̅̅   x  X.                                                        

If f(x) = a + ib then 𝑓(𝑥)̅̅ ̅̅ ̅̅  = a – ib.  |𝑓(𝑥)̅̅ ̅̅ ̅̅ | = √𝑎2 + 𝑏2 = |𝑓(̅𝑥)|.                                 

 f is a bounded function from X to 𝕮.                                                                                      

Clearly |𝑓(̅𝑥) − 𝑓(̅𝑥0)| =  |𝑓(𝑥)̅̅ ̅̅ ̅̅ − 𝑓(𝑥0)̅̅ ̅̅ ̅̅ ̅| = |𝑓(𝑥) − 𝑓(𝑓0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | = |𝑓(𝑥) − 𝑓(𝑥0|.                            

Let > 0.  Since f is continuous,  a nbd G of x0  x  G.  |𝑓(𝑥) − 𝑓(𝑥0)| < .                          
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|𝑓(̅𝑥) − 𝑓(̅𝑥0)|  = |𝑓(𝑥) − 𝑓(𝑥0| < . This is true  x  G.                                                                    

Hence 𝑓 ̅is continuous.   𝑓 ̅is bounded and continuous.  𝑓 ̅ 𝒞(X, ℭ).                              

So, f → 𝑓 ̅is a mapping from 𝒞(X, ℭ) into itself.                                                                                             

(𝑓 + 𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑥) = (𝑓 + 𝑔)(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑓(𝑥) + 𝑔(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑓(𝑥)̅̅ ̅̅ ̅̅ + 𝑔(𝑥)̅̅ ̅̅ ̅̅  = 𝑓(̅𝑥) + �̅�(𝑥)                                                 

= (𝑓 ̅+ �̅�)(𝑥)  x  X.                                                                                                                              

 𝑓 + 𝑔̅̅ ̅̅ ̅̅ ̅ = 𝑓 ̅+ �̅�. Similarly 𝑎𝑓̅̅̅̅  = �̅�𝑓;̅ 𝑓𝑔̅̅̅̅  = 𝑓�̅̅� and 𝑓̅ ̅= f.                                                              

Now ‖𝑓‖̅ = sup |𝑓(̅𝑥)| = sup |𝑓(𝑥)̅̅ ̅̅ ̅̅ | = sup |𝑓(𝑥)| = ‖𝑓‖.  
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COMPACTNESS 

104: TOPOLOGY; UNIT III 

 

 

COMPACT  SPACES 

Definitions: (i) Let X be a topological space. A class {Gi} of open subsets of X is 

said to be an open cover if each point in X belongs to at least one Gi. i.e.  𝑋 =

⋃ 𝐺𝑖𝑖 . 

(ii) A subset of an open cover which is itself an open cover is called a subcover. 

(iii) A compact space is a topological space in which every open cover has a finite 

subcover. 

(iv) Let (Y, ℑ𝑌) is a subspace of (X, ℑ𝑋). Y is said to be compact subspace of the 

topological space X, if Y is compact in its own rights. 

Theorem:  Any closed subspace of a compact space is compact. 

Proof: Let X be a compact space and Y be a closed subspace of X.                                        

Let {Gi}iI be an open cover of Y.                                                                                                

Then for each i,  an open subset Hi of X  Gi = Hi  Y.                                                                                                                                                              

Now 𝑌 ⊆ ⋃ 𝐺𝑖𝑖 = ⋃ (𝐻𝑖⋂𝑌)𝑖∈𝐼 ⊆ (⋃ 𝐻𝑖𝑖 )Y                                                                                  

So X = Y Y ⊆ (⋃ 𝐻𝑖𝑖 ) ∪ 𝑌′.                                                                                                       

Y together with Hi, i  I forms an open cover for X since Y is open.                                    

Since X is compact,  a finite subcover 𝐻𝑖1
, 𝐻𝑖2

, … , 𝐻𝑖𝑛
, Y of X such that                                               

X = 𝐻𝑖1
∪ 𝐻𝑖2

∪  … ∪  𝐻𝑖𝑛
∪ Y.                                                                                            

Now Y = Y  X = Y  (𝐻𝑖1
∪ 𝐻𝑖2

∪ … ∪ 𝐻𝑖𝑛
∪ Y)                                                                  

= (𝑌 ∩ 𝐻𝑖1
) ∪ (𝑌 ∩ 𝐻𝑖2

) ∪  … ∪ (𝑌 ∩  𝐻𝑖𝑛
) ∪ (𝑌 ∩ Y)                                                                                                 

= 𝐺𝑖1
∪ 𝐺𝑖2

∪ … ∪ 𝐺𝑖𝑛
∪ 𝜙 = 𝐺𝑖1

∪ 𝐺𝑖2
∪ … ∪  𝐺𝑖𝑛

.                                                                               

 𝐺𝑖1
, 𝐺𝑖2

, … , 𝐺𝑖𝑛
 forms a finite subcover to Y. Hence Y is compact. 

Theorem: Any continuous image of a compact space is compact.                                    

Proof:  Let f : X → Y be a continuous mapping of a compact metric space X into a 

topological space Y.                                                                                                          

Let {Gi}iI be an open cover of f(X).  Ie. 𝑓(𝑋) ⊆ ⋃ 𝐺𝑖𝑖𝐼  ...(i)                                                                                                    

Since f is continuous, 𝑓−1(𝐺𝑖) is open in X for all i  I.                                                                                                            
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From (i), X  𝑓−1{𝑓(𝑋)} 𝑓−1(⋃ 𝐺𝑖𝑖𝜖𝐼 ) = ⋃ 𝑓−1(𝐺𝑖)𝑖𝜖𝐼 .                                                        

 {𝑓−1(𝐺𝑖)}iI is an open cover for X. Since X is compact, this open cover has a 

finite subcover.                                                                                                                                     

Ie.  𝑓−1(𝐺𝑖1
), 𝑓−1(𝐺𝑖2

), … , 𝑓−1(𝐺𝑖𝑛
)  X 𝑓−1(𝐺𝑖1

)𝑓−1(𝐺𝑖2
) … 𝑓−1(𝐺𝑖𝑛

) 

 f(X) 𝐺𝑖1
∪ 𝐺𝑖2

∪  … ∪  𝐺𝑖𝑛
. the open cover {Gi}iI  of f(X) has a finite 

subcover 𝐺𝑖1
, 𝐺𝑖2

, … , 𝐺𝑖𝑛
. Hence f(X) is compact. 

Definition: A class {Ai}iI of sets X is said to have the finite intersection property 

if every finite subclass {𝐴𝑖1
, 𝐴𝑖2

, … , 𝐴𝑖𝑛
} has a non – empty intersection.                                         

Ie. 𝐴𝑖1
∩ 𝐴𝑖2

∩  … ∩ 𝐴𝑖𝑛
 . 

 

Theorem: A topological space is compact iff every class of closed sets with empty 

intersection has a finite subclass with empty intersection. 

Proof: Let X be compact. Let {Fi}iI be a class of closed sets such that ⋂ 𝐹𝑖𝑖∈𝐼  = . 

For each i  I, since Fi is closed, Fi is open.  X =  = {⋂ 𝐹𝑖𝑖∈𝐼 }′=  Fi, i  I. 

Clearly {Fi}iI is an open cover for X. Since X is compact, this open cover has a 

finite subcover.  𝐹𝑖1

′, 𝐹𝑖2

′, ..., 𝐹𝑖𝑛

′ X = 𝐹𝑖1

′ 𝐹𝑖2

′ ... 𝐹𝑖𝑛

′ 

  = X = (𝐹𝑖1

′ 𝐹𝑖2

′ . . . 𝐹𝑖𝑛

′)
′
 = 𝐹𝑖1

𝐹𝑖2
...𝐹𝑖𝑛

                                                                 

Hence  a finite subclass 𝐹𝑖1
, 𝐹𝑖2

,..., 𝐹𝑖𝑛
of the class {Fi}iI. 

Conversely suppose that every class of closed sets with empty intersection has a 

finite subclass with empty intersection. Let {Gi}iI be an open cover for X. ie. X = 

Gi                   = X = (Gi) =  Gi. Since {Gi}iI is a collection of closed 

sets whose intersection is empty, by assumption,  a finite subclass 𝐺𝑖1

′, 𝐺𝑖2

′, ..., 

𝐺𝑖𝑛

′ 𝐺𝑖1

′ 𝐺𝑖2

′ ... 𝐹𝑖𝑛

′=  

 X =  = (𝐺𝑖1

′ 𝐺𝑖2

′ . . . 𝐺𝑖𝑛

′)
′
= 𝐺𝑖1

𝐺𝑖2
...𝐺𝑖𝑛

   The cover {Gi}iI of X 

has a finite subcover.   Hence X is compact.          

  

Theorem: A topological space is compact if and only if every class of closed sets 

with finite intersection property has nonempty intersection.  

Proof: Let X be compact. Let {Fi}iI be a class of closed sets with finite 

intersection property. In contrary suppose that ⋂ 𝐹𝑖𝑖∈𝐼  = . By above theorem,  a 

finite subclass 𝐹𝑖1
, 𝐹𝑖2

, ..., 𝐹𝑖𝑛
  𝐹𝑖1

  𝐹𝑖2  ...  𝐹𝑖𝑛
= , a contradiction to the finite 

intersection property. Hence ⋂ 𝐹𝑖𝑖∈𝐼   .                                                                                     

Conversely suppose that every class of closed sets with finite intersection property 

has nonempty intersection. If possible suppose that X is not compact. Then  an 

open cover {Gi}iI which has no finite subcover. This means for any subcover 
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𝐺𝑖1
, 𝐺𝑖2

, ..., 𝐺𝑖𝑛
  X ⊋ 𝐺𝑖1

𝐺𝑖2
...𝐺𝑖𝑛

.   = X  (𝐺𝑖1
𝐺𝑖2

. . .𝐺𝑖𝑛
)

′
 = 𝐺𝑖1

′ 

𝐺𝑖2

′ ... 𝐺𝑖𝑛

′. Now {Gi }iI is a class of closed sets with finite intersection 

property.                                     Gi  , iI                                                                                                                                    

 (∩ 𝐺𝑖
′)′   = XX    Gi a contradiction, since {Gi}iI is an open cover of 

X. Hence X is compact.  

 

Definition: Let X be a topological space.  (i) an open cover of X whose sets are in 

some given open base is called a basic open cover. (ii) an open cover of X whose 

sets are in some given open subbase , is called a subbasic open cover. 

 

Theorem: A topological space is compact if every basic open cover has a finite 

subcover. 

Proof: Suppose every basic open cover has a finite subcover. Now to show X is 

compact, take an open cover {Gi} iI to X. Let {Bi} jJ be an open base. By the 

definition of open base Gi =  𝐵𝑗𝑘
. Fix k  I and consider Gk. Since {Bj}jJ is an 

open base Gk = Bj, j  jk for some subclass {Bj}jjk. Now X = ⋃ 𝐺𝑘𝑘∈𝐼  = 

⋃ ⋃ 𝐵𝑗∈𝑗𝑘 𝑗𝑘∈𝐼 . Now those Bj’s form a basic open cover for X. By the hypothesis, 

this basic open cover has a finite subcover.  k1, k2, ..., kn  I and j1 𝑗𝑘1
, 

J2𝑗𝑘2
,.., jn 𝑗𝑘𝑛

 such that X = 𝐵𝑗1
  ... 𝐵𝑗𝑛

 ... (i).   

By the selection of jk’s 𝐺𝑘1
 = ⋃ 𝐵𝑗𝑗∈𝑗𝑘1    𝐵𝑗1

(since j1 𝑗𝑘1
), 𝐺𝑘2

 = ⋃ 𝐵𝑗𝑗∈𝑗𝑘2    

𝐵𝑗2
since j2 𝑗𝑘2

,..., 𝐺𝑘𝑛
 = ⋃ 𝐵𝑗𝑗∈𝑗𝑘𝑛    𝐵𝑗𝑛

(since jn 𝑗𝑘2
). 

By (i) X = 𝐵𝑗1
  ... 𝐵𝑗𝑛

 𝐺𝑘1
  ... 𝐺𝑘𝑛

which is a finite subcover of {Gi}iI. 

 

Theorem: A topological space is compact if every subbasic open cover has a finite 

subcover or equivalently if every class of subbasic closed sets with finite 

intersection property has non – empty intersection.  

Proof: Proof is out of the scope of this book. 

 

Heine – Borel theorem: Every closed and bounded subspace of the real line is 

compact. (M. Imp). 

Proof: First we prove that any closed interval [a, b] of the real line is compact. 

Consider A = { [a, d) / a < d < b}  {(c , b]  /  a < c < b} 

We show that B = {(c, d) / a  c < d  b}} forms an open base for [a, b].  

Let G be an open set in [a, b], and x  G. Since G is open  r > 0 ౩ Sr(x)  G.                                     

 (x – r, x + r)  G. Now (x – r, x + r)  G  [a, b]  a  x – r < x + r  b. now if 
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we write c = x – r, d = x + r then (c, d)  B and x  (c, d)  G. Hence B is an open 

base for [a, b]. 

            If we take [a, d) and (c, b] then [a, d)  (c, b] =  or (c, d). Therefore, every 

basic open set in B can be written as intersection of finite sets in A. Hence A is an 

open subbase for [a, b]. 

   Consider F = {Y / Y  A} = {[a, b] \[a, d) / a < d < b}  {[a, b] \ (c, b] / a < c < 

b} = {[d, b]  / a < d < b}  {[a, c] / a < c < b}. Since A is an open subbase, we 

have that F is a closed subbase. These closed subbasic sets are of the form [a, c] or 

[d, b]. 

            Consider G = {[a, ci]}i  I  {[dj, b]}j  J be a collection of subbasic closed 

sets with finite intersection property. To prove [a, b] is compact it is enough to 

prove that the intersection of the collection G is non - empty. 

       If G contains only the sets of the form [a, ci] then their intersection contain a. 

If G contains only the sets of the form [dj, b] then their intersection contain b. Now 

we assume that G contains both the forms.  

   Write d = sup {dj / [dj, b]  G}. Since d  dj, we have d  [dj, b] for all j  J. 

Now we wish to show that d  [a, ci] for all [a, ci]  G.                                                                           

In a contrary way suppose d  [𝑎, 𝑐𝑖𝑜
] for some [𝑎, 𝑐𝑖𝑜

]  G. Then d > 𝑐𝑖𝑜
. Since d 

is the supremum, and  𝑐𝑖𝑜
< d, we have that there exists 𝑑𝑗𝑜

 such that 𝑐𝑖𝑜
 < 𝑑𝑗𝑜

< d 

and [𝑑𝑗𝑜,𝑏]  G. Now [𝑎, 𝑐𝑖𝑜
]  [𝑑𝑗𝑜,𝑏] = , a contradiction to finite intersection 

property.  

Hence d  [a, ci] for all i. Therefore, the intersection of sets in G is non – empty.                        

 [a, b] is compact. 

Let E be a bounded and closed subset of ℝ. Since E is bounded,  an upper bound 

b and a lower bound a for E. This implies that E  [a, b]. Since [a, b] is compact 

and E is a closed subset of [a, b], we have that E is compact. 

 

PRODUCT SPACES 

 

Definition: Let (X1, T1) and (X2, T2) be topological spaces and for the product X = 

X1  X2 , consider the class S of all subsets of X of the form G1  X2 and X1  G2 

where G1 and G2 are open subsets of X1 and X2 respectively. The class T of all 

unions of finite intersections of sets in S is a topology on S called product topology 

on X. Her S is open subbase of T. 

 

Definition: Let (Xi, ℑ𝑖)iI be a collection of topological spaces then PiXi is the 

Cartesian product of Xi. Here pi: PiXi → Xi is defined by pi({xj},jj) = xi. Here S = 

{Pi – 1 (Gi)/ Gi  ℑ𝑖}. S* = {PiGi/where Gi  ℑ𝑖 and Gi = Xi for all but a finite 
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number of iI}. Here PiGi = {{xi} / where xi  Gi for some finite number of i’s and 

there is no restriction on the other coordinates xi} now S* is the open base for 

(X, ℑ). S* is the open base generated by the open subbase S.  

 

Definition: The class defined above is called the defining open subbase for the 

product topology. F = { F / F S} = the class of all products of the form PiFi 

where Fi is a closed subset of Xi which equals to Xi for all i’s but one, is called the 

defining closed subbase. 

 

Definition: S* defined above is called the defining open base for the product 

topology. Ie. the defining open base is a tipical one of its sets consists of all points 

x = {xi} in the product such that ith coordinate xi is required to lie in an open subset 

of Gi of Xi for the finite number of i’s and all other coordinates being unrestricted. 

  

Definition: The product of the non-empty class of topological spaces equipped 

with the product topology is called a product space. 

 

Tychonoff’s  theorem: The product of any non – empty class of compact spaces is 

compact. (M. Imp). 

Proof: Let {Xi} be a nonempty class compact spaces.                                                                  

Let X = PiXi, i I.  Let {Fj}, j J, be a nonempty subclass of the defining closed 

subbase with finite intersection property for the product topology on X.                                                                                           

This means that each Fj is a product of the form Fj = PiFij, i  I where Fij is a closed 

subset of Xi which equals Xi for all i’s but one.                                                                              

For a fixed i, {𝐹𝑖𝑗}
𝑗𝜖𝐽

 is a class of closed subsets of Xi.                                                                    

We now show that this class {𝐹𝑖𝑗}
𝑗𝜖𝐽

  has finite intersection property.                                              

Let 𝐹𝑖𝑗1
, 𝐹𝑖𝑗2

, … , 𝐹𝑖𝑗𝑛
  be a finite number of sets in the class {𝐹𝑖𝑗}

𝑗𝜖𝐽
.                                                

Since the class {𝐹𝑗}
𝑗𝜖𝐽

 has the finite intersection property, 𝐹𝑗1
∩ 𝐹𝑗2

∩ … ∩ 𝐹𝑗𝑛
≠ 𝜙.                              

Let x 𝐹𝑗1
∩ 𝐹𝑗2

∩ … ∩ 𝐹𝑗𝑛
.                                                                                                

Then x 𝐹𝑗𝑘
 for k = 1, 2, …, n.                                                                                                            

x(i)  ⋂ 𝐹𝑖𝑗𝑘
 for k = 1, 2, …, n.                                                                                              

 x(i) 𝐹𝑖𝑗1
∩ 𝐹𝑖𝑗2

∩ … ∩ 𝐹𝑖𝑗𝑛
                                                                                                           

 𝐹𝑖𝑗1
∩ 𝐹𝑖𝑗2

∩ … ∩ 𝐹𝑖𝑗𝑛
≠ 𝜙.                                                                                                             

 the class {𝐹𝑖𝑗}
𝑗𝜖𝐽

 has finite intersection property. 

Since Xi is compact, ⋂ 𝐹𝑖𝑗𝑗∈𝐽 ≠ 𝜙.                                                                                                               

Let 𝑦𝑖𝜖 ⋂ 𝐹𝑖𝑗𝑗∈𝐽  , j  J then 𝑦𝑖𝜖𝐹𝑖𝑗   j  J.                                                                                                    
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Define y by y(i) = 𝑦𝑖 .                                                                                                                       

Then y(i) 𝜖𝐹𝑖𝑗   j  J.                                                                                                                        

Now y = {y(i)}𝑃𝑖𝐹𝑖𝑗 = 𝐹𝑗  j  J.                                                                                                               

 y ⋂ 𝐹𝑗𝑗∈𝐽 . ⋂ 𝐹𝑗𝑗∈𝐽 ≠ 𝜙.                                                                                                                

Hence X is compact. 

 

Generalised Heine Borel theorem: Every closed and bounded subspace of ℝ𝑛 is 

compact. (Imp). 

Proof: For 1  i  n, consider Xi = [ai, bi], the closed interval with endpoints ai, and 

bi with ai < bi. Now Xi = ∏ 𝑋𝑖
𝑛
𝑖=1  = ∏ [𝑎𝑖 , 𝑏𝑖]𝑛

𝑖=1  = {(x1, x2, ..., xn) / ai < xi < bi for 1 

 i  n} is a closed rectangle in ℝ𝑛. First, we show that this closed rectangle X is 

compact. Since each [ai, bi] is a closed and bounded interval of ℝ, by Heine – 

Borel theorem, we have Xi = [ai, bi] is compact for 1  i  n.                                                                                            

 By Tychonoff’s theorem, X = ∏ 𝑋𝑖
𝑛
𝑖=1  is compact. 

            Let E be a closed and bounded subspace of ℝ𝑛. Since E is bounded,  ai, bi 

 ℝ for 1  i  n, such that E  {(x1, x2, ..., xn) ℝ𝑛/ ai < xi < bi for 1  i  n} = X 

say. Now E is a closed subset of X. By above part X is compact. Since E is a closed 

subset of the compact space X, by theorem we have that E is compact.  Every 

closed and bounded subspace of ℝ𝑛 is compact. 

 

Definition: A topological space is said to be locally compact if each of its points 

has a neighbourhood with compact closure (compact closure means for any x  X, 

there exists a nbd Gx such that x  Gx, 𝐺𝑥
̅̅ ̅ is a compact set.  

 

COMPACTNESS FOR METRIC SPACES 

 

Definition: A metric space is said to have the Bolzano – Weierstrass property if 

every infinite subset has a limit point. (ii) A metric space is said to be sequentially 

compact if every sequence in it has a convergent subsequence.  

 

Theorem: A metric space is sequentially compact if and only if it has the Bolzano 

Weierstrass property. (M. Imp) 

Proof:  Let X be a metric space. Assume that X is sequentially compact.                                          

Let A be an infinite subset of X. Let a1 be any point of A.                                                                   

Having chosen a1, a2, a3, ... an – 1, consider the set A – { a1, a2, a3, ... an – 1}.                                    

Since A is infinite and so choose an element an  A – { a1, a2, a3, ... an – 1}.                                      

By induction we get a sequence {an} of distinct points from A.                                                        

Since X is sequentially compact, the sequence {an} has a convergent subsequence                      
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{ 𝑎𝑛𝑘
} 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 converging to a (say).                                                                                    

By a theorem, a is a limit point of the set { 𝑎𝑛𝑘 : 𝑘 ≥ 1}.                                                                   

Since the set { 𝑎𝑛𝑘 : 𝑘 ≥ 1} ⊆ 𝐴, a is a limit point of A.                                                                                                                   

Hence X has Bolzano – Weierstrass property. 

Conversely suppose that X has the Bolzano – Weierstrass property.                                               

Let {an} be a sequence in X.                                                                                                             

Let A be the set of points of the sequence {an}.ie. A = {an / n ≥ 1}.                                                        

Case (i): Suppose A is finite. Then  a in A which repeats infinite times.                                                

So  a subsequence { 𝑎𝑛𝑘 } of {an}such that 𝑎𝑛1 = 𝑎𝑛2  = ... = a.                                                          

Then clearly the sequence { 𝑎𝑛𝑘 } converges to a.                                                                                       

Case (ii): Assume that A is infinite. By hypothesis, A has a limit point say a.                                 

Take r1 = 1. Now the open sphere 𝑆𝑟1
(𝑎) contains a point of A.                                                           

 a positive integer n1  𝑎𝑛1  𝑆𝑟1
(𝑎). Ie. d(a, 𝑎𝑛1 ) < 𝑟1 = 1.                                                    

Take r2 = min { d(a, 𝑎𝑛1 ), 1/2}.                                                                                                            

Since 𝑆𝑟2
(𝑎) ∩ 𝐴 ≠ ∅ ,  n2 > n1   𝑎𝑛2  𝑆𝑟2

(𝑎). Ie. d(a, 𝑎𝑛2 ) <
1

2
.                                                         

Having chosen n1, n2, ..., nk – 1, choose nk  nk > nk – 1 and d(a, 𝑎𝑛𝑘 ) <
1

𝑘
.                                                                    

By induction, we get a subsequence { 𝑎𝑛𝑘 }   d(a, 𝑎𝑛𝑘 ) <
1

𝑘
  k.                                                         

Clearly the subsequence { 𝑎𝑛𝑘 } converges to a. 

 

Theorem: Every compact metric space has the Bolzano Weierstrass property (less 

imp). 

Proof: Let X be a compact metric space. let A be an infinite subset of X. In a 

contrary way, suppose A has no limit point. If a is a point of X then a in not a limit 

point of A and hence there is an open sphere  𝑆𝑟𝑎
(𝑎) such that  𝑆𝑟𝑎

(𝑎) ∩ 𝐴 − {𝑎} =

𝜙. i.e.  𝑆𝑟𝑎
(𝑎) ∩ 𝐴 ⊆ {𝑎}. i.e  𝑆𝑟𝑎

(𝑎) ∩ 𝐴 = {𝑎} or  𝑆𝑟𝑎
(𝑎) ∩ 𝐴 = 𝜙. 

                  Consider the class { 𝑆𝑟𝑎
(𝑎)/𝑎 ∈ 𝑋} of all these open spheres. Clearly 

this is an open cover for X. Ie. 𝑋 = ⋃  𝑆𝑟𝑎
(𝑎).𝑎∈𝑋  Since X is compact, this open 

cover has a finite subcover, say,  𝑆𝑟𝑎1
(𝑎1),  𝑆𝑟𝑎2

(𝑎2),  ...,  𝑆𝑟𝑎𝑚
(𝑎𝑚) where a1, a2, ..., 

am  X.                                    A = A  X = 𝐴 ∩ { 𝑆𝑟𝑎1
(𝑎1) ∪  𝑆𝑟𝑎2

(𝑎2) ∪ … ∪

 𝑆𝑟𝑎𝑚
(𝑎𝑚)}.  

= {𝐴 ∩  𝑆𝑟𝑎1
(𝑎1)} ∪ {𝐴 ∩  𝑆𝑟𝑎2

(𝑎2)} ∪ … ∪ {𝐴 ∩  𝑆𝑟𝑎𝑚
(𝑎𝑚)}  

⊆ {a1}  {a2}  ...  {am} = {a1, a2, ..., am}.  A is finite which is a contradiction 

to the fact that A is infinite.                                                                                                                   

 A has a limit point. Hence X has the Bolzano -Weierstrass property. 
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Definition: Let {Gi} be an open cover of a metric space X. A real number a > 0 is 

called a Lebesgue number for the given open cover {Gi}, if each subset A of X 

with d(A) < a is contained in at least one Gi. Ie. a is the Lebesgue number, if A  

X,               d(A) < a  A  Gi for some i. 

 

Definition: Suppose X is a metric space and {Gi}iI be an open cover. A subset A 

of X is said to be big if A ⊈ Gi for any i  I. 

 

Note: (i) Singleton subsets are not big sets. (ii) If A is a big set then A contains at 

least two points. 

Sol: (i) Let x  X. Write A = {x}. Now x  X  Gi  x  Gi for some i  A  

Gi. So A is not big. 

 

Example: Let X = {a, b, c}. Define d : X  X→ ℝ by d(x, y) = 0 if x = y                                

and 1 if x  y. Then d is a metric on X. Every subset of X is open in X.                                 

Write B = {{a, b}, {b, c}}. Then B is an open cover for X. If A = {a, c} then A is a 

big set. Also {a}, {b}, {c} are not big sets. Let 0 < s  1. We show that s is a 

Lebesgue number for B. Let G be any subset of X such that d(G) < s. Then d(G) < 

1.  G is a singleton set. If G = {a} or {b} then G  {a, b}. If G = {c} then G  

{b, c}. This shows that s is a Lebesgue number for B. Let s > 1. Then d(X) = 1 < s. 

But X ⊈ {a, b} and X ⊈ {𝑏, 𝑐}.  any real number s > 1 is not a Lebesgue number.  

 

Theorem: Lebesgue’s covering lemma: In a sequentially compact metric space 

every open cover has a Lebesgue number.  (M. Imp) 

Proof: Let X be sequentially compact metric space and {Gi}iI be an open cover of 

X. Case (i) Suppose X contains no big sets. In this case, we will show that every 

positive real number is Lebesgue number for the open cover {Gi}iI. Let a > 0 be a 

real number. Let A be a subset of X such that d(A) < a. Since X contains no big 

sets, A is not a big set.  i  I such that A  Gi. Hence a is a Lebesgue number 

for {Gi}. 

Case (ii): Step (i): Suppose X contains big sets. Let a = glb {d(A) / A is a big set}. 

Clearly 0  a < . Now we show that a  > 0. If possible, suppose a = 0. Now we 

construct an infinite sequence {xn} of distinct points. For this consider 1. Since 1 > 

0, and a= 0 = glb {d(A) / A is a big set}, there is a big set B1 such that 0 < d(B1) < 

1. Let x1 B1. Since ½ > 0  a big set B2 such that 0 < d(B2) < ½. Since B2 is a big 

set containing atleast two points, take x2  B2\{x1}. Clearly x1  x2. Write r3 = min 

{1/3, d({x1, x2})}. Since x1 x2, we have d(x1, x2)  0.  r3 > 0.now  a big set B3 
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such that 0 < d(B3) < r3. Now if x1  B3 then x2 B3 (if both x1, x2  B3 then d(B3) 

 d(x1, x2)  r3 > d(B3), a contradiction). Now x1, x2 and x3 are distinct points.  

After constructing {x1, x2, ..., xn}, write rn+1 = min {1/n, d({x1, x2, ..., xn})}. Since 

rn+1 > 0  a big set Bn+1 such that 0 < d(Bn+1) < rn+1. Let xn+1  Bn+1\{x1, x2, ..., xn}. 

In this way we construct a sequence {xn} of distinct points. Note that for each n, 

we have d(Bn) < 1/n.  

Step (ii): Since X is sequentially compact,  a subsequence {𝑥𝑛𝑘
} of {xn}, which 

converges to a point x  X. So, x  Gi for some iI. Since Gi is open,  r > 0 such 

that Sr(x)  Gi. Consider the open sphere Sr/2(x). Since 𝑥𝑛𝑘
 → x,  m such that 

𝑥𝑛𝑚
Sr/2(x) for some m k. Let m  k and 0 < 

1

𝑛𝑚
 < 

𝑟

2
.  

Take y  𝐵𝑛𝑚
. Now y, 𝑥𝑛𝑚

 𝐵𝑛𝑚
  d(y, 𝑥𝑛𝑚

) < 
1

𝑛𝑚
 < 

𝑟

2
. 

 d(x, y)  d(x, 𝑥𝑛𝑚
) + d(𝑥𝑛𝑚

, y) < 
𝑟

2
 + 

𝑟

2
 = r  y  Sr(x)  Gi. Hence y 𝐵𝑛𝑚

                             

 y  Gi.  𝐵𝑛𝑚
  Gi, a contradiction to the fact that 𝐵𝑛𝑚

 is a big set.                                       

So a  0 Hence a > 0. 

Now we show that a is a big number. Let Y be any subset of X with d(Y) < a. 

Then Y is not a big set(If Y is a big set, then a  d(Y) (by construction of a) and 

so a  d(Y) < a, a contradiction]. This means that Y  G, for some i  I.  a is a 

Lebesgue number.  

 

Definition: (i) Let X be a metric space and  > 0.  A subset A of X is called an  – 

net if A is finite and 𝑋 = ⋃ 𝑆𝜀(𝑎)𝑎∈𝐴 .                                                                                                    

(ii) X is said to be totally bounded if it has an  - net for each  > 0. 

 

Theorem: Every sequentially compact metric space is totally bounded. (M. Imp) 

Proof: Let X be a sequentially compact metric space. If possible suppose X is not 

totally bounded. Ie. X has no  - net for some  > 0. Take this . Let a1  X. Since 

{a1} is not an  - net for X, X ⊈ 𝑆𝜀(𝑎1). Let a2 ∈ X \ 𝑆𝜀(𝑎1).  Clearly d(a1, a2)  . 

Consider {a1, a2}. Since this is not an  - net,  a3  X \ {𝑆𝜀(𝑎1) ∪ 𝑆𝜀(𝑎2)}. Clearly 

d(a1, a3)  , d(a3, a2)  .                                                                                                           

Having chosen a1, a2, ..., an select an+1  X \ {𝑆𝜀(𝑎1) ∪ 𝑆𝜀(𝑎2) ∪ … ∪ 𝑆𝜀(𝑎𝑛)}. 

Continuing this process {an} is a sequence of distinct points  d(ai, aj)   for i  j. 

Since X is sequentially compact  a convergent subsequence { 𝑎𝑛𝑘 } of {an}.                           

Since it is convergent it is also Cauchy sequence.                                                                               

Since  > 0,  a positive integer k  𝑑(𝑎𝑛𝑖 , 𝑎𝑛𝑗  ) <  for all ni, nj  k, a 

contradiction to the fact that 𝑑 (𝑎𝑛𝑖 , 𝑎𝑛𝑗  ) ≥ 𝜀. Hence X is totally bounded. 
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Theorem: Every sequentially compact metric space is compact. (very imp). 

Proof: Let X be a sequentially compact metric space.                                                                           

Let {Gi}iI be an open cover of X.                                                                                                     

Since X is sequentially compact, by Lebesgue covering lemma, the open cover has 

a Lebesgue number a say.                                                                                                                 

Take  = a / 3 > 0.                                                                                                                           

Since X is sequentially compact, X is totally bounded, and hence X has an  - net, 

say A = {x1, x2, x3, ..., xn}.                                                                                                                        

 𝑋 = ⋃ 𝑆𝜀(𝑥𝑘)𝑛
𝑘=1 . We know that d(𝑆𝜀(𝑥𝑘)) ≤ 2𝜀 = 2𝑎/3 < 𝑎 for each 1  k  

n. Since a is a Lebesgue number for the open cover {Gi} and d(𝑆𝜀(𝑥𝑘)) < 𝑎, we 

have that 𝑆𝜀(𝑥𝑘)   𝐺𝑖𝑘   for some ik  I.                                                                                                     

 𝑋 = ⋃ 𝑆𝜀(𝑥𝑘)𝑛
𝑘=1  ⊆ ⋃ 𝐺𝑖𝑘

𝑛
𝑘=1  X.                                                                                                     

 𝑋 = ⋃ 𝐺𝑖𝑘

𝑛
𝑘=1  

Thus the open cover {Gi} has finite subcover {𝐺𝑖𝑘
}, k = 1, 2, ... , n.                                                     

Hence X is compact. 

 

Theorem: Any continuous mapping of a compact metric space into a metric space 

is uniformly continuous. (Imp). 

Proof: Let f: X → Y be a continuous mapping of a compact metric space X into a 

metric space Y. Let d1 and d2 be the metrics on X and Y respectively. We prove that 

f is uniformly continuous. Let  > 0. For any x  X, consider the open sphere 

𝑆𝜀

2

{𝑓(𝑥)} with center f(x) and radius /2 in Y. Since f is continuous, we have that 

𝑓−1 [𝑆𝜀

2

{𝑓(𝑥)}] is open in X. This is true for any x  X.                                                          

Consider the family 𝔄 = {𝑓−1 [𝑆𝜀

2

{𝑓(𝑥)}] /𝑥 ∈ 𝑋}.                                                                                             

It is clear that 𝔄 is a family of open sets in X which forms an open cover for X.                  

Since X is compact, it is sequentially compact.                                                                                             

So by Lebesgue covering lemma, the open cover 𝔄 has a Lebesgue number, say . 

Suppose x, x  X such that d1(x, x) <   d({x, x}) < .                                                          

Since  is a Lebesgue number, {x, x}  {𝑓−1 [𝑆𝜀

2

{𝑓(𝑦)}]} for some y  X                                          

 f(x), f(x)  𝑆𝜀

2

{𝑓(𝑦)}.  d2(f(x), f(y)) <  / 2 and d2(f(x), f(y)) <  / 2. 

Consider d2(f(x), f(x).                                                                                                                             

Now d2(f(x), f(x))  d2(f(x), f(y)) + d2(f(y), f(x)) < /2 + /2 = . 

So   > 0 for any x, x  X such that d1(x, x) <   d2(f(x), f(x)) < . 

Hence f is uniformly continuous. 
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Theorem: A metric space is compact if and only if it is complete and totally 

bounded. (very imp) 

Proof: Suppose (X, d) be a metric space. Suppose X is compact.  

Then X is sequentially compact.  X is totally bounded. 

Claim: X is complete. Let {xn} be a Cauchy sequence in X. Since X is sequentially 

compact {xn} has a convergent subsequence {𝑥𝑛𝑘
}. By a problem {xn} is 

convergent. Hence X is complete. 

Conversely suppose that X is complete and totally bounded.  

Claim: X is sequentially compact. 

Claim: Every sequence has a Cauchy subsequence. 

Let S1 = {x11, x12, x13, ...} be an arbitrary sequence in X. If the set of points S1 is 

finite, then there exists an element which repeats infinite number of times.                                   

 S1 has a constant subsequence which is convergent. Suppose the set of points of 

S1 is infinite. Since X is totally bounded X has an ½ -net say {y1, y2, ..., yn}                                  

  X = ⋃ 𝑆1

2

(𝑦𝑖)𝑛
𝑖=1  

Then  𝑆1 = 𝑆1 ∩ 𝑋 = 𝑆1 ∩ {⋃ 𝑆1

2

(𝑦𝑖)𝑛
𝑖=1 } = ⋃ {𝑆1 ∩ 𝑆1

2

(𝑦𝑖)}𝑛
𝑖=1  

Since S1 is infinite, 𝑆1 ∩ 𝑆1

2

(𝑦𝑖) is infinite for at least one i. 

 S1 has a subsequence, S2 = {x21, x22, x23, ...} and all of the points of S2 lie in the 

same open sphere of radius ½. We continue like this we have S1, S2, ..., Sn, ... such 

that Sn is a subsequence of Sn-1 and all of the points of Sn lie in some open sphere 

of radius 1/n.   

Then S = {x11, x22, x33, ...} is a diagonal subsequence of Si, i = 1, 2, ...  

Claim: S is a Cauchy subsequence. 

 Let  > 0. We can choose an integer M > 0 such that 2/M < . Since Si is a 

subsequence of Si-1, for all n, m  M, xnn, xmm  SM.  xnn, xmm  𝑆1
𝑀⁄ (𝑦) for 

some y  X.  

 d(xnn, y) < 1/M, d(xmm, y) < 1/M   d(xnn, xmm) < 2/M < .   

 S is a Cauchy subsequence of S1. Since X is complete, S is convergent 

sequence.  

 S is a convergent subsequence of S1.  X is sequentially compact.  

Hence X is compact. 

Theorem: A closed subspace of a complete metric space is compact iff it is totally 

bounded.  
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Definition: Let X be a compact metric space with metric d and let A be a nonempty 

set of continuous real or complex valued functions defined on X.      A is said to be 

equicontinuous if for each  > 0 there exists  > 0 such that      x, x  X, d(x, x) < 

   f(x) – f(x) <  for all f  A. 

 

ASCOLI’S THEOREM. 

Theorem: If X is a compact metric space, then a closed subspace F of C(X, ℝ) or 

C(X, ℂ) is compact iff it is bounded and equicontinuous. 

Proof: Let X be a compact metric space and F be a closed subspace of C(X, ℝ) or 

C(X, ℂ). 

Suppose F is compact.  

Since F is compact subspace of C(X, ℝ) or C(X, ℂ),] F is bounded. 

Since X is compact every f  C(X, ℝ) or C(X, ℂ) is uniformely continuous.  

Claim: F is equicontinuous.  

Let  > 0.  

Since F is compact, F is sequentially compact and hence F is totally bounded.  

 F has an /3 – net, say {f1, f2, f3, ..., fn}.  F = ⋃ 𝑆𝜀
3⁄ (𝑓𝑖)𝑛

𝑖 . 

Let f  F. 

 f  𝑆𝜀
3⁄ (𝑓𝑘) for some k. 

 ‖𝑓 − 𝑓𝑘‖< 𝜀 3⁄ .    

 |𝑓(𝑥) − 𝑓𝑘(𝑥)| < 𝜀
3⁄  for all x  X...(i) 

Since each fk  F is uniformly continuous, for each k = 1, 2, 3, ..., n,  𝛿𝑘 > 0 such 

that d(x, x) < 𝛿𝑘  |𝑓𝑘(𝑥) − 𝑓𝑘(𝑥′)| < 𝜀
3⁄  

Let  = min {1, 2, ..., n}.  

Suppose d(x, x) < .  

 d(x, x) < 𝛿𝑘for all k = 1, 2, ..., n. 

|𝑓𝑘(𝑥) − 𝑓𝑘(𝑥′)| < 𝜀
3⁄  for k = 1, 2, ..., n    ... (ii) 

Now |𝑓(𝑥) − 𝑓(𝑥′)|  |𝑓(𝑥) − 𝑓𝑘(𝑥)| + |𝑓𝑘(𝑥) − 𝑓𝑘(𝑥′)| + |𝑓(𝑥′) − 𝑓𝑘(𝑥′)|                              
                               < 𝜀

3⁄ + 𝜀
3⁄ + 𝜀

3⁄ = . 

Hence F is equicontinuous. 

Converse: Suppose F is bounded and equicontinuous. 

Claim: F is sequentially compact. 

Part (i): C(X, ℝ) is complete and F is closed in C(X, ℝ). 

F is complete.  

Since X is compact it is separable.  

 X has a countable dense subset say A = {x2, x3, ..., xn, ...}, say. 

Part II: Let S1 = {f11, f12, f13, ...} be an arbitrary sequence. 
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Since F is bounded  a real number k > 0 such that ‖𝑓‖  k for all f  F. 

 |𝑓(𝑥)| < 𝑘 for all f  F and x  X. 

Then {f1j(x2)} is a bounded sequence of real numbers.   

 This sequence has a convergent subsequence.  

Let S2 = {f21, f22, f23, ...} be a subsequence of S1 such that { f2j(x2) } is convergent.  

[Then {f2j(x3)}is a bounded sequence of real numbers.   

As above this sequence has a convergent subsequence S3 = {f31, f32, f33, ...} of S2 

such that {f3j(x3)} is convergent.] 

Continuing in this way we have S1 = {f11, f12, f13, ...}, S2 = {f21, f22, f23, ...}, ...,  

Si = {fi1, fi2, fi3, ...}... such that Si is a subsequence of Si-1, and { fij(xi) } is 

convergent. 

Part III: Then S = {f11, f22, f33, ...} is a diagonal sequence of Si, i = 1, 2, ... and 

subsequence of S1.  

Write fn = fnn.  { fn(xi) } is a convergent subsequence for each xi  A.  

Claim: S is a Cauchy sequence. 

Let  > 0. 

Since F is equicontinuous,   > 0  d(x, x) <   |𝑓𝑛(𝑥) − 𝑓𝑛(𝑥′)| < 𝜀
3⁄ ...(i) 

Since A is dense in X,  ℬ = { 𝑆𝛿(𝑥𝑖) ∶  𝑥𝑖 𝐴 } is an open cover for X.  

[For x  X = �̅�  𝑆𝛿(𝑥)  A    xi  𝑆𝛿(𝑥) for some xi  A  d(x, xi) <                         

  x  𝑆𝛿(𝑥𝑖)  x  ⋃ 𝑆𝛿(𝑥𝑖).] 

Since X is compact X  ⋃ 𝑆(𝑥𝑖)𝑡
𝑖=2  for some positive integer t. 

Since {fn(xi)} is a convergent subsequence for each xi  A,  

{fn(xi)} is a Cauchy sequence for each xi  A.  

{fn(xi)} is a Cauchy sequence for each x2, x3, ..., xt. 

 For each i = 2, 3, ..., t  integer Mi  |𝑓𝑛(𝑥𝑖) − 𝑓𝑚(𝑥𝑖)| < 𝜀
3⁄    n, m  Mi. 

Write M = max {Mi, i = 2, 3, ..., t}. Then |𝑓𝑛(𝑥𝑖) − 𝑓𝑚(𝑥𝑖)| < 𝜀
3⁄    n, m  M. 

Let x  X  ⋃ 𝑆(𝑥𝑖)
𝑡
𝑖=2   

 x  𝑆(𝑥𝑖) for some i, 2  i  t   

 d(x, x) <  for n, m  M. 

 |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)|  |𝑓𝑛(𝑥) − 𝑓𝑛(𝑥𝑖)| + |𝑓𝑛(𝑥𝑖) − 𝑓𝑚(𝑥𝑖)| +|𝑓𝑚(𝑥𝑖) − 𝑓𝑚(𝑥)|  
< 𝜀 3⁄ + 𝜀

3⁄ + 𝜀
3⁄ =  for all n, m  M.  

 sup {|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)|} <    ‖𝑓𝑛 − 𝑓𝑚‖ <  for all n, m  M. 

 S is a Cauchy sequence. 

 S is convergent subsequence of S1. 

 F is sequentially compact and hence F is compact. 
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M 104: TOPOLOGY  

 

UNIT IV – SEPARATION 

 

T1 - SPACES AND HAUSDORFF SPACES  

 

Definition: A T1 - space is a topological space in which given any pair of distinct 

elements, each has a neighbourhood which does not contain the other. 

(equivalently, if x and y are elements such that x  y then there exists 

neighbourhoods G and H of x and y respectively such that y  G and x  H. 

 

Example (i): Suppose X = {a, b, c},  = {, {a}, {a, b}, X}. Then X is not a T1 – 

space. 

(ii) Let X be an infinite set. Write  = {A  X: A' is finite} {}.                                       

Then X is a T1 - space. Let x, y  X such that x  y.                                                                   

Then{x} and{y} are open sets in X; and x{y} and y {x} but x {x},                              

y {y}. Hence X is a T1 Space.  

 

Note: Every discrete topological space is a T1 - Space.  

Remark: Every subspace of a T1-Space is also a T1-Space.  

Proof: Let X be a T1-space and Y be any subspace of X.                                                                                       

Let 𝑦1, 𝑦2 where 𝑦1  𝑦2 be any two - points in Y.                                                                                                          

⸪ Y  X, X is a T1-space,  an open sets G and H in X  𝑦1   G, 𝑦2  G, 𝑦2   H, 

𝑦1   H. Put A = G  Y and B = H  Y.                                                                                                 

Then A and B are open sets in Y  𝑦1  A, 𝑦2  A, 𝑦2  B and 𝑦1  B.                                               

 Y is a T1-Space. 

Thus every subspace of a T1-Space is also a T1-Space. 

 

Theorem: A topological space is a T1-space if and only if each point is a closed 

set. 

Proof: Let X be a topological space. Assume that X is a T1 space.                                            

Let x  X. Now we show that {x} is a closed set.                                                                                                 

To prove this, it is enough to prove {x} is open. 

Let y {x}. Then y  x. Since X is a T1-space and x, y  X such that x  y, 

there exists neighbourhood H of y such that H does not contain x.                                                               

Now y  H  {x}. This shows that y is an interior point of {x}.                                                           

Hence {x} is open.                                                                                                                                                         

Converse: Suppose that each point is a closed set.                                                                              
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Let x, y be any two points of X such that x  y. 

Put G = {y} and H = {x}. By hypothesis, G and H are open sets such that x  G, 

y  G and y  H, x  H. Therefore, X is a T1-space. 

 

Definition: A Hausdorff space is a topological space in which each pair of 

distinct points can be separated by open sets (equivalently, if x  y are distinct 

points, then there exists open sets G and H such that x  G, y H and G  H = ). 

 

Result: (i) Every discrete topological space is a Hausdorff space.  

Proof: Let (X, ) be a discrete topological space.                                                                      

Let x, y  X and x  y.                                                                                                                        

Then {x}, {y} are open such that x  {x}, y  {y} and {x}  {y} = .                                           

(X, ) is Hausdorff space. 

                                                                                                                                                    

Result (ii) Every metric space is a Hausdorff space. 

Proof: Let (X, d) be a metric space. Let x, y  X and x  y.                                                 

Then d(x, y) > 0. Let r = d(x, y).                                                                                                    

Then 𝑆𝑟

2

(𝑥), 𝑆𝑟

2

(𝑦) are open sets, x  𝑆𝑟

2

(𝑥), y  𝑆𝑟

2

(𝑦) and 𝑆𝑟

2

(𝑥) ∩ 𝑆𝑟

2

(𝑦) = 𝜙 

(X, d) is Hausdorff space. 

 

Result (iii): Every Hausdorff space is a T1-space. But the converse need not be 

true. 

Proof: Let (X, ) be a Hausdorff space and x, y  X  x  y.                                                 

Then  open sets G and H  x  G, y  H and G  H = . Clearly y  G and x  

H.  Every Hausdorff space is a T1 – space.                                                                                         

Converse need not be true. For this consider the following example. 

Let X be an infinite set. Write  = {A  X: A is finite}  {}.                                                 

Then (X, ) is a T1 - Space (see example).                                                                                       

Now we will show that X is not a Hausdorff space.                                                                                 

In a contrary way, suppose that X is a Hausdorff space.                                                                

Take x, y  X such that x  y. Since X is Hausdorff there exists neighbourhoods G 

and H of x and y respectively such that G  H =  (by def.).                                                      

Since G and H are non-empty open sets, we have G and H are finite. 

Now G  H =   (GH) =   G  H = X.                                                                           

This shows that X is finite, a contradiction. Hence X is not Hausdorff. 

 

Result (iv): Every subspace of a Hausdorff space is a Hausdorff space. 
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Proof: Let X be a Hausdorff space and Y be any subspace of X.                                                                                       

Let 𝑦1  𝑦2 be two - points in Y.                                                                                                          

⸪ X is Hausdorff,  open sets G and H in X  𝑦1   G, 𝑦2   H, and G  H = .                                  

Put A = G  Y and B = H  Y.                                                                                                 

Then A and B are open sets in Y. Clearly 𝑦1  A, 𝑦2  B and A  B  G  H = .  

 Y is a Hausdorff space. 

Hence every subspace of a Hausdorff space is a Hausdorff space. 

 

Theorem: The product of any non-empty class of Hausdorff spaces is Hausdorff. 

Proof: Let {Xi} be a non-empty class of Hausdorff spaces.                                                              

Let X = PiXi be the Product of Xi’s.                                                                                                      

Let x = {xi} and y = {yi} be any two distinct points in X.                                                                    

Then 𝑥𝑖0
≠ 𝑦𝑖0

for at least one index i0.                                                                                                  

Since 𝑋𝑖0
 is a Hausdorff space and 𝑥𝑖0

≠ 𝑦𝑖0
 are distinct points in 𝑋𝑖0

 there exists 

open sets 𝐺𝑖0
 and 𝐻𝑖0

, in 𝑋𝑖0
 such that 𝑥𝑖0

∈ 𝐺𝑖0
, 𝑦𝑖0

∈ 𝐻𝑖0
 and 𝐺𝑖0

∩ 𝐻𝑖0
= 𝜙. 

Define A = PiAi where Ai = Xi for i  i0 and 𝐴𝑖0
= 𝐺𝑖0

 and B = PiBi where Bi = Xi 

for i  i0 and 𝐵𝑖0
= 𝐻𝑖0

.                                                                                                                               

Now A and B are open sets in X such that A  B = , x  A and y  B.                                  

Hence X is Hausdorff. 

 

Theorem: In a Hausdorff space, any point and a disjoint compact subspace can be 

separated by open sets. In the sense that they have disjoint neighbourhoods (that is, 

if x is any point and if C is a compact subspace such that x  C then there exists 

disjoint open sets G and H such that x  G and C  H). 

 

Proof: Let X be a Hausdorff space. Let x be any point in X, and let C be any 

disjoint compact subspace. Now if y  C, then x  y (since x  C). Since X is a 

Hausdorff space, there exists open sets Gy and Hy such that x  Gy, y  Hy, and                      

Gy  Hy = . 

Now {Hy}y is a class of open sets such that C  ⋃ 𝐻𝑦𝑦𝜖𝐶 . Since C is compact, there 

exists a finite subclass of {Hy}, which we denote by {𝐻𝑦1
, 𝐻𝑦2

, … , 𝐻𝑦𝑛
} such that 

C  𝐻𝑦1
∪  𝐻𝑦2

∪  … ∪ 𝐻𝑦𝑛
. Let 𝐺𝑦1

, 𝐺𝑦2
, … , 𝐺𝑦𝑛

 be open sets which corresponds 

to the sets 𝐻𝑦1
, 𝐻𝑦2

, … , 𝐻𝑦𝑛
. Put G = ⋂ 𝐺𝑦𝑖

𝑛
𝑖=1 , and H = ⋃ 𝐻𝑦𝑖

𝑛
𝑖=1 . 

Now for 1  i  n, consider G  𝐻𝑦𝑖
 𝐺𝑦𝑖

∩ 𝐻𝑦𝑖
= 𝜙. (since Gy  Hy = )                                 

 G  𝐻𝑦𝑖
 = . Therefore G  H = G  [⋃ 𝐻𝑦𝑖

𝑛
𝑖=1 ] = ⋃ [𝐺 ∩ 𝐻𝑦𝑖

]𝑛
𝑖=1 = .                 

Hence G and H are disjoint open sets such that x  G and C  H. 
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Theorem: Every compact subspace of a Hausdorff space is closed. 

Proof: Let C be a compact subspace of a Hausdorff space X. To prove C is closed, 

it is enough to prove that C is open. 

If C is empty then clearly it is open. We assume that C' is non-empty. Let x  C. 

Then x  C. By above theorem, there exists disjoint open sets G and H such that                           

x  G and C  H. Since G  H = , we have G  H and H  C (since C  H). 

Therefore G  C and x  G  C. Therefore C is open which implies that C is 

closed. 

 

Theorem 8*: A one – to – one continuous mapping of a compact space onto a 

Hausdorff space is a homeomorphism. 

Proof: Let f: X → Y be a one - to - one continuous mapping of a compact metric 

space X onto a Hausdorff space Y. We must show that f(G) is open in Y 

whenever G is open in X. To prove this, we first show that f(F) is closed in Y 

whenever F is closed in X. 

If F is empty, then f(F) =  and hence it is closed. Assume that F is non-empty. 

Since X is compact, we have F is compact. Since f is continuous, f(F) is compact. 

Therefore, by a theorem, f(F) is closed. Thus, we proved that f(F) is closed in Y 

whenever F is closed in X. 

If G is open in X, then G is closed in X. Now f(G) is closed in Y. But 

f(G) = (f(G)). Therefore (f(G)) is closed in Y                                                                     

 f(G) = [{f(G)}] is open in Y. Thus, f is a homeomorphism. 

 

 COMPLETELY REGULAR SPACES AND NORMAL SPACES 

 

Definition: A normal space is a T1-space in which each pair of disjoint closed sets 

can be separted by open sets. In the sense that they have disjoint neighbourhoods.  

Remark: Every normal space is Hausdorff. 

Proof: Let X be a normal space. Let x and y be distinct points in X.                                       

Now {x} and {y} are disjoint closed sets. Since X is normal, there exists disjoint 

open sets G and H such that {x}  G and {y}  H.                                                                              

Now G and H are disjoint neighbourhoods of x and y respectively.                                       

Therefore, X is Hausdorff. Hence every normal space is Hausdorff. 

 

Theorem: (11*) Every compact Hausdorff space is normal. 

Proof: Let X be a compact Hausdorff space. Since X is Hausdorff, it is a T1-space. 

Let A and B be a pair of disjoint closed sets. If either of the closed sets is empty, 

we can take the empty set as a neighbourhood of it, and the full space as the 

neighbourhood of the other. So, we may assume that both A and B are non-empty 
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sets. Since X is compact, we have that A and B are compact sets. Let x  A. Now x 

 X and B is a compact subspace such that x  B. Since X is Hausdorff, we have 

that x and B have disjoint neighbourhoods, say Gx and Hx respectively. 

Therefore {Gx}xA, is a class of open sets such that A   Gx, x  A. Since 

A is compact, there exists a finite subclass of the class of {Gx}xA, which we 

denote by {𝐺𝑥1
, 𝐺𝑥2

, … , 𝐺𝑥𝑛
} such that A  𝐺𝑥1

∪ 𝐺𝑥2
∪ … ∪  𝐺𝑥𝑛

. Let 𝐻𝑥1
,

𝐻𝑥2
, … , 𝐻𝑥𝑛

 be the neighbourhoods of B which corresponds to 𝐺𝑥1
, 𝐺𝑥2

, … , 𝐺𝑥𝑛
                                  

Put G = ⋃ 𝐺𝑥𝑖

𝑛
𝑖=1  and H = ⋂ 𝐻𝑥𝑖

.𝑛
𝑖=1                                                                                                                  

Now G and H are neighbourhoods of A and B respectively, such that                                       

G  H = (⋃ 𝐺𝑥𝑖

𝑛
𝑖=1 ) ∩ 𝐻 = ⋃ (𝐺𝑥𝑖

∩ 𝐻) 𝑛
𝑖=1  ⋃ (𝐺𝑥𝑖

∩ 𝐻𝑥𝑖
)𝑛

𝑖=1  = .  

Therefore G  H = . Hence X is normal. 

 

Problem: (1*): Let X be a T1 - space. Show that X is normal if and only if each 

neighbourhood of a closed set F contains the closure of some neighbourhood of F 

(that is, if O is a neighbourhood of F then there exists neighbourhood G of F such 

that F  G  �̅�  O.   

Solution: Assume that X is normal. Let O be a neighbourhood of F.                                         

Then F  O =  (since F  O). Now F and O are disjoint closed sets.                                  

Since X is normal,  disjoint open sets G and H  F  G and O  H.                                 

Since G  H = , we have G  H. Now O  H  H  (O) = O.                                     

Since H is closed, we have that �̅�  H. , F  G  �̅�  H  O.                                

Hence F  G  �̅�  O, and G is open. 

Conversely, suppose that X has the stated property. Let A and B be disjoint closed 

sets. Since A  B = , we have A  B. ie B is a neighbourhood of A.                      

Now by converse hypothesis, there exists an open set G such that A  G  �̅�  B'.                           

Since �̅�  B, we have (B)  �̅�′.  B  �̅�′.                                                                                               

Since �̅�′ is a neighbourhood of B, again by converse hypothesis, there exists an 

open set H such that B  H  �̅�  �̅�′.                                                                                            

Now consider G  H  �̅�  �̅� = . (since �̅�  �̅�′)  G and H are disjoint.                               

Thus, G and H are disjoint neighbourhoods of A and B. Hence X is normal. 

 

URYSHONS LEMMA AND TETZE EXTENSION THEOREM 

 

URYSOHN’S LEMMA: Let X be a normal space and let A and B be disjoint 

closed subspaces of X. Then there exists continuous real valued function f on X, all 

of whose values lie in the closed unit interval [0, 1] such that f(A) = 0 and f(B) = 1.  

Proof: For each pair of rational numbers r, s we define an open set Gr such that                     

r < s  �̅�𝑟  Gs, if r < 0, define Gr = ; if r > 1, define Gr = X.                                                         
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Let {r1, r2, …, rn, …} be a listing of rational numbers in [0, 1] with r1 = 0 and r2= 1. 

Define 𝐺𝑟2
= 𝐵′.  

Then 𝐺𝑟2
 is a neighbourhood of A (since A  B = , we have A  B).                                         

By hypothesis (⸪ X is normal), there exists an open set 𝐺𝑟1
 A  𝐺𝑟1

 𝐺𝑟1
̅̅ ̅̅   𝐺𝑟2

. 

Suppose we have defined 𝐺𝑟1
, 𝐺𝑟2

, … , 𝐺𝑟𝑛−1
 

We now define 𝐺𝑟𝑛
 as follows: Choose largest ri and smallest rj such that i, j < n 

and ri < rn < rj. Now ri < rj  �̅�𝑟𝑖
⊆ 𝐺𝑟𝑗

.      

A  𝐺𝑟1
 𝐺𝑟1

̅̅ ̅̅   𝐺𝑟2
        

𝐺𝑟1
̅̅ ̅̅  𝐺𝑟3

 𝐺𝑟3
̅̅ ̅̅   𝐺𝑟2

 ;  

 𝐺𝑟1
̅̅ ̅̅  𝐺𝑟4

 𝐺4
̅̅ ̅  ⊆ 𝐺𝑟3

 𝐺𝑟3
̅̅ ̅̅  𝐺𝑟5

 𝐺5
̅̅ ̅  𝐺𝑟2

  

𝐺𝑟1
̅̅ ̅̅  𝐺𝑟6

 𝐺𝑟6
̅̅ ̅̅ 𝐺𝑟4

 𝐺4
̅̅ ̅ 𝐺𝑟7

 𝐺𝑟7
̅̅ ̅̅ ⊆ 𝐺𝑟3

 𝐺𝑟3
̅̅ ̅̅ 𝐺𝑟8

 𝐺𝑟8
̅̅ ̅̅ 𝐺𝑟5

 𝐺5
̅̅ ̅ 𝐺𝑟9

 𝐺𝑟9
̅̅ ̅̅  

𝐺𝑟2
  

𝐺0
̅̅ ̅ 𝐺1

2

 𝐺1

2

̅̅ ̅  𝐺1;  

𝐺0
̅̅ ̅ 𝐺1

4

 𝐺1

4

̅̅ ̅𝐺1

2

 𝐺1

2

̅̅ ̅𝐺3

4

 𝐺3

4

̅̅ ̅  𝐺1; 

𝐺0
̅̅ ̅ 𝐺1

8

 𝐺1

8

̅̅ ̅𝐺1

4

 𝐺1

4

̅̅ ̅ 𝐺3

8

 𝐺3

8

̅̅ ̅𝐺1

2

 𝐺1

2

̅̅ ̅ 𝐺5

8

 𝐺5

8

̅̅ ̅𝐺3

4

  𝐺3

4

̅̅ ̅ 𝐺7

8

 𝐺7

8

̅̅ ̅ 𝐺1; 

 

 

 𝐺𝑟1
̅̅ ̅̅  𝐺𝑟4

 𝐺4
̅̅ ̅  ⊆ 𝐺𝑟3

 𝐺𝑟3
̅̅ ̅̅  𝐺𝑟5

 𝐺5
̅̅ ̅  𝐺𝑟2

  

𝐺𝑟1
̅̅ ̅̅  𝐺𝑟6

 𝐺𝑟6
̅̅ ̅̅ 𝐺𝑟4

 𝐺4
̅̅ ̅ 𝐺𝑟7

 𝐺𝑟7
̅̅ ̅̅ ⊆ 𝐺𝑟3

 𝐺𝑟3
̅̅ ̅̅ 𝐺𝑟8

 𝐺𝑟8
̅̅ ̅̅ 𝐺𝑟5

 𝐺5
̅̅ ̅ 𝐺𝑟9

 𝐺𝑟9
̅̅ ̅̅  

𝐺𝑟2
 

                                                                 Again, by hypothesis,  an open set 𝐺𝑟𝑛
  

�̅�𝑟𝑖
⊆ 𝐺𝑟𝑛

⊆  �̅�𝑟𝑛
 𝐺𝑟𝑗

.                                                                                                                      

By induction for each rational number rn  an open set 𝐺𝑟𝑛
 rn < rm  �̅�𝑟𝑛

  𝐺𝑟𝑚
 

Define f: X → R by f(x) = Inf {r: x  Gr}.                                                                                                  

We now show that f(x)  [0, 1] for all x  X.                                                                                      

Let x be any arbitrary point in X.                                                                                                           

By the definition of Gr’s, x  Gr  r  0. Therefore f(x)  0.                                                                  

If f(x) > 1, then choose a rational number ‘r’ such that f(x) > r > 1.                                            

Now r > 1  Gr = X.  Let x  X  x  Gr  f(x)  r, a contradiction to f(x) > r.                                                     

Thus, for x  X, 0  f(x)  1. Therefore f(x)  [0, 1].                                                                     

If a  A, then a  𝐺𝑟1
  f(a)  r1  f(a)  0 = r1  f(a) = 0 (since f(a)  0). 

Therefore f(A) = 0. Suppose b  B. Then b  Gr  r  1, for if r < 1 = r2 then 

�̅�𝑟 𝐺𝑟2
 which  b  𝐺𝑟2

= B, a contradiction.                                                                          

, f(b)  1. But f(b)  1 (since f(x)  1 for all x). Hence f(b) = 1.                                                                         
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Since b  B is arbitrary, we have that f(B) = 1. 

We show that f is continuous: All the intervals of the form (a, b) where a and b are 

real, form an open base for the real number system R.                                                                        

, to show f is continuous, it suffices to show 𝑓−1(a, b) is open, for any reals a, b. 

For this, first we show that f(x) < b  x  Gr for some r < b. Suppose f(x) < b.                      

By def. of f(x) there exists a rational number r such that x  Gr, and r < b. 

Conversely suppose that x  Gr for some r < b. Then f(x)  r and r < b  f(x) < b. 

Consider 𝑓−1[(−∞, 𝑏)] = {x  X: f(x) < b} = ⋃ 𝐺𝑟𝑟<𝑏   𝑓−1[(−∞, 𝑏)] is open. 

Similarly, we can prove that 𝑓−1[(𝑎, ∞)] = ⋃ (�̅�𝑟)′
𝑟>𝑎 .                                                              

Therefore 𝑓−1[(𝑎, ∞)] is open. Now 𝑓−1[(𝑎, 𝑏)] = 𝑓−1[(−∞, 𝑏)] ∩ 𝑓−1[(𝑎, ∞)].                                                           
Hence 𝑓−1[(𝑎, 𝑏)] is open. Thus, f is continuous. 

 

Definition: A completely regular space is a T1-space X with the property that if x is 

any point and ‘F’ is any closed subspace which does not contain x, then 

there exists a real continuous function f on X, all of whose values lie in [0, 1] such 

that f(x) = 0 and f(F) = 1. 

 

Theorem (1*): Every normal space is completely regular. 

Proof: Let X be a normal space. Then X is T1-space. Let x  X and F be any  

closed subspace of X which does not contain x. Put A = {x}. Now A and F are 

disjoint closed subspaces. By Uryshon’s lemma, there exists a continuous real 

function f, all of whose values lie in the closed interval [0, 1] such that f(A) = 0, 

f(F) = 1. Therefore f(x) = 0 & f(F) = 1. Hence X is completely regular. 

 

Theorem: Every completely regular space is Hausdroff. 

Proof: Let X be a completely regular space.                                                                                   

Let x and y be any two distinct elements in X.                                                                                                                               

Put F = {y}. Now x  X and F is a closed subspace, which does not contain x. 

Since X is completely regular, there exists a continuous function f: X→ R such that 

f(x) = 0 and f(F) = 1. Let r be any real number such that 0 < r < 1.                                    

Now {z  X: f{z) > r}, and {z  X: f(z) < r} are disjoint neighbourhoods of ‘y’ 

and ‘x’ respectively. Therefore, X is Hausdorff. 

 

Theorem: Every subspace of a completely regular space is completely regular. 

Proof: Let X be a completely regular space and let Y be a subspace of X.                                   

Let x  Y, and F be a closed subspace of Y, which does not contain x.                            

Then F = Y  H, where H is a closed subspace of X. Also, x  H. Since X is 

completely regular, there exists a continuous function f: X → R, all of whose 

values lie in [0, 1], such that f(x) = 0 and f{H) = 1. Define ‘g’ to be the restriction 
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of f to Y. Then g: Y → R is continuous and g(y) = f(y)  [0, 1] for all y  Y.           

Since x  Y, we have 0 = f(x) = g(x)  g(x) = 0. Now y  F = Y  H                                  

 y  Y and y  H  g(y) = f(y) and f(y) = 1  g(y) = 1. Therefore g(F) = 1. 

Hence Y is completely regular. 

 

Theorem: (9*) (TIETZE EXTENSION THEOREM)                                                                                                             

Let X be a normal space ‘F’ a closed subspace of X, and f a continuous real 

function defined on F whose values lie in the closed interval [a, b]. Then f has a 

continuous extension f1 defined on all of X whose values also lie in [a, b].  

Proof: Step (i): If a = b then the function f1 defined by f1(x) = a for all x  X is a 

continuous function of X into [a, b] such that f1(x) = f(x) for all x  F. 

Step (ii): Suppose a < b. Assume that [a, b] is the smallest closed interval 

containing the range of f and without loss of generality a = – 1 and b = 1.                               

Write f0 = f.  Then the domain of f0 is F. 

Now we define two subsets A0 and B0 of F as A0 = {𝑥𝜖𝐹: 𝑓0(𝑥) ≤ −
1

3
} and                       

B0 = {𝑥𝜖𝐹: 𝑓0(𝑥) ≥
1

3
}. Since [– 1, 1] is the smallest closed interval containing the 

range of f0, we have A0 and B0 are non-empty. Clearly A0 and B0 are disjoint.          

Since f0 is continuous, we have that A0 = 𝑓0
−1

 [– 1,
1

3
] and B0 = 𝑓0

−1
 [

1

3
, 1] are 

closed in F. Since F is a closed subspace of X, we have A0 and B0 are closed in X. 

[Now X is a normal space, A0, B0 are disjoint closed subspaces of X, and                                   

[–
1

3
,

1

3
] is a closed interval.] Then by the Uryshon’s lemma, there exists continuous 

function g0: X → [–
1

3
,

1

3
] such that g0(A0) = –

1

3
 and g0(B0) = 

1

3
. 

Write f1 = f0 – g0. Then f1 is a continuous function of F and |𝑓1(𝑥)| < 
2

3
  x  F. 

Next, we define two subsets A1 and B1 of F as A1 = {𝑥𝜖𝐹: 𝑓1(𝑥) ≤ (−
1

3
) (

2

3
)}} and 

B1 = {𝑥𝜖𝐹: 𝑓1(𝑥) ≥ (
1

3
) (

2

3
)}}. Then A1 and B1 are non-empty disjoint closed 

subsets of F and hence A1 and B1 are disjoint closed subspaces of X.                                       

Since X is normal by Urysohn’s lemma, there exists a continuous function                          

g1: X → [(−
1

3
) (

2

3
) , (

1

3
) (

2

3
)]   g1(A1) = (−

1

3
) (

2

3
) , and g1(B1) = (

1

3
) (

2

3
) . 

Write f2 = f1 – g1 = f0 – (g0 + g1). Then f2 is a continuous function on F, and 

|𝑓2(𝑥)| ≤ (
2

3
)

2
 for all x  F. 

If we continue this process, we get a sequence {fn} of continuous functions defined 

on F and {gn} of continuous functions defined on X with the property that:                               

fn = f0 – (g0 + g1 + ... + gn – 1) and |𝑓𝑛(𝑥)| ≤ (
2

3
)

𝑛
 x  F and |𝑔𝑛(𝑥)| ≤ (

1

3
) (

2

3
)

𝑛
.                                             
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Step (iii). Write sn = g0 + g1 +... + gn – 1. Then {sn} is a sequence of partial sums of 

an infinite series of functions of C(X, R).                                                                                                    

C(X, R) is complete and |𝑔𝑛(𝑥)| ≤ (
1

3
) (

2

3
)

𝑛
. 

Now ∑ (
1

3
) (

2

3
)

𝑛
∞
𝑛=0 = 1. By Cauchy’s criterion for uniform convergence, ∑ 𝑔𝑛(𝑥) 

converges uniformly to a bounded continuous real function f1 defined on X such 

that |f1(x)|  1. That is, {sn} converges uniformly to f1 on X.                                                      

ie,, lim sn = f1 on X … (i).                                                                                      

Since the sequence {(
2

3
)

𝑛
} converges to 0, for  > 0 there exists a positive integer 

N such that (
2

3
)

𝑛
 <  for all n  N.  |𝑓𝑛(𝑥)| <  for all n  N and for all x  F                             

 fn → 0 uniformly on F  lim sn = f0 on F … {ii) 

From (i) and (ii) f0 = f1 on F. 

That is, f1/F = f0, that is, f1/F = f.                                                                                  

This shows that f1 is a continuous extension of f on X. 

 

Note: If X is a normal space which contains only a finite number of points, then 

the topology on X is the discrete topology. 

 

Problem: Deduce the Urysohn’s lemma from Tietze extension theorem. 

Proof: Let A, B be two disjoint closed subsets of a normal space X. Since A, B are 

closed, we have that F = A  B is also a closed subset of X. 

Define f: F → [0, 1] by f(a) = 0 for all a  A and f(b) = 1 for all b  B.                                   

Since A  B = , we have that f is well defined. Clearly f is a constant function on 

A and also on B. So, f is continuous on both A and B and hence f is continuous on 

F = A  B (since A  B = ). 

Now by Tietze extension theorem, there exists a continuous function 𝑓′:X → [0, 1] 

such that 𝑓′ is an extension of f. Now 𝑓′ (A) = f (A) = 0 and 𝑓′ (B) = f(B) = 1.                                        

This completes the proof. 

 

 

THE URYSOHN’S IMBEDDING THEOREM  

Definition: A topological space X is said to be metrizable if and only if there exists 

a metric ‘d’ for X which induces the same topology as the topology of X. 

Note: If X is a metric space with finite number of points then the topology on X 

induced by the given metric is the discrete topology on X. 

Verification: Let (X, d) be a metric space with finite number of points.                                           

So, take X = {x1, x2, …, xn}. Write r = min {d(xi, xj): i  j, 1  i  n; 1  j  n}. 
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Then for any xi  X, Sr(xi) = {xi} which is an open set.                                                                  

This shows that singleton sets are open in X.                                                                                          

Hence the topology on X is the discrete topology on X. 

 

URYSOHN’S IMBEDDING THEOREM: (3*) 

If X is a second countable normal space then there exists a homeomorphism f of X 

onto a subspace of R, and therefore X is metrizable.  

Proof: we may assume that X has infinitely many points, for otherwise it would be 

finite and discrete, and clearly homeomorphic to any subspace of R with the same 

number of points.  

Since X is second countable, X has a countable infinite open base B = {G1, G2, ...} 

whose members are different from  and X. Let Gj  B and x  Gj. Then {x} is a 

closed set. Since X is normal, there exists Gi  B such that x  Gi  �̅�𝑖  Gj.                                                                                    

So, for a given Gj and x  Gj, we have a pair (Gi, Gj) of open sets in B such that �̅�𝑖 

 Gj. The set of all ordered pairs (Gi, Gj) is countably infinite.                                                                 

So, we can arrange them as a sequence P1, P2, ..., for any arbitrary n, Pn = (Gi, Gj). 

By Urysohn’s lemma there exist continuous functions fn: X → [0, 1] such that 

fn(�̅�𝑖) = 0 and fn(Gj) = 1.                                                                                                                     

Now define f:X →R by setting f(x) = {f1(x), 
𝑓2(𝑥)

2
, 

𝑓3(𝑥)

3
, … } for all x  X.                                   

For any integer n  1, fn(x)  [0, 1]  0  fn(x)  1 
𝑓𝑛(𝑥)

𝑛
≤

1

𝑛
                                                          

 ∑ |
𝑓𝑛(𝑥)

𝑛
|

2
≤∞

𝑛=1 ∑
1

𝑛2
∞
𝑛=1  

Since ∑
1

𝑛2
∞
𝑛=1  is convergent, we have ∑ |

𝑓𝑛(𝑥)

𝑛
|

2
∞
𝑛=1 is also convergent.                                                                    

So, f(x) = {f1(x), 
𝑓2(𝑥)

2
, 

𝑓3(𝑥)

3
, …}  R. It is clear that f: X → R is a function. 

Next we will show that f is one-one: Let x, y  X such that x  y.                                              

Since X is a T1 - space,  Gj  B  x  Gj and y  Gj. That is, x  Gj and y  Gj. 

By the above fact we have an ordered pair Pn = (Gi, Gj) such that x  Gi  �̅�𝑖  Gj.                                                                                                                                     

 fn(�̅�𝑖) = 0 and fn(Gj) = 1. So, fn(x) = 0 and fn(y) = 1.                                                                       

 fn(x)  fn(y)  f(x)  f(y). Therefore, f is 1 – 1. 

Now we show that f is continuous: Let x  X, and  > 0.                                                             

Since ∑
1

𝑛2
∞
𝑛=1  is convergent,  a positive integer N  ∑

1

𝑛2
∞
𝑛=𝑁+1  < 

𝜀2

4
 …(i).                         

For n = 1, 2, ..., N, fn is continuous   an open set Hn containing x  y  Hn                                 

 |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| < 
𝑛𝜀

√2𝑁
 for = 1, 2, …, N                                                                         

 |
𝑓𝑛(𝑥)−𝑓𝑛(𝑦)

𝑛
|

2

<
𝜀2

2𝑁
…(ii) for n = 1, 2, ..., N.                                                                                                                                    

Write G = ⋂ 𝐻𝑛
𝑁
𝑛=1 .  Then G is an open set containing x.                                                               
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Let y  G. Consider ‖𝑓(𝑥) − 𝑓(𝑦)‖2 = ∑ |
𝑓𝑛(𝑥)−𝑓𝑛(𝑦)

𝑛
|

2
∞
𝑛=1                                                                 

 ∑ |
𝑓𝑛(𝑥)−𝑓𝑛(𝑦)

𝑛
|

2
𝑁
𝑛=1 + ∑ |

𝑓𝑛(𝑥)

𝑛
|

2
∞
𝑛=𝑁+1 + ∑ |

𝑓𝑛(𝑦)

𝑛
|

2
∞
𝑛=𝑁+1                                                                          

< ∑
𝜀2

2𝑁
𝑁
𝑛=1  + ∑

1

𝑛2
∞
𝑛=𝑁+1  + ∑

1

𝑛2
∞
𝑛=𝑁+1   <  

𝜀2

2
+

𝜀2

4
+

𝜀2

4
 = 𝜀2.                                                                    

 ‖𝑓(𝑥) − 𝑓(𝑦)‖2 < 𝜀2  ‖𝑓(𝑥) − 𝑓(𝑦)‖ < . So, y  G  ‖𝑓(𝑥) − 𝑓(𝑦)‖ < . 

This shows that f is continuous at x.                                                                                            

Since x is arbitrary, we have that f is continuous on X. 

Now we show that f is an open mapping: Let Gj be any basic open set.                                       

Now we claim that f(Gj) is open in f(X).                                                                                                            

Let z  f(Gj)  z = f(x) for some x  Gj.                                                                                       

x  Gj  There exists Gi  B such that x  Gi  �̅�𝑖  Gj.                                                                                                      

Write 𝑃𝑛0
= (𝐺𝑖 , 𝐺𝑗)  𝑓𝑛0

(�̅�𝑖) = 0, 𝑓𝑛0
(𝐺𝑗

′) = 1. Choose  such that 0 <  < 
1

2𝑛0
. 

Consider 𝑆𝜀(𝑧), the open set in R. Then 𝑆𝜀(𝑧) ∩ 𝑓(𝑋) is open in f(X).                                          

Let f(y)  𝑆𝜀(𝑧) ∩ 𝑓(𝑋)  ‖𝑓(𝑥) − 𝑓(𝑦)‖ <   [∑ |
𝑓𝑛(𝑥)−𝑓𝑛(𝑦)

𝑛
|

2
∞
𝑛=1 ]

1
2⁄

< .                                       

 ∑ |
𝑓𝑛(𝑥)−𝑓𝑛(𝑦)

𝑛
|

2
∞
𝑛=1 < 𝜀2 < (

1

2𝑛0
)

2
                                                                                                  

 |
𝑓𝑛0

(𝑥)−𝑓𝑛0
(𝑦)

𝑛0
|

2

 <  (
1

2𝑛0
)

2
  |

𝑓𝑛0
(𝑥)−𝑓𝑛0

(𝑦)

𝑛0
| <

1

2𝑛0
  |𝑓𝑛0

(𝑥) − 𝑓𝑛0
(𝑦)| <

1

2
                                           

  |𝑓𝑛0
(𝑦)| <

1

2
 (since x  Gi and 𝑓𝑛0

(𝐺𝑖) = 0).  y  Gj. (If y  Gj, then y  𝐺𝑗
′ 

 𝑓𝑛0
(𝑦) = 1  1 < ½ a contradiction). So, y  Gj  f(y)  f(Gj). 

This shows that S(z)  f(X)  f(Gj): Thus, we have an open set G = S(z)  f(X) 

in f(X) such that z  G  f(Gj)  f(Gj) is open in f(X).                                                                 

Consequently f: X → f(X) is open mapping.                                                                               

Hence X is homeomorphic to a subspace f(X) of R. Thus, X is metrizable. 

STONE-CECH COMPACTIFICATION. 

Theorem: Let X be an arbitrary completely regular space. Then there exists a 

compact Hausdorff space (X) with the following properties: (i) X is dense 

subspace of (X); (ii) every bounded continuous real function defined on X has a 

unique extension to a bounded continuous real function defined on (X). 

 

 

 


