

Fax: 08816-227318 off: 08816-224072, 224119,228342 Mobile: 9491334119 DANTULURI NARAYANA RAJU COLLEGE

(Autonomous) BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

E – CONTENT PAPER: M 104, TOPOLOGY M. Sc. I YEAR, SEMESTER - I UNIT – I: METRIC SPACES

PREPARED BY K, C. TAMMI RAJU, M. Sc. HEAD OF THE DEPARTMENT DEPARTMENT OF MATHEMATICS, PG COURSES DNR COLLEGE (A), BHIMAVARAM – 534202

M.Sc. Paper: 104, TOPOLOGY, UNIT: I, METRIC SPACES

Definition: Let X be a nonempty set and d: $X \times X \rightarrow \mathbb{R}$ be a function. d is said to be a *metric* on X if

(i) $d(x, y) \ge 0 \forall x, y \in X \text{ and } d(x, y) = 0 \text{ iff } x = y.$ (Non negativity)

(ii) $d(x, y) = d(y, x) \forall x, y \in X.$ (symmetry)

(iii) $d(x, y) \le d(x, z) + d(z, y) \forall x, y, z \in X$ (Triangle in equality).

If d is a metric on X then (X, d) is called a *metric space*. d(x, y) is called the distance between x and y.

Example: Define d: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by d(x, y) = |x - y| where \mathbb{R} is the set of all real numbers. Then d is a metric called *usual metric* on \mathbb{R} . Solution: (i) $d(x, y) = |x - y| \ge 0$. d(x, y) = 0 iff |x - y| = 0 iff x = y. (ii) d(x, y) = |x - y| = |y - x| = d(y, x)(iii) $d(x, y) = |x - y| = |x - z + z - y| \le |x - z| + |z - y| = d(x, z) + d(z, y)$. Hence d is a metric on \mathbb{R} .

Example: Define d: $\mathbb{C} \times \mathbb{C} \to \mathbb{R}$ by $d(z_1, z_2) = |z_1 - z_2|$ where \mathbb{C} is the set of all complex numbers. Then d is a metric on \mathbb{C} .

Solution: Let $z_1, z_2, z_3 \in \mathbb{C}$. (i) $d(z_1, z_2) = |z_1 - z_2| \ge 0$ and $d(z_1, z_2) = 0$ iff $|z_1 - z_2| = 0$ iff $z_1 = z_2$. (ii) $d(z_1, z_2) = |z_1 - z_2| = |-(z_1 - z_2)| = |z_2 - z_1| = d(z_2, z_1)$. (iii) $d(z_1, z_2) = |z_1 - z_2| = |z_1 - z_3 + z_3 - z_2| \le |z_1 - z_3| + |z_3 - z_2|$ $= d(z_1, z_3) + d(z_3, z_2)$. \therefore d is a metric called usual metric on \mathbb{C} .

<u>Problem</u>: Let X be a nonempty set and d: $X \times X \rightarrow \mathbb{R}$ be a function satisfying the following two conditions.

(i) d(x, y) = 0 if and only if x = y.

(ii) $d(x, y) \le d(x, z) + d(y, z) \forall x, y, z \in X.$

Then d is a metric on X.

Solution: (i) Put y = x in (ii). Then $d(x, x) \le d(x, z) + d(x, z) \Rightarrow 0 \le 2 d(x, z)$ $\Rightarrow d(x, z) \ge 0.$

(ii) Put x = z in (ii). $d(z, y) \le d(z, z) + d(y, z) \Rightarrow d(z, y) \le 0 + d(y, z)$.

 \Rightarrow d(z, y) \leq d(y, z) and this is true \forall y, z \in X.

 \therefore d(y, z) \leq d(z, y) is also true. Hence d(y, z) = d(z, y) \forall y, z \in X.

(iii) By (ii) $d(x, y) \le d(x, z) + d(y, z) = d(x, z) + d(z, y)$ since d(y, z) = d(z, y), $\therefore d(x, y) \le d(x, z) + d(z, y) \forall x, y, z \in X$. Hence d is a metric on X. Example: Let $X \ne \phi$. Define d: $X \times X \rightarrow \mathbb{R}$ by d(x, y) = 0 if x = y and d(x, y) = 1 if $x \ne y$. Then d is a metric on X called *discrete metric* and so (X, d) is a metric space called *discrete metric space*. Solution: (i) Clearly $d(x, y) \ge 0$ and d(x, y) = 0 iff x = y. (ii) If x = y then d(x, y) = 0 = d(y, x). If $x \ne y$, then d(x, y) = 1 = d(y, x). Thus, d(x, y) = d(y, x). (iii) Suppose x = y = z, then d(x, y) = 0 = 0 + 0 = d(x, z) + d(z, y). Suppose $x \ne y \ne z$. Then $d(x, y) = 0 \le 1 + 1 = d(x, z) + d(z, y)$. Suppose $x \ne y$. If $x = z, y \ne z$ then d(x, y) = 1 = 0 + 1 = d(x, z) + d(z, y). Similar is the case when $x \ne y, x \ne z, y = z$. Suppose no two are equal. Then $d(x, y) = 1 \le 1 + 1 = d(x, z) + d(z, y)$. Thus, in all the cases $d(x, y) \le d(x, z) + d(z, y)$. Hence d is a metric on X.

Problem: Let (X, d) be a metric space. Show that d₁ defined by $d_1(x, y) = \frac{d(x,y)}{1+d(x,y)}$ is a metric on X. Show that X is a bounded set in (X, d_1). **Solution**: Let x, y, $z \in X$. Since $d(x, y) \ge 0$, $d_1(x, y) = \frac{d(x,y)}{1+d(x,y)} \ge 0$. $d_1(x, y) = 0$ iff $\frac{d(x,y)}{1+d(x,y)} = 0$ iff d(x, y) = 0 iff x = y. Also $d_1(x, y) = \frac{d(x, y)}{1+d(x, y)} = \frac{d(y, x)}{1+d(y, x)} = d_1(y, x)$. $\therefore d_1$ is symmetric. Again $d_1(x, y) = \frac{d(x, y)}{1+d(x, y)} \le \frac{d(x, z)}{1+d(x, z)} + \frac{d(z, y)}{1+d(z, y)} = d_1(x, z) + d_1(z, y)$. Hence d_1 is also a metric on X. (i) For any x, $y \in X$, $0 \le d(x, y) \le 1 + d(x, y)$ $\Rightarrow 0 \le \frac{d(x, y)}{1+d(x, y)} \le 1$

∴ $d(X) = \sup \{d_1(x, y): x, y \in X\} \le 1$. This shows that X is bounded in the metric space (X, d_1) .

<u>Definition</u>: Let X be a nonempty set and d: $X \times X \rightarrow \mathbb{R}$ be a function such that

- (i) $d(x, y) \ge 0 \forall x, y \in X \text{ and } x = y \implies d(x, y) = 0.$
- (ii) $d(x, y) = d(y, x) \forall x, y \in X.$

(iii) $d(x, y) \le d(x, z) + d(z, y) \forall x, y, z \in X.$ Then d is said to be a *pseudo* – *metric* on X.

Note: Every metric is a pseudo – metric. But converse is not true.

Example: Let X be a set with $|X| \ge 2$. Define $d(a, b) = 0 \forall a, b \in X$. Then d is a pseudo metric but not a metric.

Solution: Clearly d is a pseudo metric. Let $a \neq b$. Then also d(a, b) = 0. \therefore d is not a metric.

Example: Let $X = \{1, 2, 3\}$. Define $d : X \times X \rightarrow \mathbb{R}$ by d(1, 1) = d(2, 2)= d(3, 3) = d(1, 2) = d(2, 1) = 0; d(2, 3) = d(3, 2) = d(3, 1) = d(1, 3) = 1. Then d is a pseudo metric but not a metric. **Solution**: Clearly d is a pseudo metric. $1 \neq 2$ but d(1, 2) = 0. So, d is not a metric.

Example: Give two examples of pseudo – metric which are not metrics.

Problem: Let X be a Pseudo metric on X and define '~' on X by $x \sim y \Leftrightarrow d(x, y) = 0$. (i) Show that '~' is an equivalence relation (ii) Define a metric on the set of all equivalence classes. **Solution**: (i) ~ is reflexive: $x ~ x ~ \forall ~ x \in X$ since d(x, x) = 0. \sim is symmetric: Suppose x \sim y. \Rightarrow d(x, y) = 0 \Rightarrow d(y, x) = 0. \Rightarrow y ~ x. \sim is transitive: Suppose x \sim y, y \sim z \Rightarrow d(x, y) = 0 and d(y, z) = 0. Now $d(x, z) \le d(x, y) + d(y, z) = 0 + 0 = 0$. \Rightarrow d(x, z) = 0 \Rightarrow x ~ z. Hence \sim is an equivalence relation. Define $d^{*}([x], [y]) = d(x, y)$. Then $d^{*}([x], [y]) = d(x, y) \ge 0$. $d^{*}([x], [y]) = 0$ iff d(x, y) = 0 iff $x \sim y$ iff [x] = [y]. $d^{*}([x], [y]) = d(x, y) = d(y, x) = d^{*}([y], [x]).$ $d^{*}([x], [y]) = d(x, y) \le d(x, z) + d(z, y) = d^{*}([x], [z]) + d^{*}([z], [y]).$ Hence d* is a metric on the set of all equivalence classes $\{[x] : x \in X\}$.

Definition: Let X be a nonempty set. If for each $x \in X$, there corresponds a real number ||x||, and it satisfies the conditions

- (i) $||x|| \ge 0$ and ||x|| = 0 iff x = 0.
- (ii) $||-x|| = ||x|| \forall x \in X.$
- (iii) $||x + y|| \le ||x|| + ||y|| \forall x, y \in X$

then ||x|| is called *norm* of $x \in X$.

Example: Let ||x|| be norm of $x \in X$ as defined as above. If we define d(x, y) = ||x - y|| then (X, d) is a metric space and 'd' is called the metric *induced by the norm*. **Proof:** Let $x, y \in X$. (i) Then $d(x, y) = ||x - y|| \ge 0$. Now d(x, y) = 0 iff ||x - y|| = 0 iff x - y = 0 iff x = y. (ii)d(x, y) = ||x - y|| = ||-(y - x)|| = ||y - x|| = d(y, x)

(iii)Let x, y, $z \in X$. Then $d(x, y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x, z) + d(z, y)$.

 \therefore (X, d) is a metric space.

<u>Define</u>: Let $f: [0, 1] \to \mathbb{R}$. F is said to be *bounded* if there exists $k \in \mathbb{R}$ such that $|f(x)| \le k$ for every $x \in [0, 1]$.

Example: Let X = {f / f: [0, 1] $\rightarrow \mathbb{R}$, f is bounded and continuous}. Define ||f|| by $||f|| = \int_0^1 |f(x)| dx$ (here the integral involved is the Riemann integral) Then d defined by d(f, g) = $||f - g|| = \int_0^1 |f(x) - g(x)| dx$ is induced metric. **Solution**: $||f|| = \int_0^1 |f(x)| dx \ge 0 \because |f(x)| \ge 0$. ||f|| = 0 iff $\int_0^1 |f(x)| dx = \text{iff } |f(x)| = 0 \forall x$ iff f = 0 (zero function. $||-f|| = \int_0^1 |-f(x)| dx = \int_0^1 |f(x)| dx = ||f||$ Let f, g \in X. Then $||f + g|| = \int_0^1 |(f + g)(x)| dx \le \int_0^1 \{|f(x)| + |g(x)|\} dx$ $= \int_0^1 |f(x)| dx + \int_0^1 |g(x)| dx = ||f|| + ||g|| \therefore ||f|| = \int_0^1 |f(x)| dx$ defines norm on X.

Hence d defined by $d(f, g) = ||f - g|| = \int_0^1 |f(x) - g(x)| dx$ is induced metric.

Example: Let $X = \{f / f: [0, 1] \rightarrow \mathbb{R}, f \text{ is bounded and continuous}\}$. Define ||f|| by $||f|| = \sup \{|f(x)|: x \in [0, 1]\}$. Then d defined by $d(f, g) = ||f - g|| = \sup \{|f(x)|: x \in [0, 1]\}$.

 $\{|f(x) - g(x)|: x \in [0, 1]\}$ is a metric and this metric space is denoted by C[0, 1]

Solution: Let $f \in X$. Then $||f|| = \sup \{|f(x)| : x \in [0, 1]\} \ge 0 \because |f(x)| \ge 0$. ||f|| = 0 iff $\sup \{|f(x)| : x \in [0, 1]\} = 0$ iff $|f(x)| \forall x \in [0, 1]$ iff f = 0 (zero function. $||-f|| = \sup \{|-f(x)| : x \in [0, 1]\} = \sup \{|f(x)| : x \in [0, 1]\} = ||f||$ Let $f, g \in X$. Then $||f + g|| = \sup \{|(f + g)(x)| : x \in [0, 1]\}$ $= \sup \{|f(x) + g(x)|\} \le \sup \{|f(x)| + |g(x)|\} \le \sup \{|f(x)|\} + \sup \{|g(x)|\} = ||f|| + ||g||$. $\therefore ||f|| = \sup \{|f(x)| : x \in [0, 1]\}$ defines norm on X. d defined on X by d(f, g) = $||f - g|| = \sup \{|f(x) - g(x)| : x \in [0, 1]\}$ is a metric on X.

SUBSPACE

Definition: Let (X, d) be a metric space and $Y \subseteq X$. Then the restrictions of 'd' to Y, then (Y, d) is a metric space and (Y, d) is called *subspace* of (X, d). **Definition**: Let (X, d) be a metric space and $A \subseteq X$.

- (i) If $x \in X$ then the distance from x to A, $d(x, A) = \inf \{d(x, a) / a \in A\}$.
- (ii) The diameter of the set A, $d(A) = \sup \{d(x, y) / x, y \in A\}$.
- (iii) If d(A) = ±∞ then A is said to have infinite diameter, otherwise, it is said to have finite diameter. Note that if A = \$\ophi\$ then d(\$\ophi\$) = sup {d(x, y) / x, y ∈ \$\ophi\$} = sup \$\ophi\$ = -∞ and so \$\ophi\$ has infinite diameter.
- (iv) A is said to be bounded if d(A) is finite. A mapping $f: Y \to X$ where $Y \neq \phi$ and (X, d) is a metric space is said to be bounded if the set f(Y) is bounded in (X, d).

Example: Let \mathbb{R}^k be the Euclidean space.

Define $d(x, y) = |x - y| \forall x, y \in \mathbb{R}^k$. Then d is a metric on \mathbb{R}^k .

OPEN SETS

Let (X, d) be a metric space. Let $x_0 \in X$ and r be a positive real number. Then $N_r(x_0) = S_r(x_0) = \{x \in X / d(x, x_0) < r\}$ is called the open sphere with centre x_0 and radius r. It is also called neighbourhood of x_0 with radius r.

<u>Note</u>: $S_r(x_0) \neq \phi$.

Example: (i) If (X d) is a metric space where $X \neq \phi$ and 'd' is a metric on X, defined by d(x, y) = 0 if x = y and 1 if $x \neq y$. Then for every $x_0 \in X$, $S_l(x_o) = \{x_0\}$.

(ii) Consider (\mathbb{R} , d) where \mathbb{R} is the set of all real numbers, d is a usual metric on \mathbb{R} . Then for any $x_0 \in \mathbb{R}$, $S_r(x_0) = (x_0 - r, x_0 + r)$.

Definition : Let X be a metric space. All points and sets mentioned here are elements and subsets of X.

- (i) A point p is a limit point of the set E if every neighbourhood of p contains a point q such that p ≠ q and q ∈ E; The set of all limit points of E is denoted by D(E).
- (ii) If $p \in E$ and p is not a limit point of E, then p is called an isolated point of E;
- (iii) A set E is said to be closed if every limit point of E is a point of E;
- (iv) A point p of E is said to be an interior point of E if there exists a neighbourhood N of p such that $p \in N \subseteq E$. The set of all interior points of A, is called the interior of A. It is denoted by Int (A);
- (v) A set E is open if every point of E is an interior point. Equivalently, a subset G of the metric space X is called an open set if given $x \in G$

there exists a positive real number r such that $S_r(x) \subseteq G$;

- (vi) A set E is said to be perfect if E is closed and every point of E is a limit point of E;
- (vii) E is bounded if there exists a real number M and a point $q \in X$ such that d(p,q) < M, for all $p \in E$.

Definition: A subset E of a metric space X is said to be dense in X if every point of X is a limit point of E or a point of E, or both.

Note: Consider the set \mathbb{R} of real numbers with usual metric d. The set [0, 1) is not open as a subset of \mathbb{R} , since $0 \in [0, 1)$ is not an interior point. If we consider [0, 1) as a metric space X in its own right, as a subspace of the real line, then [0, 1) is open as a subset of X, since from this point of view it is the full space.

Theorem: In any metric space X the empty set and the full space X are open sets.

<u>Proof:</u> To show that ϕ is open, we must show that each point in ϕ is the centre of an open sphere contained in ϕ ; but since there are no points in ϕ , the requirement is automatically satisfied. Hence ϕ is open.

Since every open sphere centred on each of the points in X, is contained in X, we have X is open.

 \Rightarrow y \in S_r(x₀). Hence S_s(x) \subseteq S_r(x₀). \therefore S_r(x₀) is an open set.

Theorem: Let X be a metric space. A subset G of X is open if and only if it is a union of open spheres

<u>Proof</u>: Suppose G is Open. If $G = \phi$, then it is the union of the empty class of open spheres. If $G \neq \phi$, then for any $x \in G \exists r_x > 0$ such that $S_{r_x}(x) \subseteq G$.

Then G = $\bigcup_{x \in G} S_{r_x}(x)$

Conversely suppose $G = \bigcup_{x \in I} S_{r_x}(x)$, where $\{S_{r_x}(x)\} / x \in I\}$ is a collection of open spheres.

If $I = \phi$, then $G = \phi$ which is an open set.

Suppose $I \neq \phi$. Let $y \in G$.

Since $G = \bigcup_{x \in I} S_{r_x}(x)$, we have $y \in S_{r_x}(x)$ for some $x \in I$.

By above lemma, $\exists r > 0 \ni S_r(y) \subseteq S_{r_x}(x)$.

Hence $S_r(y) \subseteq S_{r_x}(x) \subseteq G$. This shows that G is open.

Theorem: Let X be a metric space. Then (i) union of open sets in X is open; and (ii) finite intersection of open sets in X is open.

<u>Proof</u>: (i) Let $\{G_i\}_{i \in I}$ be a collection of open sets. Write $G = \bigcup_{i \in I} G_i$. We have to show that G is open.

If I = ϕ then the union of the empty class of open sets G_i is G = ϕ which is open If I

 $\neq \phi$, then by above theorem, each G_i is a union of open spheres. Again by above Theorem G is open.

(ii) Let $\{G_i\}_{1 \le i \le n}$ be a finite collection of open sets in X. Claim: $G = \bigcap_{i=1}^{n} G_i$ is open.

If I = ϕ then the class of $\{G_i\}_{1 \le i \le n}$ is ϕ and hence $\bigcap_{i=1}^n G_i = X$ which is open. Let I $\neq \phi$. If G = ϕ then G is open. Suppose G $\neq \phi$. Let $x \in G = \bigcap_{i=1}^n G_i$. Since each G_i is open $\exists r_i > 0$ such that $S_{r_i}(x) \subseteq G_i$. Write $r = \min\{r_1, r_2, ..., r_n\}$. Then $S_r(x) \subseteq S_{r_i}(x) \subseteq G_i$ for all $1 \le i \le n$, which shows that $S_r(x) \subseteq \bigcap_{i=1}^n G_i = G$. Hence G is open.

<u>Remark</u>: Intersection of infinite collection of open sets need not be open. For, consider \mathbb{R} with usual metric. Write $G_i = \left(-\frac{1}{i}, \frac{1}{i}\right)$. Then $G = \bigcap_{i=1}^{\infty} G_i = \{0\}$ which is not open.

<u>**Problem</u>**: Let G be an open set in \mathbb{R} . Define ~ on G as x, y \in G, x ~ y if and only if \exists open interval (a, b) such that x, y \in (a, b) \subseteq G. Then</u>

- (i) \sim is an equivalence relation
- (ii) For any $x \in G$, if $I_x = \bigcup \{(a, b) \mid x \in (a, b) \subseteq G\}$, then I_x is an open interval such that $x \in I_x \subseteq G$.
- (iii) $[x] = I_x$ and
- $(iv) \quad G=\cup \, I_x, x\in G.$

Solution: (i) Let $x \in G$. Since G is open $\exists r > 0 \ni x \in S_r(x) = (x - r, x + r) \subseteq G$. $\therefore x \sim x \forall x \in G$. Viz. \sim is reflexive.

Let x, y \in G \ni x ~ y. Then \exists open interval (a, b) such that x, y \in (a, b) \subseteq G.

 $\Rightarrow \exists$ open interval (a, b) such that y, x \in (a, b) \subseteq G.

 \Rightarrow y ~ x. Viz. ~ is symmetric.

Let x, y, $z \in G \ni x \sim y$ and $y \sim z$.

Then \exists open intervals (a, b), (c, d) $\ni x, y \in (a, b) \subseteq G$ and $y, z \in (c, d) \subseteq G$. Since $y \in (a, b) \cap (c, d)$ and $(a, b) \cup (c, d)$ is an interval we get $x, z \in (a, b) \cup (c, d) \subseteq G$. $\therefore x \sim z$. Viz. \sim is transitive.

Hence \sim is an equivalence relation.

(ii) Let $x \in G$ and $I_x = \bigcup \{(a, b) / x \in (a, b) \subseteq G\}$. Then I_x is an open set. Since the intersection of all the intervals involved in this union contains x, we have that I_x is nonempty. Thus, I_x is an interval such that $x \in I_x \subseteq G$.

(iii) Let
$$u \in [x]$$
.
Then $u \sim x \implies \exists$ open interval (a, b) such that $u, x \in (a, b) \subseteq G$

 $\Rightarrow u \in (a, b) \subseteq I_x. \therefore [x] \subseteq I_x.$

Let $y \in I_x$. Then $y \in (a, b)$ for some (a, b) with $x \in (a, b) \subseteq G$

 \Rightarrow y, x \in (a, b) \subseteq G \Rightarrow y ~ x \Rightarrow y \in [x]. Hence [x] = I_x.

(iv) Since the set of equivalence classes $[x] = I_x$, $x \in G$ for some partition for G, we have $G = \bigcup I_x$, $x \in G$.

<u>**Theorem</u>**: Every non-empty open set on the real line is the union of a countable disjoint class of open intervals.</u>

<u>Proof</u>: Let G be a non-empty open subset of the real line. Let x be a point of G. Since G is open, x is the centre of a bounded open interval contained in G. Define $I_x = \bigcup \{(a, b) \mid x \in (a, b) \subseteq G\}$.

Next we observe that if x and y are two distinct points of G then I_x and I_y are either disjoint or identical.

For, suppose $z \in I_x \cap I_y \Rightarrow z \in I_x$ and $z \in I_y$.

Then $I_z = I_x$ and $I_y = I_z$ (by above problem). Therefore $I_x = I_y$.

Consider the class I of all distinct sets of the form I_x for some point x in G. This is a disjoint class of open intervals, and G is its union. It remains to prove that I is countable.

Let G_r be the set of rational points in G. Clearly G_r is non-empty.

Define f: $G_r \rightarrow I$ as $f(r) = [r] = I_r$. If $I_x \in I$ then I_x contains at least one rational number u. Now $u \in I_x \subseteq G \Rightarrow u \in G_r$. Also $f(u) = [u] = I_u = I_x$. Hence f is onto. Since G_r is countable and f: $G_r \rightarrow I$ is onto, we have that I is countable.

<u>Definition</u>: Let (X, d) be a metric space, $A \subseteq X$ and $x \in A$. Then x is said to be an interior point of A if there exists r > 0 such that $S_r(x) \subseteq A$.

The set of all interior points of A is called the interior of A. It is denoted by Int (A). So Int (A) = $\{x \in A \text{ and } Sr(x) \subseteq A \text{ for some } r\}$.

<u>**Proposition**</u>: Write $X = \mathbb{R}$, the set of real numbers with usual metric. Find Int (Q), where Q is the set of all rational numbers.

Solution: Let $x \in Int (Q) \Rightarrow$ there exists a real number r > 0 such that $S_r(x) \subseteq Q$ $\Rightarrow (x - r, x + r) \subseteq Q$. Since r > 0, we have that $x - r \neq x + r$. We know that between any two real numbers there is an irrational number. $\therefore \exists$ an irrational number q such that $x - r < q < x + r \Rightarrow q \in (x - r, x + r) \subseteq Q$. $\therefore Q$ contains an irrational number q, a contradiction. Hence Int $Q = \phi$.

<u>Result</u>: (i) Int (A) is an open subset of A; (ii) Int (A) contains every open subset of A; (iii) Int (A) is the largest open subset of A.

Proof: (i) Clearly Int (A) ⊆ A. Let $x \in$ Int (A). Then $\exists r > 0$ such that $S_r(x) \subseteq A$. Let $y \in S_r(x)$. Then $\exists s > 0$ such that $S_s(y) \subseteq S_r(x) \subseteq A$. $\Rightarrow y \in$ Int (A). $\Rightarrow S_r(x) \subseteq$ Int (A) for all $x \in$ Int (A). Hence Int (A) is an open set. (ii) Let G be an open set of A. Let $x \in G$. Since G is open $\exists r > 0$ such that $S_r(x) \subseteq$ G. Now $S_r(x) \subseteq G \subseteq A \Rightarrow S_r(x) \subseteq A \Rightarrow x \in$ Int (A). Therefore $G \subseteq$ Int (A). (iii) From (i), Int (A) is an open set. If Int (A) is not the largest open set contained in A, then there exists an open set G in A such that Int (A) ⊂ G. But form (ii), we get $G \subseteq$ Int (A). Therefore $G \subseteq$ Int (A). Therefore $G \subseteq$ Int (A). Therefore $G \subseteq$ Int (A).

<u>Result</u>: A is open if and only if A = Int (A). <u>**Proof:**</u> Suppose A is open. Then by a result Int (A) is the largest open subset of A. Hence A = Int (A). Conversely A = Int (A) implies that A is open since Int (A) is open.

<u>Result</u>: Int (A) is the union of all open subsets of A. <u>**Proof**</u>: Let {G_i / i ∈ I} be the collection of all open subsets contained in A. Since each G_i is open and G_i ⊆ Int (A). $\Rightarrow \bigcup_{i \in I} G_i ⊆ Int (A)$. Let x ∈ Int (A) $\Rightarrow \exists r > 0 \Rightarrow S_r(x) ⊆ A$. Since S_r(x) is open, we have that S_r(x) = G for some j ∈ I. So x ∈ S_r(x) = G_j ⊆ $\bigcup_{i \in I} G_i$. Hence Int (A) ⊆ $\bigcup_{i \in I} G_i$ Thus Int(A) = $\bigcup_{i \in I} G_i$.

CLOSED SETS

Definition: A subset F of a metric Space X is called a closed set if it contains each of its limit points.

Theorem: In any metric space X, the empty set ϕ and the full space X are closed sets.

<u>Proof</u>: Since ϕ contains no limit points, we have that ϕ is closed. Since X contains all points of the metric space, we have that X is closed.

Theorem: A set E is open if and only if E^c (the complement of E) is closed.

<u>**Proof**</u>: Suppose E is open. Let x be a limit point of E^c. we have to show that $x \in E^c$. If $x \notin E^c$ then $x \in (E^c)^c = E$. Since E is open and $x \in E$, there exists r > 0 such that $S_r(x) \subseteq E \Rightarrow S_r(x) \cap E^c = \phi$. $\Rightarrow x$ is not a limit point of E^c, a contradiction. $\therefore x \in E^c$. Hence E^c is closed.

Converse: Suppose E^c is closed. Now we show that E is open. Let $y \in E$. Then $y \notin E^c \Rightarrow y$ is not a limit point of $E^c \Rightarrow \exists$ a neighbourhood N of y such that $N \cap E^c = \phi \Rightarrow y \in N \subseteq E$. \therefore y is an interior point of E. Since y is an arbitrary point in E, we have that every point of E is interior point of E. Hence E is open.

<u>Corollary</u>: A set F is closed if and only if F^c is open. <u>Proof</u>: Follows from the above theorem.

Definition: Let X be a metric space. $x_0 \in X$, r be a non negative real number. Then $S_r[x_0] = \{x \mid x \in X, d(x, x_0) \le r\}$ is called the *closed sphere* with centre x_0 and radius r.

 $\begin{array}{l} \hline \textbf{Theorem:} & \text{In a metric space } X, \text{ each closed sphere } S_r[x_0] \text{ is a closed set.} \\ \hline \textbf{Proof:} & \text{First we show that } Y = \text{the complement of } S_r[x_0] \text{ is open.} \\ \hline \text{If } Y = \phi, \text{ then it is open. Suppose } Y \neq \phi. \text{ Let } x \in Y \text{ then } d(x, x_0) > r. \\ \hline \text{Let } s = d(x, x_0) - r > 0. \text{ Consider } S_s(x). \text{ Let } z \in S_s(x). \text{ Then } d(x, z) < s. \\ \hline \text{So } d(x_0, x) \leq d(x_0, z) + d(z, x). \\ \hline \Rightarrow d(x_0, z) \geq d(x_0, x) - d(x, z) > d(x_0, x) - s = r \\ \hline \Rightarrow d(x_0, z) > r \Rightarrow z \notin S_r[x_0] \\ \hline \Rightarrow z \in Y. \text{ Hence } S_s(x) \subseteq Y. \\ \hline \therefore \text{ for any } x \in Y, \exists s > 0 \Rightarrow x \in S_s(x) \subseteq Y. \\ \hline \therefore Y \text{ is open. Hence } S_r[x_0] \text{ is closed.} \end{array}$

Theorem: (i) Let X be a metric space. Then (i) any intersection of closed sets in X is closed; ie. If $\{F_{\alpha} / \alpha \in I\}$ is a collection of closed sets then $\cap F_{\alpha}$ is closed. (ii) any finite union of closed sets in X is closed. Ie. For any finite collection F_1 , F_2 , ..., F_n of closed sets, $F_1 \cup F_2 \cup ... \cup F_n$ is closed.

....

 $\begin{array}{l} \underline{Proof:} \hspace{0.2cm} (i) \hspace{0.2cm} \text{Let} \hspace{0.2cm} \{F_{\alpha} \, / \, \alpha \in I\} \hspace{0.2cm} \text{be a collection of closed sets} \\ \\ \text{Since each } F_{\alpha} \hspace{0.2cm} \text{is closed, we have that } F_{\alpha}{}^{c} \hspace{0.2cm} \text{is open.} \\ \\ \{F_{\alpha}{}^{c}: \alpha \in I\} \hspace{0.2cm} \text{is a collection of open sets.} \\ \\ \text{By a theorem, } \cup F_{\alpha}{}^{c} \hspace{0.2cm} \text{is open.} \Rightarrow (\cap F_{\alpha})^{c} = \cup F_{\alpha}{}^{c} \hspace{0.2cm} \text{is open} \\ \\ \\ \Rightarrow \cap F_{\alpha} \hspace{0.2cm} \text{is closed.} \\ \\ (ii) \hspace{0.2cm} \text{Let} \hspace{0.2cm} F_{i}, \hspace{0.2cm} l \leq i \leq n, \hspace{0.2cm} \text{are open sets.} \end{array}$

Now $(F_1 \cup F_2 \cup ... \cup F_n)^c = F_1^c \cap F_2^c \cap ... \cap F_n^c$ is open $\Rightarrow F_1 \cup F_2 \cup ... \cup F_n$ is closed.

Example: Consider the following sub sets of \mathbb{R}^2

(i) $\{z \in \mathbb{C} \mid |z| \le 1\}$ is open, not closed, not perfect, bounded.

(ii) $\{z \in \mathbb{C} \mid |z| \le 1\}$ is closed, not open, perfect and bounded.

(iii) A finite set is closed, not open, not perfect, bounded.

(iv) The set of all integers is closed, not open, not perfect and not bounded.

(v) $E = \{1/n : n \in \mathbb{N}\}$ is not closed, not open, not perfect but bounded. Here note that this set has only limit point 0, and $0 \notin E$.

(vi) \mathbb{C} (set of complex numbers) is closed, open, perfect but not bounded.

(vii) (a, b) as a subset of \mathbb{R}^2 , is not closed, open, not perfect but bounded.

<u>Note</u>: (i) If { F_{α} } is a collection of sets then { $(\cup F_{\alpha})^{c} = \cap F_{\alpha}^{c}$.

(ii) An arbitrary union of closed sets need not be closed.

For, Consider $A_n = \left[-\frac{1}{n}, \frac{1}{n}\right]$ for $n \in \mathbb{N}$. Then $\bigcup_{n=1}^{\infty} A_n = (0, 1)$ which is not closed, because 0 and 1 are limit points of (0, 1) and these are not in (0, 1).

Theorem: Let E be a nonempty set of real numbers which is bounded above. Let $y = \sup E$. Then (i) $y \in \overline{E}$ and (ii) $y \in E$ if E is closed.

<u>Proof</u>: (i) If $y \in E$, then clearly $y \in E \subseteq \overline{E}$. Suppose $y \notin E$. Now $y = \sup E \Rightarrow$ for any $\varepsilon > 0$, $y - \varepsilon$ is not an upper bound $\Rightarrow \exists x \in E$ such that $y - \varepsilon < x < y$ $\Rightarrow x \in (y - \varepsilon, y + \varepsilon) = S_{\varepsilon}(y)$ and $x \in E \Rightarrow x \in \{E \cap S_{\varepsilon}(y)\} - \{y\}$ $\Rightarrow y$ is a limit point of $E \Rightarrow y \in D(E) \subseteq E \cup D(E) = \overline{E}$. (ii) If E is closed then $E = \overline{E}$ and hence $y \in \overline{E} = E$.

Construction of the CANTOR set.

To construct the Cantor set, we proceed as follows: Write $F_1 = [0, 1]$. From F_1 , delete the open interval $(\frac{1}{3}, \frac{2}{3})$ which is an open middle third of F_1 . Write $F_2 = [0, 1] - (\frac{1}{3}, \frac{2}{3}) = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. Now from F_2 , delete the middle thirds of two pieces.

Write $F_3 = F_2 - \left\{ \left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right) \right\} = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{3}{9}\right] \cup \left[\frac{6}{9}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$ If we continue this process of deleting the open middle third of intervals, we obtain a sequence of closed sets F_n such that $F_n \supseteq F_{n+1} \supseteq \dots$ Now write $F = \bigcap_{n=1}^{\infty} F_n$. This F is called the Cantor set.

<u>Note</u>: (i) By above construction, since each F_n is a finite union of closed intervals, we have that each F_n is closed. So, $F = \bigcap_{n=1}^{\infty} F_n$ is closed. Hence Cantor's set is closed.

(ii) Since we are deleting the open middle third intervals from each F_n finally F contains the end points of the closed intervals of F_n for each n. The end points of the closed intervals in F_1 are 0, 1. The end points of the closed intervals in F_2 are 0, 1/3, 2/3 and 1. The end points of the closed interval in F_3 are 0, 1/9, 2/9, 6/9, 7/9, 8/9, 1. Therefore F contains 0, 1/3, 2/3, 1/9, 2/9, ...

Therefore, there are some numbers in F other than the end points.

(iii) The cardinal number 0f F is c, the cardinal number of the continuum.

(iv) We can define a bijection f: $[0, 1) \rightarrow F$. For this, let $x \in [0, 1)$.

Suppose $x = 0.b_1b_2...$ be its binary expansion. Now each bn is either 0 or 1. Write $t_n = 2b_n$ for each n, and write $f(x) = 0.t_1t_2...$ Now

consider f(x) = 0. t_1t_2 ... as a number of ternary expansion.

Now $f(x) \in F$. Now it can be verified that f is one to one and onto.

(v) Let us consider the sum of lengths of the open intervals removed at every stage. First stage we removed the open interval (1/3, 2/3) and its length is 1/3. Second stage we removed (1/9, 2/9) and (7/9, 8/9). The sum of the length of these two intervals is 1/9 + 1/9 = 2/9 and so continuing this way we obtain a sequence of lengths 1/3, 2/9, 4/27, ... These numbers form a geometric progression with first term 1/3 and common ratio 2/3.

Therefore, the sum is $\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = \frac{\frac{1}{3}}{1 - \frac{2}{3}} = 1$

<u>Definition</u>: Let X be a metric space and $A \subseteq X$. Then the closure of A (denoted by \overline{A}) is defined by $\overline{A} = A \cup D(A)$ where D(A) is the set of all limit points of A.

<u>Result</u>: A is closed if and only if $A = \overline{A}$ **<u>Proof</u>:** (i) Suppose A is closed \Rightarrow all the limit points of A are in $A \Rightarrow D(A) \subseteq A$ $\Rightarrow \overline{A} = A \cup D(A) \subseteq A \Rightarrow \overline{A} \subseteq A$. Hence $A = \overline{A}$ Converse: Suppose $A = \overline{A}$ $\Rightarrow A \cup D(A) \subseteq A \Rightarrow D(A) \subseteq A$ $\Rightarrow all the limit points of A are in A \Rightarrow A is closed.$

Result: \overline{A} is a closed superset of A which is contained in any closed superset of A (equivalently, (i) $A \subset \overline{A}$ (ii) $\overline{A} = \overline{A}$; and (iii) B is a closed set such that $A \subset B$ then $\bar{A} \subset B$ (iv) \bar{A} equals to the intersection of all closed supersets of A. **Proof**: (i) By the definition of \overline{A} , we have that $A \subset \overline{A}$. (ii) To show that $\overline{A} = \overline{A}$; Clearly $\overline{A} \subseteq \overline{A}$. Let $x \in \overline{A}$. Then either $x \in \overline{A}$ or $x \in D(\overline{A})$ = the set of all limit points of \overline{A} . If $x \in \overline{A}$, it is clear. Suppose $x \in D(\overline{A}) \Rightarrow x$ is a limit point of \overline{A} . If $x \in A$ then clearly $x \in A \subset \overline{A}$. Suppose $x \notin A$, Consider $S_r(x)$ and r > 0. Since it is a limit point of \overline{A} there exists y $\in \overline{A} \cap S_r(x)$ such that $x \neq y, y \in S_r(x) \Longrightarrow d(x, y) < r$. Now $y \in \overline{A} = A \cup D(A)$. If $y \in A$ then $y \in A \cap S_r(x)$. If $y \notin A$ then $y \in D(A) \Rightarrow y$ is a limit point of A. Put s = r - d(x, y). Then s > 0 and $\exists z \in A \cap S_s(y)$ and $z \neq y$. Now $d(x, z) \le d(x, y) + d(y, z) < d(x, y) + s = r$. \therefore either y or z is in A and also is in S_r(x). \therefore x is a limit point of A which implies that $x \in D(A) \subseteq A \cup D(A) = \overline{A}$. $\therefore \overline{\overline{A}} \subseteq \overline{A}$. Hence $\overline{A} = \overline{\overline{A}}$. (iii) Let B be a closed set such that $A \subset B$. Now we wish to show that $\overline{A} \subset B$. For this, let $x \in \overline{A} \Rightarrow x \in A$ or $x \in D(A)$ (since $A = A \cup D(A)$]. If $x \in A$ then $x \in B$ (since $A \subseteq B$). If $x \in D(A)$, then since $D(A) \subseteq D(B)$ we have $x \in D(B)$ \Rightarrow x \in B \cup D(B) = \overline{B} = B (since B is closed). Hence $x \in \overline{A} \Rightarrow x \in B$. This shows that $\overline{A} \subset B$. (iv) Let $\{B_i | i \in I\}$ is the collection of all closed supersets of A. By (iii), $\overline{A} \subseteq B$ for all $i \in I \Longrightarrow \overline{A} \subseteq \cap B_i$ Since \overline{A} is closed and $A \subseteq \overline{A}$, we have that \overline{A} belongs to the collection $\{B_i \mid i \in I\}$ $\Rightarrow \cap B_i \subset \overline{A}.$ Hence $\overline{A} = \bigcap B_i$.

Definition: Let X be a metric space, $A \subseteq X$. $x \in X$ is said to be a *boundary point* of A if each open sphere centred on the point x intersects both A and A'. The set of all boundary points of A is called the *boundary* of A.

Note: (i) The boundary of A equals

(ii) The boundary of A is a closed set. (iii) A is closed iff it contains its boundary.

Example: Consider R with usual metric. Write $x = 0 \in R$, A = (0, 1), B = [0, 1]. x is a boundary point of both A and B. $x \notin A$ and $x \in B$. Therefore, a boundary point x of a set X need not be in the set X.

<u>Result</u>: Let $x \notin A$. Then x is a limit point of A iff x is a boundary point of A. <u>**Proof**</u>: Suppose $x \notin A$ and x is a limit point of A. $\Rightarrow x \in D(A)$ and $x \in A'$ \Rightarrow for every r > 0, the nbd $S_r(x)$ intersects both A and A'. $\Rightarrow x$ is a boundary point of A. Conversely, suppose x is a boundary point of A. $\Rightarrow S_r(x)$ intersects A for every r > 0. Also given $x \notin A$. $\therefore x$ is a limit point of A.

CONVERGENCE, COMPLETENESS AND BAIRE'S THEOREM

Definition: Let (X, d) be a metric space and $\{x_n\}$ be a sequence of points in X. Then $\{x_n\}$ *converges* if \exists a point $x \in X \ni$ for each $\varepsilon > 0 \exists$ a positive integer m $\exists d(x_n, x) < \varepsilon \forall n \ge m$. This fact is denoted by $x_n \to x$ or $\lim x_n = x$. or equivalently, for each open sphere $S_{\varepsilon}(x) \exists m \in \mathbb{Z}^+ \ni x_n \in S_{\varepsilon}(x) \forall n \ge m$.

<u>Note</u>: The following two conditions are equivalent: (i) $\{x_n\}$ converges to x in a metric space (X, d) and (ii) $\{d(x_n, x)\}$ converges to a real number 0.

 $\begin{array}{l} \underline{Problem}: \mbox{ Let } X \mbox{ be a metric space. If } \{x_n\}, \{y_n\} \mbox{ are sequences in } X \ensuremath{\:\ni\)} x_n \ensuremath{\:\rightarrow\)} x \mbox{ and } y_n \ensuremath{\:\rightarrow\)} y \mbox{ then } d(x_n, y_n) \ensuremath{\:\rightarrow\)} d(x, y). \\ \underline{Solution}: \mbox{ Let } \epsilon > 0. \mbox{ Since } x_n \ensuremath{\:\rightarrow\)} x \ensuremath{\:\exists\)} k_1 \ensuremath{\in\)} \mathbb{Z}^+ \ensuremath{\:\rightarrow\)} d(x_n, x) < \epsilon/2 \ensuremath{\:\vee\)} n \ge k_1. \\ \mbox{ Since } y_n \ensuremath{\:\rightarrow\)} y \ensuremath{\:\cong\)} k_2 \ensuremath{\:\in\)} \mathbb{Z}^+ \ensuremath{\:\rightarrow\)} d(x_n, x) < \epsilon/2 \ensuremath{\:\rightarrow\)} n \ge k_1. \\ \mbox{ Since } y_n \ensuremath{\:\rightarrow\)} y \ensuremath{\:\cong\)} k_2 \ensuremath{\:\in\)} \mathbb{Z}^+ \ensuremath{\:\rightarrow\)} d(x_n, x) < \epsilon/2 \ensuremath{\:\times\)} n \ge k_1. \\ \mbox{ Now take } k = max \ensuremath{\:\in\)} k_1, k_2 \ensuremath{\:\times\)} n \ge k_2. \\ \mbox{ Now take } k = max \ensuremath{\:\in\)} k_1, k_2 \ensuremath{\:\times\)} n \ge k_1, k_2 \ensuremath{\:\times\)} n \ge k_2. \\ \mbox{ Then } d(x_n, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n) \\ \ensuremath{\:\rightarrow\)} d(x_n, y_n) - d(x, y) + d(y_n, y) \\ \ensuremath{\:\rightarrow\)} d(x_n, y_n) \ensuremath{\:\times\)} d(x_n, x_n) + d(y_n, y) \\ \ensuremath{\:\rightarrow\)} d(x, y) - d(x_n, y_n) \ensuremath{\:\le\)} d(x, x_n) + d(y_n, y) < \epsilon/2 + \epsilon/2 = \epsilon \ensuremath{\:\otimes\)} n \ge k...(ii) \\ \ensuremath{\:\times\)} From (i) and (ii) \ensuremath{\:\mid\)} d(x_n, y_n) \ensuremath{\:\rightarrow\)} d(x, y) \ensuremath{\:<\)} d(x, y) \ensuremath{\:\times\)} d$

<u>Definition</u>: A sequence $\{x_n\}$ of points in a metric space (X, d) is said to be a *Cauchy sequence* if for each $\varepsilon > 0 \exists k \in \mathbb{Z}^+ \mathfrak{z} \ d(x_n, x_m) < \varepsilon \forall n, m \ge k$.

<u>Note</u>: (i) Every convergent sequence is a Cauchy sequence (ii) Is the converse true? Justify your answer.

Proof: (i) Let the sequence $\{x_n\}$ converge to x. Let $\varepsilon > 0$. Then corresponding to $\varepsilon/2 > 0 \exists k \in \mathbb{Z}^+ \ni d(x_n, x) < \varepsilon/2 \forall n \ge k$. Take n, $m \ge k$. Now $d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \varepsilon/2 + \varepsilon/2 = \varepsilon$. (ii) The converse is not true. Write X = (0, 1]. Consider the usual metric of real numbers on X. Then (X, d) is a metric space. Write $x_n = 1/n$ for each $n \in \mathbb{N}$. Then $\{x_n\}$ is a Cauchy sequence. For, let $\varepsilon > 0$. Take $k \in \mathbb{Z}^+ \ni k > 1/\varepsilon$. Let $n \ge m \ge k$. Then $|x_n - x_m| = \left|\frac{1}{n} - \frac{1}{m}\right| = \frac{1}{m} - \frac{1}{n} < \frac{1}{m} < \frac{1}{k} < \varepsilon$. The sequence $\{x_n\} = \left\{\frac{1}{n}\right\} \to 0$ but $0 \notin X$. Hence $\{x_n\}$ is not a convergent sequence in X.

<u>Note</u>: Let (X, d) be a metric space and $\{x_n\}$ be a sequence in X $\ni x_n \rightarrow x$ and $x_n \rightarrow x'$ in X. Then x = x'.

Definition: A metric space X is said to be complete if every Cauchy sequence in X is convergent.

 $\begin{array}{l} \underline{\textbf{Theorem}}: \mbox{ If a convergent sequence in a metric space has infinitely many distinct points then its limit is a limit point of the set of points of the sequence.}\\ \underline{\textbf{Proof}}: \mbox{ Let } X \mbox{ be a metric space and } \{x_n\} \mbox{ be a convergent sequence in } X. \mbox{ Suppose } x \in X \ni x_n \to x. \mbox{ Write } A = \{x_n / n \ge 1\}. \mbox{ Then } A \mbox{ is an infinite set.} \mbox{ If possible suppose } x \mbox{ is ant a limit point of } A. \mbox{ Then } \exists r > 0 \ni S_r(x) \cap A \setminus \{x\} = \varphi. \mbox{ } \Longrightarrow S_r(x) \cap A = \varphi \mbox{ or } S_r(x) \cap A = \{x\}. \Rightarrow S_r(x) \cap A \subseteq \{x\}. \mbox{ Since } r > 0 \mbox{ and } x_n \to x, \end{tabular} \mbox{ k \in } \mathbb{Z}^+ \ni d(x_n, x) < r \end{tabular} n \ge k. \mbox{ } \Longrightarrow x_n \in S_r(x) \Rightarrow x_n \in S_r(x) \cap A \Rightarrow x_n \in S_r(x) \cap A \subseteq \{x\} \Rightarrow x_n = x \end{tabular} \mbox{ is } n \ge k. \mbox{ } \therefore A = \{x_1, x_2, ..., x_{k-1}, x\}. \end{array}$

 \Rightarrow A is finite which is a contradiction. Hence X is a limit point of A.

Theorem: Let X be a complete metric space and Y be a subspace of X. Then Y is complete iff Y is closed.

<u>Proof</u>: Let Y be complete. Let $y \in X$ be a limit point of Y. \therefore For each $n \in \mathbb{N}$, $\exists y_n \in S_{\underline{1}}(y) \cap Y \setminus \{y\}$.

 $\underline{Claim}: \{y_n\} \rightarrow y. \text{ Let } \epsilon \geq 0. \text{ Take } k \in \mathbb{Z}^+ \mathfrak{i} k \geq 1/\epsilon. \text{ Let } n \geq k. \\ \text{Then } d(y_n, y) \leq 1/n \leq 1/k \leq \epsilon. \therefore y_n \rightarrow y. \therefore \{y_n\} \text{ is a Cauchy sequence in } Y. \text{ Since } Y$

is complete, $y_n \rightarrow y'$ for some y' in Y.

Since $y_n \rightarrow y$ and $y_n \rightarrow y'$, we have $y = y' \in Y$. Hence Y is closed.

Converse: Suppose Y is closed. Let $\{y_n\}$ be a Cauchy sequence in Y. Since Y $\subseteq X$, $\{y_n\}$ is a Cauchy sequence in X.

Since X is complete, $\exists y \in X \ni y_n \rightarrow y$.

Case (i) If the sequence $\{y_n\}$ contains only a finite number of elements then y is a member of the sequence which repeats infinite number of times.

So, $y = y_m$ for some m and hence $y = y_m \in Y$.

Case (ii): Suppose $\{y_n\}$ contains infinite number of distinct elements.

Then y is a limit point of $\{y_n / n \ge 1\}$. Since $\{y_n / n \ge 1\} \subseteq Y$, y is a limit point of Y. Since Y is closed, $y \in Y$. Hence $\{y_n\} \rightarrow y$ for some $y \in Y$. Hence Y is complete.

<u>**Definition**</u>: A sequence $\{A_n\}$ of subsets of a metric space is called a decreasing sequence if $A_1 \supseteq A_2 \supseteq \dots \supseteq A_n \supseteq A_{n+1} \supseteq \dots$

<u>Cantor Intersection Theorem</u>: Let X be a complete metric space, and $\{F_n\}$ be a decreasing sequence of non – empty closed subsets of X such that $d(F_n) \rightarrow 0$. Then $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point. **Proof:**

<u>Proof</u>:

<u>Claim</u>: F can not contain more than one element.

If possible suppose $x, y \in F \ni x \neq y$. $\therefore \varepsilon = d(x, y) > 0$.

Since $d(F_n) \rightarrow 0$, $\exists k \in \mathbb{Z}^+ \ni d(F_n) \leq \varepsilon \forall n \geq k$.

Since $x,\,y\in F\subseteq F_n,\,\epsilon=d(x,\,y)\leq d(F_n)\leq\epsilon$, a contradiction.

Hence F can not contain more than one element.

Claim: F contains at least one point.

Choose x_n in $F_n \forall n \ge 1$. Now we show that $\{x_n\}$ is a Cauchy sequence.

Let $\varepsilon > 0$. Since $d(F_n) \to 0$, $\exists k \in \mathbb{Z}^+ \mathfrak{i} d(F_n) \leq \varepsilon \forall n \geq k$. Now take m, $n \geq k$.

W.L.G. we may assume that $m \ge n$. Now $x_m \in F_m \subseteq F_k$; $x_n \in F_n \subseteq F_k$.

Hence $x_m, x_n \in F_k$ and so $d(x_m, x_n) \le d(F_k) \le \epsilon$. $\therefore \{x_n\}$ is a Cauchy sequence. Since X is complete, $\exists x \in X \ni x_n \rightarrow x$.

Case (i): Suppose $\{x_n : n \ge 1\}$ contains only a finite number of elements. Then x repeats in the sequence on and after certain stage. I.e. $\exists k \in \mathbb{Z}^+ \ni x_n = x \forall n \ge k$. Since $F_1 \supseteq F_2 \supseteq ..., x \in F_n \forall n. \therefore x \in \bigcap_{n=1}^{\infty} F_n$.

Case (ii): Suppose $\{x_n : n \ge 1\}$ contains infinite number of elements. Then x is a limit point of the set $\{x_n / n \ge 1\}$. Clearly x is a limit point of $\{x_n / n \ge k\} \forall k. \Rightarrow x$ is a limit point of $\{x_n / n \ge k\} \subseteq F_k$. $\Rightarrow x \in F_k$ since each F_k is closed. This is true for all k. $\therefore x \in \bigcap_{n=1}^{\infty} F_n$.

<u>Definition</u>: Let (X, d) be a metric space and $A \subseteq X$. A is said to be nowhere dense if Int $(\overline{A}) = \phi$.

<u>Result</u>: Let X be a metric space and $A \subseteq X$. Then the following are equivalent.

- (i) A is a nowhere dense set.
- (ii) A does not contain any non empty open set.
- (iii) Each non empty open set has a non empty open subset disjoint from \overline{A} .
- (iv) Each non empty open set has a non empty open subset disjoint from A.
- (v) Each non empty open set contains a open sphere disjoint from A.

<u>Proof</u>: (i) \Rightarrow (ii). Suppose A is nowhere dense. \Rightarrow Int (\overline{A}) = ϕ .

If A contains a non – empty open set G then $\phi \neq G \subseteq Int(A) \subseteq Int(\overline{A}) = \phi$, a contradiction.

(ii) \Rightarrow (iii). Let G be a non – empty open subset. By (ii) $G \not\subseteq \overline{A} \Rightarrow \exists x \in G \setminus \overline{A} \Rightarrow x \in G \cap (\overline{A})'$ Put $H = G \cap (\overline{A})'$ Since \overline{A} is closed $(\overline{A})'$ is open and hence $H = G \cap (\overline{A})'$ is a open set and $x \in H$. \therefore G contains a non – empty open set such that $H \cap \overline{A} = \phi$.

(iii) \Rightarrow (iv). Let G be a non – empty open set.

By (iii) \exists a non – empty open subset H of G \ni H $\cap \overline{A} = \phi$.

Now $H \cap A \subseteq H \cap \overline{A} = \phi \Longrightarrow H \cap A = \phi$.

 $(iv) \Rightarrow (v)$. Let G be a non – empty open set.

By (iv) \exists a non – empty open subset H of G with H \cap A = ϕ .

Let $x \in H$. Since H is open $\exists r > 0$ such that $S_r(x) \subseteq H$.

Now $S_r(x) \cap A \subseteq H \cap A = \phi \Longrightarrow S_r(x) \cap A = \phi$.

Hence G contains a non – empty open sphere $S_r(x)$ such that $S_r(x) \cap A = \phi$.

 $(v) \Rightarrow (1)$: Suppose each non – empty open set contain a open sphere disjoint from A. If possible suppose Int $(\bar{A}) \neq \phi$. Write G = Int (\bar{A}) . By $(v) \exists x \in X, r > 0$ such that $S_r(x) \subseteq G$ and $S_r(x) \cap A = \phi$. Now $S_r(x) \cap A = \phi \Rightarrow x \notin A$ and x is not a limit point of A. $\Rightarrow x \notin \bar{A}$. On the other hand, $x \in S_r(x) \subseteq G \subseteq$ Int $(\bar{A}) \subseteq \bar{A}$ a contradiction. Hence Int $(\bar{A}) = \phi$.

<u>Problem</u>: Show that a closed set A is nowhere dense iff its complement is everywhere dense.

<u>**Proof**</u>: Suppose A is closed and nowhere dense.

Since A is nowhere dense Int $(\overline{A}) = \phi$.

⇒ Int (A) = ϕ since A is closed. Let U be any open set with U \cap A' = ϕ ⇒ U ⊆ A. ⇒ U ⊆ Int (A) since U is open ⇒ U = ϕ . I. the only open set disjoint from A' is ϕ . Hence $\overline{A'} = X$. Conversely suppose A' is dense. Int (\overline{A}) = Int (A) ⊆ A ⇒ (Int (\overline{A})) \cap A' = ϕ ⇒ Int (\overline{A}) = ϕ since the only open set disjoint from A' is ϕ . Hence A is nowhere dense.

<u>Baire's Theorem</u>: If $\{A_n\}$ is a sequence of nowhere dense sets in a complete metric space X, then there exists a point in X which is not in any of the A_n 's. **Proof**: Since X is a non – empty open set and A_1 is a nowhere dense set, \exists an open sphere $S_r(x) \ni S_r(x) \cap A_1 = \phi$. Let $0 < t_1 < 1$. Let $r_1 = \min \{r, t_1\}$. Clearly $r_1 < 1$. Since $S_{r_1}(x) \subseteq S_r(x)$ we have $S_{r_1}(x) \cap A_1 = \phi$. Put $G_1 = S_{r_1}(x)$. Define $F_1 = S_{r_1/2}[x]$. Clearly $d(F_1) < 1$. Now F_1 is closed, G_1 is open and $F_1 \subset G_1$. Also Int $(F_1) = S_{\underline{r_1}}(x)$ is open and A_2 is nowhere dense, there exists an open sphere $G_2 \subseteq Int(F_1) and G_2 \cap A_2 = \phi$. Suppose $G_2 = S_{r_2}(x_1)$. Define $F_2 = S_{r_2/2}[x_1]$. Clearly $d(F_2) < 1/2$. Now F_2 is closed, G_2 is open and $F_2 \subseteq G_2$. Also, Int $(F_2) = S_{\underline{r_2}}(x_1)$ is open and A_3 is nowhere dense, \exists an open sphere $G_3 \subseteq Int (F_2) and G_3 \cap A_3 = \phi.$ If we continue this process, we get $G_1 \supseteq F_1 \supseteq G_2 \supseteq F_2 \supseteq G_3 \supseteq \dots \ni d(F_n) \to 0$, F_n is closed, G_n is open, $G_n \cap A_n = \phi$. Since $d(F_n) \rightarrow 0$ and each F_n is closed, by Cantor's intersection theorem, we have that $\bigcap_{n=1}^{\infty} F_n \neq \phi$. Let $a \in \bigcap_{n=1}^{\infty} F_n$. Since $a \in F_n$ for each n, $F_n \subseteq G_n$, and $G_n \cap A_n = \phi$, we have that a \notin A_n for any n. Hence $a \in X$ and $a \notin A_n$ for all n.

<u>**Theorem</u></u>: If a complete metric space is the union of a sequence of its subsets then the closure of at least one set in the sequence must have non – empty interior. <u>Proof**</u>: Let X be a complete metric space and $X = \bigcup_{i=1}^{\infty} A_i$. If possible, suppose that Int $(\overline{A_i}) = \phi \forall i$. Each A_i is a nowhere dense. So $\{A_n\}$ is a sequence of nowhere dense sets. By a Baire's theorem, $\exists a \in X \ni a \notin \bigcup_{i=1}^{\infty} A_i$, a contradiction to the fact that $X = \bigcup_{i=1}^{\infty} A_i$. Hence Int $(A_i) \neq \phi$ for some i.</u> <u>Note</u>: A subset A of a metric space X is said to be of first category if it can be represented as the union of sequence of nowhere dense sets. A is said to be second category if it is not first category. Every complete metric space is second category.

CONTINUOUS MAPPINGS

Definition: Let X and Y be metric spaces with metrics d_1 and d_2 . Let f be a mapping of X into Y. F is said to be continuous at a point x_0 in X if either of the following two conditions is satisfied.

- (i) for each $\varepsilon > 0$, $\exists \delta > 0 \ni d_1(x, x_0) < \delta \Longrightarrow d_2(f(x), f(x_0)) < \varepsilon$.
- (ii) for each open sphere $S_{\varepsilon}(f(x_0))$ centered on $f(x_0)$, \exists an open sphere $S_{\delta}(x_0)$ centred on $x_0 \ni f(S_{\delta}(x_0)) \subseteq S_{\varepsilon}(f(x_0))$.

<u>Theorem</u>: Let X and Y be metric spaces and f is a mapping of X into Y. Then f is continuous at x_0 if and only if $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$. **<u>Proof</u>**: Suppose f is continuous at x_0 . Let $\{x_n\}$ be a sequence in X $\ni x_n \to x_0$. Let $S_{\varepsilon}(f(x_0)$ be an open sphere centred at $f(x_0)$. Since f is continuous at x_0 , \exists an open sphere $S_{\delta}(x_0) \ni f(S_{\delta}(x_0)) \subseteq S_{\varepsilon}(f(x_0))$. Since $x_n \to x_0$, $\exists k \in \mathbb{Z}^+ \ni x_n \in S_{\delta}(x_0) \forall n \ge k$. Then $x_n \in S_{\delta}(x_0) \Rightarrow f(x_n) \in f(S_{\delta}(x_0)) \subseteq S_{\varepsilon}(f(x_0)) \forall n \ge k$. $\therefore f(x_n) \to f(x_0)$.

Converse: Suppose $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$. If possible, suppose that f is not continuous at x_0 . Then $\exists \epsilon > 0 \Rightarrow S_{\epsilon}(f(x_0))$ does not contain $f(S_{\delta}(x_0))$ for any $\delta > 0$. For $n \in \mathbb{N}, \frac{1}{n} > 0 \Rightarrow f\left(S_{\frac{1}{n}}(x_0)\right) \nsubseteq S_{\epsilon}(f(x_0))$. Take $x_n \in S_{\frac{1}{n}}(x_0) \Rightarrow f(x_n) \notin S_{\epsilon}(f(x_0))$. Now $\{x_n\}$ is a sequence of points from X and $x_n \to x_0$. Since $x_n \to x_0$, we have $f(x_n) \to f(x_0)$ by hypothesis. Since $\epsilon > 0, \exists k \in \mathbb{Z}^+ \Rightarrow d_Y(f(x_n), f(x_0)) < \epsilon \forall n \ge k$. $\Rightarrow f(x_n) \in S_{\epsilon}(f(x_0)) \forall n \ge k$, a contradiction. Hence f is continuous.

Definition: Let X and Y be metric spaces. A mapping f: $X \rightarrow Y$ is said to be continuous if f is continuous at every point of X.

<u>**Theorem</u></u>: Let X and Y be metric spaces and f a mapping of X into Y. Then f is continuous if and only if x_n \to x \Rightarrow f(x_n) \to f(x). <u>Proof**</u>: f is continuous iff f is continuous at $x \forall x \in X$ iff $x_n \to x \Rightarrow f(x_n) \to f(x) \forall x \in X$. (by above theorem).</u>

<u>Theorem</u>: Let X and Y be metric spaces and f is a mapping of X into Y. Then f is continuous iff $f^{-1}(G)$ is open in X whenever G is open in Y. **<u>Proof</u>**: Suppose f is continuous. Let G be an open set in Y. Let $p \in f^{-1}(G) \Rightarrow f(p) \in G$. Since G is open $\exists \varepsilon > 0$, $S_{\varepsilon}(f(p)) \subseteq G$. Since f is continuous $\exists \delta > 0$, $\ni f(S_{\delta}(p)) \subseteq G$ $\Rightarrow S_{\delta}(p) \subseteq f^{-1}(G)$. \Rightarrow p is an interior point of $f^{-1}(G)$. \therefore every point of $f^{-1}(G)$ is an interior point. Hence $f^{-1}(G)$ is open. Converse: Suppose $f^{-1}(G)$ is open for all open sets G in Y. Let $p \in X$. Let $\varepsilon > 0$. Since $S_{\varepsilon}(f(p))$ is open in Y, $f^{-1}(S_{\varepsilon}f(p))$ is open in X. Since $p \in f^{-1}(S_{\varepsilon}f(p)) \exists \delta > 0 \ni S_{\delta}(p) \subseteq f^{-1}(S_{\varepsilon}f(p)) \Rightarrow f(S_{\delta}(p)) \subseteq S_{\varepsilon}f(p)$. This shows that f is continuous at p. Since p is an arbitrary point in X, f is continuous on X.

Problem: Let X and Y be metric spaces and $\phi \neq A \subseteq X$. If f, g are continuous mappings from X to Y \ni f(x) = g(x) $\forall x \in A$ then f(y) = g(y) $\forall y \in \overline{A}$. **Solution**: Let $y \in \overline{A}$. If $y \in A$ then g(y) = f(y). If $y \notin A$, then since $A \neq X$, $y \in \overline{A} \Rightarrow y$ is a limit point of A. Let $y_n \in A \cap S_{\frac{1}{n}}(y) \setminus \{y\}$. Consider $\{y_n\}$. Since for each n, $y_n \in S_{\frac{1}{n}}(y)$, $y_n \rightarrow y$. Since f is continuous, f(y_n) \rightarrow f(y). Since g is continuous, g(y_n) \rightarrow g(y). Hence f(y) = lim f(y_n) = lim g(y_n) = g(y).

Definition: Let f be a mapping from metric space (X, d_1) to a metric space (Y, d_2) . Then f is said to be uniformly continuous on X if given $\varepsilon > 0$, $\exists \ \delta > 0 \Rightarrow d_1(x, x') < \delta \Rightarrow d_2(f(x), f(x')) < \varepsilon$.

<u>**Theorem</u>**: Let X be a metric space, Y be a complete metric space and let A be a dense subspace of X. If f is uniformly continuous mapping of A into Y, then f can be extended uniquely to uniformly continuous mapping g: $X \rightarrow Y$.</u>

<u>Proof</u>: If A = X, then the conclusion is obvious. Assume that $A \neq X$. Then \exists point in X which is not in A.

Define $g : X \to Y$ as follows. If $x \in A$ then g(x) = f(x).

If $x \notin A$, then since $A \neq X$, $x \in \overline{A} \Rightarrow x$ is a limit point of some convergent sequence $\{x_n\}$ in $A \Rightarrow \{x_n\}$ is a Cauchy sequence in $X \Rightarrow \{f(x_n)\}$ is a Cauchy sequence in Y since f is uniformly continuous. Since Y is complete $\{f(x_n)\}$ is convergent sequence in Y. Define $g(x) = \lim f(x_n)$.

<u>Claim</u>: g is well defined. Let $\{x_n\}$, $\{y_n\}$ be sequences in A $\ni x_n \to x$, $y_n \to x$. We know that $d_1(x_n, y_n) \to d_1(x, x) = 0$. Since f is uniformly continuous, $d_2(f(x_n), f(y_n)) \to 0$. Since $d_2(f(x_n), f(y_n)) \to d_2(\lim f(x_n), \lim f(y_n)) = 0$, we have $\lim f(x_n) = \lim f(y_n)$. Hence g is well defined.

Claim: g is uniformly continuous. Let $\varepsilon > 0$. Since f is uniformly continuous on A, $\exists \delta > 0 \Rightarrow d_1(a, a') < \delta$ \Rightarrow d₂(f(a), f(a')) < $\varepsilon \forall$ a, a' \in A... (i). Let x, $x' \in X$ with $d_1(x, x') < \delta/3$. We show that $d_2(g(x), g(x')) < 3\varepsilon$. If $x, x' \in A$, then clearly $d_1(x, x') \leq \delta \Rightarrow d_2(f(x), f(x')) \leq \epsilon \Rightarrow d_2(g(x), g(x')) \leq \epsilon$. Suppose x, $x' \notin A$. Then x, $x' \in \overline{A}$. $\Rightarrow \exists$ sequences $\{x_n\}, \{x_n'\}$ in A $\ni x_n \rightarrow x$ and $x_n' \rightarrow x'$. Since f is uniformly continuous on A, it follows that $g(x) = \lim_{x \to \infty} f(x_n)$ and $g(x') = \lim_{n \to \infty} f(x_n').$ Since $x_n \to x$, $x_n' \to x'$, $\exists k \not i \forall n \ge k$, $d_1(x_n, x) < \delta/3$ and $d_1(x_n', x') < \delta/3$. Now $d_1(x_n, x_n') \le d_1(x_n, x) + d_1(x, x') + d_1(x', x_n') < \delta/3 + \delta/3 + \delta/3 = \delta$. \Rightarrow d₂(f(x_n), f(x_n')) < ε by (i) \forall n ≥ k. Now $d_2(g(x), g(x')) \le d_2(g(x), f(x_n)) + d_2(f(x_n), f(x_n')) + d_2(f(x_n'), g(x')) \le 3\varepsilon$ for sufficiently large n. Hence $d_1(x, x') < \delta \Rightarrow d_2(g(x), g(x')) < 3\epsilon$. This is true for all $\varepsilon > 0$. Hence g is uniformly continuous.

 $\begin{array}{l} \underline{Claim}: g \text{ is unique.} \\ \text{Let } g_1, g_2 \text{ be two extensions of } f. \\ \text{If possible, suppose } g_1 \neq g_2. \\ \text{Since } g_1(a) = f(a) = g_2(a) \ \forall \ a \in A. \ g_1(x) \neq g_2(x) \ \text{for some } x \in X \setminus A. \\ \text{Since } x \in X = \overline{A}, \ \exists \ \text{sequence } \{x_n\} \ \text{in } A \ni x_n \rightarrow x. \\ \text{Let } S_1 \ \text{and } S_2 \ \text{be two disjoint spheres with the centers } g_1(x) \ \text{and } g_2(x) \ \text{respectively.} \\ \text{Since } g_1 \ \text{and } g_2 \ \text{are uniformly continuous, they are continuous.} \\ \therefore \ g_1^{-1}(S_1) \ \text{and } g_2^{-1}(S_2) \ \text{are open sets in } X \ni \ \text{that } x \in g_1^{-1}(S_1) \cap g_2^{-1}(S_2). \\ \therefore \ g_1^{-1}(S_1) \cap g_2^{-1}(S_2) \ \text{is open and } x_n \rightarrow x \ \exists \ k \ni x_n \in g_1^{-1}(S_1) \cap g_2^{-1}(S_2) \ \forall n \ge k. \end{array}$

Since $x_n \in A$, $g_1(x_n) = f(x_n) = g_2(x_n) \in S_1 \cap S_2$, a contradiction as $S_1 \cap S_2 = \phi$. Hence $g_1 = g_2$.

<u>Definition</u>: Let (X, d_1) , (Y, d_2) be two metric spaces and f: $X \rightarrow Y$ a bijection. f is said to be an isometry if for any x, $x' \in X$, $d_2(f(x), f(x')) = d_1(x, x')$.

SPACES OF CONTINUOUS FUNCTIONS

A normed linear space X is a linear space in which there is defined a real number ||x|| for every element x satisfying, (i) $||x|| \ge 0$ and ||x|| = 0 iff x = 0 (ii) $||x + y|| \le ||x|| + ||y||$, (iii) ||ax|| = |a|||x|| scalar a and x, $y \in X$.

Definition: A Banach space is a normed linear space which is complete as a metric space.

Lemma: If f and g are continuous real functions defined on a metric space (X, d) then f + g and af are also continuous, where a is any real number.

<u>Proof</u>: Let $\varepsilon > 0$. Take $x_0 \in X$. Since $\varepsilon/2 > 0$ and f is continuous, $\exists \delta_1 > 0 \ni x \in X$, $d(x, x_0) < \delta_1 \Rightarrow |f(x) - f(x_0)| < \varepsilon/2$. Since g is continuous $\exists \delta_2 > 0 \ni x \in X$, $d(x, x_0) < \delta_2 \Rightarrow |g(x) - g(x_0)| < \varepsilon/2$. Take $\delta = \min \{\delta_1, \delta_2\}$. Now $d(x, x_0) < \delta \Rightarrow |(f + g)(x) - (f + g)(x_0)| \le |f(x) - f(x_0)| + |g(x) - g(x_0)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. \therefore f + g is continuous.

Let $\varepsilon > 0$. Corresponding to $\varepsilon' = \varepsilon / |a| > 0$, since f is continuous, $\exists \delta > 0 \ni x \in X$, $d(x, x_0) < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon'$.

Now let $x \in X$, $d(x, x_0) < \delta$ Then $|af(x) - af(x_0)| = |a||f(x) - f(x_0)| < |a| \varepsilon' = \varepsilon$. Hence af is continuous.

<u>Note</u>: Consider a non – empty set X. Write $L = \{f / f: X \rightarrow \mathbb{R}\}$.

Define (f + g)(x) = f(x) + g(x) for f, $g \in L$ and for any a in \mathbb{R} , $f \in L$, (af)(x) = a{f(x)}. With these operations L is a linear space over \mathbb{R} . Let B = {f / f : X $\rightarrow \mathbb{R}$, f is bounded}. Then B is a linear subspace of L. Write C(X, \mathbb{R}) = {f / f : X $\rightarrow \mathbb{R}$, f is continuous and bounded} where (X, d) is a metric space. Clearly C(X, \mathbb{R}) \subseteq B. **Lemma**: $C(X, \mathbb{R})$ is a closed subset of the metric space B. **Proof**: Clearly $C(X, \mathbb{R}) \subseteq B$. Let $f \in \overline{C(X, \mathbb{R})}$. Let $\varepsilon > 0$ and $x_0 \in X$. Let d be the metric on X. Since $\varepsilon/3 > 0$ and $f \in \overline{C(X, \mathbb{R})} \exists f_0 \in C(X, \mathbb{R}) \ni ||f - f_0|| < \varepsilon/3$. Now for any $x \in X$, $|f(x) - f_0(x)| \le \sup \{|f(x) - f_0(x)| / x \in X\} = ||f - f_0|| < \varepsilon/3$. Since $f_0 \in C(X, \mathbb{R})$ it is continuous at x_0 . $\therefore \exists \delta > 0 \ni d(x, x_0) < \delta \Rightarrow |f_0(x) - f_0(x_0)| < \varepsilon/3$. Now $d(x, x_0) < \delta \Rightarrow |f(x) - f(x_0)| \le |f(x) - f_0(x)| + |f_0(x) - f_0(x_0)| + |f_0(x_0) - f(x_0)| < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon$. \therefore f is continuous at x_0 .

Since x_0 is arbitrary we have that $f \in C(X, \mathbb{R})$. $\therefore \overline{C(X, \mathbb{R})} = C(X, \mathbb{R})$. Hence $C(X, \mathbb{R})$ is closed.

<u>Theorem</u>: The set $C(X, \mathbb{R})$ of all bounded and continuous real functions defined on a metric space X is a real Banach space with respect to pointwise addition and scalar multiplication, and the norm defined by $||f|| = \sup |f(x)|$.

<u>Proof</u>: By a lemma f + g, af $\in C(X, \mathbb{R})$ for any f, $g \in C(X, \mathbb{R})$ and $a \in \mathbb{R}$. With respect to these operations $C(X, \mathbb{R})$ is a linear space.

Define $||f|| = \sup |f(x)|$ for any $f \in C(X, \mathbb{R})$. This is a norm.

 \therefore C(X, \mathbb{R}) is a normed linear space.

If we define d(f, g) = ||f - g|| then d is a metric on $C(X, \mathbb{R})$. With respect to this metric $C(X, \mathbb{R})$ is a closed subset of B. Since B is complete and $C(X, \mathbb{R})$ is closed subset of **B**, $C(X, \mathbb{R})$ is complete. Hence $C(X, \mathbb{R})$ is a Banach space.

<u>Note</u>: Let (X, d) be a metric space. Write $C(X, \mathbb{C}) = \{f: f: X \to \mathbb{C}, f \text{ is bounded and continuous}\}$. Define $||f|| = \sup |f(x)|$ for any $f \in C(X, \mathbb{C})$. Then $C(X, \mathbb{C})$ is a normed complex linear space.

<u>**Theorem</u>**: The set $C(X, \mathbb{C})$ of all bounded and continuous complex functions defined on a metric space X is a complex Banach space with respect to pointwise addition and scalar multiplication, and the norm defined by $||f|| = \sup |f(x)|$.</u>

EUCLIDEAN AND UNITARY SPACES.

Note: Let n be a fixed positive integer. Then $\mathbb{R}^n = \{(x_1, x_2, ..., x_n) | x_i \in \mathbb{R}, 1 \le i \le n\}$. Clearly \mathbb{R}^n is a linear space over \mathbb{R} . For $x = (x_1, x_2, ..., x_n)$ define Euclidean norm $||x|| = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$.

Lemma: (Cauchy Inequality) Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be two n - tuples of real (or complex) numbers. Then $\sum_{i=1}^{n} |x_i y_i| \le ||x|| ||y||$. Ie $\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |y_i|^2\right)^{\frac{1}{2}}$ **Proof**: Let a, b be any two non – negative real numbers. Then $(a - b)^2 \ge 0 \Rightarrow a^2 + b^2 \ge 2ab$ \Rightarrow (a + b)² \geq 4ab $\Rightarrow \frac{a+b}{2} \ge (ab)^{\frac{1}{2}}...(i).$ If x = 0 or y = 0 then $\sum_{i=1}^{n} |x_i y_i| = 0 = ||x|| ||y||$. Assume $x \neq 0$ and $y \neq 0$. Take $a_i = \frac{|x_i|^2}{\|x\|^2}$ and $b_i = \frac{|y_i|^2}{\|y\|^2}$. From (i) $\frac{|x_i||y_i|}{\|x\|\|y\|} \le \frac{\frac{|x_i|^2}{\|x\|^2} + \frac{|y_i|^2}{\|y\|^2}}{2}$ for $1 \le i \le n$. Now summing $\sum_{i=1}^{n} \frac{|x_i||y_i|}{\|x\|\|y\|} \le \sum_{i=1}^{n} \frac{\frac{|x_i|^2}{\|x\|^2} + \frac{|y_i|^2}{\|y\|^2}}{2}$ $=\frac{\sum_{i=1}^{n}\frac{|x_{i}|^{2}}{||x||^{2}}+\sum_{i=1}^{n}\frac{|y_{i}|^{2}}{||y||^{2}}}{2}=\frac{\sum_{i=1}^{n}|x_{i}|^{2}}{||x||^{2}}+\frac{\sum_{i=1}^{n}|y_{i}|^{2}}{||y||^{2}}}{2}=\frac{||x||^{2}}{2}+\frac{||y||^{2}}{||x||^{2}}+\frac{||y||^{2}}{||y||^{2}}}{2}=\frac{1+1}{2}=1.$ $\therefore \frac{\sum_{i=1}^{n} |x_i y_i|}{\|x\|\|y\|} \le 1 \Longrightarrow \sum_{i=1}^{n} |x_i y_i| \le \|x\| \|y\|$ **Lemma**: Minkowski's inequality. Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be two n – tuples of real (or complex) numbers. Then $||x + y|| \le ||x|| + ||y||$. Or in other words $(\sum_{i=1}^{n} |x_i + y_i|^2)^{1/2} \le (\sum_{i=1}^{n} |x_i|^2)^{1/2} + (\sum_{i=1}^{n} |y_i|^2)^{1/2}.$ **Proof:** If ||x + y|| = 0 then clearly $||x + y|| \le ||x|| + ||y||$. Suppose $||x + y|| \neq 0$. Then $||x + y||^2 = \sum_{i=1}^n |x_i + y_i|^2$ $=\sum_{i=1}^{n} |x_i + y_i| |x_i + y_i|$ $\leq \sum_{i=1}^{n} |x_i + y_i| (|x_i| + |y_i|)$ since $|x_i + y_i| \leq |x_i| + |y_i|$ $=\sum_{i=1}^{n} |x_{i} + y_{i}| |x_{i}| + \sum_{i=1}^{n} |x_{i} + y_{i}| |y_{i}|$ $\leq ||x + y|| ||x|| + ||x + y|| ||y||$ by Cauchy's inequality. = ||x + y||(||x|| + ||y||).ie. $||x + y||^2 \le ||x + y||(||x|| + ||y||)$. Hence $||x + y|| \le ||x|| + ||y||$ since $||x + y|| \ne 0$.

<u>Problem</u>: Show that Int $F = \phi$ where F is the Cantor's set.

Fax: 08816-227318 off: 08816-224072, 224119,228342 Mobile: 9491334119 ANTULURI NARAYANA RAJU COLLEGE

(Autonomous) BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

E – CONTENT PAPER: M 104, TOPOLOGY M. Sc. I YEAR, SEMESTER - I UNIT – II: TOPOLOGICAL SPACES

PREPARED BY K, C. TAMMI RAJU, M. Sc. HEAD OF THE DEPARTMENT DEPARTMENT OF MATHEMATICS, PG COURSES DNR COLLEGE (A), BHIMAVARAM – 534202

TOPOLOGICAL SPACES.

(104: TOPOLOGY, UNIT II)

Definition: Let X be a non – empty set. A family τ of subsets of X is called a topology on X if it satisfies the following conditions:

- (i) τ is closed under unions, and
- (ii) τ is closed under finite intersections.

If τ is a topology on X, then (X, τ) is called a topological space. The members of τ are called open sets.

<u>Note</u>: Since the union of empty class of sets is empty, $\phi \in \tau$. Since the intersection of empty class of sets is X, $X \in \tau$. Hence in any topology τ on X, ϕ , $X \in \tau$.

Definition: Let X be a non – empty set and τ be the family of all subsets of X. Then τ is a topology on X and it is called the discrete topology on X, and (X, τ) is called discrete topological space.

<u>Note</u>: in this case every subset of X is open.

Definition: Let X be a non – empty set and $\tau = \{\phi, X\}$. Then τ is a topology on X and it is called the indiscrete topology on X, and (X, τ) is called indiscrete topological space.

<u>Note</u>: in this case the only open sets are ϕ and X.

Example: Let $X = \{a, b, c\}$ where a, b, c are distinct and (i) $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then τ is a topology on X. (ii) $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Then τ is a topology on X. (iii) $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then τ is a topology on X. (iv) $\tau = \{\phi, \{a\}, X\}$. Then τ is a topology on X. (v) $\tau = \{\phi, \{a\}, \{b\}, X\}$. Then τ is not a topology on X.(vi) $\tau = \{\phi, \{a, c\}, \{b, c\}, \{a, b\}, X\}$. Then τ is not a topology on X. (vi) $\tau = \{\phi, \{a, c\}, \{b, c\}, \{a, b\}, X\}$. Then τ is not a topology on X. (vi) $\tau = \{\phi, \{a, c\}, \{b, c\}, \{a, b\}, X\}$. Then τ is not a topology on X. (vi) $\tau = \{\phi, \{a\}, \{a, c\}, \{b, c\}, \{a, b\}, X\}$. Then τ is not a topology on X.

Example: Let (X, d) be any metric space. Let \Im be the set of all open sets with respect to metric d. Then \Im is a topology called usual topology on the metric space (X, d).

Definition: A metrizable space is a topological space X with the property that there exists at least one metric on the set X whose class of generated open sets is precisely the given topology.

Problem: Let X be a non – empty set and \Im be the discrete topology on X. Show that (X, \mathfrak{I}) is a metrizable space.

<u>Proof</u>: Define d : $X \times X \rightarrow \mathbb{R}$ by d(x, y) = 0 if x = y, and d(x, y) = 1 if x \neq y. Then (X, d) is a metric space. Here $S_{1/2}(x)$ is an open set and $S_{1/2}(x) = \{x\}$.

 \therefore {x} is open $\forall x \in X$. For any subset A of X, since A = $\bigcup_{a \in A} \{a\}$, A is open in (X, d). Hence every subset of X is open in (X, d).

 \therefore The open sets in (X, \Im) and open sets in (X, d) are same. Hence (X, \mathfrak{I}) is metrizable.

Problem: Let X be a non – empty set $\exists |X| \ge 2$ and \Im be indiscrete topology on X. Show that (X, \mathfrak{I}) is not metrizable space.

Proof: Given $\mathfrak{T} = \{\phi, X\}$. \therefore The only open sets in (X, \mathfrak{T}) are ϕ and X. If possible, suppose (X, \Im) is metrizable. $\Rightarrow \exists$ a metric d on X \Rightarrow the open sets in (X, d) are precisely the open sets in (X, \Im). Since $|X| \ge 2$, $\exists a, b \in X \ni a \neq b$. Take r = d(a, b) > 0. Then $Sr_{/2}(a)$ and $Sr_{/2}(b)$ are disjoint non – empty open sets.

Now $\phi \neq Sr_{/2}(a) \in \mathfrak{I} = \{\phi, X\} \Rightarrow Sr_{/2}(a) = X$

 \Rightarrow b \in X = $Sr_{/2}(a)$, a contradiction.

Hence (X, \mathfrak{I}) is not metrizable.

<u>Theorem</u>: Let \mathfrak{I}_1 and \mathfrak{I}_2 be two topologies on a non – empty set X. Show that $\mathfrak{I}_1 \cap \mathfrak{I}_2$ is a topology on X.

<u>Proof</u>: Let $\{G_i\}_{i \in I}$ be an arbitrary collection of elements from $\mathfrak{I}_1 \cap \mathfrak{I}_2$. Since $\mathfrak{I}_1 \cap \mathfrak{I}_2 \subseteq \mathfrak{I}_1$ and $\mathfrak{I}_1 \cap \mathfrak{I}_2 \subseteq \mathfrak{I}_2, \{G_i\}_{i \in I}$ is a collection of elements from \mathfrak{I}_1 as well as \mathfrak{I}_2 . Since \mathfrak{I}_1 and \mathfrak{I}_2 are topologies $\cup G_i \in \mathfrak{I}_1$ and $\cup G_i \in \mathfrak{I}_2$ $\Rightarrow \cup G_i \in \mathfrak{J}_1 \cap \mathfrak{J}_2.$

 $\therefore \mathfrak{I}_1 \cap \mathfrak{I}_2$ is closed under arbitrary unions.

Let G_i , $1 \le i \le n$ be a finite collection of elements from $\mathfrak{I}_1 \cap \mathfrak{I}_2$. Since $\mathfrak{I}_1 \cap \mathfrak{I}_2 \subseteq \mathfrak{I}_1$ and $\mathfrak{I}_1 \cap \mathfrak{I}_2 \subseteq \mathfrak{I}_2$, G_i , $1 \le i \le n$ is a collection of elements from \mathfrak{I}_1 as well as \mathfrak{I}_2 . Since \mathfrak{I}_1 and \mathfrak{I}_2 are topologies $\bigcap_{i=1}^n G_i \in \mathfrak{I}_1$ and $\bigcap_{i=1}^n G_i \in \mathfrak{I}_2$

 $\Rightarrow \bigcap_{i=1}^n G_i \in \mathfrak{I}_1 \cap \mathfrak{I}_2.$

 $\therefore \mathfrak{I}_1 \cap \mathfrak{I}_2$ is closed under finite intersections.

Hence $\mathfrak{I}_1 \cap \mathfrak{I}_2$ is a topology on X.

Definition: Let (X, \mathfrak{I}) be a topological space and Y be a non – empty subset of X. Let $\mathfrak{I}_Y = \{A \mid A = Y \cap G, G \in \mathfrak{I}\}$. Then (Y, \mathfrak{I}_Y) is a topological space and \mathfrak{I}_Y is called the *relative topology* on Y, and (Y, \mathfrak{I}_Y) is called *subspace* of (X, \mathfrak{I}) .

<u>Example</u>: Let $X = \{a, b, c\}$ of distinct elements and $\mathfrak{I} = \{\phi, \{a\}, \{a, c\}, \{a, b\}, X\}$. Then \mathfrak{I} is a topology on X. Let $Y = \{a, b\}$.

Then $\mathfrak{J}_Y = \{Y \cap G \mid G \in \mathfrak{J}\} = \{\phi, \{a\}, Y\}$ is a relative topology on Y. So (Y, \mathfrak{J}_Y) is

a *subspace* of (X, \mathfrak{I}) .

<u>Problem</u>: Verify that a subspace (Y, \mathfrak{I}_Y) of topological space (X, \mathfrak{I}) is itself a topological space.

Solution: Let $\{H_{\alpha}: \alpha \in \Delta\}$ be a collection of elements from \mathfrak{I}_{Y} . \therefore for each α , $H_{\alpha} = Y \cap G_{\alpha}$ for some $G_{\alpha} \in \mathfrak{I}$. Since $\cup G_{\alpha} \in \mathfrak{I}, \cup H_{\alpha} = \cup (Y \cap G_{\alpha}) = Y \cap (\cup G_{\alpha}) \in \mathfrak{I}_{Y}$. Hence \mathfrak{I}_{Y} is closed under arbitrary unions.

Let H_i , $1 \le i \le n$ be a finite collection of elements from \mathfrak{I}_Y . Then $H_i = Y \cap G_i$ for some $G_i \in \mathfrak{I}$ for $1 \le i \le n$. Since $\bigcap_{i=1}^n G_i \in \mathfrak{I}$, $\bigcap_{i=1}^n H_i = \bigcap_{i=1}^n (Y \cap G_i) = Y \cap \bigcap_{i=1}^n G_i \in \mathfrak{I}_Y$. $\therefore \mathfrak{I}_Y$ is closed under finite intersections also. Hence \mathfrak{I}_Y is itself a topology on Y.

<u>Problem</u>: Let X be an infinite set and \mathfrak{I} consist of empty set together with all the subsets of X whose complements are finite. Show that (X, \mathfrak{I}) is a topological space. This topology is called the topology of finite complements.

Solution: Given $\mathfrak{I} = \{\phi\} \cup \{A \subseteq X \ni X \setminus A \text{ is finite}\}.$ (i) Let $\{G_{\alpha}\}$ be any class of sets from \mathfrak{I} . If each G_{α} is empty, then $\cup G_{\alpha}$ is also empty and hence $\cup G_{\alpha} \in \mathfrak{I}$. Now suppose $\exists \alpha_0 \ni G_{\alpha_0} \neq \phi$. Then $X \setminus (\bigcup G_{\alpha}) \subseteq X \setminus G_{\alpha_0}$ since $G_{\alpha_0} \subseteq \bigcup G_{\alpha}$ $\therefore X \setminus (\bigcup G_{\alpha})$ is finite since $X \setminus G_{\alpha_0}$ is finite. $\therefore \bigcup G_{\alpha} \in \mathfrak{F}$. $\Rightarrow \mathfrak{F}$ is closed under arbitrary unions. (ii) Let $G_i \in \mathfrak{F}$ for $1 \le i \le n$. Let $G = \bigcap_{i=1}^n G_i$. If at least one $G_i = \phi$ then $G = \bigcap_{i=1}^n G_i = \phi \in \mathfrak{F}$. Suppose $G_i \neq \phi \forall i \ni 1 \le i \le n$. Since $\phi \neq G_i \in \mathfrak{F}$, $X \setminus G_i$ is finite $\forall i \ni 1 \le i \le n$. Now $X \setminus G = X \setminus \bigcap_{i=1}^n G_i = \bigcup_{i=1}^n X \setminus G_i$ is finite since finite union of finite sets is finite. $\Rightarrow G \in \mathfrak{F}$.

Hence \mathfrak{T} is closed under finite intersections. Hence (X, \mathfrak{T}) is a topological space.

<u>Problem</u>: Let X be an uncountable set and \mathfrak{I} consist of empty set together with all the subsets of X whose complements are countable. Show that (X, \mathfrak{I}) is a topological space.

Solution: Let X be an uncountable set. Given $\mathfrak{T} = \{\phi\} \cup \{A \subset X \ni X \setminus A \text{ is countable}\}.$ (i) Let $\{G_{\alpha}\}$ be any class of sets from \mathfrak{I} . If each G_{α} is empty, then $\cup G_{\alpha}$ is also empty and hence $\cup G_{\alpha} \in \mathfrak{J}$. Now suppose $\exists \alpha_0 \ni G_{\alpha_0} \neq \phi$. Then $X \setminus (\bigcup G_{\alpha}) \subseteq X \setminus G_{\alpha_0}$ since $G_{\alpha_0} \subseteq \bigcup G_{\alpha}$ \therefore X \ (\cup G_{α}) is countable since X \ G_{α_0} is countable. $\therefore \cup G_{\alpha} \in \mathfrak{T}$. $\Rightarrow \mathfrak{T}$ is closed under arbitrary unions. (ii) Let $G_i \in \mathfrak{T}$ for $1 \le i \le n$. Let $G = \bigcap_{i=1}^n G_i$. If at least one $G_i = \phi$ then $G = \bigcap_{i=1}^n G_i = \phi \in \mathfrak{I}$. Suppose $G_i \neq \phi \forall i \ni 1 \le i \le n$. Since $\phi \neq G_i \in \mathfrak{J}$, X\G_i is countable $\forall i \ni 1 \le i \le n$. Now X \ G = X \ $\bigcap_{i=1}^{n} G_i = \bigcup_{i=1}^{n} X \setminus G_i$ is countable since finite union of countable sets is countable. \Rightarrow G \in \mathfrak{I} . Hence \Im is closed under finite intersections.

Hence (X, \mathfrak{I}) is a topological space.

Definition: Let X and Y be topological spaces and f a mapping of X into Y. f is called a *continuous* mapping if $f^{-1}(G)$ is open in X whenever G is open in Y. f is said to be an *open* **mapping** if f(G) is open in Y whenever G is open in X. If f is continuous, then f(X) is called continuous image of X. If f is a bijection, continuous mapping and open mapping then f is called a *homeomorphism*. If $f: X \to Y$ is a homeoporphism then X and Y are said to be *homeomorphic*. In this Y is called a *homeorphic image* of X.

ELEMENTARY CONCEPTS

Definition: A *closed set* in a topological space is a set whose complement is open.

Theorem: Let (X, \mathfrak{I}) be a topological space. Then (i) any intersection of closed sets in X is closed and (ii) any finite union of closed sets in X is closed.

<u>Proof</u>: (i) Let $\{F_i\}$ be a class of closed sets in $X \Rightarrow F_i' \in \mathfrak{I}$ for all $i \in I$.

 $\Rightarrow \bigcup_{i \in I} F_i' \in \mathfrak{I}$ $\Rightarrow (\bigcup_{i \in I} F_i')' \text{ is a closed set}$ $\Rightarrow [(\bigcap_{i \in I} F_i)']' = \bigcap_{i \in I} F_i \text{ is closed.}$ $\therefore \text{ any intersection of closed sets in X is closed}$

(ii) Let F_i , $1 \le i \le n$ be closed sets

$$\Rightarrow$$
 F_i' \in \mathfrak{I} for $1 \leq i \leq n$.

 $\Rightarrow \bigcap_{i=1}^{n} F_i' \in \mathfrak{I}$

 $\Rightarrow (\bigcap_{i=1}^{n} F_{i}')'$ is a closed set.

 $\Rightarrow [(\bigcup_{i=1}^{n} F_i)']' = \bigcup_{i=1}^{n} F_i \text{ is closed.}$

 \therefore any finite union of closed sets in X is closed.

Definition: Let (X, \mathfrak{J}) be a topological space and $A \subseteq X$. The intersection of all closed super sets of A, is called the closure of A denoted by \overline{A} .

<u>Note</u>: A is closed iff $A = \overline{A}$.

Suppose A is closed. Clearly $A \subseteq \overline{A}$. $\overline{A} \subseteq A$ since A is a closed superset of A and \overline{A} is the intersection of all closed super sets of A. Hence $A = \overline{A}$. Conversely suppose $A = \overline{A}$. \overline{A} is closed since intersection of closed sets is closed and \overline{A} is the intersection of all closed supersets of A.

 \therefore A is closed.

<u>Definition</u>: A subset A of X, where (X, \mathfrak{J}) is a topological space, is called *dense (everywhere dense)* if $\overline{A} = X$.

A topological space X is said to be a *separable* space if it has a countable dense subset.

Theorem: Let X be a topological space. If A and B are arbitrary subsets of X, then the operation of forming closure has the following four properties. (i) $\overline{\phi} = \phi$ (ii) $A \subset \overline{A}$. (iii) $\overline{A} = \overline{A}$ and (iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$. **Proof**: (i) Since X is open X' = ϕ is closed so that $\overline{\phi} = \phi$. (ii) Since \overline{A} is the intersection of all closed supersets of A, A $\subseteq \overline{A}$. (iii) Since \overline{A} is closed $\overline{\overline{A}} = \overline{A}$. (iv) $A \cup B \subset \overline{A} \cup \overline{B}$ since $A \subset \overline{A}$ and $B \subset \overline{B}$. Ie. $\overline{A} \cup \overline{B}$ is a closed superset of $A \cup B$. $\Rightarrow \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}.$ Again A \subset A \cup B \subset $\overline{A \cup B}$ ie. $\overline{A \cup B}$ is a closed super set of A and since \overline{A} is the intersections of all closed super sets of A, $\overline{A} \subseteq \overline{A \cup B}$. Similarly $\overline{B} \subseteq \overline{A \cup B}$. $\therefore \bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$ Hence $\overline{A \cup B} = \overline{A} \cup \overline{B}$. **Note**: $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$.

<u>Proof</u>: Since $A \subseteq B, A \cup B = B$ $\therefore \overline{B} = \overline{A \cup B} = \overline{A} \cup \overline{B} \Rightarrow \overline{A} \subseteq \overline{B}.$

Definition: A nbd of $x \in X$, where (X, \mathfrak{J}) is a topological space, is $G \in \mathfrak{J}$ (an open set G) $\ni x \in G$. A class of nbds of a point $x \in X$ is called an *open base* for the point if for each nbd G of $x \exists a$ nbd H in this class $\ni H \subseteq G$.

Example:

<u>**Theorem</u>**: Let (X, \mathfrak{I}) be a topological space and A be an arbitrary subset of X. Then $\overline{A} = \{x \mid \text{ each neighbourhood of } x \text{ intersects } A\}$ </u>

Proof: Let $x \in \overline{A}$. If possible, suppose $x \notin \{x \mid \text{each neighbourhood of } x \text{ intersects } A\}$. $\Rightarrow \exists a \text{ nbd } G \text{ of } x \ni G \cap A = \phi$. $\Rightarrow A \subseteq G'$. $\Rightarrow \overline{A} \subseteq \overline{G'} = G' \text{ since } G' \text{ is closed.}$ $\Rightarrow x \in G', a \text{ contradiction.}$ $\Rightarrow x \in \{x \mid \text{each neighbourhood of } x \text{ intersects } A\}$

⇒ $x \in \{x \mid \text{each neighbourhood of } x \text{ intersects } A\}$ Conversely suppose $x \in \{x \mid \text{each neighbourhood of } x \text{ intersects } A\}$. If possible, suppose $x \notin \overline{A}$. ⇒ $x \in (\overline{A})'$ and $(\overline{A})'$ is open. ⇒ $(\overline{A})' \cap A \neq \phi$, a contradiction. Hence $x \in \overline{A}$.

Definition: Let X be a topological space and $A \subseteq X$. A point x in A is said to be an *isolated point* of A if \exists nbd G of x \ni (G \cap A) \ {x} = ϕ . A point x \in X is said to be a *limit point* of A if (G \cap A) \ {x} $\neq \phi$ for every nbd G of x. The *derived set* denoted by D(A) is the set of all limit points of A.

<u>Theorem</u>: Let X be a topological space and $A \subseteq X$. Then (i) $\overline{A} = A \cup D(A)$ and (ii) A is closed iff $D(A) \subseteq A$. **<u>Proof</u>**: Suppose $x \in A \cup D(A)$. If possible suppose $x \notin \overline{A}$. $\Rightarrow \exists nbd. G \text{ of } x \ni G \cap A = \phi$. $\Rightarrow x \notin A \text{ and } (G \cap A) \setminus \{x\} = \phi$. $\Rightarrow x \notin A \text{ and } x \notin D(A) \Rightarrow x \notin A \cup D(A) \text{ a contradiction.} \therefore x \in \overline{A}$. Conversely suppose $x \in \overline{A}$. If possible, suppose $x \notin \overline{A} \cup D(A)$. $\Rightarrow x \notin A \text{ and } x \notin D(A)$. $\Rightarrow x \notin A \text{ and } x \text{ is not a limit point of } A$. $\Rightarrow x \notin A \text{ and } x \text{ is not a limit point of } A$. $\Rightarrow x \notin A \text{ and } \exists nbd. G \text{ of } x \ni (G \cap A) \setminus \{x\} = \phi$. $\Rightarrow G \cap A = \phi \Rightarrow x \notin \overline{A}$, a contradiction.

 \therefore x \in A \cup D(A). Hence $\overline{A} = A \cup D(A)$.

(ii) A is closed iff $A = \overline{A}$ iff $A = A \cup D(A)$ iff $D(A) \subseteq A$.

Problem: Let $f: X \to Y$ be a mapping of one topological space into another. Show that (i) f is continuous, iff (ii) $f^{-1}(F)$ is closed in X whenever F is closed in Y, iff (iii) $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset A of X.

Proof: (i) \Rightarrow (ii). Assume (i). Let F be a closed set in Y \Rightarrow F' is open \Rightarrow f⁻¹(F') = [f⁻¹(F)]' is open in X, since f is continuous. \Rightarrow f⁻¹(F) is closed. (ii) \Rightarrow (i). Assume (ii). Let G be open in Y. \Rightarrow G' is closed \Rightarrow f⁻¹(G') = [f⁻¹(G)]' is closed by (ii). \Rightarrow f⁻¹(G) is open in X. Hence f is continuous. (ii) \Rightarrow (iii) Assume (ii). Let $A \subseteq X$. $\overline{f(A)}$ is closed in Y. $\Rightarrow f^{-1}\overline{f(A)}$ is closed in X. Since $A \subseteq f^{-1}\overline{f(A)}$, $\overline{A} \subseteq f^{-1}\overline{f(A)}$ $\Rightarrow f(\overline{A}) \subset \overline{f(A)}$ (iii) \Rightarrow (ii). Assume (iii). Let F be a closed set in Y. Write $A = f^{-1}(F) \Rightarrow f(A) = F$ $\Rightarrow \overline{f(A)} = \overline{F} = F$ (since F is closed) = f(A). By (iii), $f(\overline{A}) \subseteq \overline{f(A)} = f(A)$ $\Rightarrow \overline{A} \subset A.$ $\therefore A = \overline{A} \Rightarrow A = f^{-1}(F)$ is closed.

Theorem: Let X be a non – empty set and there be given a class of subsets of X which is closed under the formation of arbitrary intersections and finite unions. Then the class of all complements of these sets is a topology on X whose closed sets are precisely those initially given.

<u>Proof</u>: Suppose $\{F_i\}$ is the collection of given sets which is closed under arbitrary intersections and finite unions.

Write $\mathfrak{T} = \{F_i' \mid i \in \Delta\}$. Let $\{F_i'\}_{i \in I}$ where $I \subseteq \Delta$ be a collection of sets from \mathfrak{T} . Now $\cup F_i' = (\cap F_i)'$ and since $\cap F_i \in \{F_i\}_{i \in \Delta}, (\cap F_i)' \in \mathfrak{T}$. ie. $\cup F_i' \in \mathfrak{T}$. Hence \mathfrak{T} is closed under arbitrary unions. Let $F_1', ..., F_n' \in \mathfrak{T}$. $\Rightarrow F_1, ..., F_n \in \{F_i\}_{i \in \Delta}$.

Since the collection is closed under finite unions, $F_1 \cup ... \cup F_n$ is in this collection $\Rightarrow (F_1 \cup ... \cup F_n)' \in \mathfrak{I} \Rightarrow F_1' \cap F_2' \cap ... \cap F_n' \in \mathfrak{I}.$

Hence \Im is closed under finite intersections.

Hence \Im is a topology.

Let F be a closed set in (X, \mathfrak{I}) iff F' is open iff $F' \in \mathfrak{I}$ iff $F = (F')' \in \{F_i\}_{i \in \Delta}$ iff F is in the collection.

Hence the closed sets in (X, \mathfrak{I}) are precisely the elements in the given collection.

Theorem: Let X be a non – empty set and there be given a closure operation which assigns to each subset A of X a subset \overline{A} of X in such a manner that

(i) $\overline{\phi} = \phi$ (ii) $A \subseteq \overline{A}$. (iii) $\overline{\overline{A}} = \overline{A}$ and (iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$. If a closed set A is defined to be one for which $A = \overline{A}$, then the class of all complements of such sets is a topology on X whose closure operation is precisely that initially given.

Proof: Write $\mathcal{G} = \{A: A \subset X \text{ and } A = \overline{A}\}$. It suffices if we prove that \mathcal{G} is closed under arbitrary intersections and finite unions. Let $A_i \in \mathcal{G}$ for $1 \le i \le n$. By (iii) $\overline{A_1 \cup A_2} = \overline{A_1} \cup \overline{A_2} = A_1 \cup A_2$. *G* is closed under unions when n = 2. Let *G* be closed under unions when n = k - 1. Assume $\overline{A_1 \cup A_2 \cup ... \cup A_{k-1}} = A_1 \cup A_2 \cup ... \cup A_{k-1}$ Now $\overline{A_1 \cup A_2 \cup ... \cup A_k} = \overline{A_1 \cup A_2 \cup ... \cup A_{k-1}} \cup \overline{A_k} = A_1 \cup A_2 \cup ... \cup A_{k-1} \cup A_k$ \therefore By induction $\overline{A_1 \cup A_2 \cup ... \cup A_n} = A_1 \cup A_2 \cup ... \cup A_n \forall$ integral values of n. \therefore *G* is closed under finite unions. Now let $\{A_i\}_{i \in I}$ be a collection of elements from \mathcal{G} . Then $A_i = \overline{A_i}$ for each $i \in I$. Now $\bigcap_{i \in I} A_i \subseteq \overline{\bigcap_{i \in I} A_i}$ since by (ii) $A \subseteq \overline{A}$ for each subset A of X. Again since $\bigcap_{i \in I} A_i \subseteq A_i$ for each i, $\overline{\bigcap_{i \in I} A_i} \subseteq \overline{A_i} = A_i$ for each i. $\Rightarrow \overline{\bigcap_{i \in I} A_i} \subseteq \bigcap_{i \in I} A_i \therefore \overline{\bigcap_{i \in I} A_i} = \bigcap_{i \in I} A_i \therefore \bigcap_{i \in I} A_i \in \mathcal{G}.$ Hence G is closed under arbitrary intersections. $\therefore \mathfrak{I} = \{ A' | A \in \mathcal{G} \}$ is a topology on X. Now A is closed in X w. r. t. \Im iff $A' \in \Im$ iff $A = (A')' \in \mathcal{G}$ iff $A = \overline{A}$ and A is closed

in the given sense.

OPEN BASES AND OPEN SUBBASES

Definition: An open base for X where X is a topological space is a class β of open sets in X with the property that every open set in X is a union of sets from β . Equivalently, if G is a non – empty open set and $x \in G$ then $\exists B \in \beta \ni x \in B \subseteq G$.
Example: Let (X, d) be a metric space and \mathfrak{I} be the induced topology on X. If β is the set of all open spheres in X, then β is an open base for (X, \mathfrak{I}) .

<u>Note</u>: If β , β' are two collections of open sets of (X, \mathfrak{I}), β is open base and $\beta \subseteq \beta'$ then β' is also an open base for X.

Definition: A topological space (X, \mathfrak{I}) which has a countable open base is said to be a second countable space.

Note: Show that the two conditions are equivalent

(i) β is a class of open sets in X with the property that every open set in X is a union of sets from β and

(ii) β is a class of open sets in X \ni G is a non – empty open set and $x \in G \Rightarrow \exists B \in \beta \ni x \in B \subseteq G$.

<u>Solution</u>: Claim: (i) \Rightarrow (ii).

Assume (i). Let G be a non – empty set and $x \in G$.

Since G is open by (i) $\exists B_i \in \beta \ni G = \bigcup_{i \in I} B_i$.

 $\therefore x \in G = \bigcup_{i \in I} B_i \Longrightarrow \exists B_i \in \beta \text{ for some } i \ni x \in B_i \text{ and hence } x \in B_i \subseteq G, \text{ for } B_i \in \beta.$

Claim: (ii) \Rightarrow (i). Let G be a open set in X.

If G is empty then G is a union of empty class of open sets from β .

Let G be non – empty and $x \in G$.

Then by (ii) $\exists B_x \in \beta \ \exists x \in B_x \subseteq G$. $\therefore \bigcup_{x \in G} B_x \subseteq G$. Again $x \in G \Rightarrow x \in B_x \subseteq \bigcup_{x \in G} B_x$ $\therefore G \subseteq \bigcup_{x \in G} B_x$. Hence $G = \bigcup_{x \in G} B_x$.

LINDELOF'S Theorem: Let X be a second countable space. If a non – empty open set G in X is represented as the union of a class $\{G_i\}_{i \in I}$ of open sets, then G can be represented as a countable union of G_i 's.

<u>Proof</u>: Since X is a second countable space, X has a countable open base, say,

 $\{B_n\}$. Given that G be a nonempty open set $\ni G = \bigcup_{i \in I} G_i$.

Let $x \in G$. Then $x \in G_{i(x)}$ for some $i(x) \in I$.

Since $G_{i(x)}$ is open and $x \in G_{i(x)} \exists n(x) \ni x \in B_{n(x)} \subseteq G_{i(x)}$.

Since $\{B_n\}$ is a countable class and $\{B_{n(x)}\}_{x\in G}$ is a subclass of $\{B_n\}$ we have that $\{B_{n(x)}\}_{x\in G}$ is a countable class.

For every $x \in G$, corresponding to each $B_{n(x)}$ we have $G_{i(x)}$.

 \therefore {G_{i(x)}} is also a countable class.

Now $\bigcup_{x \in G} G_{i(x)} \subseteq \bigcup_{i \in I} G_i = G$. Let $y \in G \Rightarrow y \in G_{i(y)} \subseteq \bigcup_{x \in G} G_{i(x)}$. Hence $G = \bigcup_{x \in G} G_{i(x)}$ and $\{G_{i(x)}\}_{x \in G}$ is a countable class.

Theorem: Let X be a second countable space. Then any open base for X has a countable subclass which is also an open base.

Proof: Given X is second countable.

Let $\{B_n\}$ be a countable open base for X.

Let {B_i} be any open base for X. Since each B_n can be written as union of some B_i's (because B_n is open and {B_i} is an open base), by Lindelof's theorem, for each non-empty B_n, \exists a countable subclass { $(B_i)_{n_k}$ } of the class {B_i} \ni B_n = $\bigcup_k (B_i)_{n_k}$. Now the class { $(B_i)_{n_k}/n \ge 1, k \ge 1$ } is a countable subclass of {B_i}.

We now show that the class $B = \{(B_i)_{n_k} | n \ge 1, k \ge 1\}$ is an open base for X.

Let G be any nonempty open set and $x \in G$.

Since $\{B_n\}$ is an open base $\exists n \ni x \in B_n \subseteq G$.

We know that $x \in B_n = \bigcup_k (B_i)_{n_k} \subseteq G$ and so B is an open base.

 \therefore B = {(B_i)_{n_k}/ $n \ge 1$, $k \ge 1$ } is a countable subclass of {B_i} which is also an open base for X.

Note: The axiom "topological space has a countable open base at each of its points" is called first axiom of countability. A topological space which satisfies this axiom is called a first countable space.

Theorem: Every second countable space is separable.

<u>**Proof**</u>: Let X be second countable space. Let $\{B_n\}$ be a countable open base for X. Choose a point x_n from each non – empty set B_n .

Since $\{B_n\}$ is countable, $A = \{x_n / n \ge 1\}$ is countable.

<u>Claim</u>: $\overline{A} = X$. Clearly $\overline{A} \subseteq X$. Let $x \in X$ and G be a nbd of x.

Now \exists a basic open set $B_n \ni x \in B_n \subseteq G$.

If $x = x_n$ then $x \in A \subseteq \overline{A}$.

If $x \neq x_n$ for any n, then $x, x_n \in B_n \subseteq G$ and so $x_n \in G \cap A \setminus \{x\}$.

 \therefore for any nbd G of x, G \cap A \ {x} \ $\neq \phi$. \Rightarrow x is a limit point of A and so x $\in \overline{A}$.

 $\therefore X \subseteq \overline{A}$. Hence $\overline{A} = X$.

Since, A is countable and $\overline{A} = X$, X is separable.

<u>Note</u>: The converse of the above theorem need not be true.

For example, Consider \mathbb{R} with topology \mathfrak{T} of finite complements. Let F be a closed set in $(\mathbb{R}, \mathfrak{T})$. Then F' is open \Rightarrow F' = ϕ , or F' = G where G' is a finite set \Rightarrow F = \mathbb{R} or F is a finite set. \therefore Q is neither open nor closed. (Since Q is not a finite set and Q' is not a finite set Q is not open and not closed.) Since the only closed set containing Q is \mathbb{R} we have $\overline{Q} = \mathbb{R}$. \therefore \mathbb{R} is a separable space.

<u>Claim</u>: \mathbb{R} is not second countable. If possible, suppose \mathbb{R} is second countable. Then \exists a countable open base $\{B_i\}_{i \in I}$. Consider $A = \bigcup_{i=1}^{\infty} B_i'$. Since each B_i' is finite A is countable union of finite sets. \therefore A is countable. Since \mathbb{R} is not countable $\mathbb{R} \not\subset A$. $\therefore \exists y \in \mathbb{R} \setminus A$. Now write $G = \mathbb{R} \setminus \{y\}$. Since $G' = \{y\}$ is finite, $G \in \mathfrak{I}$. Let $z \in G$. Since $\{B_i\}$ is an open base, $\exists B_k \ni z \in B_k \subseteq G$ for some $k \in I$. $B_k \subseteq G$ $\Rightarrow B_k' \supseteq G' = \{y\}$ $\Rightarrow y \in B_k' \subseteq \bigcup_{i \in I} B_i'$ $\Rightarrow y \in A$, a contradiction to the selection of y. Hence \mathbb{R} is not second countable.

Theorem: Every separable metric space is second countable.

<u>Proof</u>: Let X be a separable metric space. Let A be a countable dense subset of X. Consider Q the set of rational numbers. We know that Q is countable. Consider $\{S_r(a) / r \in Q\}$ for any $a \in A$. Clearly this is a countable class of open spheres around $a \in A$. Since A is countable $\mathcal{B} = \bigcup_{a \in A} \{S_r(a) / r \in Q\} = \{S_r(a) / a \in A, r \in Q\}$ is a countable union of countable class of sets. Hence \mathcal{B} is a countable class of sets.

<u>Claim</u>: \mathcal{B} is an open base for X. Let G be an open set and $x \in G$. Since G is open \exists a nbd $S_r(x)$ with some radius $r \ni x \in S_r(x) \subseteq G$. Consider the open sphere $Sr_{/_3}(x)$. Since A is dense, $\overline{A} = X$ and so every point of X is a limit point of A. \therefore x is a limit point of A and so $Sr_{/_3}(x) \cap A \neq \phi$. Choose $r_1 \in Q \ni \frac{r}{3} < r_1 < \frac{2r}{3}$. Now take $a \in Sr_{/3}(x) \cap A$. Then $S_{r_1}(a) \in \mathcal{B}$ and $d(a, x) < r/3 < r_1$. $\Rightarrow x \in S_{r_1}(a)$. To show that $S_{r_1}(a) \subseteq S_r(x)$, take $y \in S_{r_1}(a)$. Then $d(x, y) \le d(x, a) + d(a, y) \le \frac{r}{3} + r_1 < \frac{r}{3} + \frac{2r}{3} = r$. $\Rightarrow y \in S_r(x)$. $\therefore S_{r_1}(a) \subseteq S_r(x) \subseteq G$. $\therefore x \in S_{r_1}(a) \subseteq G$. $\therefore \mathcal{B}$ is an open base for X and \mathcal{B} is countable. Hence X is second countable.

Definition: Let X be a topological space. An *open subbase* is a class of open subsets of X whose finite intersections form an open base. This open base is called the *open base generated by the open subbase*. The sets in an open subbase are called *subbasic open sets*.

Note: Let (X, \mathfrak{J}) be a topological space and $\{B_i\}$ be an open subbase (say $S = \{B_i / i \in I\}$). Then $S^* = \{A_i / A_i = \bigcap_{k=1}^n B_{i_k}$ where $n \in \mathbb{N}$, $B_{i_k} \in S$ for $1 \le k \le n\}$ is the open base generated by S. Now $\mathfrak{J} = \{G / G = \bigcup A_i \text{ where } \{A_i\}$ is a collection of elements from $S^*\}$.

Example: Consider \mathbb{R} . Write $S = \{(a, \infty) / a \in \mathbb{R}\} \cup \{(-\infty, b) / b \in \mathbb{R}\}$. Then $S^* = S \cup \{\phi, \mathbb{R}\} \cup \{(a, b) / a, b \in \mathbb{R}\}$.

Now $\mathfrak{T} = \{G \mid G = \bigcup A_i \text{ where each } A_i \text{ is from } S^*\} = \{G \mid G \text{ is a union of open intervals of } \mathbb{R}\}$. Clearly this \mathfrak{T} is a topology on X induced by the usual metric on \mathbb{R} . Hence S is an open subbase and S* is an open base generated by S.

Example:

Theorem: Let X be a non – empty set and let C be an arbitrary class of subsets of X. Then C can serve an open sub-base for a topology \Im on X (in the sense that the class of all unions of finite intersections of sets in C forms a topology on X).

<u>Proof</u>: Write \mathcal{B} = the class of all finite intersections of sets of \mathcal{C} . Write \mathfrak{T} = the class of all arbitrary unions of sets from \mathcal{B} . If $\mathcal{C} = \phi$, then $\mathcal{B} = \{X\}$ and $\mathfrak{T} = \{\phi, X\}$.

In this case clearly \Im is a topology on X. Now assume that $\mathcal{C} \neq \phi$.

Claim: B is closed under finite intersections:

For this we prove $B_1, B_2, ..., B_k \in \mathcal{B} \Rightarrow B_1 \cap B_2 \cap ... \cap B_k \in \mathcal{B}$ for all integral values of k using induction. Suppose for $k = 2, B_1, B_2 \in \mathcal{B}$. Then $B_1 = P_1 \cap P_2 \cap ... \cap P_n$ and $B_2 = Q_1 \cap Q_2 \cap ... \cap Q_m$, where $P_i, Q_j \in \mathcal{C}$ for $1 \le i \le n$ and $1 \le j \le m$. Now $B_1 \cap B_2 = P_1 \cap P_2 \cap ... \cap P_n \cap Q_1 \cap Q_2 \cap ... \cap Q_m \in \mathcal{B}$. Assume for k = n - 1 ie. $B_1, B_2, ..., B_{n-1} \in \mathcal{B} \Rightarrow B_1 \cap B_2 \cap ... \cap B_{n-1} \in \mathcal{B}$. Let $B_1, B_2, ..., B_n \in \mathcal{B}$ $\Rightarrow B_1 \cap B_2 \cap ... \cap B_n = (B_1 \cap B_2 \cap ... \cap B_{n-1}) \cap B_n \in \mathcal{B}$. By induction $B_1, B_2, ..., B_k \in \mathcal{B} \Rightarrow B_1 \cap B_2 \cap ... \cap B_k \in \mathcal{B}$ for all integral values of k.

Hence \mathcal{B} is closed under finite intersections.

Next we show that for any $x \in G \in \mathfrak{I} \exists B \in \mathcal{B} \ni x \in B \subseteq G$.

For this suppose $G \in \mathfrak{I}$. Then by definition of \mathfrak{I} , $G = \bigcup_{i \in I} B_i$ where and $B_i \in \mathcal{B}$. Now $x \in G \Rightarrow x \in B_i$ for some $i \in I$. $\therefore \exists B_i \in \mathcal{B} \ni x \in B_i \subseteq G$.

To show that **3** is closed under finite intersections.

Let $G_1, G_2, ..., G_n \in \mathfrak{J}$ and write $G^* = G_1 \cap G_2 \cap ... \cap G_n$. Let $x \in G^*$. Then $x \in G_i$ for $1 \le i \le n$ $\Rightarrow \exists B_i \in \mathcal{B}, \ 1 \le i \le n \ni x \in B_i \subseteq G_i$, for $1 \le i \le n$. Write $B_x = B_1 \cap B_2 \cap ... \cap B_n \in \mathcal{B}$ $\therefore x \in G^* \Rightarrow \exists B_x \in \mathcal{B} \ni x \in B_x \subseteq G^*$. Hence $G^* = \bigcup_{x \in G^*} B_x \in \mathfrak{J}$. $\therefore \mathfrak{J}$ is closed under finite intersections.

To show that **3** is closed under arbitrary unions:

Let $\{G_i\}_{i \in I}$ be a collection of elements from \mathfrak{T} . For each i, $G_i \in \mathfrak{T} \Longrightarrow \exists \{B_{i_j}\} \ni G_i = \bigcup_j B_{i_j} \text{ and } \{B_{i_j}\} \in \mathcal{B}$. Now $\bigcup_i G_i = \bigcup_i \bigcup_j B_{i_j} \in \mathfrak{T}$.

\therefore **3** is a topology.

Already we have shown that for any $G \in \mathfrak{I}$, $x \in G \exists B \in \mathcal{B} \ni x \in B \subseteq G$.

$\therefore \mathcal{B} \text{ is an open base for } \mathfrak{J}.$ By construction of \mathcal{B} , \mathcal{C} is open sub-base.

Definition: Let X be a non-empty set and C be any class of subsets of X. Write \mathcal{B} = the class of all finite intersections of sets of C. Write \mathfrak{T} = the class of all arbitrary unions of sets from \mathcal{B} . Then \mathfrak{T} is a topology on X called *topology generated by the class C*.

WEAK TOPOLOGIES

<u>Definition</u>: If $\mathfrak{I}_1, \mathfrak{I}_2$ are topologies on a set X such that $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$, then \mathfrak{I}_1 is said to be weaker than \mathfrak{I}_2

<u>Note</u>: Let X be any non-empty set. Then indiscrete topology is the weakest topology and discrete topology is the strongest topology on X.

Definition: A partially ordered set X is called a *complete lattice* if every nonempty subset of X has a greatest lower bound and least upper bound.

Theorem: Let X be a non-empty set. Then the family of all topologies on X is a complete lattice with respect to the relation "is weaker than". Furthermore, this lattice has a least member and a greatest member.

<u>Proof</u>: Let $\mathcal{G} = \{ \mathfrak{J} \mid \mathfrak{J} \text{ is a topology on } X \}$. Define a relation \leq on \mathcal{G} as $\mathfrak{I}_1 \leq \mathfrak{I}_2$ iff \mathfrak{I}_1 is weaker than \mathfrak{I}_2 ie. $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$. Then $(\mathcal{G}, \mathfrak{I})$ is a POset. Claim: (\mathcal{G} , \mathfrak{I}) is a complete lattice. Let $\phi \neq \mathcal{G}_1 \subseteq \mathcal{G}$. Write $\mathfrak{I}_1 = \bigcap_{\mathfrak{I} \in \mathcal{G}_1} \mathfrak{I}$. Then \mathfrak{I}_1 is a topology on X. Since $\mathfrak{I}_1 \subseteq \mathfrak{I} \forall \mathfrak{I} \in \mathcal{G}_1, \ \mathfrak{I}_1 \leq \mathfrak{I} \forall \mathfrak{I} \in \mathcal{G}_1.$ $\therefore \mathfrak{I}_1$ is a lower bound for \mathcal{G}_1 . Let \mathfrak{I}^* be any lower bound of \mathcal{G}_1 . Then $\mathfrak{I}^* \leq \mathfrak{I} \forall \mathfrak{I} \in \mathcal{G}_1$. $\Rightarrow \mathfrak{I}^* \subseteq \mathfrak{I} \forall \mathfrak{I} \in \mathcal{G}_1$. $\Rightarrow \mathfrak{I}^* \subseteq \bigcap_{\mathfrak{I} \in \mathcal{G}_1} \mathfrak{I} = \mathfrak{I}_1 \Rightarrow \mathfrak{I}^* \leq \mathfrak{I}_1$ Hence \mathfrak{I}_1 is the glb of \mathcal{G}_1 . Let $Y = \bigcup_{\mathfrak{I} \in \mathcal{G}_1} \mathfrak{I}$. Write $\mathcal{T} = \bigcap \{ \mathfrak{I} \in \mathcal{G} \mid Y \subseteq \mathfrak{I} \}$. Since \mathcal{T} is the intersection of a collection of topologies, \mathcal{T} is a topology. Since $\bigcup_{\mathfrak{I} \in \mathcal{G}_1} \mathfrak{I} \subseteq \mathcal{T}, \mathfrak{I} \subseteq \mathcal{T} \forall \mathfrak{I} \in \mathcal{G}_1 \Longrightarrow \mathfrak{I} \leq \mathcal{T} \forall \mathfrak{I} \in \mathcal{G}_1$ $\Rightarrow \mathcal{T}$ is an upper bound of \mathcal{G}_1 . Let \mathcal{T}^* be any upper bound for $\mathcal{G}_1 \Rightarrow \mathfrak{I} \leq \mathcal{T}^* \forall \mathfrak{I} \in \mathcal{G}_1 \Rightarrow \mathfrak{I} \subseteq \mathcal{T}^* \forall \mathfrak{I} \in \mathcal{G}_1$ $\Rightarrow Y = \bigcup_{\mathfrak{J} \in \mathcal{G}_1} \mathfrak{J} \subseteq \mathcal{T}^*.$ $\Rightarrow \mathcal{T}^* \in \{\mathfrak{I} \in \mathcal{G} / \mathbf{Y} \subseteq \mathfrak{I}\}$ $\Rightarrow \mathcal{T} \subset \mathcal{T}^*.$ $\therefore \mathcal{T} \leq \mathcal{T}^*$ for any upper bound \mathcal{T}^* of \mathcal{G}_1 .

Hence \mathcal{T} is the least upper bound of $\mathcal{G}_{1.}$ Since every subset \mathcal{G}_1 of \mathcal{G} has glb and lub, \mathcal{G} is complete.

<u>Note</u>: Let X, Y be topological spaces. If \mathfrak{I} is the discrete topology on X (ie. $\wp(X)$), then any mapping f: X \rightarrow Y is continuous.

Definition: Let X be a non-empty set. Let $\{(X_i, \mathfrak{J}_i)_{i \in I} \text{ be a non-empty class of topological spaces. For each <math>i \in I$, suppose $f_i: X \to X_i$ is a function. If $\wp(X)$ is the topology on X then every f_i is continuous. Write $\mathfrak{I}^* =$ the intersection of all topologies on X which makes every $f_i: X \to X_i$ is continuous. This topology \mathfrak{I}^* is called the weak topology generated by the f_i 's.

THE FUNCTION ALGEBRAS $\mathcal{C}(\mathbf{X}, \mathbb{R}), \mathcal{C}(\mathbf{X}, \mathfrak{C})$.

Definition: An algebra is a linear space whose vectors can be multiplied in such a manner that (i) x(yz) = (xy)z; (ii) x(y + z) = xy + xz and (x + y)z = xz + yz and (iii) $\alpha(xy) = (\alpha x)y = x(\alpha y)$ for every scalar α .

If the scalars are real numbers then it is real algebra. If the scalar are complex numbers then the algebra is called complex algebra.

A commutative algebra is an algebra if $xy = yx \forall x, y$.

An algebra with identity is an algebra satisfying the following property: \exists a non-zero element denoted by 1 called the identity such that 1x = x = x1 for every x.

A subalgebra of an algebra is a linear subspace, which contains the product of each pair of its elements.

Lemma: If f and g are continuous real or complex functions defined on a topological space X, then f + g, af and fg are also continuous. Furthermore, if f and g are real, then $f \wedge g$ and $f \vee g$ are continuous.

<u>**Proof**</u>: (With suitable modifications in similar proof in metric spaces) we can prove that f + g, af are continuous.

Let $\varepsilon > 0$ and $x_0 \in X$. Take $\varepsilon_1 > 0 \ni \varepsilon_1\{|f(x_0)| + |g(x_0)|\} + \varepsilon_1^2 < \varepsilon_{\dots}(i)$. Since f, g are continuous at x_0 , corresponding to $\varepsilon_1 > 0 \exists$ nbds G_1 and $G_2 \ni x \in G_1$, $x \in G_2$, $|f(x) - f(x_0)| < \varepsilon_1$ and $|g(x) - g(x_0)| < \varepsilon_1$ respectively. Then $G = G_1 \cap G_2$ is a nbd of x_0 and let $x \in G$. Now $|(fg)(x) - (fg)(x_0)| = |f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)| \le |f(x)||g(x) - g(x_0)| + |g(x) - g(x_0)| \le |f(x)||g(x) - g(x$

 $\begin{aligned} |g(x_0)||f(x) - f(x_0)| \\ < \varepsilon_1 |f(x) - f(x_0)| + |f(x_0)| \varepsilon_1 + |g(x_0)| \varepsilon_1 \\ < \varepsilon_1^2 + \varepsilon_1 \{|f(x_0)| + |g(x_0)|\} < \varepsilon \text{ by (i).} \end{aligned}$

 $\therefore \text{ fg is continuous at } x_0. \text{ Since this is true for any } x_0 \in X, \text{ fg is continuous on } X.$ $\text{Put } A = (a, \infty) \text{ and } B = (-\infty, b).$ $\text{Since } f, g \text{ are continuous } f^{-1}(A), g^{-1}(A), f^{-1}(B), g^{-1}(B) \text{ are open sets.}$ $\text{Now } (f \lor g)^{-1}(A) = \{ x / (f \lor g)(x) \in A \} = \{ x / \max [f(x), g(x)] > a \}$ $= \{ x / f(x) > a \} \cup \{ x / g(x) > a \}$ $= \{ x / f(x) \in A \} \cup \{ x / g(x) \in A \}$ $= f^{-1}(A) \cup g^{-1}(A) \text{ which is an open set.}$

$$\begin{split} (f \lor g)^{-1}(B) &= \{ \ x \ / \ (f \lor g)(x) \in B \} = \{ x \ / \ max \ [f(x), \ g(x)] < b \} \\ &= \{ x \ / \ f(x) < b \} \ \cap \ \{ x \ / \ g(x) < b \} \\ &= \{ x \ / \ f(x) \in B \} \ \cap \ \{ x \ / \ g(x) \in B \} \\ &= f^{-1}(B) \ \cap \ g^{-1}(B) \text{ which is an open set.} \end{split}$$

 \Rightarrow (f \lor g)⁻¹(A), (f \lor g)⁻¹(B) are open sets on sub basic open sets A and B.

Hence $(f \lor g)$ is continuous. Similarly, we can show that $(f \land g)$ is continuous.

Lemma: Let X be a topological space, and $\{f_n\}$ be a sequence of real or complex functions defined on X which converges uniformly to a function f defined on X. If all the f_n 's are continuous, then f is also continuous.

Theorem: Let $C(X, \mathbb{R})$ be the set of all bounded continuous real functions defined on a topological space X. Then (i) $C(X, \mathbb{R})$ is a real Banach space with respect to point wise addition and scalar multiplication and the norm defined by $||f|| = \sup |f(x)|$; (ii) if multiplication is defined pointwise, then $C(X, \mathbb{R})$ is a commutative real algebra with identity, in which $||fg|| \le ||f|| ||g||$ and ||1|| = 1 and (iii) If $f \le g$ is defined to mean that $f(x) \le g(x)$ for all x, then $C(X, \mathbb{R})$ is a lattice in which the greatest lower bound and least upper bound of a pair of functions f and g are given by $(f \land g)(x) = \min \{f(x), g(x)\}$ and $(f \lor g)(x) = \max \{f(x), g(x)\}$.

<u>**Proof**</u>: (i) follow the proof of " $\mathcal{C}(X, \mathbb{R})$ is a real Banach space" in metric spaces with relevant changes.

(ii) Let f, g, $h \in C(X, \mathbb{R})$. Then for all $x \in X$, $f(gh)(x) = f(x)(gh)(x) = f(x)\{g(x)h(x)\} = \{f(x)g(x)\}h(x) = (fg)(x)h(x) = \{(fg)h\}(x)$

 \therefore f(gh) = (fg)h.

Similarly we can prove that f(g + h) = fg + fh; (f + g)h = fh + gh;

 $\alpha(xy) = (\alpha x)y = x(\alpha y)$ for every scalar α and fg = gf.

 $\therefore C(X, \mathbb{R})$ is a commutative algebra.

Define $1(x) = 1 \forall x \in X$.

Then for any $f \in \mathcal{C}(X, \mathbb{R})$ and $x \in X$, $(f1)(x) = f(x)1(x) = f(x)1 = f(x) \therefore f1 = f$. Similarly, 1f = f. $\therefore 1$ is the identity element in $\mathcal{C}(X, \mathbb{R})$. Now ||1|| = sup|1(x)|= sup |1| = 1.

Let f, g $\in C(X, \mathbb{R})$. Then $||fg|| = \sup |(fg)(x)| = \sup |f(x)||g(x)| \le \sup |f(x)|$ = $\sup |g(x)| = ||f|| ||g||$

(iii) Define a relation \leq on $\mathcal{C}(X, \mathbb{R})$ by $f \leq g$ iff $f(x) \leq g(x) \forall x \in X$.

Then clearly \leq is a partial order on $\mathcal{C}(X, \mathbb{R})$.

By a lemma $f \lor g$, $f \land g$ are continuous $\ni m_1 \le f(x) \le M_1$, $m_2 \le g(x) \le M_2 \forall x \in X$. Take $m = \min \{m_1, m_2\}$ and $M = \max \{M_1, M_2\}$.

Then $m \leq (f \land g)(x) \leq M$ and $m \leq (f \lor g)(x) \leq M \ \forall x \in X$.

 \therefore f \land g, f \lor g are bounded continuous real valued on X.

 $\Rightarrow f \land g, f \lor g \in \mathcal{C}(X, \mathbb{R}).$

Now it can be easily verified that $f \land g = glb \{f, g\}$ and $f \lor g = lub \{f, g\}$. Hence $\mathcal{C}(X, \mathbb{R})$ is a lattice.

Theorem: Let $C(\mathbf{X}, \mathfrak{C})$ be the set of all bounded continuous real functions defined on a topological space X. Then (i) $C(\mathbf{X}, \mathfrak{C})$ is a complex Banach space with respect to pointwise addition and scalar multiplication and the norm defined by $||f|| = \sup ||f(x)||$; (ii) if multiplication is defined point wise, then $C(\mathbf{X}, \mathfrak{C})$ is a commutative complex algebra with identity, in which $||fg|| \le ||f|| ||g||$ and ||I|| = 1 and (iii) If \overline{f} is defined by $\overline{f}(x) = \overline{f(x)}$ the complex conjugate of f(x), then $f \to \overline{f}$ is a mapping of the algebra $C(\mathbf{X}, \mathfrak{C})$ into itself which has the following properties: $\overline{f+g} = \overline{f} + \overline{g}$; $\overline{af} = \overline{af}$; $\overline{fg} = \overline{fg}$; $\overline{\overline{f}} = f$; $||f|| = ||\overline{f}||$.

<u>Proof</u>: (i), (ii) Similar proof as in the above theorem. (iii) Let $f \in \mathcal{C}(X, \mathfrak{C})$ and define $\overline{f}(x) = \overline{f(x)} \forall x \in X$. If f(x) = a + ib then $\overline{f(x)} = a - ib$. $\therefore |\overline{f(x)}| = \sqrt{a^2 + b^2} = |\overline{f}(x)|$. \therefore f is a bounded function from X to \mathfrak{C} . Clearly $|\overline{f}(x) - \overline{f}(x_0)| = |\overline{f(x)} - \overline{f(x_0)}| = |\overline{f(x)} - \overline{f(f_0)}| = |f(x) - f(x_0)|$. Let $\varepsilon > 0$. Since f is continuous, \exists a nbd G of $x_0 \ni x \in G$. $\Rightarrow |f(x) - f(x_0)| < \varepsilon$. $\begin{array}{l} \left| \overline{f}(x) - \overline{f}(x_0) \right| &= |f(x) - f(x_0)| < \varepsilon. \text{ This is true } \forall x \in G. \\ \text{Hence } \overline{f} \text{ is continuous. } \left| \begin{array}{l} \cdot \cdot \overline{f} \text{ is bounded and continuous. } \cdot \cdot \overline{f} \in \mathcal{C}(X, \mathfrak{C}). \\ \text{So, } f \to \overline{f} \text{ is a mapping from } \mathcal{C}(X, \mathfrak{C}) \text{ into itself.} \\ \hline (f + g)(x) &= \overline{(f + g)(x)} = \overline{f(x) + g(x)} = \overline{f(x)} + \overline{g(x)} = \overline{f}(x) + \overline{g}(x) \\ &= (\overline{f} + \overline{g})(x) \forall x \in X. \\ \quad \cdot \cdot \overline{f + g} = \overline{f} + \overline{g}. \text{ Similarly } \overline{af} = \overline{a}\overline{f}; \overline{fg} = \overline{f}\overline{g} \text{ and } \overline{f} = f. \\ \text{Now } \|\overline{f}\| = \sup |\overline{f}(x)| = \sup |\overline{f}(x)| = \sup |f(x)| = \|f\|. \end{array}$

Fax: 08816-227318 off: 08816-224072, 224119,228342 Mobile: 9491334119 DANTULURI NARAYANA RAJU COLLEGE

(Autonomous) BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

E – CONTENT PAPER: M 104, TOPOLOGY M. Sc. I YEAR, SEMESTER - I UNIT – III: COMPACTNESS

PREPARED BY K, C. TAMMI RAJU, M. Sc. HEAD OF THE DEPARTMENT DEPARTMENT OF MATHEMATICS, PG COURSES DNR COLLEGE (A), BHIMAVARAM – 534202

<u>COMPACTNESS</u> 104: TOPOLOGY; UNIT III

COMPACT SPACES

Definitions: (i) Let X be a topological space. A class $\{Gi\}$ of open subsets of X is said to be an open cover if each point in X belongs to at least one G_i . i.e. $X = \bigcup_i G_i$.

(ii) A subset of an open cover which is itself an open cover is called a subcover.

(iii) A compact space is a topological space in which every open cover has a finite subcover.

(iv) Let (Y, \mathfrak{I}_Y) is a subspace of (X, \mathfrak{I}_X) . Y is said to be compact subspace of the topological space X, if Y is compact in its own rights.

Theorem: Any closed subspace of a compact space is compact.

Proof: Let X be a compact space and Y be a closed subspace of X. Let {G_i}_{i∈I} be an open cover of Y. Then for each i, ∃ an open subset H_i of X ∋ G_i = H_i ∩ Y. Now $Y \subseteq \bigcup_i G_i = \bigcup_{i \in I} (H_i \cap Y) \subseteq (\bigcup_i H_i) \cap Y$ So X = Y ∪Y' ⊆ $(\bigcup_i H_i) \cup Y'$. ∴ Y' together with H_i, i ∈ I forms an open cover for X since Y' is open. Since X is compact, ∃ a finite subcover $H_{i_1}, H_{i_2}, ..., H_{i_n}, Y'$ of X such that X = $H_{i_1} \cup H_{i_2} \cup ... \cup H_{i_n} \cup Y'$. Now Y = Y ∩ X = Y ∩ $(H_{i_1} \cup H_{i_2} \cup ... \cup H_{i_n} \cup Y')$ = $(Y \cap H_{i_1}) \cup (Y \cap H_{i_2}) \cup ... \cup (Y \cap H_{i_n}) \cup (Y \cap Y')$ = $G_{i_1} \cup G_{i_2} \cup ... \cup G_{i_n} \cup \phi = G_{i_1} \cup G_{i_2} \cup ... \cup G_{i_n}$. ∴ $G_{i_1}, G_{i_2}, ..., G_{i_n}$ forms a finite subcover to Y. Hence Y is compact.

<u>**Theorem</u>**: Any continuous image of a compact space is compact. <u>**Proof**</u>: Let $f: X \to Y$ be a continuous mapping of a compact metric space X into a topological space Y.</u>

Let $\{G_i\}_{i \in I}$ be an open cover of f(X). I.e. $f(X) \subseteq \bigcup_{i \in I} G_i$...(i) Since f is continuous, $f^{-1}(G_i)$ is open in X for all $i \in I$. From (i), $X \subseteq f^{-1}{f(X)} \subseteq f^{-1}(\bigcup_{i \in I} G_i) = \bigcup_{i \in I} f^{-1}(G_i)$. $\therefore {f^{-1}(G_i)}_{i \in I}$ is an open cover for X. Since X is compact, this open cover has a finite subcover.

Ie. $\exists f^{-1}(G_{i_1}), f^{-1}(G_{i_2}), \dots, f^{-1}(G_{i_n}) \ni X \subseteq f^{-1}(G_{i_1}) \cup f^{-1}(G_{i_2}) \cup \dots \cup f^{-1}(G_{i_n})$ $\Rightarrow f(X) \subseteq G_{i_1} \cup G_{i_2} \cup \dots \cup G_{i_n}. \therefore$ the open cover $\{G_i\}_{i \in I}$ of f(X) has a finite subcover $G_{i_1}, G_{i_2}, \dots, G_{i_n}$. Hence f(X) is compact.

Definition: A class $\{A_i\}_{i \in I}$ of sets X is said to have the finite intersection property if every finite subclass $\{A_{i_1}, A_{i_2}, \dots, A_{i_n}\}$ has a non – empty intersection. I.e. $A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_n} \neq \phi$.

Theorem: A topological space is compact iff every class of closed sets with empty intersection has a finite subclass with empty intersection.

<u>Proof</u>: Let X be compact. Let $\{F_i\}_{i \in I}$ be a class of closed sets such that $\bigcap_{i \in I} F_i = \phi$. For each $i \in I$, since F_i is closed, F_i' is open. $\therefore X = \phi' = \{\bigcap_{i \in I} F_i\}' = \bigcup F_i', i \in I$. Clearly $\{F_i'\}_{i \in I}$ is an open cover for X. Since X is compact, this open cover has a finite subcover. $\therefore \exists F_{i_1}', F_{i_2}', ..., F_{i_n}' \ni X = F_{i_1}' \cup F_{i_2}' \cup ... \cup F_{i_n}'$

$$\Rightarrow \phi = X' = \left(F_{i_1}' \cup F_{i_2}' \cup \ldots \cup F_{i_n}'\right)' = F_{i_1} \cap F_{i_2} \cap \ldots \cap F_{i_n}$$

Hence \exists a finite subclass F_{i_1} , F_{i_2} ,..., F_{i_n} of the class $\{F_i\}_{i \in I}$.

Conversely suppose that every class of closed sets with empty intersection has a finite subclass with empty intersection. Let $\{G_i\}_{i \in I}$ be an open cover for X. ie. $X = \bigcup G_i \implies \phi = X' = (\bigcup G_i)' = \bigcap G_i'$. Since $\{G_i'\}_{i \in I}$ is a collection of closed sets whose intersection is empty, by assumption, \exists a finite subclass $G_{i_1}', G_{i_2}', ..., G_{i_n}' \ni G_{i_1}' \cap G_{i_2}' \cap ... \cap F_{i_n}' = \phi$ $\Rightarrow X = \phi' = (G_{i_1}' \cap G_{i_2}' \cap ... \cap G_{i_n}')' = G_{i_1} \cup G_{i_2} \cup ... \cup G_{i_n} \therefore$ The cover $\{G_i\}_{i \in I}$ of X has a finite subcover. Hence X is compact.

Theorem: A topological space is compact if and only if every class of closed sets with finite intersection property has nonempty intersection.

<u>Proof</u>: Let X be compact. Let $\{F_i\}_{i \in I}$ be a class of closed sets with finite intersection property. In contrary suppose that $\bigcap_{i \in I} F_i = \phi$. By above theorem, \exists a finite subclass $F_{i_1}, F_{i_2}, ..., F_{i_n} \ni F_{i_1} \cap F_{i_2} \cap ... \cap F_{i_n} = \phi$, a contradiction to the finite intersection property. Hence $\bigcap_{i \in I} F_i \neq \phi$.

Conversely suppose that every class of closed sets with finite intersection property has nonempty intersection. If possible suppose that X is not compact. Then \exists an open cover $\{G_i\}_{i \in I}$ which has no finite subcover. This means for any subcover

 $\begin{array}{l} G_{i_1}, G_{i_2}, ..., G_{i_n} \ni X \supseteq G_{i_1} \cup G_{i_2} \cup ... \cup G_{i_n}. \Rightarrow \phi = X' \neq \left(G_{i_1} \cup G_{i_2} \cup ... \cup G_{i_n}\right)' = G_{i_1}' \cap G_{i_2}' \cap ... \cap G_{i_n}'. \text{ Now } \{G_i'\}_{i \in I} \text{ is a class of closed sets with finite intersection} \\ \text{property.} \qquad \Rightarrow \cap G_i' \neq \phi, _{i \in I} \\ \Rightarrow (\cap G_i')' \neq \phi' = X \Rightarrow X \neq \cup G_i \text{ a contradiction, since } \{G_i\}_{i \in I} \text{ is an open cover of} \\ \text{X. Hence X is compact.} \end{array}$

Definition: Let X be a topological space. (i) an open cover of X whose sets are in some given open base is called a basic open cover. (ii) an open cover of X whose sets are in some given open subbase, is called a subbasic open cover.

<u>**Theorem</u>**: A topological space is compact if every basic open cover has a finite subcover.</u>

Proof: Suppose every basic open cover has a finite subcover. Now to show X is compact, take an open cover $\{G_i\}_{i\in I}$ to X. Let $\{B_i\}_{j\in J}$ be an open base. By the definition of open base $G_i = \bigcup B_{j_k}$. Fix $k \in I$ and consider G_k . Since $\{B_j\}_{j\in J}$ is an open base $G_k = \bigcup B_j$, $j \in j_k$ for some subclass $\{B_j\}_{j\in jk}$. Now $X = \bigcup_{k\in I} G_k = \bigcup_{k\in I} \bigcup_{j\in j_k} B_j$. Now those B_j 's form a basic open cover for X. By the hypothesis, this basic open cover has a finite subcover. $\therefore \exists k_1, k_2, ..., k_n \in I$ and $j_1 \in j_{k_1}$, $J_2 \in j_{k_2}, ..., j_n \in j_{k_n}$ such that $X = B_{j_1} \cup ... \cup B_{j_n} ... (i)$. By the selection of j_k 's $G_{k_1} = \bigcup_{j\in j_{k_1}} B_j \supseteq B_{j_1}(\text{since } j_1 \in j_{k_1}), G_{k_2} = \bigcup_{j\in j_{k_2}} B_j \supseteq B_{j_2} \text{since } j_2 \in j_{k_2}, ..., G_{k_n} = \bigcup_{j\in j_{k_n}} B_j \supseteq B_{j_n}(\text{since } j_n \in j_{k_2})$. By (i) $X = B_{j_1} \cup ... \cup B_{j_n} \subseteq G_{k_1} \cup ... \cup G_{k_n}$ which is a finite subcover of $\{G_i\}_{i\in I}$.

<u>**Theorem</u>**: A topological space is compact if every subbasic open cover has a finite subcover or equivalently if every class of subbasic closed sets with finite intersection property has non – empty intersection. **Proof**: Proof is out of the scope of this book.</u>

<u>Heine – Borel theorem</u>: Every closed and bounded subspace of the real line is compact. (M. Imp).

<u>**Proof</u>**: First we prove that any closed interval [a, b] of the real line is compact. Consider A = { [a, d) / a < d < b } \cup {(c, b] / a < c < b } We show that B = {(c, d) / a ≤ c < d ≤ b} forms an open base for [a, b].</u>

Let G be an open set in [a, b], and $x \in G$. Since G is open $\exists r > 0 \exists S_r(x) \subseteq G$.

 $\Rightarrow (x - r, x + r) \subseteq G. \text{ Now } (x - r, x + r) \subseteq G \subseteq [a, b] \Rightarrow a \le x - r \le x + r \le b. \text{ now if}$

we write c = x - r, d = x + r then $(c, d) \in B$ and $x \in (c, d) \subseteq G$. Hence B is an open base for [a, b].

If we take [a, d) and (c, b] then [a, d) \cap (c, b] = ϕ or (c, d). Therefore, every basic open set in B can be written as intersection of finite sets in A. Hence A is an open subbase for [a, b].

Consider $F = \{Y' | Y \in A\} = \{[a, b] \setminus [a, d) | a < d < b\} \cup \{[a, b] \setminus (c, b] | a < c < b\} = \{[d, b] | a < d < b\} \cup \{[a, c] | a < c < b\}$. Since A is an open subbase, we have that F is a closed subbase. These closed subbasic sets are of the form [a, c] or [d, b].

Consider $G = \{[a, c_i]\}_{i \in I} \cup \{[d_j, b]\}_{j \in J}$ be a collection of subbasic closed sets with finite intersection property. To prove [a, b] is compact it is enough to prove that the intersection of the collection G is non - empty.

If G contains only the sets of the form $[a, c_i]$ then their intersection contain a. If G contains only the sets of the form $[d_j, b]$ then their intersection contain b. Now we assume that G contains both the forms.

Write $d = \sup \{d_j / [d_j, b] \in G\}$. Since $d \ge d_j$, we have $d \in [d_j, b]$ for all $j \in J$. Now we wish to show that $d \in [a, c_i]$ for all $[a, c_i] \in G$.

In a contrary way suppose $d \notin [a, c_{i_0}]$ for some $[a, c_{i_0}] \in G$. Then $d > c_{i_0}$. Since d is the supremum, and $c_{i_0} < d$, we have that there exists d_{j_0} such that $c_{i_0} < d_{j_0} < d$ and $[d_{j_0,b}] \in G$. Now $[a, c_{i_0}] \cap [d_{j_0,b}] = \phi$, a contradiction to finite intersection property.

Hence $d \in [a, c_i]$ for all i. Therefore, the intersection of sets in G is non – empty. \therefore [a, b] is compact.

Let E be a bounded and closed subset of \mathbb{R} . Since E is bounded, \exists an upper bound b and a lower bound a for E. This implies that $E \subseteq [a, b]$. Since [a, b] is compact and E is a closed subset of [a, b], we have that E is compact.

PRODUCT SPACES

Definition: Let (X_1, T_1) and (X_2, T_2) be topological spaces and for the product $X = X_1 \times X_2$, consider the class S of all subsets of X of the form $G_1 \times X_2$ and $X_1 \times G_2$ where G_1 and G_2 are open subsets of X_1 and X_2 respectively. The class T of all unions of finite intersections of sets in S is a topology on S called product topology on X. Her S is open subbase of T.

Definition: Let $(X_i, \mathfrak{I}_i)_{i \in I}$ be a collection of topological spaces then P_iX_i is the Cartesian product of X_i . Here $p_i: P_iX_i \to X_i$ is defined by $p_i(\{x_j\}, j \in j) = x_i$. Here $S = \{P_i - 1 (G_i) / G_i \in \mathfrak{I}_i\}$. $S^* = \{P_iG_i / where G_i \in \mathfrak{I}_i \text{ and } G_i = X_i \text{ for all but a finite}\}$

number of $i \in I$ }. Here $P_iG_i = \{\{x_i\} \mid \text{where } x_i \in G_i \text{ for some finite number of } i's \text{ and there is no restriction on the other coordinates } xi\}$ now S* is the open base for (X, \mathfrak{J}) . S* is the open base generated by the open subbase S.

Definition: The class defined above is called the defining open subbase for the product topology. $F = \{ F / F' \in S \}$ = the class of all products of the form P_iF_i where F_i is a closed subset of X_i which equals to X_i for all i's but one, is called the defining closed subbase.

Definition: S* defined above is called the defining open base for the product topology. Ie. the defining open base is a tipical one of its sets consists of all points $x = \{x_i\}$ in the product such that ith coordinate x_i is required to lie in an open subset of G_i of X_i for the finite number of i's and all other coordinates being unrestricted.

Definition: The product of the non-empty class of topological spaces equipped with the product topology is called a product space.

<u>Tychonoff's theorem</u>: The product of any non – empty class of compact spaces is compact. (M. Imp).

<u>Proof</u>: Let $\{X_i\}$ be a nonempty class compact spaces.

Let $X = P_iX_i$, $i \in I$. Let $\{F_j\}$, $j \in J$, be a nonempty subclass of the defining closed subbase with finite intersection property for the product topology on X.

This means that each F_j is a product of the form $F_j = P_i F_{ij}$, $i \in I$ where F_{ij} is a closed subset of X_i which equals X_i for all i's but one.

For a fixed i, $\{F_{ij}\}_{j \in J}$ is a class of closed subsets of X_i.

We now show that this class $\{F_{ij}\}_{i \in I}$ has finite intersection property.

Let $F_{ij_1}, F_{ij_2}, ..., F_{ij_n}$ be a finite number of sets in the class $\{F_{ij}\}_{j \in J}$. Since the class $\{F_j\}_{j \in J}$ has the finite intersection property, $F_{j_1} \cap F_{j_2} \cap ... \cap F_{j_n} \neq \phi$. Let $x \in F_{j_1} \cap F_{j_2} \cap ... \cap F_{j_n}$. Then $x \in F_{j_k}$ for k = 1, 2, ..., n. $\therefore x(i) \in \bigcap F_{ij_k}$ for k = 1, 2, ..., n. $\Rightarrow x(i) \in F_{ij_1} \cap F_{ij_2} \cap ... \cap F_{ij_n}$ $\Rightarrow F_{ij_1} \cap F_{ij_2} \cap ... \cap F_{ij_n} \neq \phi$. \therefore the class $\{F_{ij}\}_{i \in J}$ has finite intersection property. Since X_i is compact, $\bigcap_{j \in J} F_{ij} \neq \phi$. Let $y_i \in \bigcap_{j \in J} F_{ij}, j \in J$ then $y_i \in F_{ij} \forall j \in J$. Define y by $y(i) = y_i$. Then $y(i) \in F_{ij} \forall j \in J$. Now $y = \{y(i)\} \in P_i F_{ij} = F_j \forall j \in J$. $\Rightarrow y \in \bigcap_{j \in J} F_j$. $\therefore \bigcap_{j \in J} F_j \neq \phi$. Hence X is compact.

<u>Generalised Heine Borel theorem</u>: Every closed and bounded subspace of \mathbb{R}^n is compact. (Imp).

<u>Proof</u>: For $1 \le i \le n$, consider $X_i = [a_i, b_i]$, the closed interval with endpoints a_i , and b_i with $a_i < b_i$. Now $X_i = \prod_{i=1}^n X_i = \prod_{i=1}^n [a_i, b_i] = \{(x_1, x_2, ..., x_n) / a_i < x_i < b_i$ for $1 \le i \le n\}$ is a closed rectangle in \mathbb{R}^n . First, we show that this closed rectangle X is compact. Since each $[a_i, b_i]$ is a closed and bounded interval of \mathbb{R} , by Heine – Borel theorem, we have $X_i = [a_i, b_i]$ is compact for $1 \le i \le n$.

 \therefore By Tychonoff's theorem, $X = \prod_{i=1}^{n} X_i$ is compact.

Let E be a closed and bounded subspace of \mathbb{R}^n . Since E is bounded, $\exists a_i, b_i \in \mathbb{R}$ for $1 \le i \le n$, such that $E \subseteq \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n / a_i \le x_i \le b_i \text{ for } 1 \le i \le n\} = X$ say. Now E is a closed subset of X. By above part X is compact. Since E is a closed subset of the compact space X, by theorem we have that E is compact. \therefore Every closed and bounded subspace of \mathbb{R}^n is compact.

Definition: A topological space is said to be locally compact if each of its points has a neighbourhood with compact closure (compact closure means for any $x \in X$, there exists a nbd G_x such that $x \in G_x$, $\overline{G_x}$ is a compact set.

COMPACTNESS FOR METRIC SPACES

Definition: A metric space is said to have the Bolzano – Weierstrass property if every infinite subset has a limit point. (ii) A metric space is said to be sequentially compact if every sequence in it has a convergent subsequence.

<u>**Theorem</u>**: A metric space is sequentially compact if and only if it has the Bolzano Weierstrass property. (M. Imp)</u>

<u>Proof</u>: Let X be a metric space. Assume that X is sequentially compact.

Let A be an infinite subset of X. Let al be any point of A.

Having chosen $a_1, a_2, a_3, ..., a_{n-1}$, consider the set $A - \{a_1, a_2, a_3, ..., a_{n-1}\}$.

Since A is infinite and so choose an element $a_n \in A - \{a_1, a_2, a_3, \dots a_{n-1}\}$.

By induction we get a sequence $\{a_n\}$ of distinct points from A.

Since X is sequentially compact, the sequence $\{a_n\}$ has a convergent subsequence

 $\{a_{n_k}\}$ of distinct points converging to a (say). By a theorem, a is a limit point of the set $\{a_{n_k}: k \ge 1\}$. Since the set $\{a_{n_k}: k \ge 1\} \subseteq A$, a is a limit point of A. Hence X has Bolzano - Weierstrass property. Conversely suppose that X has the Bolzano – Weierstrass property. Let $\{a_n\}$ be a sequence in X. Let A be the set of points of the sequence $\{a_n\}$.ie. A = $\{a_n / n \ge 1\}$. Case (i): Suppose A is finite. Then \exists a in A which repeats infinite times. So \exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that $a_{n_1} = a_{n_2} = \dots = a$. Then clearly the sequence $\{a_{n_k}\}$ converges to a. Case (ii): Assume that A is infinite. By hypothesis, A has a limit point say a. Take $r_1 = 1$. Now the open sphere $S_{r_1}(a)$ contains a point of A. $\therefore \exists$ a positive integer $n_1 \ni a_{n_1} \in S_{r_1}(a)$. Ie. $d(a, a_{n_1}) < r_1 = 1$. Take $r_2 = \min \{ d(a, a_{n_1}), 1/2 \}$. Since $S_{r_2}(a) \cap A \neq \emptyset$, $\exists n_2 > n_1 \ni a_{n_2} \in S_{r_2}(a)$. I.e. $d(a, a_{n_2}) < \frac{1}{2}$. Having chosen $n_1, n_2, ..., n_{k-1}$, choose $n_k \ni n_k > n_{k-1}$ and $d(a, a_{n_k}) < \frac{1}{k}$. By induction, we get a subsequence $\{a_{n_k}\} \neq d(a, a_{n_k}) < \frac{1}{k} \forall k$.

Clearly the subsequence $\{a_{n_{k}}\}$ converges to a.

<u>**Theorem</u>**: Every compact metric space has the Bolzano Weierstrass property (less imp).</u>

<u>Proof</u>: Let X be a compact metric space. let A be an infinite subset of X. In a contrary way, suppose A has no limit point. If a is a point of X then a in not a limit point of A and hence there is an open sphere $S_{r_a}(a)$ such that $S_{r_a}(a) \cap A - \{a\} = \phi$. i.e. $S_{r_a}(a) \cap A \subseteq \{a\}$. i.e. $S_{r_a}(a) \cap A \subseteq \{a\}$. i.e. $S_{r_a}(a) \cap A = \{a\}$ or $S_{r_a}(a) \cap A = \phi$.

Consider the class $\{S_{r_a}(a)/a \in X\}$ of all these open spheres. Clearly this is an open cover for X. Ie. $X = \bigcup_{a \in X} S_{r_a}(a)$. Since X is compact, this open cover has a finite subcover, say, $S_{r_{a_1}}(a_1)$, $S_{r_{a_2}}(a_2)$, ..., $S_{r_{a_m}}(a_m)$ where $a_1, a_2, ..., a_m \in X$. $\therefore A = A \cap X = A \cap \{S_{r_{a_1}}(a_1) \cup S_{r_{a_2}}(a_2) \cup ... \cup S_{r_{a_m}}(a_m)\}$. $= \{A \cap S_{r_{a_1}}(a_1)\} \cup \{A \cap S_{r_{a_2}}(a_2)\} \cup ... \cup \{A \cap S_{r_{a_m}}(a_m)\}$ $\subseteq \{a_1\} \cup \{a_2\} \cup ... \cup \{a_m\} = \{a_1, a_2, ..., a_m\}$. \Rightarrow A is finite which is a contradiction to the fact that A is infinite.

: A has a limit point. Hence X has the Bolzano -Weierstrass property.

Definition: Let $\{G_i\}$ be an open cover of a metric space X. A real number a > 0 is called a Lebesgue number for the given open cover $\{G_i\}$, if each subset A of X with d(A) < a is contained in at least one G_i . I.e. a is the Lebesgue number, if $A \subseteq X$, $d(A) < a \Rightarrow A \subseteq G_i$ for some i.

Definition: Suppose X is a metric space and $\{G_i\}_{i \in I}$ be an open cover. A subset A of X is said to be big if $A \not\subseteq G_i$ for any $i \in I$.

<u>Note</u>: (i) Singleton subsets are not big sets. (ii) If A is a big set then A contains at least two points. <u>Sol</u>: (i) Let $x \in X$. Write $A = \{x\}$. Now $x \in X \subseteq \bigcup G_i \Rightarrow x \in G_i$ for some $i \Rightarrow A \subseteq$

G_i. So A is not big.

Example: Let $X = \{a, b, c\}$. Define $d : X \times X \rightarrow \mathbb{R}$ by d(x, y) = 0 if x = yand 1 if $x \neq y$. Then d is a metric on X. Every subset of X is open in X. Write $B = \{\{a, b\}, \{b, c\}\}$. Then B is an open cover for X. If $A = \{a, c\}$ then A is a big set. Also $\{a\}, \{b\}, \{c\}$ are not big sets. Let $0 < s \le 1$. We show that s is a Lebesgue number for B. Let G be any subset of X such that d(G) < s. Then d(G) <1. \Rightarrow G is a singleton set. If $G = \{a\}$ or $\{b\}$ then $G \subseteq \{a, b\}$. If $G = \{c\}$ then $G \subseteq$ $\{b, c\}$. This shows that s is a Lebesgue number for B. Let s > 1. Then d(X) = 1 < s. But $X \not\subseteq \{a, b\}$ and $X \not\subseteq \{b, c\}$. \therefore any real number s > 1 is not a Lebesgue number.

<u>**Theorem</u>**: Lebesgue's covering lemma: In a sequentially compact metric space every open cover has a Lebesgue number. (M. Imp)</u>

<u>Proof</u>: Let X be sequentially compact metric space and $\{G_i\}_{i \in I}$ be an open cover of X. Case (i) Suppose X contains no big sets. In this case, we will show that every positive real number is Lebesgue number for the open cover $\{G_i\}_{i \in I}$. Let a > 0 be a real number. Let A be a subset of X such that d(A) < a. Since X contains no big sets, A is not a big set. $\therefore \exists i \in I$ such that $A \subseteq G_i$. Hence a is a Lebesgue number for $\{G_i\}$.

Case (ii): Step (i): Suppose X contains big sets. Let $a' = glb \{d(A) / A \text{ is a big set}\}$. Clearly $0 \le a' < \infty$. Now we show that a' > 0. If possible, suppose a' = 0. Now we construct an infinite sequence $\{x_n\}$ of distinct points. For this consider 1. Since 1 > 0, and $a' = 0 = glb \{d(A) / A \text{ is a big set}\}$, there is a big set B_1 such that $0 < d(B_1) < 1$. Let $x_1 \in B_1$. Since $\frac{1}{2} > 0 \exists$ a big set B_2 such that $0 < d(B_2) < \frac{1}{2}$. Since B_2 is a big set containing atleast two points, take $x_2 \in B_2 \setminus \{x_1\}$. Clearly $x_1 \neq x_2$. Write $r_3 = \min \{1/3, d(\{x_1, x_2\})\}$. Since $x_1 \neq x_2$, we have $d(x_1, x_2) \neq 0$. \therefore $r_3 > 0$.now \exists a big set B_3 such that $0 < d(B_3) < r_3$. Now if $x_1 \in B_3$ then $x_2 \notin B_3$ (if both $x_1, x_2 \in B_3$ then $d(B_3) \ge d(x_1, x_2) \ge r_3 > d(B_3)$, a contradiction). Now x_1, x_2 and x_3 are distinct points. After constructing $\{x_1, x_2, ..., x_n\}$, write $r_{n+1} = \min \{1/n, d(\{x_1, x_2, ..., x_n\})\}$. Since $r_{n+1} > 0 \exists$ a big set B_{n+1} such that $0 < d(B_{n+1}) < r_{n+1}$. Let $x_{n+1} \in B_{n+1} \setminus \{x_1, x_2, ..., x_n\}$. In this way we construct a sequence $\{x_n\}$ of distinct points. Note that for each n, we have $d(B_n) < 1/n$. Step (ii): Since X is sequentially compact, \exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$, which converges to a point $x \in X$. So, $x \in G_i$ for some $i \in I$. Since G_i is open, $\exists r > 0$ such that $S_r(x) \subseteq G_i$. Consider the open sphere $S_{r/2}(x)$. Since $x_{n_k} \to x$, \exists m such that $x_{n_m} \in S_{r/2}(x)$ for some $m \ge k$. Let $m \ge k$ and $0 < \frac{1}{n_m} < \frac{r}{2}$. Take $y \in B_{n_m}$. Now $y, x_{n_m} \in B_{n_m} \Rightarrow d(y, x_{n_m}) < \frac{1}{n_m} < \frac{r}{2}$. $\therefore d(x, y) \le d(x, x_{n_m}) + d(x_{n_m}, y) < \frac{r}{2} + \frac{r}{2} = r \Rightarrow y \in S_r(x) \subseteq G_i$. Hence $y \in B_{n_m}$ $\Rightarrow y \in G_i$. $\therefore B_{n_m} \subseteq G_i$, a contradiction to the fact that B_{n_m} is a big set. So $a' \neq 0$ Hence a' > 0. Now we show that a' is a big number. Let Y be any subset of X with d(Y) < a'.

Then Y is not a big set(If Y is a big set, then $a' \le d(Y)$ (by construction of a') and so $a' \le d(Y) < a'$, a contradiction]. This means that $Y \subseteq G$, for some $i \in I$. \therefore a' is a Lebesgue number.

Definition: (i) Let X be a metric space and $\varepsilon > 0$. A subset A of X is called an ε – net if A is finite and $X = \bigcup_{a \in A} S_{\varepsilon}(a)$.

(ii) X is said to be totally bounded if it has an ε - net for each $\varepsilon > 0$.

Theorem: Every sequentially compact metric space is totally bounded. (M. Imp) **Proof**: Let X be a sequentially compact metric space. If possible suppose X is not totally bounded. Ie. X has no ε - net for some $\varepsilon > 0$. Take this ε . Let $a_1 \in X$. Since $\{a_1\}$ is not an ε - net for X, X $\nsubseteq S_{\varepsilon}(a_1)$. Let $a_2 \in X \setminus S_{\varepsilon}(a_1)$. Clearly $d(a_1, a_2) \ge \varepsilon$. Consider $\{a_1, a_2\}$. Since this is not an ε - net, $\exists a_3 \in X \setminus \{S_{\varepsilon}(a_1) \cup S_{\varepsilon}(a_2)\}$. Clearly $d(a_1, a_3) \ge \varepsilon$, $d(a_3, a_2) \ge \varepsilon$.

Having chosen $a_1, a_2, ..., a_n$ select $a_{n+1} \in X \setminus \{S_{\varepsilon}(a_1) \cup S_{\varepsilon}(a_2) \cup ... \cup S_{\varepsilon}(a_n)\}$. Continuing this process $\{a_n\}$ is a sequence of distinct points $\ni d(a_i, a_j) \ge \varepsilon$ for $i \ne j$. Since X is sequentially compact \exists a convergent subsequence $\{a_{n_k}\}$ of $\{a_n\}$. Since it is convergent it is also Cauchy sequence.

Since $\varepsilon > 0$, \exists a positive integer k $\ni d(a_{n_i}, a_{n_j}) < \varepsilon$ for all $n_i, n_j \ge k$, a contradiction to the fact that $d(a_{n_i}, a_{n_j}) \ge \varepsilon$. Hence X is totally bounded.

Theorem: Every sequentially compact metric space is compact. (very imp). **Proof**: Let X be a sequentially compact metric space.

Let $\{G_i\}_{i \in I}$ be an open cover of X.

Since X is sequentially compact, by Lebesgue covering lemma, the open cover has a Lebesgue number a say.

Take $\varepsilon = a / 3 > 0$.

Since X is sequentially compact, X is totally bounded, and hence X has an ε - net, say $A = \{x_1, x_2, x_3, ..., x_n\}$.

 $\Rightarrow X = \bigcup_{k=1}^{n} S_{\varepsilon}(x_{k}).$ We know that $d(S_{\varepsilon}(x_{k})) \le 2\varepsilon = 2a/3 < a$ for each $1 \le k \le n$. Since a is a Lebesgue number for the open cover $\{G_{i}\}$ and $d(S_{\varepsilon}(x_{k})) < a$, we have that $S_{\varepsilon}(x_{k}) \subseteq G_{i_{k}}$ for some $i_{k} \in I$.

$$\therefore X = \bigcup_{k=1}^{n} S_{\varepsilon}(x_k) \subseteq \bigcup_{k=1}^{n} G_{i_k} \subseteq X.$$
$$\Rightarrow X = \bigcup_{k=1}^{n} G_{i_k}.$$

Thus the open cover $\{G_i\}$ has finite subcover $\{G_{i_k}\}, k = 1, 2, ..., n$.

Hence X is compact.

<u>**Theorem</u>**: Any continuous mapping of a compact metric space into a metric space is uniformly continuous. (Imp).</u>

<u>Proof</u>: Let f: X \rightarrow Y be a continuous mapping of a compact metric space X into a metric space Y. Let d₁ and d₂ be the metrics on X and Y respectively. We prove that f is uniformly continuous. Let $\varepsilon > 0$. For any $x \in X$, consider the open sphere $S_{\frac{\varepsilon}{2}}{f(x)}$ with center f(x) and radius $\varepsilon/2$ in Y. Since f is continuous, we have that $f^{-1}\left[S_{\frac{\varepsilon}{2}}{f(x)}\right]$ is open in X. This is true for any $x \in X$.

Consider the family $\mathfrak{A} = \left\{ f^{-1} \left[S_{\frac{\varepsilon}{2}} \{ f(x) \} \right] / x \in X \right\}.$

It is clear that \mathfrak{A} is a family of open sets in X which forms an open cover for X. Since X is compact, it is sequentially compact.

So by Lebesgue covering lemma, the open cover \mathfrak{A} has a Lebesgue number, say δ . Suppose $x, x' \in X$ such that $d_1(x, x') < \delta \Rightarrow d(\{x, x'\}) < \delta$.

Since δ is a Lebesgue number, $\{x, x'\} \subseteq \left\{f^{-1}\left[S_{\frac{\varepsilon}{2}}\{f(y)\}\right]\right\}$ for some $y \in X$ $\Rightarrow f(x), f(x') \in S_{\frac{\varepsilon}{2}}\{f(y)\} \Rightarrow d_2(f(x), f(y)) < \varepsilon / 2$ and $d_2(f(x'), f(y)) < \varepsilon / 2$. Consider $d_2(f(x), f(x'))$. Now $d_2(f(x), f(x')) \le d_2(f(x), f(y)) + d_2(f(y), f(x')) < \varepsilon / 2 + \varepsilon / 2 = \varepsilon$. So $\exists \delta > 0$ for any $x, x' \in X$ such that $d_1(x, x') < \delta \Rightarrow d_2(f(x), f(x')) < \varepsilon$.

Hence f is uniformly continuous.

<u>**Theorem</u>**: A metric space is compact if and only if it is complete and totally bounded. (very imp)</u>

<u>Proof:</u> Suppose (X, d) be a metric space. Suppose X is compact.

Then X is sequentially compact. \Rightarrow X is totally bounded.

Claim: X is complete. Let $\{x_n\}$ be a Cauchy sequence in X. Since X is sequentially compact $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$. By a problem $\{x_n\}$ is

convergent. Hence X is complete.

Conversely suppose that X is complete and totally bounded.

Claim: X is sequentially compact.

Claim: Every sequence has a Cauchy subsequence.

Let $S_1 = \{x_{11}, x_{12}, x_{13}, ...\}$ be an arbitrary sequence in X. If the set of points S_1 is finite, then there exists an element which repeats infinite number of times.

∴ S₁ has a constant subsequence which is convergent. Suppose the set of points of S₁ is infinite. Since X is totally bounded X has an ½ -net say {y₁, y₂, ..., y_n} ⇒ $X = \bigcup_{i=1}^{n} S_{\frac{1}{2}}(y_i)$

Then
$$S_1 = S_1 \cap X = S_1 \cap \left\{ \bigcup_{i=1}^n S_{\frac{1}{2}}(y_i) \right\} = \bigcup_{i=1}^n \left\{ S_1 \cap S_{\frac{1}{2}}(y_i) \right\}$$

Since S_1 is infinite, $S_1 \cap S_{\frac{1}{2}}(y_i)$ is infinite for at least one i.

 \therefore S₁ has a subsequence, S₂ = {x₂₁, x₂₂, x₂₃, ...} and all of the points of S₂ lie in the same open sphere of radius ¹/₂. We continue like this we have S₁, S₂, ..., S_n, ... such that S_n is a subsequence of S_{n-1} and all of the points of S_n lie in some open sphere of radius 1/n.

Then $S = \{x_{11}, x_{22}, x_{33}, ...\}$ is a diagonal subsequence of S_i , i = 1, 2, ...Claim: S is a Cauchy subsequence.

Let $\varepsilon > 0$. We can choose an integer M > 0 such that $2/M < \varepsilon$. Since S_i is a subsequence of S_{i-1} , for all $n, m \ge M, x_{nn}, x_{mm} \in S_M$. $\Rightarrow x_{nn}, x_{mm} \in S_{1/M}(y)$ for

some $y \in X$.

 $\Rightarrow d(x_{nn}, y) \leq 1/M, \, d(x_{mm}, y) \leq 1/M \ \Rightarrow d(x_{nn}, x_{mm}) \leq 2/M \leq \epsilon.$

 \therefore S is a Cauchy subsequence of S₁. Since X is complete, S is convergent sequence.

 \therefore S is a convergent subsequence of S1. \therefore X is sequentially compact.

Hence X is compact.

Theorem: A closed subspace of a complete metric space is compact iff it is totally bounded.

Definition: Let X be a compact metric space with metric d and let A be a nonempty set of continuous real or complex valued functions defined on X. A is said to be **equicontinuous** if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $x, x' \in X, d(x, x') < \delta \Rightarrow |f(x) - f(x')| < \varepsilon$ for all $f \in A$.

ASCOLI'S THEOREM.

<u>**Theorem</u>**: If X is a compact metric space, then a closed subspace F of $C(X, \mathbb{R})$ or $C(X, \mathbb{C})$ is compact iff it is bounded and equicontinuous.</u>

<u>Proof</u>: Let X be a compact metric space and F be a closed subspace of $C(X, \mathbb{R})$ or $C(X, \mathbb{C})$.

Suppose F is compact.

Since F is compact subspace of $C(X, \mathbb{R})$ or $C(X, \mathbb{C})$, F is bounded.

Since X is compact every $f \in C(X, \mathbb{R})$ or $C(X, \mathbb{C})$ is uniformely continuous.

Claim: F is equicontinuous.

Let $\varepsilon > 0$.

Since F is compact, F is sequentially compact and hence F is totally bounded.

 $\therefore \text{ F has an } \varepsilon/3 - \text{net, say } \{f_1, f_2, f_3, ..., f_n\} \Rightarrow F = \bigcup_i^n S_{\varepsilon/3}(f_i).$

Let $f \in F$.

 $\Rightarrow f \in S_{\varepsilon_{/3}}(f_k) \text{ for some } k.$ $\Rightarrow ||f - f_k|| < \varepsilon_{/3}.$ $\Rightarrow |f(x) - f_k(x)| < \varepsilon_{/3} \text{ for all } x \in X...(i)$ Since each $f_k \in F$ is uniformly continuous, for each $k = 1, 2, 3, ..., n, \exists \delta_k > 0$ such that $d(x, x') < \delta_k \Rightarrow |f_k(x) - f_k(x')| < \varepsilon_{/3}$ Let $\delta = \min \{\delta_1, \delta_2, ..., \delta_n\}.$ Suppose $d(x, x') < \delta.$ $\Rightarrow d(x, x') < \delta_k \text{ for all } k = 1, 2, ..., n.$ $\Rightarrow |f_k(x) - f_k(x')| < \varepsilon_{/3} \text{ for } k = 1, 2, ..., n \quad ...(ii)$ Now $|f(x) - f(x')| \le |f(x) - f_k(x)| + |f_k(x) - f_k(x')| + |f(x') - f_k(x')| < \varepsilon_{/3} + \varepsilon_{/3} + \varepsilon_{/3} = \varepsilon.$ Hence F is equicontinuous.

Converse: Suppose F is bounded and equicontinuous. **Claim:** F is sequentially compact. Part (i): $C(X, \mathbb{R})$ is complete and F is closed in $C(X, \mathbb{R})$. \therefore F is complete. Since X is compact it is separable. \therefore X has a countable dense subset say $A = \{x_2, x_3, ..., x_n, ...\}$, say. Part II: Let $S_1 = \{f_{11}, f_{12}, f_{13}, ...\}$ be an arbitrary sequence.

Since F is bounded \exists a real number k > 0 such that $||f|| \le k$ for all $f \in F$. $\Rightarrow |f(x)| < k$ for all $f \in F$ and $x \in X$. Then $\{f_{1i}(x_2)\}$ is a bounded sequence of real numbers. : This sequence has a convergent subsequence. Let $S_2 = \{f_{21}, f_{22}, f_{23}, ...\}$ be a subsequence of S_1 such that $\{f_{2i}(x_2)\}$ is convergent. [Then $\{f_{2i}(x_3)\}$ is a bounded sequence of real numbers. As above this sequence has a convergent subsequence $S_3 = \{f_{31}, f_{32}, f_{33}, ...\}$ of S_2 such that $\{f_{3i}(x_3)\}$ is convergent.] Continuing in this way we have $S_1 = \{f_{11}, f_{12}, f_{13}, ...\}, S_2 = \{f_{21}, f_{22}, f_{23}, ...\}, ...,$ $S_i = \{f_{i1}, f_{i2}, f_{i3}, ...\}$... such that S_i is a subsequence of S_{i-1} , and $\{f_{ij}(x_i)\}$ is convergent. Part III: Then $S = \{f_{11}, f_{22}, f_{33}, ...\}$ is a diagonal sequence of S_i , i = 1, 2, ... and subsequence of S_1 . Write $f_n = f_{nn}$. $\therefore \{ f_n(x_i) \}$ is a convergent subsequence for each $x_i \in A$. Claim: S is a Cauchy sequence. Let $\varepsilon > 0$. Since F is equicontinuous, $\exists \delta > 0 \ni d(x, x') < \delta \Rightarrow |f_n(x) - f_n(x')| < \varepsilon/2...(i)$ Since A is dense in X, $\mathcal{B} = \{ S_{\delta}(x_i) : x_i \in A \}$ is an open cover for X. [For $x \in X = \overline{A} \Rightarrow S_{\delta}(x) \cap A \neq \phi \Rightarrow x_i \in S_{\delta}(x)$ for some $x_i \in A \Rightarrow d(x, x_i) < \delta$ \Rightarrow x \in $S_{\delta}(x_i) \Rightarrow$ x $\in \bigcup S_{\delta}(x_i).$ Since X is compact $X \subseteq \bigcup_{i=2}^{t} S_{\delta}(x_i)$ for some positive integer t. Since $\{f_n(x_i)\}\$ is a convergent subsequence for each $x_i \in A$, $\{f_n(x_i)\}\$ is a Cauchy sequence for each $x_i \in A$. \therefore {f_n(x_i)} is a Cauchy sequence for each x₂, x₃, ..., x_t. \Rightarrow For each i = 2, 3, ..., t \exists integer M_i \Rightarrow $|f_n(x_i) - f_m(x_i)| < \mathcal{E}/_3 \quad \forall n, m \ge M_i.$ Write M = max {M_i, i = 2, 3, ..., t}. Then $|f_n(x_i) - f_m(x_i)| < \frac{\varepsilon}{3} \forall n, m \ge M$. Let $\mathbf{x} \in \mathbf{X} \subseteq \bigcup_{i=2}^{t} S_{\delta}(x_i)$ \Rightarrow x $\in S_{\delta}(x_i)$ for some i, $2 \le i \le t$ \Rightarrow d(x, x') < δ for n, m \geq M. $\therefore |f_n(x) - f_m(x)| \le |f_n(x) - f_n(x_i)| + |f_n(x_i) - f_m(x_i)| + |f_m(x_i) - f_m(x)|$ $< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$ for all n, m \ge M. $\Rightarrow \sup \{ |f_n(x) - f_m(x)| \} < \varepsilon \Rightarrow ||f_n - f_m|| < \varepsilon \text{ for all } n, m \ge M.$ \therefore S is a Cauchy sequence. \therefore S is convergent subsequence of S₁. : F is sequentially compact and hence F is compact.

Fax: 08816-227318 off: 08816-224072, 224119,228342 Mobile: 9491334119

DANTULURI NARAYANA RAJU COLLEGE

(Autonomous) BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

E – CONTENT PAPER: M 104, TOPOLOGY M. Sc. I YEAR, SEMESTER - I UNIT – IV: SEPARATION

M 104: TOPOLOGY

UNIT IV - SEPARATION

T₁ - SPACES AND HAUSDORFF SPACES

Definition: A T₁ - space is a topological space in which given any pair of distinct elements, each has a neighbourhood which does not contain the other. (equivalently, if x and y are elements such that $x \neq y$ then there exists neighbourhoods G and H of x and y respectively such that $y \notin G$ and $x \notin H$.

Example (i): Suppose $X = \{a, b, c\}, \mathfrak{I} = \{\phi, \{a\}, \{a, b\}, X\}$. Then X is not a T_1 – space.

(ii) Let X be an infinite set. Write $\Im = \{A \subseteq X : A' \text{ is finite}\} \cup \{\phi\}.$

Then X is a T₁ - space. Let $x, y \in X$ such that $x \neq y$.

Then $\{x\}'$ and $\{y\}'$ are open sets in X; and $x \in \{y\}'$ and $y \in \{x\}'$ but $x \notin \{x\}'$,

 $y \notin \{y\}'$. Hence X is a T₁ Space.

Note: Every discrete topological space is a T_1 - Space. **Remark**: Every subspace of a T_1 -Space is also a T_1 -Space. **Proof**: Let X be a T_1 -space and Y be any subspace of X. Let y_1, y_2 where $y_1 \neq y_2$ be any two - points in Y. $\because Y \subseteq X, X$ is a T_1 -space, \exists an open sets G and H in X $\ni y_1 \in G, y_2 \notin G, y_2 \in H, y_1 \notin H$. Put $A = G \cap Y$ and $B = H \cap Y$. Then A and B are open sets in $Y \ni y_1 \in A, y_2 \notin A, y_2 \in B$ and $y_1 \notin B$. $\therefore Y$ is a T_1 -Space. Thus every subspace of a T. Space is also a T. Space

Thus every subspace of a T_1 -Space is also a T_1 -Space.

Theorem: A topological space is a T₁-space if and only if each point is a closed set.

<u>Proof</u>: Let X be a topological space. Assume that X is a T_1 space.

Let $x \in X$. Now we show that $\{x\}$ is a closed set.

To prove this, it is enough to prove $\{x\}'$ is open.

Let $y \in \{x\}'$. Then $y \neq x$. Since X is a T₁-space and x, $y \in X$ such that $x \neq y$, there exists neighbourhood H of y such that H does not contain x.

Now $y \in H \subseteq \{x\}'$. This shows that y is an interior point of $\{x\}'$.

Hence $\{x\}'$ is open.

Converse: Suppose that each point is a closed set.

Let x, y be any two points of X such that $x \neq y$. Put G = {y}' and H = {x}'. By hypothesis, G and H are open sets such that $x \in G$, $y \notin G$ and $y \in H$, $x \notin H$. Therefore, X is a T₁-space.

Definition: A Hausdorff space is a topological space in which each pair of distinct points can be separated by open sets (equivalently, if $x \neq y$ are distinct points, then there exists open sets G and H such that $x \in G$, $y \in H$ and $G \cap H = \phi$).

Result: (i) Every discrete topological space is a Hausdorff space. **Proof**: Let (X, \mathfrak{I}) be a discrete topological space. Let x, y \in X and x \neq y. Then {x}, {y} are open such that x \in {x}, y \in {y} and {x} \cap {y} = ϕ . \therefore (X, \mathfrak{I}) is Hausdorff space.

Result (ii) Every metric space is a Hausdorff space. **Proof**: Let (X, d) be a metric space. Let $x, y \in X$ and $x \neq y$. Then d(x, y) > 0. Let r = d(x, y).

Then $S_{\frac{r}{2}}(x)$, $S_{\frac{r}{2}}(y)$ are open sets, $x \in S_{\frac{r}{2}}(x)$, $y \in S_{\frac{r}{2}}(y)$ and $S_{\frac{r}{2}}(x) \cap S_{\frac{r}{2}}(y) = \phi$ \therefore (X, d) is Hausdorff space.

Result (iii): Every Hausdorff space is a T_1 -space. But the converse need not be true.

Proof: Let (X, \mathfrak{I}) be a Hausdorff space and $x, y \in X \ni x \neq y$.

Then \exists open sets G and H $\ni x \in G$, $y \in H$ and $G \cap H = \phi$. Clearly $y \notin G$ and $x \notin H$. \therefore Every Hausdorff space is a T_1 – space.

Converse need not be true. For this consider the following example.

Let X be an infinite set. Write $\Im = \{A \subseteq X : A' \text{ is finite}\} \cup \{\phi\}.$

Then (X, \mathfrak{I}) is a T₁ - Space (see example).

Now we will show that X is not a Hausdorff space.

In a contrary way, suppose that X is a Hausdorff space.

Take x, $y \in X$ such that $x \neq y$. Since X is Hausdorff there exists neighbourhoods G and H of x and y respectively such that $G \cap H = \phi$ (by def.).

Since G and H are non-empty open sets, we have G' and H' are finite.

Now
$$G \cap H = \phi \Longrightarrow (G \cap H)' = \phi' \Longrightarrow G' \cup H' = X$$

This shows that X is finite, a contradiction. Hence X is not Hausdorff.

Result (iv): Every subspace of a Hausdorff space is a Hausdorff space.

Proof: Let X be a Hausdorff space and Y be any subspace of X.

Let $y_1 \neq y_2$ be two - points in Y.

: X is Hausdorff, \exists open sets G and H in X \ni $y_1 \in G$, $y_2 \in H$, and $G \cap H = \phi$. Put A = G \cap Y and B = H \cap Y.

Then A and B are open sets in Y. Clearly $y_1 \in A$, $y_2 \in B$ and $A \cap B \subseteq G \cap H = \phi$. \therefore Y is a Hausdorff space.

Hence every subspace of a Hausdorff space is a Hausdorff space.

Theorem: The product of any non-empty class of Hausdorff spaces is Hausdorff. **Proof**: Let $\{X_i\}$ be a non-empty class of Hausdorff spaces.

Let $X = P_i X_i$ be the Product of X_i's.

Let $x = \{x_i\}$ and $y = \{y_i\}$ be any two distinct points in X.

Then $x_{i_0} \neq y_{i_0}$ for at least one index i_0 .

Since X_{i_0} is a Hausdorff space and $x_{i_0} \neq y_{i_0}$ are distinct points in X_{i_0} there exists open sets G_{i_0} and H_{i_0} , in X_{i_0} such that $x_{i_0} \in G_{i_0}$, $y_{i_0} \in H_{i_0}$ and $G_{i_0} \cap H_{i_0} = \phi$. Define $A = P_i A_i$ where $A_i = X_i$ for $i \neq i_0$ and $A_{i_0} = G_{i_0}$ and $B = P_i B_i$ where $B_i = X_i$ for $i \neq i_0$ and $B_{i_0} = H_{i_0}$.

Now A and B are open sets in X such that $A \cap B = \phi$, $x \in A$ and $y \in B$. Hence X is Hausdorff.

Theorem: In a Hausdorff space, any point and a disjoint compact subspace can be separated by open sets. In the sense that they have disjoint neighbourhoods (that is, if x is any point and if C is a compact subspace such that $x \notin C$ then there exists disjoint open sets G and H such that $x \in G$ and $C \subseteq H$).

Proof: Let X be a Hausdorff space. Let x be any point in X, and let C be any disjoint compact subspace. Now if $y \in C$, then $x \neq y$ (since $x \notin C$). Since X is a Hausdorff space, there exists open sets G_y and H_y such that $x \in G_y$, $y \in H_y$, and $G_y \cap H_y = \phi$. Now $\{H_y\}_y$ is a class of open sets such that $C \subseteq \bigcup_{y \in C} H_y$. Since C is compact, there exists a finite subclass of $\{H_y\}$, which we denote by $\{H_{y_1}, H_{y_2}, \dots, H_{y_n}\}$ such that $C \subseteq H_{y_1} \cup H_{y_2} \cup \dots \cup H_{y_n}$. Let $G_{y_1}, G_{y_2}, \dots, G_{y_n}$ be open sets which corresponds to the sets $H_{y_1}, H_{y_2}, \dots, H_{y_n}$. Put $G = \bigcap_{i=1}^n G_{y_i}$, and $H = \bigcup_{i=1}^n H_{y_i}$. Now for $1 \le i \le n$, consider $G \cap H_{y_i} \subseteq G_{y_i} \cap H_{y_i} = \phi$. (since $G_y \cap H_y = \phi$) $\Rightarrow G \cap H_{y_i} = \phi$. Therefore $G \cap H = G \cap [\bigcup_{i=1}^n H_{y_i}] = \bigcup_{i=1}^n [G \cap H_{y_i}] = \phi$. Hence G and H are disjoint open sets such that $x \in G$ and $C \subseteq H$. **Theorem**: Every compact subspace of a Hausdorff space is closed.

<u>Proof</u>: Let C be a compact subspace of a Hausdorff space X. To prove C is closed, it is enough to prove that C' is open.

If C' is empty then clearly it is open. We assume that C' is non-empty. Let $x \in C'$. Then $x \notin C$. By above theorem, there exists disjoint open sets G and H such that $x \in G$ and $C \subseteq H$. Since $G \cap H = \phi$, we have $G \subseteq H'$ and $H' \subseteq C'$ (since $C \subseteq H$). Therefore $G \subseteq C'$ and $x \in G \subseteq C'$. Therefore C' is open which implies that C is closed.

<u>**Theorem</u> 8***: A one - to - one continuous mapping of a compact space onto a Hausdorff space is a homeomorphism.</u>

<u>Proof</u>: Let f: $X \rightarrow Y$ be a one - to - one continuous mapping of a compact metric space X onto a Hausdorff space Y. We must show that f(G) is open in Y whenever G is open in X. To prove this, we first show that f(F) is closed in Y whenever F is closed in X.

If F is empty, then $f(F) = \phi$ and hence it is closed. Assume that F is non-empty. Since X is compact, we have F is compact. Since f is continuous, f(F) is compact. Therefore, by a theorem, f(F) is closed. Thus, we proved that f(F) is closed in Y whenever F is closed in X.

If G is open in X, then G' is closed in X. Now f(G') is closed in Y. But f(G') = (f(G))'. Therefore (f(G))' is closed in Y

 \Rightarrow f(G) = [{f(G)}']' is open in Y. Thus, f is a homeomorphism.

COMPLETELY REGULAR SPACES AND NORMAL SPACES

<u>Definition</u>: A normal space is a T_1 -space in which each pair of disjoint closed sets can be separted by open sets. In the sense that they have disjoint neighbourhoods. **<u>Remark</u>**: Every normal space is Hausdorff.

<u>Proof</u>: Let X be a normal space. Let x and y be distinct points in X.

Now $\{x\}$ and $\{y\}$ are disjoint closed sets. Since X is normal, there exists disjoint

open sets G and H such that $\{x\} \subseteq G$ and $\{y\} \subseteq H.$

Now G and H are disjoint neighbourhoods of x and y respectively.

Therefore, X is Hausdorff. Hence every normal space is Hausdorff.

Theorem: (11*) Every compact Hausdorff space is normal.

<u>Proof</u>: Let X be a compact Hausdorff space. Since X is Hausdorff, it is a T_1 -space. Let A and B be a pair of disjoint closed sets. If either of the closed sets is empty, we can take the empty set as a neighbourhood of it, and the full space as the neighbourhood of the other. So, we may assume that both A and B are non-empty

sets. Since X is compact, we have that A and B are compact sets. Let $x \in A$. Now $x \in X$ and B is a compact subspace such that $x \notin B$. Since X is Hausdorff, we have that x and B have disjoint neighbourhoods, say G_x and H_x respectively. Therefore $\{G_x\}_{x\in A}$, is a class of open sets such that $A \subseteq \bigcup G_x$, $x \in A$. Since A is compact, there exists a finite subclass of the class of $\{G_x\}_{x\in A}$, which we denote by $\{G_{x_1}, G_{x_2}, \dots, G_{x_n}\}$ such that $A \subseteq G_{x_1} \cup G_{x_2} \cup \dots \cup G_{x_n}$. Let H_{x_1} , H_{x_2}, \dots, H_{x_n} be the neighbourhoods of B which corresponds to $G_{x_1}, G_{x_2}, \dots, G_{x_n}$ Put $G = \bigcup_{i=1}^n G_{x_i}$ and $H = \bigcap_{i=1}^n H_{x_i}$. Now G and H are neighbourhoods of A and B respectively, such that $G \cap H = (\bigcup_{i=1}^n G_{x_i}) \cap H = \bigcup_{i=1}^n (G_{x_i} \cap H) \subseteq \bigcup_{i=1}^n (G_{x_i} \cap H_{x_i}) = \phi$.

Therefore $G \cap H = \phi$. Hence X is normal.

<u>Problem</u>: (1*): Let X be a T₁ - space. Show that X is normal if and only if each neighbourhood of a closed set F contains the closure of some neighbourhood of F (that is, if O is a neighbourhood of F then there exists neighbourhood G of F such that $F \subseteq G \subseteq \overline{G} \subseteq O$.

Solution: Assume that X is normal. Let O be a neighbourhood of F.

Then $F \cap O' = \phi$ (since $F \subseteq O$). Now F and O' are disjoint closed sets.

Since X is normal, \exists disjoint open sets G and H \ni F \subseteq G and O' \subseteq H.

Since $G \cap H = \phi$, we have $G \subseteq H'$. Now $O' \subseteq H \Rightarrow H' \subseteq (O')' = O$.

Since H' is closed, we have that $\overline{G} \subseteq H'$. \therefore , $F \subseteq G \subseteq \overline{G} \subseteq H' \subseteq O$.

Hence $F \subseteq G \subseteq \overline{G} \subseteq O$, and G is open.

Conversely, suppose that X has the stated property. Let A and B be disjoint closed sets. Since $A \cap B = \phi$, we have $A \subseteq B'$. ie B' is a neighbourhood of A.

Now by converse hypothesis, there exists an open set G such that $A \subseteq G \subseteq \overline{G} \subseteq B'$. Since $\overline{G} \subseteq B'$, we have $(B')' \subseteq \overline{G}' \Rightarrow B \subseteq \overline{G}'$.

Since \overline{G}' is a neighbourhood of B, again by converse hypothesis, there exists an open set H such that $B \subseteq H \subseteq \overline{H} \subseteq \overline{G}'$.

Now consider $G \cap H \subseteq \overline{G} \cap \overline{H} = \phi$. (since $\overline{H} \subseteq \overline{G}'$) \Rightarrow G and H are disjoint. Thus, G and H are disjoint neighbourhoods of A and B. Hence X is normal.

URYSHONS LEMMA AND TETZE EXTENSION THEOREM

<u>URYSOHN'S LEMMA</u>: Let X be a normal space and let A and B be disjoint closed subspaces of X. Then there exists continuous real valued function f on X, all of whose values lie in the closed unit interval [0, 1] such that f(A) = 0 and f(B) = 1. <u>Proof</u>: For each pair of rational numbers r, s we define an open set G_r such that $r < s \Rightarrow \overline{G_r} \subseteq G_s$, if r < 0, define $G_r = \phi$; if r > 1, define $G_r = X$. Let $\{r_1, r_2, ..., r_n, ...\}$ be a listing of rational numbers in [0, 1] with $r_1 = 0$ and $r_2 = 1$. Define $G_{r_2} = B'$.

Then G_{r_2} is a neighbourhood of A (since $A \cap B = \phi$, we have $A \subseteq B'$).

By hypothesis (:: X is normal), there exists an open set $G_{r_1} \ni A \subseteq G_{r_1} \subseteq \overline{G_{r_1}} \subseteq G_{r_2}$. Suppose we have defined $G_{r_1}, G_{r_2}, \dots, G_{r_{n-1}}$

We now define G_{r_n} as follows: Choose largest r_i and smallest r_j such that i, j < nand $r_i < r_n < r_j$. Now $r_i < r_j \Rightarrow \overline{G}_{r_i} \subseteq G_{r_j}$.

$$\begin{split} \mathbf{A} &\subseteq G_{r_1} \subseteq \overline{G_{r_1}} \subseteq G_{r_2} \\ \overline{G_{r_1}} &\subseteq G_{r_3} \subseteq \overline{G_{r_3}} \subseteq G_{r_2} ; \\ \overline{G_{r_1}} &\subseteq G_{r_4} \subseteq \overline{G_4} \subseteq G_{r_3} \subseteq \overline{G_{r_3}} \subseteq G_{r_5} \subseteq \overline{G_5} \subseteq G_{r_2} \\ \overline{G_{r_1}} &\subseteq G_{r_6} \subseteq \overline{G_{r_6}} \subseteq \overline{G_{r_4}} \subseteq \overline{G_4} \subseteq \overline{G_{r_7}} \subseteq \overline{G_{r_7}} \subseteq G_{r_3} \subseteq \overline{G_{r_3}} \subseteq \overline{G_{r_8}} \subseteq \overline{G_{r_5}} \subseteq \overline{G_5} \subseteq G_{r_9} \subseteq \overline{G_{r_9}} \subseteq \overline{G_{r_9}}$$

$$\frac{\overline{G_{r_1}} \subseteq G_{r_4} \subseteq \overline{G_4}}{\overline{G_{r_1}} \subseteq G_{r_6} \subseteq \overline{G_{r_6}} \subseteq \overline{G_{r_4}} \subseteq \overline{G_4} \subseteq \overline{G_{r_7}} \subseteq \overline{G_{r_7}} \subseteq \overline{G_{r_3}} \subseteq \overline{G_{r_3}} \subseteq \overline{G_{r_8}} \subseteq \overline{G_{r_8}} \subseteq \overline{G_{r_5}} \subseteq \overline{G_5} \subseteq \overline{G_{r_9}} \subseteq \overline{G_{r$$

Again, by hypothesis, \exists an open set G_{r_n} \ni

$$\begin{split} \bar{G}_{r_i} &\subseteq G_{r_n} \subseteq \bar{G}_{r_n} \subseteq G_{r_j}.\\ \text{By induction for each rational number } r_n \exists \text{ an open set } G_{r_n} \ni r_n < r_m \Rightarrow \bar{G}_{r_n} \subseteq G_{r_m}\\ \text{Define f: } X \to R \text{ by } f(x) &= \inf \{r: x \in G_r\}.\\ \text{We now show that } f(x) &\in [0, 1] \text{ for all } x \in X.\\ \text{Let } x \text{ be any arbitrary point in } X.\\ \text{By the definition of } G_r\text{'s}, x \in G_r \Rightarrow r \ge 0. \text{ Therefore } f(x) \ge 0.\\ \text{If } f(x) > 1, \text{ then choose a rational number 'r' such that } f(x) > r > 1.\\ \text{Now } r > 1 \Rightarrow G_r = X. \text{ Let } x \in X \Rightarrow x \in G_r \Rightarrow f(x) \le r, \text{ a contradiction to } f(x) > r.\\ \text{Thus, for } x \in X, 0 \le f(x) \le 1. \text{ Therefore } f(x) \in [0, 1].\\ \text{If } a \in A, \text{ then } a \in G_{r_1} \Rightarrow f(a) \le r_1 \Rightarrow f(a) \le 0 = r_1 \Rightarrow f(a) = 0 \text{ (since } f(a) \ge 0).\\ \text{Therefore } f(A) = 0. \text{ Suppose } b \in B. \text{ Then } b \in G_r \Rightarrow r \ge 1, \text{ for if } r < 1 = r_2 \text{ then } \\ \bar{G}_r \subseteq G_{r_2} \text{ which } \Rightarrow b \in G_{r_2} = B', \text{ a contradiction.}\\ \therefore, f(b) \ge 1. \text{ But } f(b) \le 1 \text{ (since } f(x) \le 1 \text{ for all } x). \text{ Hence } f(b) = 1. \end{split}$$

Since $b \in B$ is arbitrary, we have that f(B) = 1.

We show that f is continuous: All the intervals of the form (a, b) where a and b are real, form an open base for the real number system R.

∴, to show f is continuous, it suffices to show $f^{-1}(a, b)$ is open, for any reals a, b. For this, first we show that $f(x) < b \Leftrightarrow x \in G_r$ for some r < b. Suppose f(x) < b. By def. of f(x) there exists a rational number r such that $x \in G_r$, and r < b. Conversely suppose that $x \in G_r$ for some r < b. Then $f(x) \le r$ and $r < b \Rightarrow f(x) < b$. Consider $f^{-1}[(-\infty, b)] = \{x \in X: f(x) < b\} = \bigcup_{r < b} G_r \Rightarrow f^{-1}[(-\infty, b)]$ is open. Similarly, we can prove that $f^{-1}[(a, \infty)] = \bigcup_{r > a} (\overline{G_r})'$. Therefore $f^{-1}[(a, \infty)]$ is open. Now $f^{-1}[(a, b)] = f^{-1}[(-\infty, b)] \cap f^{-1}[(a, \infty)]$. Hence $f^{-1}[(a, b)]$ is open. Thus, f is continuous.

Definition: A completely regular space is a T_1 -space X with the property that if x is any point and 'F' is any closed subspace which does not contain x, then there exists a real continuous function f on X, all of whose values lie in [0, 1] such that f(x) = 0 and f(F) = 1.

Theorem (1*): Every normal space is completely regular.

<u>Proof</u>: Let X be a normal space. Then X is T_1 -space. Let $x \in X$ and F be any closed subspace of X which does not contain x. Put $A = \{x\}$. Now A and F are disjoint closed subspaces. By Uryshon's lemma, there exists a continuous real function f, all of whose values lie in the closed interval [0, 1] such that f(A) = 0, f(F) = 1. Therefore f(x) = 0 & f(F) = 1. Hence X is completely regular.

Theorem: Every completely regular space is Hausdroff.

Proof: Let X be a completely regular space.

Let x and y be any two distinct elements in X.

Put $F = \{y\}$. Now $x \in X$ and F is a closed subspace, which does not contain x. Since X is completely regular, there exists a continuous function f: $X \rightarrow R$ such that f(x) = 0 and f(F) = 1. Let r be any real number such that 0 < r < 1. Now $\{z \in X: f\{z\} > r\}$, and $\{z \in X: f(z) < r\}$ are disjoint neighbourhoods of 'y' and 'x' respectively. Therefore, X is Hausdorff.

Theorem: Every subspace of a completely regular space is completely regular. **Proof**: Let X be a completely regular space and let Y be a subspace of X. Let $x \in Y$, and F be a closed subspace of Y, which does not contain x. Then $F = Y \cap H$, where H is a closed subspace of X. Also, $x \notin H$. Since X is completely regular, there exists a continuous function f: $X \rightarrow R$, all of whose values lie in [0, 1], such that f(x) = 0 and $f\{H\} = 1$. Define 'g' to be the restriction

of f to Y. Then g: $Y \rightarrow R$ is continuous and $g(y) = f(y) \in [0, 1]$ for all $y \in Y$. Since $x \in Y$, we have $0 = f(x) = g(x) \Rightarrow g(x) = 0$. Now $y \in F = Y \cap H$ $\Rightarrow y \in Y$ and $y \in H \Rightarrow g(y) = f(y)$ and $f(y) = 1 \Rightarrow g(y) = 1$. Therefore g(F) = 1. Hence Y is completely regular.

<u>**Theorem</u>**: (9*) (TIETZE EXTENSION THEOREM)</u>

Let X be a normal space 'F' a closed subspace of X, and f a continuous real function defined on F whose values lie in the closed interval [a, b]. Then f has a continuous extension f¹ defined on all of X whose values also lie in [a, b]. **Proof**: Step (i): If a = b then the function f¹ defined by $f^1(x) = a$ for all $x \in X$ is a continuous function of X into [a, b] such that $f^1(x) = f(x)$ for all $x \in F$. Step (ii): Suppose a < b. Assume that [a, b] is the smallest closed interval containing the range of f and without loss of generality a = -1 and b = 1. Write $f_0 = f$. Then the domain of f_0 is F.

Now we define two subsets A₀ and B₀ of F as A₀ = $\left\{x \in F: f_0(x) \leq -\frac{1}{2}\right\}$ and B₀ = { $x \in F: f_0(x) \ge \frac{1}{3}$ }. Since [-1, 1] is the smallest closed interval containing the range of f₀, we have A₀ and B₀ are non-empty. Clearly A₀ and B₀ are disjoint. Since f_0 is continuous, we have that $A_0 = f_0^{-1} \left[-1, \frac{1}{3} \right]$ and $B_0 = f_0^{-1} \left[\frac{1}{3}, 1 \right]$ are closed in F. Since F is a closed subspace of X, we have A_0 and B_0 are closed in X. [Now X is a normal space, A_0 , B_0 are disjoint closed subspaces of X, and $\left[-\frac{1}{3},\frac{1}{3}\right]$ is a closed interval.] Then by the Uryshon's lemma, there exists continuous function $g_0: X \rightarrow \left[-\frac{1}{3}, \frac{1}{3}\right]$ such that $g_0(A_0) = -\frac{1}{3}$ and $g_0(B_0) = \frac{1}{3}$. Write $f_1 = f_0 - g_0$. Then f_1 is a continuous function of F and $|f_1(x)| < \frac{2}{3} \forall x \in F$. Next, we define two subsets A₁ and B₁ of F as A₁ = $\left\{x \in F: f_1(x) \leq \left(-\frac{1}{3}\right) \left(\frac{2}{3}\right)\right\}$ and B₁ = { $x \in F: f_1(x) \ge \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)$ }. Then A₁ and B₁ are non-empty disjoint closed subsets of F and hence A₁ and B₁ are disjoint closed subspaces of X. Since X is normal by Urysohn's lemma, there exists a continuous function $g_1: X \rightarrow \left[\left(-\frac{1}{3} \right) \left(\frac{2}{3} \right), \left(\frac{1}{3} \right) \left(\frac{2}{3} \right) \right] \Rightarrow g_1(A_1) = \left(-\frac{1}{3} \right) \left(\frac{2}{3} \right), \text{ and } g_1(B_1) = \left(\frac{1}{3} \right) \left(\frac{2}{3} \right).$ Write $f_2 = f_1 - g_1 = f_0 - (g_0 + g_1)$. Then f_2 is a continuous function on F, and $|f_2(x)| \leq \left(\frac{2}{2}\right)^2$ for all $x \in F$.

If we continue this process, we get a sequence $\{f_n\}$ of continuous functions defined on F and $\{g_n\}$ of continuous functions defined on X with the property that:

$$f_n = f_0 - (g_0 + g_1 + ... + g_{n-1}) \text{ and } |f_n(x)| \le \left(\frac{2}{3}\right)^n \forall x \in F \text{ and } |g_n(x)| \le \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^n.$$

Step (iii). Write $s_n = g_0 + g_1 + ... + g_{n-1}$. Then $\{s_n\}$ is a sequence of partial sums of an infinite series of functions of C(X, R).

C(X, R) is complete and $|g_n(x)| \le \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^n$. Now $\sum_{n=0}^{\infty} \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^n = 1$. By Cauchy's criterion for uniform convergence, $\sum g_n(x)$ converges uniformly to a bounded continuous real function f¹ defined on X such that $|f^1(x)| \le 1$. That is, $\{s_n\}$ converges uniformly to f¹ on X. ie., $\lim s_n = f^1$ on X ... (i). Since the sequence $\left\{ \left(\frac{2}{3}\right)^n \right\}$ converges to 0, for $\varepsilon > 0$ there exists a positive integer N such that $\left(\frac{2}{3}\right)^n < \varepsilon$ for all $n \ge N$. $\Rightarrow |f_n(x)| < \varepsilon$ for all $n \ge N$ and for all $x \in F$ $\Rightarrow f_n \to 0$ uniformly on $F \Rightarrow \lim s_n = f_0$ on F ... {ii) From (i) and (ii) $f_0 = f^1$ on F. That is, $f^1/F = f_0$, that is, $f^1/F = f$. This shows that f^1 is a continuous extension of f on X.

Note: If X is a normal space which contains only a finite number of points, then the topology on X is the discrete topology.

<u>Problem</u>: Deduce the Urysohn's lemma from Tietze extension theorem. <u>**Proof**</u>: Let A, B be two disjoint closed subsets of a normal space X. Since A, B are closed, we have that $F = A \cup B$ is also a closed subset of X.

Define f: $F \rightarrow [0, 1]$ by f(a) = 0 for all $a \in A$ and f(b) = 1 for all $b \in B$.

Since $A \cap B = \phi$, we have that f is well defined. Clearly f is a constant function on A and also on B. So, f is continuous on both A and B and hence f is continuous on $F = A \cup B$ (since $A \cap B = \phi$).

Now by Tietze extension theorem, there exists a continuous function $f': X \rightarrow [0, 1]$ such that f' is an extension of f. Now f'(A) = f(A) = 0 and f'(B) = f(B) = 1. This completes the proof.

THE URYSOHN'S IMBEDDING THEOREM

Definition: A topological space X is said to be metrizable if and only if there exists a metric 'd' for X which induces the same topology as the topology of X. **Note**: If X is a metric space with finite number of points then the topology on X induced by the given metric is the discrete topology on X.

Verification: Let (X, d) be a metric space with finite number of points.

So, take $X = \{x_1, x_2, ..., x_n\}$. Write $r = \min \{d(x_i, x_j): i \neq j, 1 \le i \le n; 1 \le j \le n\}$.

Then for any $x_i \in X$, $S_r(x_i) = \{x_i\}$ which is an open set. This shows that singleton sets are open in X. Hence the topology on X is the discrete topology on X.

URYSOHN'S IMBEDDING THEOREM: (3*)

If X is a second countable normal space then there exists a homeomorphism f of X onto a subspace of R^{∞} , and therefore X is metrizable.

<u>**Proof**</u>: we may assume that X has infinitely many points, for otherwise it would be finite and discrete, and clearly homeomorphic to any subspace of \mathbb{R}^{∞} with the same number of points.

Since X is second countable, X has a countable infinite open base $B = \{G_1, G_2, ...\}$ whose members are different from ϕ and X. Let $G_j \in B$ and $x \in G_j$. Then $\{x\}$ is a closed set. Since X is normal, there exists $G_i \in B$ such that $x \in G_i \subseteq \overline{G_i} \subseteq G_j$.

So, for a given G_j and $x \in G_j$, we have a pair (G_i, G_j) of open sets in B such that $\overline{G}_i \subseteq G_j$. The set of all ordered pairs (G_i, G_j) is countably infinite.

So, we can arrange them as a sequence $P_1, P_2, ..., for any arbitrary n, P_n = (G_i, G_j)$. By Urysohn's lemma there exist continuous functions $f_n: X \to [0, 1]$ such that $f_n(\bar{G}_i) = 0$ and $f_n(G_j') = 1$.

Now define f:X $\rightarrow \mathbb{R}^{\infty}$ by setting f(x) = {f_1(x), $\frac{f_2(x)}{2}, \frac{f_3(x)}{3}, \dots$ } for all $x \in X$.

For any integer $n \ge 1$, $f_n(x) \in [0, 1] \Rightarrow 0 \le f_n(x) \le 1 \Rightarrow \frac{f_n(x)}{n} \le \frac{1}{n}$

$$\Rightarrow \sum_{n=1}^{\infty} \left| \frac{f_n(x)}{n} \right|^2 \le \sum_{n=1}^{\infty} \frac{1}{n^2}$$
Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, we have $\sum_{n=1}^{\infty} \left| \frac{f_n(x)}{n} \right|^2$ is also convergent.
So, $f(x) = \{f_1(x), \frac{f_2(x)}{2}, \frac{f_3(x)}{3}, \ldots\} \in \mathbb{R}^{\infty}$. It is clear that f: $X \to \mathbb{R}^{\infty}$ is a function.
Next we will show that f is one-one: Let x, $y \in X$ such that $x \neq y$.
Since X is a T_1 - space, $\exists G_j \in B \ni x \in G_j$ and $y \notin G_j$. That is, $x \in G_j$ and $y \in G_j'$.
By the above fact we have an ordered pair $\mathbb{P}_n = (G_i, G_j)$ such that $x \in G_i \subseteq \overline{G}_i \subseteq G_j$.
 $\Rightarrow f_n(\overline{G}_i) = 0$ and $f_n(G_j') = 1$. So, $f_n(x) = 0$ and $f_n(y) = 1$.
 $\Rightarrow f_n(x) \neq f_n(y) \Rightarrow f(x) \neq f(y)$. Therefore, f is $1 - 1$.
Now we show that f is continuous: Let $x \in X$, and $\varepsilon > 0$.
Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, \exists a positive integer $\mathbb{N} \ni \sum_{n=N+1}^{\infty} \frac{1}{n^2} < \frac{\varepsilon^2}{4} \dots(i)$.
For $n = 1, 2, \dots, \mathbb{N}$, f_n is continuous $\Rightarrow \exists$ an open set H_n containing $x \ni y \in H_n$
 $\Rightarrow |f_n(x) - f_n(y)| < \frac{n\varepsilon}{\sqrt{2N}}$ for $= 1, 2, \dots, \mathbb{N}$.
Write $G = \bigcap_{n=1}^{N-1} H_n$. Then G is an open set containing x.

Let
$$y \in G$$
. Consider $||f(x) - f(y)||^2 = \sum_{n=1}^{\infty} \left|\frac{f_n(x) - f_n(y)}{n}\right|^2$
 $\leq \sum_{n=1}^{N} \left|\frac{f_n(x) - f_n(y)}{n}\right|^2 + \sum_{n=N+1}^{\infty} \left|\frac{f_n(x)}{n}\right|^2 + \sum_{n=N+1}^{\infty} \left|\frac{f_n(x)}{n}\right|^2$
 $< \sum_{n=1}^{N} \frac{\varepsilon^2}{2N} + \sum_{n=N+1}^{\infty} \frac{1}{n^2} + \sum_{n=N+1}^{\infty} \frac{1}{n^2} < \frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{4} + \frac{\varepsilon^2}{4} = \varepsilon^2$.
 $\Rightarrow ||f(x) - f(y)||^2 < \varepsilon^2 \Rightarrow ||f(x) - f(y)|| < \varepsilon$. So, $y \in G \Rightarrow ||f(x) - f(y)|| < \varepsilon$.
This shows that f is continuous at x.
Since x is arbitrary, we have that f is continuous on X.
Now we show that f is an open mapping: Let G_j be any basic open set.
Now we claim that $f(G_j)$ is open in $f(X)$.
Let $z \in f(G_j) \Rightarrow z = f(x)$ for some $x \in G_j$.
 $x \in G_j \Rightarrow$ There exists $G_i \in B$ such that $x \in G_i \subseteq \overline{G}_i \subseteq G_j$.
Write $P_{n_0} = (G_i, G_j) \Rightarrow f_{n_0}(\overline{G}_i) = 0, f_{n_0}(G_j') = 1$. Choose ε such that $0 < \varepsilon < \frac{1}{2n_0}$.
Consider $S_{\varepsilon}(z)$, the open set in \mathbb{R}^{∞} . Then $S_{\varepsilon}(z) \cap f(X)$ is open in $f(X)$.
Let $f(y) \in S_{\varepsilon}(z) \cap f(X) \Rightarrow ||f(x) - f(y)|| < \varepsilon \Rightarrow \left[\sum_{n=1}^{\infty} \left|\frac{f_n(x) - f_n(y)}{n}\right|^2\right]^{1/2} < \varepsilon$.
 $\Rightarrow \sum_{n=1}^{\infty} \left|\frac{f_{n_0}(x) - f_n(y)}{n}\right|^2 < \varepsilon^2 < \left(\frac{1}{2n_0}\right)^2$
 $\Rightarrow \left|\frac{f_{n_0}(x) - f_{n_0}(y)}{n}\right|^2 < \left(\frac{1}{2n_0}\right)^2 \Rightarrow \left|\frac{f_{n_0}(x) - f_{n_0}(y)}{n_0}\right| < \frac{1}{2n_0} \Rightarrow |f_{n_0}(x) - f_{n_0}(y)| < \frac{1}{2}$
 $\Rightarrow |f_{n_0}(y)| < \frac{1}{2}$ (since $x \in G_i$ and $f_{n_0}(G_i) = 0$). $\Rightarrow y \in G_j$. (If $y \notin G_j$, then $y \in G_j'$.
This shows that $S_{\varepsilon}(z) \cap f(X) \cong f(G_j)$: Thus, we have an open set $G = S_{\varepsilon}(z) \cap f(X)$
in $f(X)$ such that $z \in G \subseteq f(G_j) \Rightarrow f(G_j)$ is open in $f(X)$.
Consequently f: $X \to f(X)$ is open mapping.
Hence X is homeomorphic to a subspace $f(X)$ of \mathbb{R}^{∞} . Thus, X is metrizable.

STONE-CECH COMPACTIFICATION.

Theorem: Let X be an arbitrary completely regular space. Then there exists a compact Hausdorff space $\beta(X)$ with the following properties: (i) X is dense subspace of $\beta(X)$; (ii) every bounded continuous real function defined on X has a unique extension to a bounded continuous real function defined on $\beta(X)$.