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M.Sc. Paper: 104, TOPOLOGY, UNIT: I,
METRIC SPACES

Definition: Let X be a nonempty set and d: X x X — R be a function. d is said to
be a metric on X if

(i) d(x,y)>0Vx,ye Xandd(x,y)=0iff x=y. (Non negativity)

(i) d(x,y)=d(y,x) V X,y € X. (symmetry)

(i) d(x,y) <d(x,z) +d(z,y) V X, ¥,z € X (Triangle in equality).
If d 1s a metric on X then (X, d) is called a metric space. d(x, y) is called the
distance between x and y.

Example: Define d: R X R —» R by d(x, y) = |x — y| where R is the set of all real
numbers. Then d is a metric called usual metric on R.

Solution: () d(x, y) =[x —y| >0.d(x,y)=0iff |[x —y|=0iffx=y.

(i) d(x, y) =[x —y| = ly — x| =d(y, x)

(i dx,y)=lx—yl=lx—z+z-yl<[x —z| + |z - y| = d(x,2) + d(z, y).
Hence d is a metric on R.

Example: Define d: C X C —» R by d(z1, z2) = |z; — z,| where C is the set of all
complex numbers. Then d is a metric on C.

Solution: Let z,, z,, z3 € C.

(1) d(Z], Z2) = |Zl — Zzl > (0 and d(Z], Zz) =0 1iff |21 — ZZl =0 iffZ] = 7.

(i) d(z1, 22) = |2y — 23| = |=(21 = 22)| = |25 — 21| = d(22, 21).

(i) d(z1, 22) = |21 — 25| = |2y — 25 + 23 — 23| < |2 — 73| + |23 — 25|

=d(z1, z3) + d(z3, 72). .. d 1s a metric called usual metric on C.

Problem: Let X be a nonempty set and d: X x X — R be a function satisfying the
following two conditions.
(i) d(x,y)=0ifandonlyifx=y.
(i) d(x,y)<d(x,z)+d(y,z2) VX, y,ze X
Then d is a metric on X.
Solution: (i) Put y =x in (i1). Then d(x, x) <d(x, z) + d(x, z) = 0 < 2 d(x, z)
= d(x, z) > 0.
(1) Putx=z1in (11). d(z, y) <d(z, z) + d(y, z) = d(z, y) < 0 + d(y, 2).
= d(z,y) < d(y, z) and thisis true v y, z € X.
- d(y, z) < d(z, y) is also true. Hence d(y, z) = d(z,y) vy, z € X.




(111) By (11) d(x, y) < d(x, z) + d(y, z) = d(X, z) + d(z, y) since d(y, z) = d(z, y),
Sod(x,y)<d(x,z) +d(z,y) V X,y, z € X. Hence d is a metric on X.
Example: Let X # ¢. Define d: X x X > R by d(x,y) =0 if x =y and
d(x,y)=11fx #y. Then d is a metric on X called discrete metric and so (X, d) is a
metric space called discrete metric space.

Solution: (i) Clearly d(x,y) 2 0 and d(x, y) =0 iff x =y.

(1) If x =y then d(x, y) = 0 = d(y, x). [f x #y, then d(x, y) = 1 = d(y, x).
Thus, d(x, y) = d(y, x).

(111) Suppose x =y =z, then d(x, y) =0=0+ 0 =d(x, z) + d(z, y).

Suppose x =y #z. Thend(x,y)=0<1+1=d(x, z) + d(z, y).

Suppose x #zy. I[f x=z, y#zthend(x,y)=1=0+1=d(x, z) +d(z, y).
Similar is the case when x 2y, x £z, y = z.

Suppose no two are equal. Then d(x,y)=1<1+1=d(x, z) + d(z, y).

Thus, in all the cases d(x, y) < d(x, z) + d(z, y). Hence d is a metric on X.

Problem: Let (X, d) be a metric space. Show that d; defined by d,(x,y) =

)¢ 4 metric on X. Show that X is a bounded set in (X, dy).

1+d(x,y)
axy)
>

Solution: Let x, y, z € X. Since d(x,y) 20, d;(x,y) = 1+d(xy)

. d(x, . .
d,(x,y) = 0 iff % = 0iffd(x,y) = 0iffx = y.

_ Ay _ Ao ) _ Do -
Also d;(x,y) = ™o, . W d,(y,x). .. d; is symmetric.

. _dx, ) d(x, z) az, y) _
Againd,(x,y) = T < W + T d,(x,z) +d.(z,y).

Hence d; is also a metric on X.
(i) Foranyx,ye X,0<d(x,y)<1+d(x,Y)
—~0< 4 y) <
1+d(x, y)

=0<d;(x,y)<1
SLdX)=sup {d; (X,y): X,y € X} <.
This shows that X is bounded in the metric space (X, d;).

Definition: Let X be a nonempty set and d: X x X — R be a function such that
(i) dx,y)>20Vx,yeXandx=y =d(x,y) =0.
(i) d(x,y)=d(y,x) VX, ye X




(i) d(x,y)<d(x,z) +d(z,y) VX, ¥,z € X.
Then d is said to be a pseudo — metric on X.

Note: Every metric is a pseudo — metric. But converse is not true.

Example: Let X be a set with |X| > 2. Define d(a,b)=0V a,b € X. Thendis a
pseudo metric but not a metric.

Solution: Clearly d is a pseudo metric. Let a # b. Then also d(a, b) = 0.

.. d 1s not a metric.

Example: Let X = {1, 2, 3}. Define d : Xx X - R by d(1, 1) = d(2, 2)
=d(3,3)=d(1,2)=d(2,1)=0;d(2,3)= d(3,2)=d3, 1)=d(1,3)=1.

Then d is a pseudo metric but not a metric.

Solution: Clearly d is a pseudo metric. 1 # 2 but d(1, 2) = 0. So, d is not a metric.

Example: Give two examples of pseudo — metric which are not metrics.

Problem: Let X be a Pseudo metric on X and define ‘~’ on X by

x ~y < d(x,y) =0. (1) Show that ‘~’ is an equivalence relation (i1) Define a metric
on the set of all equivalence classes.

Solution: (i) ~ is reflexive: x ~x ¥V x € X since d(x, x) = 0.

~ 18 symmetric: Suppose X ~'y.

=dx,y)=0=d(y,x)=0. >y ~x.

~ 1s transitive: Suppose X ~y, y ~ zZ

= d(x,y)=0and d(y, z) = 0.

Now d(x, z) <d(x,y) +d(y,z) =0+ 0=0.

=dx,z2)=0=>x~2z

Hence ~ is an equivalence relation.

Define d*([x], [y]) = d(x, y).

Then d*([x], [y]) =d(x,y) = 0.

d*([x], [y]) =0 iff d(x, y) = 0 iff x ~ y iff [x] = [y].

d*([x], [yD = d(x, y) = d(y, x) = d*([y], [x]).

d*([x], [y]) = d(x, y) £ d(x, 2) + d(z, y) = d*([x], [2]) + d*([z], [y]).
Hence d* is a metric on the set of all equivalence classes {[x] : x € X}.




Definition: Let X be a nonempty set. If for each x € X, there corresponds a real
number ||x]|, and it satisfies the conditions

(i) |lx||=0and ||x||=0iffx=0.

(i) [l=x[[=lx]| vV x e X.

(i) llx+yll < llxl[+llyll vxyeX
then ||x|| is called norm of x € X.

Example : Let ||x]|| be norm of x € X as defined as above. If we define

d(x,y) = |lx — y|| then (X, d) is a metric space and ‘d’ is called the metric induced
by the norm.

Proof: Let x, y € X. (i) Then d(x, y) = ||x — y|| > 0.

Now d(x,y) = 0iff [[x —y|| =0iff x —y =0 iff x = y.

(idx, y)=llx =yl = =@ =2l = lly — x|l = d(y, x)
(iii)Letx,y,ze X. Thend(x,y)=|lx = y||=llx —z+z—=y]| < ||lx — z|| +

”Z - }’” = d(X: Z) + d(Za Y)
(X, d) is a metric space.

Define: Let f: [0, 1] > R. F is said to be bounded if there exists k € R such that
|f (x)|< k for every x €[0, 1].

Example: Let X = {f/ f: [0, 1] > R, fis bounded and continuous}. Define ||f|| by
Wfll = 01| f(x)|dx (here the integral involved is the Riemann integral) Then d

defined by d(f, g) = IIf — gl = [} 1f (x) — g(x)|dx is induced metric.
Solution: [|f]l = fIf (x)|dx > 0 - |f(x)] 2 0.
IFIl = 0iff [ 7|f(x)|dx = iff |f (x)| = 0 ¥ x iff f = 0 (zero function.
I=F1l = [J1=f(Oldx = [ 1f ()ldx = [I£]
Let f, g € X. Then ||f + gl = foll(f + g)(0)|dx < fol{lf(x)l + [g(x)[}dx

= [JIFldx + [Jlgeldx = lI£l + llgll. ~IIfll = [ 1f (x)ldx defines norm on
X.

Hence d defined by d(f, g) = |If — gll = [ If (x) — g(x)|dx is induced metric.

Example : Let X = {f/ f: [0, 1] > R, fis bounded and continuous}. Define ||f]|
by ||f1l =sup {|f(x)]: x € [0,1]}. Then d defined by d(f, g) = ||f — g|| = sup




{If (x) — g(x)|: x €0,1]}is a metric and this metric space is denoted by C[0, 1]

Solution: Let f € X. Then ||f|| =sup {|f(x)|: x €[0,1]}>0 " |f(x)]| >0.

Il =0 iff sup {|f(x)|: x €[0,1]}=0iff |f(x)| Vx € [0,1]iff f=0 (zero
function.

I=fll =sup {I=fCl:x €[0,1]}=sup {|f(x)|: x €[0,1]}=IIf]l

Let f, g € X. Then ||f + gl = sup {|(f + g)(x)|: x € [0,1]}

=sup {|f(x) + g} <sup {If ()| + (g} <sup {|f ()} +sup {lg()|} =
WA+ llgll. = AIfII = sup {If (x)]: x € [0,1]} defines norm on X. .
d defined on X by d(f, g) = ||f — gl =sup {|f (x) — g(x)|: x € [0, 1]} is a metric
on X.

SUBSPACE

Definition: Let (X, d) be a metric space and Y < X. Then the restrictions of ‘d’ to
Y, then (Y, d) 1s a metric space and (Y, d) is called subspace of (X, d).
Definition: Let (X, d) be a metric space and A < X.
(1)  Ifx e X then the distance from x to A, d(x, A) =inf {d(x,a)/a € A}.
(i)  The diameter of the set A, d(A) =sup {d(x,y) / X,y € A}.
(iii)  If d(A) = oo then A is said to have infinite diameter, otherwise, it is said
to have finite diameter. Note that if A = ¢ then d(¢) =sup {d(x,y) /X,y
€ ¢} =sup ¢ =- o and so ¢ has infinite diameter.
(iv) Alissaid to be bounded if d(A) is finite. A mapping f.Y — X where Y #
¢ and (X, d) is a metric space is said to be bounded if the set f(Y) is
bounded in (X, d).

Example: Let R* be the Euclidean space.
Define d(x, y) = |x — y| ¥V x, y € R¥. Then d is a metric on R,

OPEN SETS
Let (X, d) be a metric space. Let Xy € X and r be a positive real number. Then

Ni(X0) = Si(x0) = {x € X/ d(x, Xo) <t} is called the open sphere with centre x, and
radius r. It is also called neighbourhood of x¢ with radius r.

Note: S/(x¢) # 0.




Example: (i) If (X d) is a metric space where X # ¢ and ‘d’ is a metric on X,
defined by d(x. y) =0 if x =y and 1 if x # y. Then for every x € X,
Si(Xo) = {Xo}.
(i)  Consider (R, d) where R is the set of all real numbers, d is a usual metric
on R. Then forany Xo € R, Si(Xo) = (Xo — I, Xo + ).

Definition : Let X be a metric space. All points and sets mentioned here are
elements and subsets of X.
(i)  Apoint pis a limit point of the set E if every neighbourhood of p
contains a point g such that p = q and g € E; The set of all limit points of
E is denoted by D(E).
(i) Ifp e Eandpisnot a limit point of E, then p is called an isolated point
of E;
(ili) A set E is said to be closed if every limit point of E is a point of E;
(iv) A point p of E is said to be an interior point of E if there exists a
neighbourhood N of p such that p € N — E. The set of all interior points
of A, is called the interior of A. It is denoted by Int (A);
(v) Aset Eisopen if every point of E is an interior point. Equivalently, a
subset G of the metric space X is called an open set if given x € G
there exists a positive real number r such that S(x) < G;
(vi) AsetE issaid to be perfect if E is closed and every point of E is a limit
point of E;
(vii) E is bounded if there exists a real number M and a point g € X such that
d(p, q) <M, forallp € E.

Definition: A subset E of a metric space X is said to be dense in X if every point of
X 1s a limit point of E or a point of E, or both.

Note: Consider the set R of real numbers with usual metric d. The set [0, 1)

1s not open as a subset of R, since 0 € [0, 1) is not an interior point. If we consider
[0, ) as a metric space X in its own right, as a subspace of the real line, then [0, 1)
1s open as a subset of X, since from this point of view it is the full space.

Theorem: In any metric space X the empty set and the full space X are open sets.




Proof: To show that ¢ is open, we must show that each point in ¢ is the centre of
an open sphere contained in ¢; but since there are no points in ¢, the requirement is
automatically satisfied. Hence ¢ is open.

Since every open sphere centred on each of the points in X, is contained in X, we
have X is open.

Lemma: In a metric space X, X € S¢(X,) = there exists s > 0 3 Sy(x) < Si(Xo).
In other words, every open sphere (or neighbourhood) is an open set.
Proof: Let S/(x¢) be an open sphere in X. Let x € Si(xo).
Then d(xo, x) <t = 1 — d(X0, X) > 0.
Put s =r—d (xo, X). Then s > 0.
Consider the sphere Sy(x).
Lety € Sy(x)
= d(y, x) <s.
Now d(y, x0) < d(y, x) + d(x, xo) (by triangle inequality)
<s+d(x, x0) = [r = d(x0, x)] +d(x, x0) =1
Therefore d(y, xo) <t
=y € S{(Xo). Hence S¢(x) < Si(Xo). .- Si(X¢) 1s an open set.

Theorem: Let X be a metric space. A subset G of X is open if and only if itis a
union of open spheres

Proof: Suppose G is Open. If G = ¢, then it is the union of the empty class of open
spheres. If G # ¢, then for any x € G 3 1, > 0 such that S, (x) c G.

Then G = Uy ¢ Sr, (%)

Conversely suppose G = Uy Sy, (x), where {S,. (x))/x € I } is a collection of
open spheres.

If1=¢, then G = ¢ which is an open set.

Suppose [ # ¢. Lety € G.

Since G = Uy Sy (X), we have y € S, (x) for somex € I.

By above lemma, 31> 05 S(y) = S, (x).

Hence Si(y) = S, (x) < G. This shows that G is open.

Theorem: Let X be a metric space. Then (i) union of open sets in X is open; and
(11) finite intersection of open sets in X is open.

Proof: (1) Let {Gi}ic1 be a collection of open sets. Write G = U;; G;. We have to
show that G is open.

If I = ¢ then the union of the empty class of open sets G; is G = ¢ which is open If ]




# ¢, then by above theorem, each G; is a union of open spheres. Again by above
Theorem G is open.

(i1) Let {Gi}1 <i<n be a finite collection of open sets in X.
Claim: G = N}, G; is open.
If I = ¢ then the class of {Gi}<i<nis ¢ and hence Ni~, G; = X which is open.
Let I # ¢. If G = ¢ then G is open. Suppose G # ¢. Let x € G =N, G;. Since each
Gi is open 3 1; > 0 such that S, (x) < Gi. Write r = min{r;, 1, ..., Ia}. Then S¢(x) <
Sy, (x) < Gi for all 1 <i<n, which shows that Si(x) € N{.; G; = G. Hence G is
open.

Remark: Intersection of infinite collection of open sets need not be open.

For, consider R with usual metric. Write G; = (— %, %) Then G=N;Z,G; = {0}
which is not open.

Problem: Let G be an open set in R. Define ~on G as X,y € G, x ~y if and only
if 3 open interval (a, b) such that x, y € (a, b) < G. Then
(i)  ~isanequivalence relation
(i) Foranyx e G,iflx=u{(a,b)/x e (a, b) < G}, then I, is an open
interval such that x € Iy < G.
(i) [x] =Ixand
(iv), G=uly,xeG.

Solution: (i) Letx € G. Since Gisopendr>0>3x € S(x)=x-1,x+1)cG. ..
x ~x V x € G. Viz. ~ 1s reflexive.
Letx,y € G>x ~y. Then 3 open interval (a, b) such that x, y € (a, b) c G.
= 3 open interval (a, b) such that y, x € (a, b) c G.
=y ~ X. Viz. ~ is symmetric.
Letx,y,ze Gax~yandy~z.
Then 3 open intervals (a, b), (c,d)>x,y € (a,b)c Gandy, z € (¢, d) = G. Since
y € (a,b) " (c, d) and (a, b) U (c, d) is an interval we get x, z € (a, b) U (c, d) <
G. .. x ~z. Viz. ~ is transitive.
Hence ~ is an equivalence relation.
(i) LetxeGandlk=u{(a, b)/x e (a b)cG}.
Then I is an open set. Since the intersection of all the intervals involved
in this union contains x, we have that I« is nonempty.
Thus, Iy is an interval such that x € Iy < G.
(ili) Letu € [x].
Then u ~x = 3 open interval (a, b) such thatu, x € (a, b) c G




=ue(@b)cl .. [X]cl
Lety € Ix. Theny € (a, b) for some (a, b) withx € (a, b) c G
=Vy,Xe(@b)cG=y~x=y e [x]. Hence [X] = I«
(iv) Since the set of equivalence classes [x] = Ix, X € G for some partition for
G,wehave G=uU Iy, x € G.
Theorem: Every non-empty open set on the real line is the union of a countable
disjoint class of open intervals.
Proof: Let G be a non-empty open subset of the real line. Let x be a point of G.
Since G is open, x is the centre of a bounded open interval contained in G. Define
Ik=u {(a,b)/x € (a, b) c G}.
Next we observe that if x and y are two distinct points of G then I, and I, are either
disjoint or identical.
For, suppose z € xnIy.=>z e Iyand z € 1.
Then I, = Ik and Iy = I, (by above problem). Therefore I = 1.
Consider the class I of all distinct sets of the form I for some point x in G.
This is a disjoint class of open intervals, and G is its union. It remains to prove that
[ is countable.
Let G; be the set of rational points in G. Clearly G; is non-empty.
Define f: G, — I as f(r) = [r] = I.. If Ix € I then I contains at least one rational
number u. Now u € Iy € G = u € G;. Also f(u) = [u] = I, = Ix. Hence f'is onto.
Since G; is countable and f: G, — I 1s onto, we have that I is countable.

Definition: Let (X, d) be a metric space, A < X and x € A. Then x is said to be an
interior point of A if there exists r > 0 such that S;(x) C A.

The set of all interior points of A is called the interior of A. It is denoted by
Int (A). So Int (A) = {x € A and Sr(x) < A for some r}.

Proposition: Write X = R, the set of real numbers with usual metric. Find
Int (Q), where Q is the set of all rational numbers.

Solution: Let x € Int (Q) = there exists a real number r > 0 such that S,(x) < Q
= x—-1,x+1)c Q. Sincer >0, we have that x —r#x + 1.

We know that between any two real numbers there is an irrational number.

.3 an irrational number q such thatx —r<q<x+r=qex-r,x+rcQ. .. Q
contains an irrational number q, a contradiction. Hence Int Q = ¢.

Result: (i) Int (A) is an open subset of A; (ii) Int (A) contains every open subset of
A; (i11) Int (A) is the largest open subset of A.
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Proof: (i) Clearly Int (A) c A. Let x € Int (A). Then 3 r > 0 such that S,(x) C A.
Lety € Si(x). Then 3 s > 0 such that Sy(y) € Si(x) c A. = y € Int (A).

= Si(x) < Int (A) for all x € Int (A). Hence Int (A) is an open set.

(i1) Let G be an open set of A. Let x € G. Since G is open 3 r > 0 such that S¢(x) <
G.Now S;(x) cGcA= Si{(x)c A= x € Int (A).

Therefore G  Int (A).
(i11) From (i), Int (A) is an open set. If Int (A) is not the largest open set contained
in A, then there exists an open set G in A such that Int (A) — G. But

form (ii), we get G < Int (A).
Therefore G < Int (A) © G = G < G, a contradiction.
Hence Int (A) is the largest open subset of A.

Result: A is open if and only if A = Int (A).

Proof: Suppose A is open.

Then by a result Int (A) is the largest open subset of A.

Hence A= Int (A).

Conversely A = Int (A) implies that A is open since Int (A) is open.

Result : Int (A) is the union of all open subsets of A.

Proof: Let {Gi/1 € I} be the collection of all open subsets contained in A. Since
each G;j is open and G;  Int (A).

= Ui G; < Int (A). Let x € Int (A)

= 3Ir>0>3S(x) cA.

Since Si(x) 1s open, we have that S,(x) = G for some j € L.

Sox € Six) =Gj < Ui G;.

Hence Int (A) < U, G; Thus Int(A) = U, 4 G;.

CLOSED SETS
Definition: A subset F of a metric Space X is called a closed set if it contains each
of its limit points.
Theorem: In any metric space X, the empty set ¢ and the full space X are closed

sets.

Proof: Since ¢ contains no limit points, we have that ¢ is closed. Since X contains
all points of the metric space, we have that X is closed.

Theorem: A set E is open if and only if E° (the complement of E) is closed.
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Proof: Suppose E is open. Let x be a limit point of E€. we have to show that

x € E°. If x ¢ E°then x € (E°)°=E. Since E is open and x € E, there exists r > 0
such that S(x) € E = S«(x) n E° = ¢. = x is not a limit point of E¢, a
contradiction. .. x € E°. Hence E° is closed.

Converse: Suppose E° is closed. Now we show that E is open. Lety € E. Theny ¢
E° = y is not a limit point of E* = 3 a neighbourhood N of y such that

NNE‘=¢ =y e NcE. .. yis an interior point of E. Since y is an arbitrary
point in E, we have that every point of E is interior point of E. Hence E is open.

Corollary: A set F is closed if and only if F¢ is open.
Proof: Follows from the above theorem.

Definition: Let X be a metric space. xo € X, r be a non negative real number.
Then Si[x0] = {x/ x € X, d(X, x¢) <1} 1s called the closed sphere with centre xo and
radius .

Theorem: In a metric space X, each closed sphere S,[xo] is a closed set.
Proof: First we show that Y = the complement of S,[x¢] is open.

IfY = ¢, then it 1s open. Suppose Y # ¢. Let x € Y then d(x, xo) > r.

Let s = d(x, Xo) — r > 0. Consider Sy(x). Let z € Sy(x). Then d(x, z) <s.
So d(xo, x) < d(x0, z) + d(z, X).

= d(xo, z) > d(x0, X) — d(x, z) >d(x0, X) —S =T

= d(x0,2z) >1r =2z ¢ Si[X0]

=z € Y. Hence Sy(x) C Y.

soforanyx e Y,3s>03x € Sy(x) Y.

.. Y 1s open. Hence S[Xo] 1s closed.

Theorem: (1) Let X be a metric space. Then (1) any intersection of closed sets in X
is closed; 1e. If {Fo/ a € I} is a collection of closed sets then M Fy, 1s closed.

(11) any finite union of closed sets in X is closed. Ie. For any finite collection F,, F,
.., Fn of closed sets, F; U F, U ... U F, 1s closed.

Proof: (i) Let {Fo/ a € I} be a collection of closed sets

Since each F is closed, we have that F.° is open.

{Fo¢: o € I} 1s a collection of open sets.

By a theorem, U F,° is open. = (NF«)* = U F° is open

= NMFq 1s closed.

(11) Let Fi, <1 <n, be closed sets = Fi°1 <1 <n, are open sets.
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Now (Fi U F, U ... UF) =F N F* N ..nF,is open
= FUF,u..UF,is closed.

Example: Consider the following sub sets of R?

(1) {z € C/|z| <1} is open, not closed, not perfect, bounded.

(i1) {z € C/ |z| £ 1} is closed, not open, perfect and bounded.

(iif) A finite set is closed, not open, not perfect, bounded.

(iv) The set of all integers is closed, not open, not perfect and not
bounded.

(v) E={1/n:n eN}is not closed, not open, not perfect but bounded.
Here note that this set has only limit point 0, and 0 ¢ E.

(vi) C (set of complex numbers) is closed, open, perfect but not bounded.
(vii) (a, b) as a subset of R?, is not closed, open, not perfect but bounded.

Note: (i) If { Fo} is a collection of sets then {(UF.)° = N Fd".
(if) An arbitrary union of closed sets need not be closed.

For, Consider A, = [— %, %] for n € N. Then U;=; 4;, = (0, 1) which is not closed,
because 0 and 1 are limit points of (0, 1) and these are not in (0, 1).

Theorem: Let E be a nonempty set of real numbers which is bounded above. Let y
=sup E. Then (i) y € E and (ii) y € E if E is closed.

Proof: (i) If y € E, then clearlyy e EC E.

Suppose y ¢ E.

Now y =sup E = for any € > 0, y — ¢ is not an upper bound

= dx € Esuchthaty —e<x<y
=>xe(y—¢yte)=S(y)andx € E=x € {EnS«(y)} — {y}
=y is a limit point of E= y e D(E)c EUD(E)=E.

(ii) If E is closed then E=E and hencey € E =E.

Construction of the CANTOR set.

To construct the Cantor set, we proceed as follows:
Write F; = [0, 1]. From F,, delete the open interval (
third of F.

: B 12\ a1 2
Write F> = [0, 1] — (5,5) = [0,5] U [5, 1].
Now from F,, delete the middle thirds of two pieces.

%,g) which is an open middle
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wiite Fx = F2 - {(5.5) U (55)} = [0.5] v 53] v [5.5] v 5.1
If we continue this process of deleting the open middle third of intervals, we obtain

a sequence of closed sets F,, such that F, D Fui1 2 ...
Now write F = N;;=1 F, . This F is called the Cantor set.

Note: (i) By above construction, since each F, is a finite union of closed intervals,
we have that each F, is closed. So, F = N;;=1 F, is closed. Hence Cantor’s set is
closed.

(i1) Since we are deleting the open middle third intervals from each F, finally F
contains the end points of the closed intervals of F, for each n. The end points of
the closed intervals in F; are 0, 1. The end points of the closed intervals in F, are 0,
1/3, 2/3 and 1. The end points of the closed interval in F3 are 0, 1/9, 2/9, 6/9, 7/9,
8/9, 1. Therefore F contains 0, 1/3, 2/3, 1/9, 2/9, ...

Therefore, there are some numbers in F other than the end points.

(i11) The cardinal number Of F is c, the cardinal number of the continuum.

(iv) We can define a bijection f: [0, 1) — F. For this, let x € [0, 1).

Suppose x = 0.b;b,... be its binary expansion. Now each bn is either O or 1. Write t,
= 2b, for each n, and write f(x) = 0.t;t... Now
consider f(x) = 0. tit,... .as a number of ternary expansion.

Now f(x) € F. Now it can be verified that f'is one to one and onto.

(v) Let us consider the sum of lengths of the open intervals removed at every stage.
First stage we removed the open interval (1/3, 2/3) and its length is 1/3. Second
stage we removed (1/9, 2/9) and (7/9, 8/9). The sum of the length of these two
intervals is 1/9 + 1/9 = 2/9 and so continuing this way we obtain a sequence of
lengths 1/3, 2/9, 4/27, ... These numbers form a geometric progression with first
term 1/3 and common ratio 2/3.

|<.u|r—k

z=1

Therefore, the sum is izt
39 27

Definition: Let X be a metric space and A < X. Then the closure of A (denoted by
A) is defined by A=A U D(A) where D(A) is the set of all limit points of A.

Result: A is closed if and only if A= A

Proof: (i) Suppose A is closed

= all the limit points of Aare in A = D(A) < A
= A=AUDA)cA=AcA Hence A=A

Converse: Suppose A=A
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=>AUDA)cA=DA)cCA
= all the limit points of A are in A = A is closed.

Result: A is a closed superset of A which is contained in any closed superset of A
(equivalently, (i) A A (ii) A = A; and (111) B 1s a closed set such that A < B then
A c B (iv) A equals to the intersection of all closed supersets of A.

Proof: (i) By the definition of A, we have that A — A.

(ii) To show that A = A4; Clearly A € A Letx e A.

Then either x € A or x € D(A) = the set of all limit points of A.

Ifx € A, it is clear. Suppose x € D(A) = x is a limit point of A.

Ifx € Athen clearlyx € AcC A.

Suppose x ¢ A, Consider S,(x) and r > 0. Since it is a limit point of A there exists y
e AN Six)suchthatx #y.y € S(x) = d(x, y) <T.

Nowy e A=AUD(A). Ify e Atheny € AN S(x). Ify ¢ Atheny € D(A) =y
1s a limit point of A. Puts =r-d(x,y). Thens>0and 3z € An Syy)and z # y.
Now d(x, z) £d(x,y) + d(y, z) <d(x,y) + s =r.

.. either y or z 1s in A and also 1s in Sy(x).

- X is a limit point of A which implies that x € D(A) c A U D(A) = A.

. AC A. . Hence A = A.

(i11) Let B be a closed set such that A < B.

Now we wish to show that A c B.

For this, letx € A = x € Aorx € D(A) (since A=A U D(A)].

If x € A then x € B (since A c B).

If x € D(A), then since D(A) < D(B) we have x € D(B)

= x € BUD(B)=B =B (since B is closed).

Hence x € A = x e B. This shows that A — B.

(iv) Let {Bi/1 € I} is the collection of all closed supersets of A.

By (iii), Ac Bforalli e | = A < NB;

Since A4 is closed and A — A, we have that A belongs to the collection

{Bi/1el}

— NB;c A.

Hence A = MB..

Definition: Let X be a metric space, A < X. x € X is said to be a boundary point
of A if each open sphere centred on the point x intersects both A and A'. The set of
all boundary points of A is called the boundary of A.
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Note: (i) The boundary of A equals
(i1) The boundary of A is a closed set. (ii1) A is closed iff it contains its boundary.

Example: Consider R with usual metric. Write x =0 € R,A=(0,1), B=1[0, 1]. x is
a boundary point of both A and B. x ¢ A and x € B. Therefore, a boundary point x
of a set X need not be in the set X.

Result: Let x ¢ A. Then x is a limit point of A iff x is a boundary point of A.
Proof: Suppose x ¢ A and x is a limit point of A. = x € D(A) and x € A’

= for every r > 0, the nbd S,(x) intersects both A and A’.

= x 1s a boundary point of A.

Conversely, suppose x is a boundary point of A.

= Si(x) intersects A for every r > 0. Also given x ¢ A. .. X is a limit point of A.

CONVERGENCE, COMPLETENESS AND BAIRE’S THEOREM

Definition: Let (X, d) be a metric space and {X,} be a sequence of points in X.
Then {X,} converges if 3 a point x € X > for each € > 0 3 a positive integer m
3 d(xp, X) <& V n>m. This fact is denoted by x, = x or lim x, = x.

or equivalently, for each open sphere S,(x) 3m € Z* 53x, € S,(x) Vn>m.

Note: The following two conditions are equivalent: (1) {X,} converges to x in a
metric space (X, d) and (i1) {d(x,, X)} converges to a real number 0.

Problem: Let X be a metric space. If {x,}, {yn} are sequences in X > x, —>x and y,
— y then d(Xn, yn) = d(X, y).

Solution: Let ¢ > 0. Since x, — x A ki€Z> d(x,, X) <&/2 V n > k.

Since y, >y ks €Z¥3 d(yn, y) <€&/2 Vn>Kko.

Now take k = max {ki, k»}.

Then d(xn, yn) < d(Xn, X) + d(X, y) + d(¥y, yn)

= d(Xn, Yn) - d(X, y) <dXn, X) +d(y, yn) <e/2+e2=¢V n2=>k..(1)

Again d(x, y) < d(x, Xn) + d(Xn, ¥n) + d(Vn, ¥)

= d(x,y) - dXn, Yn) <d(X, Xn) +d(yn, y) <€/2 +&/2=¢V n2=>k..(11)

From (i) and (ii) |d(x,,y,) — d(x,y)| <& V n>k. Hence d(Xs, yn) = d(X, y).

Definition: A sequence {x,} of points in a metric space (X, d) is said to be a
Cauchy sequence if foreach e > 03k € Z*> d(xp, Xm) <&V n, m>k.
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Note: (i) Every convergent sequence is a Cauchy sequence (i1) Is the converse
true? Justify your answer.

Proof: (1) Let the sequence {x,} converge to x.

Let &€ > 0. Then corresponding to £/2> 03k € Z*> d(xn, X) <&/2 Vn>Kk.

Take n, m > k. Now d(Xy, Xm) < d(Xn, X) + d(X, Xm) < &/2 + /2 =¢.

(i1) The converse is not true.

Write X = (0, 1]. Consider the usual metric of real numbers on X. Then (X, d) is a
metric space. Write x, = 1/n for each n € N. Then {x,} is a Cauchy sequence.

For, lete > 0. Take k € Zt5k>1/e. Letn>m > k.

Then |x, — x |—|l—i = —l<l<icg
n m n m m n m k ’

The sequence {x,} = {%} —>0but0 ¢ X.
Hence {x,} is not a convergent sequence in X.

Note: Let (X, d) be a metric space and {X,} be a sequence in X 3 X, —x and
X, — X' 1n X. Then x = x'.

Definition: A metric space X is said to be complete if every Cauchy sequence in X
1s convergent.

Theorem: If a convergent sequence in a metric space has infinitely many distinct
points then its limit is a limit point of the set of points of the sequence.

Proof: Let X be a metric space and {x,} be a convergent sequence in X. Suppose
xe X3 x, = X. Write A= {X,/n > 1}. Then A is an infinite set. It
possible suppose x is ant a limit point of A.

Thendr>053S(X) NA\ {x} =¢.

= Si(x) "A=¢ or Si(x) "A= {x}. = S{(x) "A c {x}.
Sincer>0and x, - x, 3k € Z*>d(x,, X) <r Vn>k.

=X €SHX) =2 X € S{(X) NA=Xp € Si(X) NAC {X} = Xp,=xVn=k.
A= {X], X2y ceey Xk-1, X}.

= A 1s finite which is a contradiction. Hence X is a limit point of A.

Theorem: Let X be a complete metric space and Y be a subspace of X. Then Y is
complete ift Y is closed.

Proof: Let Y be complete. Let y € X be a limit point of Y.

~.Foreachn e N, 3y, € S1(y) nY \ {y}.

Claim: {y,} —>vy.Lete>0.Takek € Z*5k > 1/¢. Letn > k.
Then d(yn, y) <1/n<1/k<e. ..yns—>Yy. .. {ya} is a Cauchy sequence in Y. Since Y
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1s complete, y, = y’ for some y’ in Y.
Since y, > yandy, > y', we havey =y’ € Y. Hence Y is closed.
Converse: Suppose Y is closed. Let {y,} be a Cauchy sequence in Y. Since Y
< X, {yn} 1s a Cauchy sequence in X.
Since X is complete, 3y € X3y, > y.
Case (1) If the sequence {y,} contains only a finite number of elements then y is a
member of the sequence which repeats infinite number of times.
So, y = ym for some m and hence y =yn, € Y.
Case (i1): Suppose {ya} contains infinite number of distinct elements.
Then y is a limit point of {y,/n>1}. Since {y,/n>1} Y, y is a limit point of Y.
Since Y is closed, y € Y. Hence {y,}— y for some y € Y.
Hence Y is complete.

Definition: A sequence {A,} of subsets of a metric space is called a decreasing
sequence if A|ID Ay D ...... DAL DAMID ..

Cantor Intersection Theorem: Let X be a complete metric space, and {F,} be a
decreasing sequence of non — empty closed subsets of X such that d(F,) — 0. Then
F = N;=1 F, contains exactly one point.

Proof:

Claim: F can not contain more than one element.

If possible suppose X,y € Fax#y. .. e=d(x,y)>0.

Since d(F,) > 0,3k e Z*>d(F,)<eVn=>k.

Since x,y € F c Fy,, e =d(x, y) <d(F,) <¢, a contradiction.

Hence F can not contain more than one element.

Claim: F contains at least one point.

Choose x, in F,, V n > 1. Now we show that {x,} is a Cauchy sequence.

Let £ > 0. Since d(F,) = 0, 3k € Z*> d(F,) <& V n > k. Now take m, n > k.
W.L.G. we may assume that m > n. Now Xy, € Fy,, € Fx; x, € F, C Fy.

Hence xp, X, € Fx and so d(Xm, Xn) < d(Fx) <e. .. {Xa} 1s a Cauchy sequence.
Since X is complete, 3 x € X 3 X, —X.

Case (i): Suppose {x,: n > 1} contains only a finite number of elements. Then x
repeats in the sequence on and after certain stage. Ie. 3k € Zt3x,=x Vn>k.
SinceFioF,o..,xeF,Vn .. xe Noy F,.

Case (ii): Suppose {x,: n > 1} contains infinite number of elements. Then x is a
limit point of the set {x,/n > 1}. Clearly x is a limit point of {x,/n>k} V k. = x
is a limit point of {X,/n >k} < Fx. = x € F since each Fy is closed. This is true
forallk. .. x € Ny=1 Fy-
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Definition: Let (X, d) be a metric space and A < X. A is said to be nowhere dense
if Int (4) = ¢.

Result: Let X be a metric space and A < X. Then the following are equivalent.
(i)  A’sanowhere dense set.
(i) A does not contain any non — empty open set.
(ifi)  Each non — empty open set has a non — empty open subset disjoint from
A.

(iv) Each non — empty open set has a non — empty open subset disjoint from
A

(v)  Each non —empty open set contains a open sphere disjoint from A.
Proof: (i) = (ii). Suppose A is nowhere dense. = Int (4) = ¢.
If A contains a non — empty open set G then ¢ = G c Int (A) c Int (4) = ¢, a
contradiction.
(11) = (i11). Let G be a non — empty open subset.
By (i) GZ€A=3IxecG\A=>xeGn (A’ PutH=G N (4’
Since A is closed (A) “is open and hence H=G n (A) " is a open set and x € H.
. G contains a non — empty open set such that H n A = ¢.
(i11) = (1iv). Let G be a non — empty open set.
By (iii) 3 a non — empty open subset Hof G 5 H " A = ¢.
NowHNAcCHNA=¢=>HnA=.
(iv) = (v). Let G be a non — empty open set.
By (iv) 3 a non — empty open subset H of G with H n A = ¢.
Let x € H. Since H is open 3 r > 0 such that S(x) < H.
Now Si(x) "AcHNA=¢ = Si(x) " A= 0.
Hence G contains a non — empty open sphere S,(x) such that S/(x) N A= ¢.
(v) = (1): Suppose each non — empty open set contain a open sphere disjoint
from A. If possible suppose Int (4)= ¢. Write G = Int (4).
By (v) 3 x € X, r> 0 such that Si(x) < G and S{(x) N A = ¢.
Now Si(x) "A=¢ = x ¢ A and x is not a limit point of A. = x ¢ A.
On the other hand, x € S,(x) = G < Int (4) < A a contradiction.
Hence Int (4) = ¢.

Problem: Show that a closed set A is nowhere dense iff its complement is
everywhere dense.

Proof: Suppose A is closed and nowhere dense.

Since A is nowhere dense Int (4) = ¢.
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= Int (A) = ¢ since A is closed.

Let U be any open set with U N A"'=¢ = U cCA.

= U c Int (A) since U is open = U = ¢.

Ie. the only open set disjoint from A’ is ¢. Hence A=X.
Conversely suppose A’ is dense.

Int (A) =Int (A) c A= (Int (A)) NA'=¢

= Int (4) = ¢ since the only open set disjoint from A’ is ¢.
Hence A is nowhere dense.

Baire’s Theorem: If {A,} is a sequence of nowhere dense sets in a complete

metric space X, then there exists a point in X which is not in any of the A,’s.

Proof: Since X is a non — empty open set and A; is a nowhere dense set, 3 an

open sphere Si(Xx) 3 S{(x) N A; = ¢.

LetO0<t; <1.Letr;=min {r,t;}.

Clearly r; < 1. Since S,. (x) < S«(x) we have S, (x) N A4; = ¢.

Put G = S,. (x). Define F, = S, »[x]. Clearly d(F,) < I.

Now F; is closed, G; 1s open and F; < G;.

Also Int (F;) = Sr1(x) is open and A, is nowhere dense, there exists an open sphere
2

G2 (- Int (Fl) and Gz M Az = (1)

Suppose Gz = S, (x1). Define F, = S,. /5[x1]. Clearly d(F2) < 1/2.

Now F; is closed, G; is open and F> < G».

Also, Int (F,) = Sr2(x;) is open and As is nowhere dense, 3 an open sphere
2

G; < Int (Fz) and Gz N A3 = (I)

If we continue this process, we get Gi D F1 2 G, o F, o G; o... 3d(Fn) = 0, Fy 1s
closed, G, is open, G, N A, = ¢.

Since d(F,) — 0 and each F, is closed, by Cantor’s intersection theorem, we have
that Np=1 F,# ¢.

Leta € Ny~ F,. Since a €F, for each n, F,, < G, and G, N A, = ¢, we have that a
¢ A, for any n.

Hence a € X 'and a ¢ A, for all n.

Theorem: If a complete metric space is the union of a sequence of its subsets then
the closure of at least one set in the sequence must have non — empty interior.
Proof: Let X be a complete metric space and X = U;2, 4;. If possible, suppose that
Int (4;) = ¢V i. Bach A; is a nowhere dense. So {A,} is a sequence of nowhere
dense sets. By a Baire’s theorem, 3a € X >a ¢ U2, 4;, a contradiction to the fact
that X = Uj2; 4;. Hence Int (A;) # ¢ for some i.
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Note: A subset A of a metric space X is said to be of first category if it can be
represented as the union of sequence of nowhere dense sets. A is said to be second
category if it is not first category. Every complete metric space is second category.

CONTINUOUS MAPPINGS

Definition: Let X and Y be metric spaces with metrics d; and d,. Let fbe a
mapping of X into Y. F is said to be continuous at a point x, in X if either of the
following two conditions is satisfied.
(i) foreache>0,36>05di(X, Xo) <0 = do(f(x), f(X0)) < &.
(i)  for each open sphere S:(f(xo)) centered on f(Xp), 3 an open sphere Ss(Xo)
centred on Xo 3 f(Ss(X0)) < Se(f(X0)).

Theorem: Let X and Y be metric spaces and f is a mapping of X into Y.
Then fis continuous at X if and only if x, = xo = f(x,) — f(X0).

Proof: Suppose fis continuous at X¢. Let {X,} be a sequence in X 3 X, — Xo.
Let S¢(f(x0) be an open sphere centred at f(xo).

Since f is continuous at Xy, 3 an open sphere Ss(Xo) 3 f(Ss(x0)) < Se(f(x0)).
Since X, —> Xo, 3 ke ZT 3 x, € Ss(x0) V n = k.

Then x, € Ss(x0) = f(Xa) € f(Ss(X0)) < Se(f(X0)) V n > k.

s A(xn) = f(X0).

Converse: Suppose X, — Xo = f(X,) = f(Xo).
If possible, suppose that f is not continuous at Xo.
Then 3 € > 0 3 S¢(f(x0)) does not contain f(Ss(x¢)) for any 6 > 0.

ForneN,=>0= f (51(x0)) ¢ S.(f(xo)).
Take x, € S1(xg) 3 f(xn)nez S.(f(x0)).

Now {X,} 1s a sequence of points from X and x, — Xo.

Since x, — X, we have f(x,) = f(x0) by hypothesis.

Since € >0, I ke Z* > dy(f(xy), f(x0)) <e Vn=>k.

= f(xn) € Se(f(X0)) V n >k, a contradiction. Hence f is continuous.

Definition: Let X and Y be metric spaces. A mapping f: X — Y is said to be
continuous if f is continuous at every point of X.
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Theorem: Let X and Y be metric spaces and f a mapping of X into Y. Then f'is
continuous if and only if x, & x = f(x,) — f(x).

Proof: f is continuous iff f'is continuous at x V x € X iff x, > x = f(x,) = f(x) V
x € X. (by above theorem).

Theorem: Let X and Y be metric spaces and f is a mapping of X into Y. Then f'is
continuous iff f ~1(G) is open in X whenever G is open in Y.

Proof: Suppose f is continuous. Let G be an open set in Y.

Letp € f71(G) = f(p) € G.

Since G is open 3 € > 0, S¢(f(p)) < G.

Since f'is continuous 3 8 > 0, > f(Ss(p)) < G

= Ss(p) < f7H(B).

=> p is an interior point of f~1(G).

-.every point of f 71(G) is an interior point. Hence f~1(G) is open.

Converse: Suppose f~1(G) is open for all open sets Gin Y. Letp € X.

Let € > 0. Since S¢(f(p)) is open in Y, f‘l(ng(p)) is open in X.

Since p €f " (Sef (9)) 38> 05 Se(p) < £~ (Sef () = f(S5(0)) € Sef ().
This shows that f is continuous at p. Since p is an arbitrary point in X, f'is
continuous on X.

Problem: Let X and Y be metric spaces and ¢ # A < X. If f, g are continuous
mappings from X to Y 3 f(x) = g(x) V x € A then f(y) =g(y) Vy € A.
Solution: Lety € A. If y € A then g(y) = f(y).

Ify ¢ A, thensince A# X,y € A =y is a limit point of A.

Lety, € AnSi(y) \ {y}. Consider {y,}. Since for eachn, y, € S1(y), yn > V.

Since fis continuous, f(y,) — f(y). Since g is continuous, g(y») —> g(y).
Hence f(y) = lim f(ya) = lim g(yx) = g(y).

Definition: Let f be a mapping from metric space (X, d;) to a metric space
(Y, d;). Then f'is said to be uniformly continuous on X if given €>0,36>0>
di(x, xX') <0 = d(f(x), f(x")) <e.

Theorem: Let X be a metric space, Y be a complete metric space and let A be a
dense subspace of X. If f is uniformly continuous mapping of A into Y, then f can
be extended uniquely to uniformly continuous mapping g: X — Y.

Proof: If A =X, then the conclusion is obvious. Assume that A # X.
Then 3 point in X which is not in A.
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Define g : X — Y as follows. If x € A then g(x) = f(x).
Ifx ¢ A, then since A # X, x € A = x is a limit point of some convergent sequence
{xa} IN A = {x,} 1s a Cauchy sequence in X = {f(x,)} is a Cauchy sequence in Y

since f is uniformly continuous. Since Y is complete {f(x,)] is convergent sequence
in Y. Define g(x) = lim f(x,).

Claim: g is well defined. Let {x,}, {ya} be sequences in A 5 X, = X, yn > x. We
know that d;(Xs, yn) = di(X, X) = 0. Since f is uniformly continuous, d»(f(x»), f(yn))
— 0. Since da(f(Xy), f(yn)) — d2(lim f(x,), lim f(y,)) =0, we have lim f(x,) = lim
f(yn). Hence g is well defined.

Claim: g is uniformly continuous.

Let € > 0. Since fis uniformly continuous on A, 36> 0>d,(a, a") <9

= dx(f(a), f(a')) <e V a,a' € A... (1).

Let x, x" € X with d;(x, x") < &/3.

We show that d>(g(x), g(x')) < 3e.

If x, x" € A, then clearly d;(x, X") < 6 = dx(f(x), f(X")) <& = da(g(x), g(x")) <e.
Suppose X, X' ¢ A. Thenx, x' € A.

= J sequences {Xn}, {X,'} INA> X, > xand x," > x'.

Since fis uniformly continuous on A, it follows that g(x) = lim f(x,) and

g(x") =lim f(xy).

Since X, = X, Xo' > X', Ik 3V n2>k, di(X,, X) < /3 and d;(x,',x") < /3.

Now d;(Xn, Xn') < di(Xn, X) + di(x, x") + di(X', xp") < 6/3 +06/3 +6/3 =0.

= da(f(xn), f(x0")) <eby (1) Vn=k.

Now da(g(x), 2(x)) < da(g(x); fxa)) + da(flxa), fx)) + da(fxa'), 2(x)< 3 for
sufficiently large n. Hence d;(x, x") < 0 = da(g(x), g(x")) < 3e.

This is true for all € > 0. Hence g is uniformly continuous.

Claim: g is unique.

Let g;, g» be two extensions of f.

If possible, suppose g; # 2.

Since gi(a) = f(a) = gz(a) V a € A. g1(x) # g2(x) for some x € X\A.

Since x € X = A, 3 sequence {x,} in A3 X, —> X.

Let S; and S, be two disjoint spheres with the centers gi(x) and g»(x) respectively.
Since g; and g, are uniformly continuous, they are continuous.

- g1 1(Sy) and g, (S,) are open sets in X 3 that x € g7 '(S1) N g7 1(S)).

Sogr ' (S)) Mg !(Sy)isopenand x, > x Ik 3 x, € g7 (S1) N g2 I(S2) Vn > k.
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Since x, € A, gi1(Xn) = f(xn) = 22(xn) € S1 N Sy, a contradiction as S; N S, = ¢.
Hence g, = g».

Definition: Let (X, d,), (Y, d») be two metric spaces and f: X — Y a bijection.
fis said to be an isometry if for any x, X’ € X, d»(f(x), f(x")) = di(x, x").

SPACES OF CONTINUOUS FUNCTIONS

A normed linear space X is a linear space in which there is defined a real number
||x|| for every element x satisfying, (i) |[|x]| > 0 and ||x|| =0 iff x =0 (i1)
llx + ylI<lixll + llyll, (i) [lax[| = |al||lx|| scalar a and x, y € X.

Definition: A Banach space is a normed linear space which is complete as a metric
space.

Lemma: If f and g are continuous real functions defined on a metric space (X, d)
then f+ g and af are also continuous, where a is any real number.

Proof: Let € > 0. Take x¢ € X. Since &/2 > 0 and f is continuous, 3 &; > 0 >

x €X, d(x, X0) <& = |f(x) — f(x0)| <e&/2.

Since g is continuous 3 8, > 03 x €X, d(x, Xo) <&, = |g(x) — g(xy)| < &/2.
Take 6 = min {3y, d,}. Now d(x, x0) <3 = |(f + ) (x) — (f + 9)(xx)|I=|f (x) —
)| +1gx) —glxg)] < % + % =¢. .. f+ gis continuous.

Let € > 0. Corresponding to &' = ¢/ |a| > 0, since fis continuous, 36 >0 >
X EXa d(X9 XO) <= |f(x) - f(xO)l <g.

Now let x €X, d(x, Xo) <0
Then |af (x) — af (xo)| = lallf(x) — f(xo)| < lal &’ =¢.
Hence af is continuous.

Note: Consider a non — empty set X. Write L = {f/ f: X ->R}.

Define (f+ g)(x) =f(x) + g(x) forf,g € Land foranyain R, f e L,

(af)(x) = a{f(x)}. With these operations L is a linear space over R.
LetB={f/f: X — R, fis bounded}. Then B is a linear subspace of L.

Write C(X, R) = {f/ f: X — R, fis continuous and bounded} where (X, d) is a
metric space. Clearly C(X, R) < B.
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Lemma: C(X, R) is a closed subset of the metric space B.

Proof: Clearly C(X, R) c B. Let f € C(X, R).

Let € > 0 and xo € X. Let d be the metric on X.

Since e/3>0and fe C(X,R) 3 f, € C(X, R) 3 ||f — foll <e/3.

Now for any x € X, |f(x) = fo(x)| <sup {|f(x) = fo()|/x e X} =|If = foll <
€/3.

Since fy € C(X, R) it is continuous at X.

S 38>05d(x, x0) <O = |fo(x) — folxg)| <e/3.

Now d(x, x0) <8 = |f(x) = f(xo)| < |f (x) = fo(| + | fo(x) = fo(xo)| +
|fo(xo) — f(x)| <e/3 +¢/3 +e/3=¢. ... fis continuous at X.

Since X is arbitrary we have that f € C(X, R). ..C(X,R) = C(X, R).
Hence C(X, R) is closed.

Theorem: The set C(X, R) of all bounded and continuous real functions defined
on a metric space X is a real Banach space with respct to pointwise addition and
scalar multiplication, and the norm defined by || f]|| = sup |f (x)|.

Proof: By alemma f+ g, af € C(X, R) for any f, g € C(X, R) and a eR.

With respect to these operations C(X, R) is a linear space.

Define ||f|| = sup |f(x)] for any f € C(X, R). This is a norm.

- C(X, R) is a normed linear space.

If we define d(f, g) = ||f — g|| then d is a metric on C(X, R). With respect to this
metric C(X, R) is a closed subset of B. Since B is complete and C(X, R) is closed
subset of B, C(X, R) is complete. Hence C(X, R) is a Banach space.

Note: Let (X, d) be a metric space. Write C(X, C)= {f: f: X— C, fis bounded and
continuous}. Define || f|| = sup |f(x)]| for any f € C(X, C). Then C(X, C) is a
normed complex linear space.

Theorem: The set C(X, C) of all bounded and continuous complex functions
defined on a metric space X is a complex Banach space with respct to pointwise
addition and scalar multiplication, and the norm defined by ||f|| = sup |f (x)].

EUCLIDEAN AND UNITARY SPACES.

Note: Let n be a fixed positive integer. Then R™ = {(xy, X2, ..., Xn)/ Xi € R, 1 <1<
n}. Clearly R" is a linear space over R. For x = (xy, X2, ..., X,) define Euclidean

norm [lxc|| = /121 2 + oz |2 + -+ + |, |2,
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Lemma: (Cauchy Inequality) Let x = (x4, X2, ..., Xn) and y = (Y1, Y2, ..., ¥n) be tWo n
— tuples of real (or complex) numbers. Then Y 7-, [x; ;| < |[x]||[v]].

imalxyil < F 1|x1|2) Q- 1|yL|2)2

Proof. Let a, b be any two non — negative real numbers.
Then (a —b)> > 0 = a’ + b* > 2ab

= (a+b)’> 4ab

=% > (ab)z...().

Ifx 0 ory =0 then X |x;y;| = 0 = |[x]||[]l-
Assume X # 0 and y # 0.

lyil?
Take a; = || ||2 and b; = 7.
2 2
<l |xi|2+|yi|2
From (1) ZYE S I WIS fr 1 <<
Iyl 2
2 2
il |xi|2+3’i|2
xillyi n =2 iyl
Now summin : <Y
g Xi= Vil = S
s i Ly il Eglel® N S byl lxl2 111>
_ Atz =ty Z T IyI? Bl iyIZ _ 14
2 2 2 2 )
. 2l xvi| < x|yl
Iyl i=1 1% Y

Lemma: Minkowski’s mequahty. Let x = (x1, X2, ..., Xn) and y = (Y1, y2, ..., Yn) b€
two n — tuples of real (or complex) numbers. Then ||x + y|| < |[x]|| + [|y]]. Or in
other words (X1, x; + (22 < (T x| /2 + (T lyil®) V.
Proof: If [[x + y[[ = 0 then clearly [[x + y|| < [[x|| + [[¥]l.
Suppose ||x + y|| # 0.
Then [|lx + y|I* = Xisqlx; + v;l?
= Zn |xl +yl||xl +yl|

Z S lxg + il (x| + 1y D) since [x; + y;| < x| + [yl

1|xl +yl||xl| +Z llxl +yl||yl|

< ||x + yllllx|l + llx + y|llly|| by Cauchy’s inequality.
= [lx + yI[Cllx|l + lyID-

ie. [|x+ylI* < llx + ylllxll + llylD.
Hence ||x + y|| < ||x]| + ||| since ||x + y|| # O.

Problem: Show that Int F = ¢ where F is the Cantor’s set.
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TOPOLOGICAL SPACES.
(104: TOPOLOGY, UNIT II)

Definition: Let X be a non — empty set. A family t of subsets of X is called a
topology on X if it satisfies the following conditions:

(i)  tisclosed under unions, and
(i) T isclosed under finite intersections.

If t is a topology on X, then (X, 1) is called a topological space. The members
of t are called open sets.

Note: Since the union of empty class of sets is empty, ¢ € T.
Since the intersection of empty class of sets is X, X € 1.
Hence in any topology t on X, ¢, X 1.

Definition: Let X be a non — empty set and t be the family of all subsets of X .
Then 7 is a topology on X and it is called the discrete topology on X, and (X, 7) 1s
called discrete topological space.

Note: in this case every subset of X is open.

Definition: Let X be a non — empty set and t = {¢, X}. Then 7 is a topology on X
and it is called the indiscrete topology on X, and (X, t) is called indiscrete
topological space.

Note: in this case the only open sets are ¢ and X.

Example: Let X = {a, b, c} where a, b, ¢ are distinct and (1) Tt = {9, {a}, {b}, {a,
b}, X}. Then t is a topology on X. (i1) T = {¢, {b}, {c}, {b,c}, X}. Thentisa
topology on X. (i11) T = {0, {a}, {a, b}, X}. Then 1 is a topology on X. (iv) T = {¢,
{a}, X}. Then 7 is a topology on X. (v) Tt = {¢, {a}, {b}, X}. Then tisnot a
topology on X.(vi) T = {¢, {a, c}, {b, c}, {a, b}, X}. Then 1 is not a topology on X.
(vil) T = {¢, {a}, {a, c}, {a, b}, X}. Then 71 is a topology on X.
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Example: Let (X, d) be any metric space. Let I be the set of all open sets with

respect to metric d. Then 3 is a topology called usual topology on the metric space
(X, d).

Definition: A metrizable space is a topological space X with the property that there
exists at least one metric on the set X whose class of generated open sets is
precisely the given topology.

Problem: Let X be a non — empty set and J be the discrete topology on X. Show
that (X, J) is a metrizable space.

Proof: Defined : X x X > Rbyd(x,y)=0ifx=y,and d(x,y) =1 if x #V.
Then (X, d) is a metric space. Here S1 /s (x) 1s an open set and S1 /y (x) = {x}.

- {x} is open V x € X. For any subset A of X, since A= U,es{a}, A is open in
(X, d). Hence every subset of X is open in (X, d).

.. The open sets in (X, J ) and open sets in (X, d) are same.

Hence (X, J) is metrizable.

Problem: Let X be a non — empty set 3 | X| = 2 and J be indiscrete topology on X.
Show that (X, 3J) is not metrizable space.

Proof: Given J = {¢, X}. .. The only open sets in (X, J) are ¢ and X.

If possible, suppose (X, J ) is metrizable.

= J ametric d on X > the open sets in (X, d) are precisely the open sets in (X, J).
Since |[X| = 2,3a,b € X3a#b. Taker=d(a, b) > 0.

Then S/, (a) and Sr/, (b) are disjoint non — empty open sets.

Now ¢ # Sr/z(a) eJI=1{0, X} = Sr/z(a) =X

=beX=Sr / (a), a contradiction.

Hence (X, J) is not metrizable.

Theorem: Let J; and J, be two topologies on a non — empty set X. Show that
I, N J,is a topology on X.

Proof: Let {Gi}ic be an arbitrary collection of elements from J; N J,,.

Since J; NI, € Jiand J; NI, € J,,{Gi}ier 1s a collection of elements from
Jias well as J,. Since J; and J, are topologies U Gj € J; and U Gj € J,
=>uUG eI NG,

. 31 N3, is closed under arbitrary unions.
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Let Gi, 1 £1<nbe a finite collection of elements from J; N J,.

Since 31 N J, € Jjand J; N J, € J,, Gi, 1 <1<nisa collection of elements
from J;as well as .

Since J; and J, are topologies N}, G; € J; and N1, G; € T,

=>NL,G €I NT,.

. 31 N'J, is closed under finite intersections.

Hence 3, N J,is a topology on X.

Definition: Let (X, J) be a topological space and Y be a non — empty subset of X.
Let 3y={A/A=Y NG, G € J}. Then (Y, Jy) is a topological space and Jyis
called the relative topology on Y, and (Y, Jy) is called subspace of (X, J).

Example: Let X = {a, b, ¢} of distinct elements and J = {¢, {a}, {a, c}, {a, b}, X}.
Then J is a topology on X. Let Y = {a, b}.

Then Iy ={Y G/ G e 3J }={d, {a}, Y} is a relative topology on Y. So (Y, Jy)
is

a subspace of (X, J).

Problem: Verify that a subspace (Y, Jy) of topological space (X, J) is itself a
topological space.

Solution: Let {Ho: oo € A} be a collection of elements from Jy.
.. for each a, Ho =Y n G¢ for some Go € 5.

Since U Gy € 3, UHo =U (Y N Go) =Y N (UGy) € Jy.
Hence Jy is closed under arbitrary unions.

Let H;, 1 <1< n be a finite collection of elements from J .

Then Hi=Y N G;j for some G; € J for 1 <1<n.

Since N[=;G; € I, N Hi=NL, Y NG)=YN N, G € Jy.
.. Jy 1s closed under finite intersections also.

Hence Jy is itself a topology on Y.

Problem: Let X be an infinite set and 3 consist of empty set together with all the
subsets of X whose complements are finite. Show that (X, J) is a topological
space. This topology is called the topology of finite complements.

Solution: Given J = {¢} U {A < X 3> X \ A is finite}.
(1) Let {Gq} be any class of sets from 3.
If each Gq is empty, then UG is also empty and hence UG, € 3.
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Now suppose 3 0o 3 G, # ¢.
Then X\ (UGa) € X\ G, since Gy, = U Go
o X\ (UG) is finite since X \ G, is finite.

- UGq € 3. = J is closed under arbitrary unions.

(ii) Let Gie Jfor 1 <i<n. Let G=N}, G;.

Ifatleastone Gi=¢pthen G=NL,G; = ¢ €.

Suppose Gi#d Vis 1l <i<n.

Since ¢ # Gi € J, X\Gi is finite Vis 1 <i<n.

Now X\ G =X\ Nk, G; = UL, X\G; is finite since finite union of finite sets is
finite.

=Ge3J.

Hence 3 is closed under finite intersections.

Hence (X, 3J) is a topological space.

Problem: Let X be an uncountable set and 3 consist of empty set together with all
the subsets of X whose complements are countable. Show that (X, J) is a
topological space.

Solution: Let X be an uncountable set.

Given 3 = {¢} U {A < X > X\ Ais countable}.

(1) Let {Gq} be any class of sets from J.

If each Gq is empty, then UG is also empty and hence UG, € 3.
Now suppose 3 0o > G, # ¢.

Then X\ (UG) € X\ G, since Gy, =V Ga

- X\ (UGq) is countable since X \ G is countable.
. UGq € 3. = J is closed under arbitrary unions.
(ii) Let Gie Jfor 1 <i<n. Let G=N}L, G;.
Ifatleastone Gi=dthenG=NL,G; = ¢ €3J.
Suppose Gi=¢ Vis1<i<n.

Since ¢ # G; € J, X\Gj is countable Vi> 1 <1<n.

Now X\ G =X\Nk, G; = Ui, X\G; is countable since finite union of countable
sets 1s countable.
=GedJ.

Hence 3 is closed under finite intersections.
Hence (X, 3J) is a topological space.
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Definition: Let X and Y be topological spaces and f a mapping of X into Y.

fis called a continuous mapping if f! (G) is open in X whenever G is open in Y.
f is said to be an open mapping if f(G) is open in Y whenever G is open in X.

If f 1s continuous, then f(X) is called continuous image of X. If f is a bijection,
continuous mapping and open mapping then f is called a homeomorphism.

If f: X > Y is a homeoporphism then X and Y are said to be homeomorphic.
In this Y is called a homeorphic image of X.

ELEMENTARY CONCEPTS
Definition: A closed set in a topological space is a set whose complement is open.

Theorem: Let (X, J) be a topological space. Then (1) any intersection of closed
sets in X 1s closed and (i1) any finite union of closed sets in X is closed.

Proof: (i) Let {F;} be a class of closed sets in X = F;’ € J foralli € L.
= Ui F' €3

= (Ui F;')' is a closed set

= [(Nier F)'] = Nies Fy is closed.

.. any intersection of closed sets in X is closed
(11) Let F;, 1 <1 <n be closed sets

= F' eJforl <i<n.

>N, F'el

= (N~ F") is a closed set.

= [(UL, F)']" = Ui, F; is closed.

.. any finite union of closed sets in X is closed.

Definition: Let (X, J) be a topological space and A < X.
The intersection of all closed super sets of A, is called the closure of A denoted by
A.

Note: A is closed iff A = A.

Suppose A is closed. Clearly A — A.

A < Asince A is a closed superset of A and A is the intersection of all closed super
sets of A.

Hence A = A.

Conversely suppose A = A.
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A is closed since intersection of closed sets is closed and A is the intersection of all
closed supersets of A.
.. As closed.

Definition: A subset A of X, where (X, J) is a topological space, is called dense
(everywhere dense) if A =X.

A topological space X is said to be a separable space if it has a countable dense
subset.

Theorem: Let X be a topological space. If A and B are arbitrary subsets of X, then
the operation of forming closure has the following four properties.

(i) ¢ = ¢ (ii) A A. (iii)/T= Aand (iviAUB = AUB,.

Proof: (i) Since X is open X' = ¢ is closed so that ¢ = ¢.

(ii) Since A is the intersection of all closed supersets of A, A — A.

(iii) Since A4 is closed A = A.

(ivyAUBcAUB sinceAc Aand B B.

le. A U B is a closed superset of A U B.

—AUB < AUB.

AymAgAuBgZUF

ie. A U B is a closed super set of A

and since A is the intersections of all closed super sets of A, A € AU B.

Similarly B € AU B.

~AUBCAUB

Definition: A nbd of x € X, where (X, J) is a topological space, is G € J (an open
set G) 3 x € G. A class of nbds of a point x € X is called an open base for the point
if for each nbd G of x 3 a nbd H 1n this class > H ¢ G.

Example:

Theorem: Let (X, J) be a topological space and A be an arbitrary subset of X.
Then A = {x / each neighbourhood of x intersects A}
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Proof: Letx € A.

If possible, suppose x ¢ {x / each neighbourhood of x intersects A}.
= Janbd Gofx>3GNA=¢.

=Ac(G.

= Ac G' =G since G' is closed.

= x € (', a contradiction.

= x e {x/ each neighbourhood of x intersects A}

Conversely suppose x € {x / each neighbourhood of x intersects A}.
If possible, suppose x ¢ A.

=x € (A) and (A)’ is open.

= (4)'N A # ¢, a contradiction. Hence x € A.

Definition: Let X be a topological space and A < X. A point x in A 1s said to be an
isolated point of A if 3nbd G of x 5 (G N A)\ {x} = ¢. Apoint x € X is said to be
a limit point of A if (G N A) \ {x} # ¢ for every nbd G of x.

The derived set denoted by D(A) is the set of all limit points of A.

Theorem: Let X be a topological space and A — X. Then (i) A = A U D(A) and
(i1) A'is closed iff D(A) c A.

Proof: Suppose x € A U D(A).

If possible suppose x ¢ A.

= Jdnbd. Gofx>GNMA=¢.

= x ¢ Aand (G N A\{x} = ¢.

=x ¢ Aandx ¢ D(A) = x ¢ AU D(A) a contradiction. .". x € A.

Conversely suppose x € A.

If possible, suppose x ¢ AU D(A). = x ¢ Aand x ¢ D(A).
= x ¢ A and x is not a limit point of A.

= x ¢ Aand 3 nbd. G of x 5 (G N A))\{x} = ¢.

= GNA=¢p=x ¢ A, acontradiction.

-.Xx € AUD(A). Hence A = A U D(A).

(ii) Ais closed iff A= A iff A= AU D(A) iff D(A) C A.
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Problem: Let f: X — Y be a mapping of one topological space into another.
Show that (i) fis continuous, iff (ii) f !(F) is closed in X whenever F is closed in Y,
iff (iii) £ (A) < f(A) for every subset A of X.

Proof: (i) = (ii). Assume (1).

Let F be a closed setin Y

= F' is open

= £ 1(F") = [f }(F)]' is open in X, since fis continuous.
= £ I(F) is closed.

(i1) = (i). Assume (i1).

Let G be open in Y.

= G’ 1s closed

= £ 1(G") = [f1(G)] is closed by (ii).

= £ (G) is open in X. Hence fis continuous.
(11) = (i11) Assume (i1).

Let Ac X. f(A) is closed in Y.

= f~1f(A) is closed in X.
Since Ac f71f(A),A c f1f(4)

= f(A) < FA)

(111) = (i1). Assume (ii1).

Let F be a closed set in Y.

Write A= f~1(F) = f(A) =F

= f(A) = F =F (since F is closed) = f(A). By (iii), f(4) € f(4) =f(A)
= AcCA.

S A=A.= A=f"'(F)is closed.

Theorem: Let X be a non — empty set and there be given a class of subsets of X
which is closed under the formation of arbitrary intersections and finite unions.
Then the class of all complements of these sets is a topology on X whose closed
sets are precisely those initially given.

Proof: Suppose {Fi} is the collection of given sets which is closed under arbitrary
intersections and finite unions.

Write 3 = {Fi' /1 € A}. Let {Fi'}ic1 where I — A be a collection of sets from 3.
Now U F{' = (nF;)" and since N F; € {Fi}iea, (NF)" € J.1e. UF{ € 3.

Hence 3 is closed under arbitrary unions.

Let Fl’, cees Fn' eI = Fl, cees F, € {Fi}ieA.
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Since the collection is closed under finite unions, F; U ... U F,, is in this collection
=>Fuv.UF)e3=F'nEn..NnF/ed.

Hence 3 is closed under finite intersections.

Hence J is a topology.

Let F be a closed set in (X, J) iff F' is open iftf F' € J iff F = (F')’ € {Fi}ica iff F is
in the collection.

Hence the closed sets in (X, J) are precisely the elements in the given collection.

Theorem: Let X be a non — empty set and there be given a closure operation which
assigns to each subset A of X a subset A of X in such a manner that

()¢ =¢ (i))Ac A (i) A =Aand (iv) AU B = AU B. Ifaclosed set A is
defined to be one for which A = A, then the class of all complements of such sets is
a topology on X whose closure operation is precisely that initially given.

Proof: Write G = {A: A X and A = A}. It suffices if we prove that G is closed
under arbitrary intersections and finite unions. Let Aj € G for 1 <1 <n.

By (iii) 4; UA, = A; UA, =A; UA,. G is closed under unions when n = 2.

Let G be closed under unions whenn=k — 1.

Assume A; UA, U ...UA,_1 =FAIUA U ... U A

NowA; UA, U ..UA, =A; UA, U..UA,_;UA, = AJUAU ... UAL U A
.. By induction A; UA, U ..UA4, =A; UA; U... UA, V integral values of n.

.. G 1s closed under finite unions.

Now let {Ai}ic1 be a collection of elements from G.

Then A; = A, for each i € 1.

Now N;e; 4; < Nyer 4, since by (ii) A < A for each subset A of X.

Again since N;e; A; < A; for each i, N,¢; 4, = A, = A, for each i.

= Nuer A € Nierdi = Nier A= Nigr 4i = Nigr4i € G.

Hence G is closed under arbitrary intersections.

S 3={A'/A € G} is a topology on X.

Now Aisclosedin X w. . t. S iff A’ € Jiff A= (A") € Giff A=A and A is closed
in the given sense.

OPEN BASES AND OPEN SUBBASES

Definition: An open base for X where X is a topological space is a class 3 of open
sets in X with the property that every open set in X is a union of sets from f3.
Equivalently, if G is a non — empty open setand x € GthendB € f>x € B G.
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Example: Let (X, d) be a metric space and I be the induced topology on X.
If B is the set of all open spheres in X, then [ is an open base for (X, J).

Note: If B, B’ are two collections of open sets of (X, J), B is open base and
B < B’ then B’ is also an open base for X.

Definition: A topological space (X, J) which has a countable open base is said to
be a second countable space.

Note: Show that the two conditions are equivalent

(1) B is a class of open sets in X with the property that every open set in X is a
union of sets from 3 and

(11) B is a class of open sets in X > G is a non — empty open setandx € G = 3 B
epPrxeBcG.

Solution: Claim: (1) = (i1).

Assume (1). Let G be a non — empty set and x € G.

Since G is open by (1) 3 Bi € B> G = U;¢ B;.

.. X € G=U;¢g Bi = 3Bi € B for some 13 x € Bjand hence x € Bi G, for B; €
B.

Claim: (i1) = (1). Let G be a open set in X.

If G is empty then G is a union of empty class of open sets from .
Let G be non — empty and x € G.

Then by (i1)) 3Bx € Box € Bx = G. ..Uy, By < G.

Againx €e G=>x € By Uye By - G < Uyeg By

Hence G = Uye; By.

LINDELOEFE’S Theorem: Let X be a second countable space. If a non — empty
open set G in X is represented as the union of a class {Gi}ic of open sets, then G
can be represented as a countable union of G;’s.

Proof: Since X is a second countable space, X has a countable open base, say,
{Bn}. Given that G be a nonempty open set > G = U;¢; G;.

Let x € G. Then x € Gy, for some i(x) € L.

Since G 1s open and x € Gix) 3 n(X) 3 X € By < Gi).

Since {B,} is a countable class and {Bnx)}xec 1s a subclass of {B,} we have that
{Bnx)}xec 18 a countable class.

For every x € G, corresponding to each B,k we have Gijy).

. {Giw } 1s also a countable class.
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Now Uyeg Gixy € Uier G; = G.
Lety € G=y € Giy) < Uxeq Gix)-
Hence G = Uyeg Gi(x) and {Giw)}x<a 1S a countable class.

Theorem: Let X be a second countable space. Then any open base for X has a
countable subclass which is also an open base.

Proof: Given X is second countable.

Let {B,} be a countable open base for X.

Let {B;} be any open base for X. Since each B, can be written as union of some
Bi’s (because B, is open and {Bi} is an open base), by Lindelof’s theorem, for each

non-empty B,, 3 a countable subclass {(Bi)nk} of the class {Bi} > By = Ug(B;)n,-
Now the class {(B;),/n =1, k>1}is a countable subclass of {Bi;}.

We now show that the class B = {(B;),, /n>1, k>1} is an open base for X.

Let G be any nonempty open set and x € G.

Since {B,} is an open base 3n>x € B, c G.

We know that x € B, = Uy(B;),, < G and so B is an open base.

=B ={(Bi)n,/n>1, k>1} is a countable subclass of {Bi} which is also an open
base for X.

Note: The axiom “topological space has a countable open base at each of its
points™ is called first axiom of countability. A topological space which satisfies
this axiom is called a first countable space.

Theorem: Every second countable space is separable.

Proof: Let X be second countable space. Let {B,} be a countable open base for X.
Choose a point X, from each non — empty set B;.

Since {B,} is countable, A= {x,/n > 1} is countable.

Claim: A = X. Clearly A < X. Let x € X and G be a nbd of x.

Now 3 a basic open set B, > x € B, c G.

Ifx=xX,thenx € Ac A.

If x # x, for any n, then x, X, € B, Gand so x, € G N A\ {x}.

- for any nbd G of x, G M A\ {x} # ¢. = x is a limit point of A and so x € A.

~.X c A.Hence A =X.
Since, A is countable and A = X, X is separable.

Note: The converse of the above theorem need not be true.
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For example, Consider R with topology J of finite complements. Let F be a closed
setin (R, ). Then F' is open = F' = ¢, or F' = G where G’ is a finite set = F =

R or F is a finite set. .. Q is neither open nor closed. (Since Q is not a finite set and
Q' is not a finite set Q is not open and not closed.) Since the only closed set
containing Q is R we have Q = R. .. R is a separable space.

Claim: R is not second countable. If possible, suppose R is second countable.
Then 3 a countable open base {Bi}icr.

Consider A= U2, B;'.

Since each By’ is finite A is countable union of finite sets.

.. A is countable. Since R is not countable R ¢ A.

Sody e RVA. Now write G =R\ {y}.

Since G' = {y} is finite, G € J.

Let z € G. Since {B;} is an open base, 3 Bx>z eByc Gforsome k € [. By c G
=B 2G" = {y;}

=y e B c Ui B/’

=y € A, a contradiction to the selection of y.

Hence R is not second countable.

Theorem: Every separable metric space is second countable.

Proof: Let X be a separable metric space.

Let A be a countable dense subset of X.

Consider Q the set of rational numbers. We know that Q is countable.
Consider {S(a)/r € Q} forany a € A.

Clearly this 1s a countable class of open spheres around a € A.

Since A is countable B = Ugec{S,-(a)/r € Q}={Si(a)/ae A, r € Q}isa
countable union of countable class of sets.

Hence B is a countable class of sets.

Claim: B is an open base for X.

Let G be an open set and x € G.

Since G is open 3 a nbd S,(x) with some radius r 3 x € Si(x) < G.
Consider the open sphere Sr A (%).

Since A is dense, A = X and so every point of X is a limit point of A.
.. X is a limit point of A and so Sr/3 (X)) NA#0.

r 2r
Choose 1 eQ3§<r1<?.
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Now take a € Sr/3 (x) NA.
Then S, (a) € B and d(a, x) <1/3 <r.
= x € 5, (a).

To show that S, (a) = S«(x), take y € S,. (a).
Then d(x, y) <d(x, a) +d(a, y) < §+r1 < §+23—T:r_
=y e S(x).

oSy (@) 2 Sd(x) c G.

s xe 8 (a)cG.

.. B is an open base for X and B is countable.
Hence X is second countable.

Definition: Let X be a topological space. An open subbase is a class of open
subsets of X whose finite intersections form an open base.

This open base is called the open base generated by the open subbase.

The sets in an open subbase are called subbasic open sets.

Note: Let (X, J) be a topological space and {B;} be an open subbase

(say S={Bi/1 e I}).

Then S* = {A;/ Ai=Nj-, B;, wheren € N, B;, € S for 1 <k <n} is the open base
generated by S. Now 3 = {G/ G = U A, where {A;} is a collection of elements
from S*}.

Example: Consider R. Write S = {(a, ©) /a € R} U {(-o,b)/b € R}.

Then S* =S U{d, R} U {(a,b)/a,b € R}.

Now J = {G/ G =uU Aj where each A is from S*} = {G/ G is a union of open
intervals of R}. Clearly this J is a topology on X induced by the usual metric on R.
Hence S is an open subbase and S* is an open base generated by S.

Example:

Theorem: Let X be a non — empty set and let C be an arbitrary class of subsets of
X. Then C can serve an open sub-base for a topology 3 on X (in the sense that the
class of all unions of finite intersections of sets in C forms a topology on X).

Proof: Write B = the class of all finite intersections of sets of C.
Write J = the class of all arbitrary unions of sets from B.
If C=¢,thenB={X} and I3 = {¢, X}.
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In this case clearly J is a topology on X.
Now assume that C # ¢.
Claim: B is closed under finite intersections:

For this we prove By, By, ..., Bk € B= B "By ... " By € B for all integral
values of k using induction.

Suppose for k=2, B;. B, € B.

ThenBi=PinP,n...nPyand B, =Qi N Q2 M ... N Qm, where Pj, Q; € C for 1
<i<nand1<j<m.

Now B nB;=PinPon..nPimnQimQ:n...nQn € B.

Assume fork=n-1lie. B;,B,, ... Bhi€e B=B nB,n..n B, € B.
LetBy,B,,...B, € B

=B nB:n..nB,=(BinB..nByi1) "B, € B.

By induction By, B, ..., B« € B = B n B, n ... n B¢ €B for all integral values of
k.

Hence B is closed under finite intersections.

Next we show that foranyx e Ge 31B e€Bax e BcG.
For this suppose G € J .

Then by definition of 3, G = U;¢; B; where and B; € B.
Now x € G = x € B forsomei € 1.
LdBieBox e BicG.

To show that J is closed under finite intersections.

Let G, Gy, ..., Go e Jand write G* =G, NGy N ... N Gy,

Letx € G*. Thenx € Gjfor1 <i<n

=3dB;eB, 1<i<n>xeB; G, forl <1<n.

Write By=B "B ... "B, € B

S x € G*= 3By € B>x € By G*. Hence G* = Uyeq+ By € 3.
.. 3 18 closed under finite intersections.

To show that J is closed under arbitrary unions:
Let {Gi}ic1 be a collection of elements from 3.

For eachi, Gi € 3 = 3 {Bij} 5Gi=U; B;, and {Bij} e B.
Now U; G; = U; U; Bij €3.

- J is a topology.

Already we have shown that forany G € 3,x e GdB e B>x e BcG.
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.. B is an open base for J.
By construction of B, C is open sub-base.

Definition: Let X be a non-empty set and C be any class of subsets of X.

Write B = the class of all finite intersections of sets of C. Write J = the class of all
arbitrary unions of sets from B. Then J is a topology on X called topology
generated by the class C.

WEAK TOPOLOGIES

Definition: If J,, 3, are topologies on a set X such that J; J,, then J,is said to
be weaker than J,

Note: Let X be any non-empty set. Then indiscrete topology is the weakest
topology and discrete topology is the strongest topology on X.

Definition: A partially ordered set X is called a complete lattice if every non-
empty subset of X has a greatest lower bound and least upper bound.

Theorem: Let X be a non-empty set. Then the family of all topologies on X 1s a
complete lattice with respect to the relation “is weaker than”. Furthermore, this
lattice has a least member and a greatest member.

Proof: Let G = { 3/ J is a topology on X}. Define a relation < on G as J;< 3, iff
J11s weaker than 3, ie. J; J,. Then (G, J) is a POset.

Claim: (g, 3J) is a complete lattice. Let ¢ =G < G. Write J; = Nxeg, -

Then J; is a topology on X.

Since J;c I VI € Gy, J1<IVI e

. J11s a lower bound for G;.

Let 3* be any lower bound of G; ThenJ*<JI VI e G, =>I*<cI VI el

= JI* S Nyeg, S = J1=>3I3*< 3y

Hence 3, isthe glbof Gi. LetY =Ugeg, 3. Write T=N {3 €G/Y = 3J}.
Since T is the intersection of a collection of topologies, T is a topology.
Since Ugeg, IST,IcT VI e Gi=>I<T VI e

= T is an upper bound of §;..

Let 7* be any upper bound for G, => I <T*V3I € Gi=IcT*V I € G
=Y =Ugeg, S T™

=>T*€ {JeG/YCJ} =T cT*

- T < T* for any upper bound T* of G;.
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Hence T is the least upper bound of G
Since every subset G; of G has glb and lub, § is complete.

Note: Let X, Y be topological spaces. If J is the discrete topology on X (ie.
(X)), then any mapping f: X — Y is continuous.

Definition: Let X be a non-empty set. Let {(Xi, Ji)ic; be a non-empty class of
topological spaces. For each i € I, suppose fi: X—X; is a function. If @ (X) is the
topology on X then every fj is continuous. Write I* = the intersection of all
topologies on X which makes every f; : X — X is continuous. This topology J* is
called the weak topology generated by the fi's.

THE FUNCTION ALGEBRAS €(X, R), C(X, €).

Definition: An algebra is a linear space whose vectors can be multiplied in such a
manner that (i) x(yz) = (xy)z; (ii) x(y + z) = xy + xz and (X + y)z = xz + yz and
(111) axy) = (ox)y = x(ay) for every scalar a.

If the scalars are real numbers then it is real algebra. If the scalar are
complex numbers then the algebra is called complex algebra.

A commutative algebra is an algebra if Xy = yx V x, y.

An algebra with identity is an algebra satisfying the following property:
3 a non-zero element denoted by 1 called the identity such that 1x = x = x1 for
every X.

A subalgebra of an algebra is a linear subspace, which contains the product of
each pair of its elements.

Lemma: If f and g are continuous real or complex functions defined on a
topological space X, then f+ g, af and fg are also continuous. Furthermore, if f
and g are real, then f A g and f v g are continuous.

Proof: (With suitable modifications in similar proof in metric spaces) we can prove
that f + g, af are continuous.

Lete>0and xo € X. Take €1 > 03 &1 {|f (x0)| + |g(xo)|} + &> <e...(3).

Since f, g are continuous at xo, corresponding to €; > 0 3 nbds G; and G, 5> x € Gy,
X € Gy, |[f(x) — f(xo)| <erand |g(x) — g(xg)| < & respectively.

Then G=G; N Gy is anbd of xp and let x € G.

Now [(fg)(x) = (f @) (xo)| = [f (x)g(x) — f(x)g(xo) + f(x)g(xo) —
f(x0)g(x0) < fFIg(x) — gxo)l +
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|g (xo)1f (x) — f(x0)l
<er |[f(x) = f(xo)| + [f (xo)| &1+ 1g(x0)| &1
<ei? Te{lf(xo)l+1g(xo)l} <eby ().

.. fg is continuous at X,. Since this is true for any xy € X, fg is continuous on X.

Put A= (a, o) and B=( - o, b).

Since f, g are continuous £ !(A), g '(A), £1(B), g !(B) are open sets.

Now (fv g)'(A) = {x/(fv g)(x) € A} = {x/ max [f(x), g(x)] > a}
= {x/f(x)>a} U {x/gx)>a}
={x/f(x) e A} U {x/g(x) € A}
=f1(A) U g '(A) which is an open set.

(fvg)'B)={x/(fvg)(x) € B} = {x/max [f(x), g(x)] < b}
= {x/f(x) <b} A {x/ g(x) < b}
= {x/f(x) e B} N {x/g(x) € B}
=f1(B) n g'!(B) which is an open set.

= (fv g)'(A), (fv g) '(B) are open sets on sub basic open sets A and B.
Hence (f v g) 1s continuous. Similarly, we can show that (f A g) is continuous.

Lemma: Let X be a topological space, and {f,} be a sequence of real or complex
functions defined on X which converges uniformly to a function f defined on X. If
all the f,,’s are continuous, then f is also continuous.

Theorem: Let C(X, R) be the set of all bounded continuous real functions defined
on a topological space X. Then (i) €(X, R) is a real Banach space with respect to
point wise addition and scalar multiplication and the norm defined by ||f|| = sup

|f (x)| ; (i1) if multiplication is defined pointwise, then C(X, R) is a commutative
real algebra with identity, in which ||fg|| < [|f]lllg]l and ||1]| =1 and (iii)) If f< g
1s defined to mean that f(x) < g(x) for all x, then C(X, R) is a lattice in which the
greatest lower bound and least upper bound of a pair of functions f and g are given

by (fAg)(x) =min {f(x), g(x)} and (fvg)(x) = max {f(x), g(x);.

Proof: (i) follow the proof of “C(X, R) is a real Banach space” in metric spaces
with relevant changes.

(i1) Let f, g, h € €(X, R). Then for all x X, f(gh)(x) = f(x)(gh)(x) =
f(x){g(xh(x); = {fx)g(x)jh(x) = (fg)(x)h(x) = {(fg)h}(x)
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- f(gh) = (fg)h.

Similarly we can prove that f(g + h) = fg + th; (f+ g)h = th + gh;

o(xy) = (ax)y = x(ay) for every scalar a and fg = gf.

- C(X, R) is a commutative algebra.

Define 1(x)=1V x € X.

Then for any f € C(X, R) and x € X, (f1)(x) = f(x)1(x) = f(x)1 =1(x) .. fl =f.
Similarly, 1f=f. .. 1 is the identity element in C(X, R). Now ||1|| = sup|1(x)|
=sup |1] = 1.

Letf, g € C(X, R). Then ||fgll = sup |(fg)(x)| = sup |f (x)|g(x)| <sup |f(x)]
=sup |[g)| = Ifllgll

(ili) Define arelation <on C(X, R) by f<g iff f(X) <g(x) V x € X,

Then clearly < is a partial order on C(X, R).

By alemmafv g, f A gare continuous > m; < f(x) < Mz, my < g(x) < M, VxeX.
Take m = min {m;, m;} and M = max {M3, M}.

Thenm< (fAg)(X)<Mandm<(fvg(X) <MV x e X.

.. T A g, fv gare bounded continuous real valued on X.

=farg,fvgelC(X R).

Now it can be easily verified that f A g = glb {f, g} and f v g = lub {f, g}.

Hence C(X, R) is a lattice.

Theorem: Let C(X, €) be the set of all bounded continuous real functions defined
on a topological space X. Then (1) C(X, €) is a complex Banach space with respect
to pointwise addition and scalar multiplication and the norm defined by ||f]|| = sup
|f (x)| ; (1) if multiplication is defined point wise, then C(X, €) is a commutative
complex algebra with identity, in which ||fg|| < ||flllgll and [|I|| =1 and

(iii) If f is defined by f(x) = f(x) the complex conjugate of f(x), then f >f is a
mapping of the algebra C(X, €) into itself which has the following properties:
f+rag=f+gaf=afsfg=1g:;f=rIfll=|fl

Proof: (1), (i1) Similar proof as in the above theorem.

(iii) Let f € €(X, €) and define f(x) = f(x) V x € X.

If f(x) = a+ib then f(x) =a—ib. .. [f(x)| = Va2 + b2 = |f(x)|.

.. fis a bounded function from X to €.

Clearly |f(x) — f(xo)| = [F(x) = F(xo)| = [F () = F(fo)| = If (x) — £ (.

Let > 0. Since f'is continuous, 3anbd Gofxo3x € G. = |f(x) — f(xp)] <e.
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|f(x) —f(x0)| =|f(x) = f(xo| <e.Thisis true V x € G.

Hence f is continuous. .. f is bounded and continuous. .. f € C(X, €).
So, f — f is a mapping from C(X, €) into itself.

F+PE =+ =) +9x)=f)+9g(x)=f(x)+ gx)
=(f+9)(x)VxeX

L f+g=f+g. Similarlya_f=c_1f;f_g=fg_andf=f.

Now [|£]| = sup [f(x)| = sup | F()| = sup If ) = IIfII.
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COMPACTNESS
104: TOPOLOGY: UNIT III

COMPACT SPACES

Definitions: (i) Let X be a topological space. A class {Gi} of open subsets of X is
said to be an open cover if each point in X belongs to at least one Gj. i.e. X =
U; G;.

(11) A subset of an open cover which is itself an open cover is called a subcover.

(111) A compact space is a topological space in which every open cover has a finite
subcover.

(iv) Let (Y, Jy) is a subspace of (X, Jx). Y is said to be compact subspace of the
topological space X, if Y is compact in its own rights.

Theorem: Any closed subspace of a compact space is compact.

Proof: Let X be a compact space and Y be a closed subspace of X.

Let {G;j}ic; be an open cover of Y.

Then for each 1, 3 an open subset Hi of X5 Gi=Hi N Y.

Now Y € U; G; = Ui (H;NY) S (U; H)NY

SoX=YuY'<c (U;H)UY".

.Y’ together with Hj, 1 € I forms an open cover for X since Y’ is open.
Since X is compact, 3 a finite subcover H; , H;,, ..., H; , Y’ of X such that
X=H;, UH,VU ..U H UY'"

NowY=YNX=Yn(H, UH,U ..U H; UY’)
=YNnH)U(YNnH)U ..u(Yn H )u¥nY)

=G, VUG,V ..U G Up=G, UG,V ..U G .

-Gy, G

i, Gi,y -, G forms a finite subcover to Y. Hence Y is compact.

Theorem: Any continuous image of a compact space is compact.

Proof: Let f: X — Y be a continuous mapping of a compact metric space X into a
topological space Y.

Let {Gi}ie1 be an open cover of f(X). Ie. f(X) € U; 4 G; ...(1)

Since f'is continuous, f~1(G;) is open in X for all i € L.
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From (i), X ¢ f7H{f (X))} =f 7' (Ui Gi) = Uier f 1 (G-
2 {f71(G)) }ie1 is an open cover for X. Since X is compact, this open cover has a
finite subcover.

le. 3 f71(G; ), f7H(Gy,)s s fTH(Gy) > X f 716G DVf MGy, o UFTH(G)
= f(X) cG;, UG, U ..U G; . ..the open cover {Gi}ic; of f(X) has a finite

subcover G, , G;,, ..., G; . Hence f(X) is compact.

Definition: A class {Ai}ic; of sets X is said to have the finite intersection property
if every finite subclass {4; , 4;,, ..., A; } has a non — empty intersection.
Ie. Ail N Aiz n..nN Ain-‘/—' (I)

Theorem: A topological space is compact iff every class of closed sets with empty
intersection has a finite subclass with empty intersection.

Proof: Let X be compact. Let {Fi}ic| be a class of closed sets such that N;¢; F; = 0.
For eachi € I, since F; is closed, Fi’ is open. .. X=¢'={N;g F;}'=UF/ iel
Clearly {Fi'}ie1 1s an open cover for X. Since X i1s compact, this open cover has a
finite subcover. .3 F; ", F,", .., F; 59 X=F, 'UF,'U..UF '
=¢=X=(F,/UF,u...u Fin’)' = F;,nFy,N..0F;

Hence 3 a finite subclass F; , F;,,..., F; of the class {Fi}icl.

Conversely suppose that every class of closed sets with empty intersection has a
finite subclass with empty intersection. Let {Gi}ic1 be an open cover for X. ie. X =
UG; = ¢ =X"=(UGi) =N Gi. Since {Gi'}ier 1s a collection of closed
sets whose intersection is empty, by assumption, 3 a finite subclass G; 1', Giz', v
G, 526G, NG, n.nF =6

=>X=¢'=(6,'nG,/'n...n Gin')IZ G;,UG;,U...UG; . The cover {Gi}ici of X
has a finite subcover. Hence X is compact.

Theorem: A topological space is compact if and only if every class of closed sets
with finite intersection property has nonempty intersection.

Proof: Let X be compact. Let {Fi}ic be a class of closed sets with finite
intersection property. In contrary suppose that N;¢; F; = ¢. By above theorem, 3 a
finite subclass F; , F; , ..., F; > F;, N F,, N ..." F; = ¢, a contradiction to the finite
intersection property. Hence N;¢; F; # ¢.

Conversely suppose that every class of closed sets with finite intersection property
has nonempty intersection. If possible suppose that X is not compact. Then 3 an
open cover {Gi}ier which has no finite subcover. This means for any subcover
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Gi, Gy, s G > X 2 G UGLU.UG; . = ¢ =X # (G, UG, U... UG, ) =Gy,
Gi,'M .. G ". Now {Gi'}ier is a class of closed sets with finite intersection
property. = NG #0,ia

= (N G;") # ¢ =X=X# U G; a contradiction, since {G;}ic; is an open cover of
X. Hence X is compact.

Definition: Let X be a topological space. (i) an open cover of X whose sets are in
some given open base is called a basic open cover. (ii) an open cover of X whose
sets are in some given open subbase , is called a subbasic open cover.

Theorem: A topological space is compact if every basic open cover has a finite
subcover.
Proof: Suppose every basic open cover has a finite subcover. Now to show X is

compact, take an open cover {Gi} ie1 to X. Let {Bi} jcj be an open base. By the
definition of open base G; = U B}, . Fix k € I and consider G. Since {Bj};e) is an

open base Gy = UB;, j € Jk for some subclass {Bi}jcik. Now X = Uge; G, =
Uker Ujejy, Bj. Now those B;’s form a basic open cover for X. By the hypothesis,
this basic open cover has a finite subcover. .. 3 ki, ko, ..., kn € I'and j1 €y,
J2€j,res In €Ji, sSuch that X =B; U ... UB; ... (1).

By the selection of ji’s Gy, = Ujeji, B; o B; (since ji €ji, ), Gy, = Ujeji, B;

IU

B; SInce jo €, seees Gi, = Ujeji,, Bi 2 B; (since jn €jy,)-
By (i) X=B;, U...UB; < G, U ... UG which is a finite subcover of {Gi}iel.

Theorem: A topological space is compact if every subbasic open cover has a finite
subcover or equivalently if every class of subbasic closed sets with finite
intersection property has non — empty intersection.

Proof: Proof is out of the scope of this book.

Heine — Borel theorem: Every closed and bounded subspace of the real line is
compact. (M. Imp).

Proof: First we prove that any closed interval [a, b] of the real line is compact.
Consider A= {[a,d)/a<d<b} U {(c,b] / a<c<b}

We show that B = {(c,d) /a<c<d<b}} forms an open base for [a, b].

Let G be an open set in [a, b], and x € G. Since G is open dr> 0 3 Si(x) < G.

>x-r,x+r)cG Now(x—-r,x+r)cGcla,bl]2a<x—r<x+r<b.nowif
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we write c=x —1,d =x + r then (¢, d) € B and x € (¢, d) < G. Hence B is an open
base for [a, b].

If we take [a, d) and (c, b] then [a, d) " (c, b] = ¢ or (c, d). Therefore, every
basic open set in B can be written as intersection of finite sets in A. Hence A is an
open subbase for [a, b].

Consider F={Y'/Y € A} = {[a,b] \[a,d)/a<d<b} U {[a,b]\(c,b] /a<c<
b} ={[d,b] /a<d<b} U {[a,c]/a<c<b}. Since A is an open subbase, we
have that F is a closed subbase. These closed subbasic sets are of the form [a, c] or
[d, b].

Consider G = {[a, ¢i]}i <1 {[dj, b]}; <y be a collection of subbasic closed
sets with finite intersection property. To prove [a, b] is compact it is enough to
prove that the intersection of the collection G is non - empty.

If G contains only the sets of the form [a, c¢i] then their intersection contain a.
If G contains only the sets of the form [d;, b] then their intersection contain b. Now
we assume that G contains both the forms.

Write d = sup {d;/ [d;, b] € G}. Since d > d;j, we have d € [d;, b] for all j € J.
Now we wish to show that d € [a, ci] for all [a, ¢i] € G.

In a contrary way suppose d ¢ [a, cio] for some [a, cl-o] € G. Thend>¢; . Since d
is the supremum, and ¢; < d, we have that there exists d; such that ¢; <d; <d
and [djo,b] € G. Now [a, cio] N [d]-o'b] = ¢, a contradiction to finite intersection
property.

Hence d € [a, ci] for all i. Therefore, the intersection of sets in G is non — empty.
.. [a, b] is compact.

Let E be a bounded and closed subset of R. Since E is bounded, 3 an upper bound
b and a lower bound a for E. This implies that E < [a, b]. Since [a, b] is compact
and E is a closed subset of [a, b], we have that E is compact.

PRODUCT SPACES

Definition: Let (X, T;) and (X, T») be topological spaces and for the product X =
X1 x X5, consider the class S of all subsets of X of the form G; x X; and X; x G;
where G, and G; are open subsets of X; and X, respectively. The class T of all
unions of finite intersections of sets in S is a topology on S called product topology
on X. Her S is open subbase of T.

Definition: Let (X, J;)i€l be a collection of topological spaces then PiX; is the
Cartesian product of X;. Here pi: PiX; — X 1s defined by pi({x;},j€]j) = xi. Here S =
{Pi—1(G)/ Gj € J;}. S* = {PiGi/where G; € J; and G; = X for all but a finite
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number of iel}. Here PiG; = {{xi} / where x; € G; for some finite number of i’s and
there is no restriction on the other coordinates xi} now S* is the open base for
(X, J). S* is the open base generated by the open subbase S.

Definition: The class defined above is called the defining open subbase for the
product topology. F = { F/ F'e S} = the class of all products of the form P;F;
where F;j is a closed subset of X; which equals to X; for all 1’s but one, is called the
defining closed subbase.

Definition: S* defined above is called the defining open base for the product
topology. Ie. the defining open base is a tipical one of its sets consists of all points
x = {x;} in the product such that i coordinate x; is required to lie in an open subset
of G; of X for the finite number of 1’s and all other coordinates being unrestricted.

Definition: The product of the non-empty class of topological spaces equipped
with the product topology is called a product space.

Tychonoff’s theorem: The product of any non — empty class of compact spaces is
compact. (M. Imp).

Proof: Let {X;} be a nonempty class compact spaces.

Let X =PiXi, 1 €l. Let {F;},) €J, be a nonempty subclass of the defining closed
subbase with finite intersection property for the product topology on X.

This means that each F; is a product of the form F; = PiFj;, 1 € I where Fj; is a closed
subset of X; which equals X for all 1’s but one.

For a fixed 1, {Fi j}je] is a class of closed subsets of Xi.

We now show that this class {Fi f }je] has finite intersection property.

Let Fyj , Fij,, -, Fij, be a finite number of sets in the class {Fif}je]'

Since the class {F}}je] has the finite intersection property, F; N F;, N ..NF; # ¢.
Letx eF;, NF, Nn..NF; .

Then x eFj, fork=1,2,...,n.

~x(1) € NFyj, fork=1,2,...,n.

= x(1) eF;, NFj, 0 ..NFjo

:>Fij1 N Fijz Nn..nN Fijn * .

.. the class {Fi j }je] has finite intersection property.
Since X; is compact, N j¢; F;j # ¢.

Lety;e Nje  Fij,] € Jthen yeF;; Vj el
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Define y by y(i) = y;.

Then y(i) €F;; V j € I.
Nowy={y()jePF;=F Vjel.
Hence X is compact.

Generalised Heine Borel theorem: Every closed and bounded subspace of R" is
compact. (Imp).

Proof: For 1 <1 <n, consider X; = [aj, bi], the closed interval with endpoints a;, and
b; with a; <b;. Now X; = H?:l X;= H?zl[ai, bl] = {(x1, X2, ..., Xn) /a; <x;<Db;forl
<1i<n} is a closed rectangle in R™. First, we show that this closed rectangle X is
compact. Since each [aj, bi] is a closed and bounded interval of R, by Heine —
Borel theorem, we have X; = [aj, bi] is compact for 1 <i<n.

.. By Tychonoff’s theorem, X = [[i~, X; is compact.

Let E be a closed and bounded subspace of R™. Since E is bounded, 3 a;, b;
€ R for 1 <i<n,suchthat E c {(x1, X2, ..., Xp) €R™/ a; <x;<bjfor ] <i<n}=X
say. Now E is a closed subset of X. By above part X is compact. Since E is a closed
subset of the compact space X, by theorem we have that E is compact. .. Every
closed and bounded subspace of R™ is compact.

Definition: A topological space is said to be locally compact if each of its points
has a neighbourhood with compact closure (compact closure means for any x € X,
there exists a nbd Gy such that x € Gy, G, 1s a compact set.

COMPACTNESS FOR METRIC SPACES

Definition: A metric space is said to have the Bolzano — Weierstrass property if
every infinite subset has a limit point. (i1) A metric space is said to be sequentially
compact if every sequence in it has a convergent subsequence.

Theorem: A metric space is sequentially compact if and only if it has the Bolzano
Weierstrass property. (M. Imp)

Proof: Let X be a metric space. Assume that X is sequentially compact.

Let A be an infinite subset of X. Let al be any point of A.

Having chosen ay, ay, a3, ... a,_1, consider the set A — { a, as, a3, ... an_1}.

Since A is infinite and so choose an element a, € A— { a;, a5, a3, ... a1 }.

By induction we get a sequence {a,} of distinct points from A.

Since X is sequentially compact, the sequence {a,} has a convergent subsequence
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{ an,} of distinct points converging to a (say).

By a theorem, a is a limit point of the set { a,,, :k = 1}.

Since the set { a,, 1k = 1} € 4, ais a limit point of A.

Hence X has Bolzano — Weierstrass property.

Conversely suppose that X has the Bolzano — Weierstrass property.

Let {a,} be a sequence in X.

Let A be the set of points of the sequence {a,}.ie. A= {a,/n > 1}.
Case (1): Suppose A is finite. Then 3 a in A which repeats infinite times.
So 3 a subsequence { a,, } of {a,}suchthata, =a,, =..=a

Then clearly the sequence { a,, } converges to a.

Case (i1): Assume that A is infinite. By hypothesis, A has a limit point say a.
Take r; = 1. Now the open sphere S,. (a) contains a point of A.
~.Japositive integer n; 3 a,, €S, (a).le.d(a, a,, ) <r, = 1.

Take r; = min { d(a, a,, ), 1/2}.

Since S,,() NA# @ .3 >n5 a,, €5,(a). le.d@, ay,) <.
Having chosen nj, ny, ..., nx —;, choose nx 3 ny >nx_; and d(a, A, ) < %

By induction, we get a subsequence { a,, }3 d(a, a,, ) < % vV k.
Clearly the subsequence { a,, } converges to a.

Theorem: Every compact metric space has the Bolzano Weierstrass property (less
imp).
Pr_g)of: Let X be a compact metric space. let A be an infinite subset of X. In a
contrary way, suppose A has no limit point. If a is a point of X then a in not a limit
point of A and hence there is an open sphere S, (a) such that S, (a) N A —{a} =
¢.ie. S (a)nAc{a}lie S, (a)nA={a}or S, (a)NA=¢.

Consider the class { Sr,(@)/a € X } of all these open spheres. Clearly
this is an open cover for X. Ie. X = Ugex Sy, (a). Since X is compact, this open

cover has a finite subcover, say, Sta, (ay), St, (ay), ..., Srar, (a,,) where ay, ay, ...,
an € X. L A=ANX=An{S, (a)VU S, (a) V..U
Srep, (@)}

= {A n Sy, (al)} V] {A n S, (az)} U..uU {A N S,,am(am)}

C {a;} U {a} U..U {am} = {ai, a2, ..., am}. = A is finite which is a contradiction
to the fact that A is infinite.

.. A has a limit point. Hence X has the Bolzano -Weierstrass property.
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Definition: Let {G;} be an open cover of a metric space X. A real number a > 0 is
called a Lebesgue number for the given open cover {G;}, if each subset A of X
with d(A) < ais contained in at least one Gi. le. a is the Lebesgue number, if A —
X, d(A) <a = A c G; for some i.

Definition: Suppose X is a metric space and {Gi}ic be an open cover. A subset A
of X is said to be big if A € G forany i € L.

Note: (i) Singleton subsets are not big sets. (ii) If A is a big set then A contains at
least two points.

Sol: (i) Let x € X. Write A= {x}. Now x € X c UG; = x € G for some 1 = A C
Gi. So A is not big.

Example: Let X = {a, b, c}. Defined: X x X—> Rbyd(x,y)=0ifx=y

and 1 if x #y. Then d is a metric on X. Every subset of X is open in X.

Write B = {{a, b}, {b, c}}. Then B is an open cover for X. If A= {a, c} then Ais a
big set. Also {a}, {b}, {c} are not big sets. Let 0 <s < 1. We show thats is a
Lebesgue number for B. Let G be any subset of X such that d(G) <s. Then d(G) <
1. = G is a singleton set. I[f G = {a} or {b} then G < {a, b}. If G= {c} then G
{b, c}. This shows that s 1s a Lebesgue number for B. Let s > 1. Then d(X) =1 <s.
But X € {a, b} and X € {b, c}. .. any real number s > 1 is not a Lebesgue number.

Theorem: Lebesgue’s covering lemma: In a sequentially compact metric space
every open cover has a Lebesgue number. (M. Imp)

Proof: Let X be sequentially compact metric space and {G;}ic; be an open cover of
X. Case (1) Suppose X contains no big sets. In this case, we will show that every
positive real number is Lebesgue number for the open cover {Gi}ie1. Leta> 0 be a
real number. Let A be a subset of X such that d(A) < a. Since X contains no big
sets, Ais not a big set. .31 € I such that A < G;. Hence a is a Lebesgue number
for {G;}.

Case (i1): Step (1): Suppose X contains big sets. Let a’ = glb {d(A) / A is a big set}.
Clearly 0 <a’ <. Now we show that a ' > 0. If possible, suppose a’ = 0. Now we
construct an infinite sequence {x,} of distinct points. For this consider 1. Since 1 >
0,and a'= 0 = glb {d(A) /A is a big set}, there is a big set B; such that 0 <d(B)) <
1. Let x; €B. Since 2> 0 3 a big set B, such that 0 < d(B;) < %. Since B, is a big
set containing atleast two points, take X, € B,\{x;}. Clearly x; # x,. Write r; = min
{1/3, d({x1, X2})}. Since x; #x,, we have d(x;, x2) # 0. .. r3> 0.now 3 a big set B;
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such that 0 < d(Bj3) <rs;. Now if X; € B; then x, ¢B; (if both x;, X, € B; then d(Bs)
> d(x1, X2) = 13 > d(B3), a contradiction). Now X, X, and x3 are distinct points.
After constructing {Xi, X2, ..., X}, Write rpy; = min {1/n, d({X1, X2, ..., Xa})}. Since
rn+1 > 0 3 a big set Byyy such that 0 <d(Byi1) <11 Let xpi1 € Bani\{X1, X2, ..., Xn}.
In this way we construct a sequence {x,} of distinct points. Note that for each n,
we have d(B,) < I/n.

Step (ii): Since X is sequentially compact, 3 a subsequence {xnk} of {x,}, which
converges to a point x € X. So, x € G;j for some i€l. Since G;j is open, 3 r > 0 such
that S,(x) < Gi. Consider the open sphere Sy2(x). Since x,,, — x, 3 m such that

Xn. €Spya(x) for some m >k. Let m > k and 0 < 2 <
Mm Ny 2

Takey € B, .Nowy,x, € B, =d(y,x, )< ni <ZI

2
codx,y) £d(x, X, ) +d(x,, y) < g + g =r=y € S¢x) = Gi. Hence y €B,
=y € Gi. .. B, < G acontradiction to the fact that B, is a big set.

So a"# 0 Hence a' > 0.

Now we show that a’ is a big number. Let Y be any subset of X with d(Y) <a'.
Then Y is not a big set(If Y is a big set, then a’ < d(Y) (by construction of a") and
soa' <d(Y) <a', a contradiction]. This means that Y — G, forsomei e l. .. a'"isa
Lebesgue number.

Definition: (1) Let X be a metric space and € > 0. A subset A of X is called an ¢ —
net if A is finite and X = U e Se(a).
(11) X is said to be totally bounded if it has an ¢ - net for each € > 0.

Theorem: Every sequentially compact metric space is totally bounded. (M. Imp)
Proof: Let X be a sequentially compact metric space. If possible suppose X is not
totally bounded. Ie. X has no € - net for some € > 0. Take this €. Let a; € X. Since
{a;} is not an € - net for X, X &€ S.(a,). Let a, € X\ S.(ay). Clearly d(a;, a3) > &.
Consider {ay, a,}. Since this is not an ¢ - net, 3 a; € X\ {S.(a,) U S.(a,)}. Clearly
d(ai, a3) > g, d(a;, a2) > €.

Having chosen ay, ay, ..., a, select ans € X\ {Se(a;) US.(a,) U ..U S.(a,)}.
Continuing this process {a.} is a sequence of distinct points > d(a;, aj) = € for1 # .
Since X is sequentially compact 3 a convergent subsequence { a,, } of {a.}.
Since it i1s convergent it is also Cauchy sequence.

Since € > 0, 3 a positive integer k 5> d(ay,, n; ) <eforalln;,nj>k,a

contradiction to the fact that d (ani, Qn; ) > ¢. Hence X is totally bounded.
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Theorem: Every sequentially compact metric space is compact. (very imp).
Proof: Let X be a sequentially compact metric space.

Let {Gi}ie1 be an open cover of X.

Since X is sequentially compact, by Lebesgue covering lemma, the open cover has
a Lebesgue number a say.

Takee=a/3>0.

Since X is sequentially compact, X is totally bounded, and hence X has an ¢ - net,
say A = {Xi, X2, X3, ..., Xn}.

= X = Uj=q Se(xg). We know that d(S,(x)) < 2e = 2a/3 < aforeach 1 <k <
n. Since a is a Lebesgue number for the open cover {G;} and d(S,(xy)) < a, we
have that S¢(x;) < G;, for some ix € L.

S X = Ukzr Se() € Ug=q G = X

= X = U1 Gy,

Thus the open cover {Gi} has finite subcover {G; },k=1,2, ..., n.

Hence X is compact.

Theorem: Any continuous mapping of a compact metric space into a metric space
1s uniformly continuous. (Imp).
Proof: Let f: X — Y be a continuous mapping of a compact metric space X into a
metric space Y. Let d; and d; be the metrics on X and Y respectively. We prove that
f is uniformly continuous. Let € > 0. For any x € X, consider the open sphere
Se{f (x)} with center f(x) and radius €/2 in Y. Since f'is continuous, we have that

2

f1 [Sg{ f (x)}] is open in X. This is true for any x € X.
2

Consider the family % = {f~* [Se{f (x)}] /x € X},

2
It is clear that 2 is a family of open sets in X which forms an open cover for X.
Since X is compact, it is sequentially compact.
So by Lebesgue covering lemma, the open cover 2 has a Lebesgue number, say d.
Suppose x, x' € X such that d;(x, x") <d = d({x, x'}) <d.
Since J is a Lebesgue number, {x, x'} < {f -1 [Sg{f (y)}]} for somey € X

2

= f(x), f(x') € Se{f(¥)}. = da(f(x), f(y)) < &/ 2 and dx(f(x"), f(y)) <&/ 2.

Consider d,(f(x), f(x").

Now dy(f(x), f(x')) < da(f(x), f(y)) + d2(f(y), f(X")) <&/2 + e/2 =¢.

So 36 >0 for any x, X" € X such that d;(x, x") <& = do(f(x), f(x")) <e.
Hence f is uniformly continuous.
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Theorem: A metric space is compact if and only if it is complete and totally
bounded. (very imp)

Proof: Suppose (X, d) be a metric space. Suppose X is compact.

Then X is sequentially compact. = X is totally bounded.

Claim: X is complete. Let {x,} be a Cauchy sequence in X. Since X is sequentially
compact {x,} has a convergent subsequence {xnk}. By a problem {x,} is
convergent. Hence X is complete.

Conversely suppose that X is complete and totally bounded.

Claim: X is sequentially compact.

Claim: Every sequence has a Cauchy subsequence.

Let S; = {x11, X12, X13, ...} be an arbitrary sequence in X. If the set of points S; is
finite, then there exists an element which repeats infinite number of times.

.. S1 has a constant subsequence which is convergent. Suppose the set of points of
S; 1s infinite. Since X is totally bounded X has an 72 -net say {yi, y2, ..., ¥n}

= X=ULi5:07)

Then Sy = S, X = 5, 0 UL, S:00)} = Uy {51 0 5100}
2 2
Since S; is infinite, S; N S1(y;) is infinite for at least one 1.
2

.. S1 has a subsequence, S, = {X21, X2, X23, ...} and all of the points of S, lie in the
same open sphere of radius 2. We continue like this we have Sy, S», ..., Sy, ... such
that S, is a subsequence of S,.; and all of the points of S, lie in some open sphere
of radius 1/n.

Then S = {x11, X22, X33, ...} 1s a diagonal subsequence of S;,1=1, 2, ...

Claim: S is a Cauchy subsequence.

Let € > 0. We can choose an integer M > 0 such that 2/M < ¢. Since S; is a
subsequence of Sij, for all n, m > M, Xpn, Xmm € SM. = Xnn, Xmm € S1 » (y) for

somey € X.
= d(Xm, ¥) < I/M, d(Xmm, ¥) < I/M = d(Xnn, Xmm) < 2/M <E.

.. S is a Cauchy subsequence of S;. Since X is complete, S is convergent
sequence.

". S is a convergent subsequence of S;. .. X is sequentially compact.
Hence X is compact.

Theorem: A closed subspace of a complete metric space is compact iff it is totally
bounded.
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Definition: Let X be a compact metric space with metric d and let A be a nonempty
set of continuous real or complex valued functions defined on X. A is said to be
equicontinuous if for each € > 0 there exists d > 0 such that  x, x' € X, d(x, X') <
0= | f(x)—f(x')| <eforall f e A.

ASCOLI’S THEOREM.

Theorem: If X is a compact metric space, then a closed subspace F of C(X, R) or
C(X, €) is compact iff it is bounded and equicontinuous.

Proof: Let X be a compact metric space and F be a closed subspace of C(X, R) or
C(X, Q).

Suppose F is compact.

Since F is compact subspace of C(X, R) or C(X, C),] F is bounded.

Since X 1s compact every f € C(X, R) or C(X, C) is uniformely continuous.
Claim: F is equicontinuous.

Lete> 0.

Since F is compact, F is sequentially compact and hence F is totally bounded.

.. F has an €/3 — net, say {f}, £, f3, ..., f,}. > F = U?SS/S(fl-).

LetfeF.
=>fe Se/3 (fx) for some k.

= f = fill<®/3.

= |f(x) - fii(0)] < 5/3 forall x € X...(1)

Since each fy € F is uniformly continuous, for eachk =1, 2, 3, ..., n, 3 §; > 0 such

that d(x, x') <& = |fi(x) — fir (x| < /3

Let & = min {3, 02, ..., On}.

Suppose d(x, x") <d.

= d(x, x") <dpforallk=1,2, ..., n.

=|fi(x) — fr(xH] < 5/3 fork=1,2,...,n ..(ii)

Now [f(x) = fD < 1f () = fie COl+ | fie (0) = fre (XD + [f (x) = fre (x")]
<ff3t3t%3=¢

Hence F is equicontinuous.

Converse: Suppose F is bounded and equicontinuous.

Claim: F is sequentially compact.

Part (1): C(X, R) 1s complete and F is closed in C(X, R).

..F is complete.

Since X is compact it is separable.

.. X has a countable dense subset say A = {x,, X3, ..., Xp, ...}, SQy.

Part II: Let S| = {fi1, fi2, fi3, ...} be an arbitrary sequence.




59

Since F is bounded 3 a real number k > 0 such that ||f|| <k for all f € F.
= |f(x)| < k forall f € Fand x € X.
Then {fi;(x2)} 1s a bounded sequence of real numbers.
.. This sequence has a convergent subsequence.
Let S; = {f21, £22, 23, ...} be a subsequence of S; such that { f(x2) } 1s convergent.
[Then {f>j(x3)}1s a bounded sequence of real numbers.
As above this sequence has a convergent subsequence S; = {f3, f3;, f33, ...} of Sy
such that {f3j(x3)} is convergent.]
Continuing in this way we have S; = {f}1, fi2, fis, ...}, So = {f21, £, f23, ...}, ...,
Si = {fi1, fi, fis, ...} ... such that S; is a subsequence of Si.;, and { fij(x;) } is
convergent.
Part I1I: Then S = {f};, f22, f33, ...} 1s a diagonal sequence of S;,1=1, 2, ... and
subsequence of S;.
Write f, = fin. .. { fa(Xi) } 1s a convergent subsequence for each x; € A.
Claim: S is a Cauchy sequence.
Lete> 0.
Since F is equicontinuous, 3 6 > 0> d(x, X') <8 = |f,(x) — fu(x))]| < 5/3...(i)
Since Aisdense in X, B = { Ss(x;) : x; € A }is an open cover for X.
[Forx e X=4= S5(x) nA#d=x; € Ss(x) for some x; € A = d(x, X)) <&
= x € Ss(x;) > x € USs(x;)]
Since X is compact X < U!_, Ss(x;) for some positive integer t.
Since {fy(Xi)} 1s a convergent subsequence for each x; € A,
{fa(x;)} 1s a Cauchy sequence for each x; € A.
- Afu(xi)} 1s a Cauchy sequence for each x,, x3, ..., Xt.
= Foreachi=2, 3, ..., t 3integer M; > |f,,(x;) — fin (x| < 8/3 vV n, m> M,
Write M = max {M;,i=2,3, ..., t}. Then |f,(x;) — fn(x)| < €/3 Vn,m>M.
Letx € X < UL, Ss(x;)
= x € Ss5(x;) forsomei,2 <1<t
= d(x, x") <d forn, m > M.
|fn(x) =~ fm(x)l < |fn(x) - fn(xl)l + |fn(xl) - fm(xl)l +|fm(xi) - fm(x)l
<€/3+¢/3+¢/3=¢foralln,m>M.
= sup {[f(x) = [} < & = ||f, — finll <& foralln,m > M.
.. S is a Cauchy sequence.
". S is convergent subsequence of S;.
.. F 1s sequentially compact and hence F is compact.
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M 104: TOPOLOGY
UNIT IV — SEPARATION
T1 - SPACES AND HAUSDORFF SPACES

Definition: A T, - space is a topological space in which given any pair of distinct
elements, each has a neighbourhood which does not contain the other.
(equivalently, if x and y are elements such that x # y then there exists
neighbourhoods G and H of x and y respectively such thaty ¢ G and x ¢ H.

Example (1): Suppose X = {a, b, ¢}, I = {0, {a}, {a, b}, X}. Then X1snota T, —
space.

(11) Let X be an infinite set. Write 3 = {A < X: A'is finite} U{d}.

Then X is a T - space. Let x, y € X such that x #y.

Then{x}' and{y}' are open sets in X; and xe {y}"andy € {x}' but x ¢ {x}’,

y ¢{y}'. Hence X is a T; Space.

Note: Every discrete topological space is a T; - Space.

Remark: Every subspace of a T;-Space is also a T-Space.

Proof: Let X be a Ti-space and Y be any subspace of X.

Let y;, y, where y; # y, be any two - points in Y.

v Yc X, XisaT-space, Fanopensets Gand Hin X>y; € G,y, ¢ G, y, € H,
yvig HPtA=GnNnYandB=HNY.

Then A and B are opensetsinY >y, € A,y, ¢ A,y, € Band y; ¢ B.

.. Y is a Ti-Space.

Thus every subspace of a T -Space is also a T;-Space.

Theorem: A topological space is a Ti-space if and only if each point is a closed
set.

Proof: Let X be a topological space. Assume that X is a T; space.

Let x € X. Now we show that {x} is a closed set.

To prove this, it is enough to prove {x}’ is open.

Lety €{x}'. Then y # x. Since X is a T -space and x, y € X such that x #y,
there exists neighbourhood H of y such that H does not contain x.

Now y € H < {x}'. This shows that y is an interior point of {x}’.

Hence {x}' is open.

Converse: Suppose that each point is a closed set.
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Let x, y be any two points of X such that x #y.
Put G = {y}’' and H = {x}'. By hypothesis, G and H are open sets such that x € G,
y ¢ Gandy € H, x ¢ H. Therefore, X is a T-space.

Definition: A Hausdorff space is a topological space in which each pair of
distinct points can be separated by open sets (equivalently, if x # y are distinct
points, then there exists open sets G and H such that x € G,y eH and G N H = ¢).

Result: (i) Every discrete topological space is a Hausdorff space.
Proof: Let (X, 3) be a discrete topological space.

Letx,y € Xand x #v.

Then {x}, {y} are open such that x € {x},y € {y} and {x} N {y} = ¢.
- (X, 3J) is Hausdorff space.

Result (i1) Every metric space is a Hausdorft space.

Proof: Let (X, d) be a metric space. Let x,y € X and x #y.

Then d(x, y) > 0. Let r = d(x, y).

Then Sr(x), Sr(y) are open sets, x € Sr(x),y € Sr(y) and Sr(x) N Sr(y) = ¢
2 2 2 2 2 2

(X, d) is Hausdorff space.

Result (iii): Every Hausdorff space is a T-space. But the converse need not be
true.

Proof: Let (X, J) be a Hausdorff space and x,y € X>x #y.

Then dopensets Gand Hax €e G,y e Hand G H=¢. Clearlyy ¢ Gand x ¢
H. .. Every Hausdorff space is a T; — space.

Converse need not be true. For this consider the following example.

Let X be an infinite set. Write I = {A < X: A’ is finite} U {¢}.

Then (X, J) is a T; - Space (see example).

Now we will show that X 1s not a Hausdorff space.

In a contrary way, suppose that X is a Hausdorff space.

Take x, y € X such that x # y. Since X is Hausdorff there exists neighbourhoods G
and H of x and y respectively such that G » H = ¢ (by def.).

Since G and H are non-empty open sets, we have G’ and H' are finite.
NowGNnH=¢=(GnH) =¢'=>G UH' =X.

This shows that X is finite, a contradiction. Hence X is not Hausdorff.

Result (iv): Every subspace of a Hausdorft space is a Hausdorff space.
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Proof: Let X be a Hausdorff space and Y be any subspace of X.

Let y; # y, be two - points in Y.

-+ X is Hausdorff, 3 open sets Gand Hin X > y; € G, y, € H,and G H = ¢.
PutA=GnNnYandB=HANY.

Then A and B are open sets in Y. Clearly y; € A,y, e BandAnBc G H=¢.
.. Y 1s a Hausdorft space.

Hence every subspace of a Hausdorff space is a Hausdorff space.

Theorem: The product of any non-empty class of Hausdorff spaces is Hausdorft.
Proof: Let {X;} be a non-empty class of Hausdorff spaces.

Let X = PiX; be the Product of X;’s.

Let x = {xi} and y = {yi} be any two distinct points in X.

Then x;, # y; for at least one index 1.

Since X;, is a Hausdorft space and x;, # y;, are distinct points in X;  there exists
open sets G; and H; , in X; such that x; € G;, y;, € H; and G;, N H;, = ¢.
Define A = P;A; where A; = X for i # ip and A; = G;, and B = PiB; where B; = X;
fori#ipand B;, = H;,.

Now A and B are open sets in X suchthat AnB=¢,x € Aandy € B.

Hence X 1s Hausdorft.

Theorem: In a Hausdorff space, any point and a disjoint compact subspace can be
separated by open sets. In the sense that they have disjoint neighbourhoods (that is,
if x 1s any point and if C is a compact subspace such that x ¢ C then there exists
disjoint open sets G and H such that x € G and C < H).

Proof: Let X be a Hausdorff space. Let x be any point in X, and let C be any
disjoint compact subspace. Now if y € C, then x # y (since x ¢ C). Since X is a
Hausdorff space, there exists open sets Gy and Hy such that x € Gy, y € Hy, and

Gy " Hy = ¢.

Now {Hy}y is a class of open sets such that C < U,¢ H,,. Since C is compact, there
exists a finite subclass of {Hy}, which we denote by {H,, , H,,, ..., H,, } such that
CcH, U H,U ..UH, LetG,, Gy,..,Gy be open sets which corresponds
to the sets H,, , Hy,,..,H, .PutG=N;_,Gy,and H=U_; H,,.

Now for 1 <i<n, consider G " H,, < G,, N Hy,, = ¢. (since Gy N Hy = ¢)

= G N Hy, = ¢. Therefore GNH=G N [UL, H,,| = U, [G N H,. ] = ¢.

Hence G and H are disjoint open sets such that x € G and C < H.
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Theorem: Every compact subspace of a Hausdorff space is closed.

Proof: Let C be a compact subspace of a Hausdorff space X. To prove C is closed,
it is enough to prove that C' is open.

If C' is empty then clearly it is open. We assume that C' is non-empty. Let x € C'.
Then x ¢ C. By above theorem, there exists disjoint open sets G and H such that
x € Gand C c H. Since G " H=¢, we have G < H' and H' < C’ (since C < H).
Therefore G — C' and x € G < C'. Therefore C’ is open which implies that C is
closed.

Theorem 8*: A one — to — one continuous mapping of a compact space onto a
Hausdorft space is a homeomorphism.

Proof: Let f: X — Y be a one - to - one continuous mapping of a compact metric
space X onto a Hausdorff space Y. We must show that f(G) is open in Y
whenever G is open in X. To prove this, we first show that f(F) is closed in Y
whenever F is closed in X.

If F is empty, then f(F) = ¢ and hence it is closed. Assume that F is non-empty.
Since X is compact, we have F is compact. Since f is continuous, f(F) is compact.
Therefore, by a theorem, f(F) is closed. Thus, we proved that f(F) is closed in Y
whenever F is closed in X.

If G is open in X, then G’ is closed in X. Now f(G’") is closed in Y. But

f(G") = (f(G))'. Therefore (f(G))' 1s closed in Y

= f(G) =[{f(G)}']" is open in Y. Thus, f is a homeomorphism.

COMPLETELY REGULAR SPACES AND NORMAL SPACES

Definition: A normal space is a T;-space in which each pair of disjoint closed sets
can be separted by open sets. In the sense that they have disjoint neighbourhoods.
Remark: Every normal space is Hausdorff.

Proof: Let X be a normal space. Let x and y be distinct points in X.

Now {x} and {y} are disjoint closed sets. Since X is normal, there exists disjoint
open sets G and H such that {x} < G and {y} < H.

Now G and H are disjoint neighbourhoods of x and y respectively.

Therefore, X i1s Hausdorff. Hence every normal space is Hausdorff.

Theorem: (11*) Every compact Hausdorff space is normal.

Proof: Let X be a compact Hausdorff space. Since X is Hausdorft, it is a T;-space.
Let A and B be a pair of disjoint closed sets. If either of the closed sets is empty,
we can take the empty set as a neighbourhood of it, and the full space as the
neighbourhood of the other. So, we may assume that both A and B are non-empty
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sets. Since X is compact, we have that A and B are compact sets. Let x € A. Now x
e X and B is a compact subspace such that x ¢ B. Since X is Hausdorft, we have
that x and B have disjoint neighbourhoods, say Gx and Hy respectively.
Therefore {Gy}xea, 1s a class of open sets such that A < U Gy, x € A. Since

A is compact, there exists a finite subclass of the class of {Gy}xea, Which we
denote by {Gy,, Gy,, ..., Gy, } suchthat Ac G, U Gy, U..U Gy .Let Hy ,
Hy,, ..., Hy, be the neighbourhoods of B which corresponds to Gy,» Gy, ey Gy
Put G = Uj_; Gy, and H= N[, H,.

Now G and H are neighbourhoods of A and B respectively, such that
GNH=(UL,Gy,)NH=UL (G, NH) <UL (Gy, NHy,)=0.

Therefore G N H = ¢. Hence X is normal.

n

Problem: (1*): Let X be a T, - space. Show that X is normal if and only if each
neighbourhood of a closed set F contains the closure of some neighbourhood of F
(that 1s, if O 1s a neighbourhood of F then there exists neighbourhood G of F such
that Fc Gc G < O.

Solution: Assume that X is normal. Let O be a neighbourhood of F.

Then F n O" = ¢ (since F — O). Now F and O" are disjoint closed sets.

Since X is normal, 3 disjoint open sets Gand H > F < G and O’ c H.

Since G H=¢, wehave GCc H.Now O'cH= H' c (O") =0.

Since H' is closed, we havethat G cH'. .., Fc Gc G c H' c O.

Hence F = G < G < O, and G is open.

Conversely, suppose that X has the stated property. Let A and B be disjoint closed
sets. Since AN B = ¢, we have A  B'. ie B’ is a neighbourhood of A.

Now by converse hypothesis, there exists an open set G such that Ac G < G < B
Since G — B’, we have (B'Y c G'. =B c G'.

Since G’ is a neighbourhood of B, again by converse hypothesis, there exists an
openset Hsuchthat Bc Hc H c G'.

Now consider GNH < G N H = ¢. (since H = G') = G and H are disjoint.
Thus, G and H are disjoint neighbourhoods of A and B. Hence X is normal.

URYSHONS LEMMA AND TETZE EXTENSION THEOREM

URYSOHN’S LEMMA: Let X be a normal space and let A and B be disjoint
closed subspaces of X. Then there exists continuous real valued function f on X, all
of whose values lie in the closed unit interval [0, 1] such that f(A) =0 and {f(B) = 1.
Proof: For each pair of rational numbers r, s we define an open set G, such that
r<s= G, c G, ifr<0, define G, = ¢; if r > 1, define G, = X.
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Let {r|, 12, ..., Iy, ...} be a listing of rational numbers in [0, 1] with r; = 0 and r,= 1.
Define G,, = B'.

Then G,., is a neighbourhood of A (since A N B = ¢, we have A < B).

By hypothesis (" X is normal), there exists an open set G > A < G, C G, < Gy.,.
Suppose we have defined G, , Gy, ..., Gy, _,

We now define G, as follows: Choose largest r; and smallest rj such that i, j <n
and 1; <1, <13 Now 1; < 1; = Gy, € Gy .

Ac G, c G, G,

Gy, <G, Gr, <G,y 5

G, gGT4_G4 C G, CG .C Gy CGSCG

Gr1 <G, C GrecG G, CG C Gr c Gp,C G,. .CG, C GrscG c G <G, e Grg_

Go =61 G1 < Gy;

2 2
Go =61 G161 G1cGsc Gs < Gy
__ 4+ _& 2 _2 4 & _ ) _ _
Gy €G1C G1cG1C G1 SG3C G3cGic G1 SGsC G563 < G3 =67 Grc Gy,

8 8 4 4 8 8 2 2 8 8 4 4 8 8
Gr1 gGmg G4- < Gr3g rss Gr5§ 55 Grz
_n 4 = = _ _ _ _

6 G 6 ,C 04 S6r, Gy, S G7‘3g Grngrsg Grngrsg 5 gGﬂ)g G7”9g

Again, by hypothesis, 3 an open set G;. >

G, € G, € G, C Gy ;-
By induction for each rational number r, 3 an open set G;. > 1y < In = Grn c Gy
Define f: X — R by f(x) = Inf {r: x € G,}.
We now show that f(x) € [0, 1] for all x € X.
Let x be any arbitrary point in X.
By the definition of G,’s, x € G; = r > 0. Therefore f(x) > 0.
If f(x) > 1, then choose a rational number ‘r’ such that f(x) >r> 1.
Nowr>1= G;=X. Letx € X = x € G; = f(x) <r, a contradiction to f(x) >r.
Thus, for x € X, 0 < f(x) < 1. Therefore f(x) € [0, 1].
Ifa e A, thena e G, = f(a) <1 = f(a) <0 =1, = f(a) = 0 (since f(a) > 0).
Therefore f(A) =0. Suppose b € B. Thenb € G, =r>1, forif r <1 =r, then
G, Gy, which = b € G,,= B’, a contradiction.

", f(b) > 1. But f(b) < 1 (since f(x) < 1 for all x). Hence f(b) = 1.
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Since b € B is arbitrary, we have that f(B) = 1.

We show that f is continuous: All the intervals of the form (a, b) where a and b are
real, form an open base for the real number system R.

.., to show f is continuous, it suffices to show f ~1(a, b) is open, for any reals a, b.
For this, first we show that f(x) <b < x € G, for some r <b. Suppose f(x) <b.
By def. of f(x) there exists a rational number r such that x € G;, and r <b.
Conversely suppose that x € G, for some r <b. Then f(x) <randr<b = f(x) <b.
Consider f~1[(—o0,b)] = {x € X: f(X) <b} = Uy<p G = f1[(—0, b)] is open.
Similarly, we can prove that f~1[(a, ©)] = U,s4(G,)’.

Therefore f~1[(a, )] is open. Now f~[(a, b)] = f~1[(—o0,b)] 0 f~1[(a,0)].
Hence f~1[(a, b)] is open. Thus, fis continuous.

Definition: A completely regular space is a T;-space X with the property that if x is
any point and ‘F’ is any closed subspace which does not contain x, then

there exists a real continuous function f on X, all of whose values lie in [0, 1] such
that f(x) =0 and f(F) = 1.

Theorem (1*): Every normal space is completely regular.

Proof: Let X be a normal space. Then X is Tj-space. Let x € X and F be any
closed subspace of X which does not contain x. Put A = {x}. Now A and F are
disjoint closed subspaces. By Uryshon’s lemma, there exists a continuous real
function f, all of whose values lie in the closed interval [0, 1] such that f(A) =0,
f(F) = 1. Therefore f(x) = 0 & f(F) = 1. Hence X is completely regular.

Theorem: Every completely regular space is Hausdroff.

Proof: Let X be a completely regular space.

Let x and y be any two distinct elements in X.

Put F = {y}. Now x € X and F is a closed subspace, which does not contain x.
Since X is completely regular, there exists a continuous function f: X— R such that
f(x) =0 and f(F) = 1. Let r be any real number such that 0 <r <.

Now {z € X: f{z) >}, and {z € X: f(z) <r} are disjoint neighbourhoods of ‘y’
and ‘x’ respectively. Therefore, X is Hausdorff.

Theorem: Every subspace of a completely regular space is completely regular.
Proof: Let X be a completely regular space and let Y be a subspace of X.

Letx € Y, and F be a closed subspace of Y, which does not contain x.

Then F =Y m H, where H is a closed subspace of X. Also, x ¢ H. Since X is
completely regular, there exists a continuous function f: X — R, all of whose
values lie in [0, 1], such that f(x) = 0 and f{H) = 1. Define ‘g’ to be the restriction
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of fto Y. Then g: Y — R is continuous and g(y) =f(y) € [0, 1] forally € Y.
Since x € Y, we have 0 = f(x) = g(x) > g(x)=0. Nowy e F=YH
=vyeYandy € H= g(y) =1f(y) and f(y) = 1 = g(y) = 1. Therefore g(F) = 1.
Hence Y is completely regular.

Theorem: (9%) (TIETZE EXTENSION THEOREM)

Let X be a normal space ‘F’ a closed subspace of X, and f a continuous real
function defined on F whose values lie in the closed interval [a, b]. Then f has a
continuous extension f! defined on all of X whose values also lie in [a, b].
Proof: Step (i): If a = b then the function f! defined by f!(x) =a forallx € X is a
continuous function of X into [a, b] such that f'(x) = f(x) for all x € F.

Step (i1): Suppose a <b. Assume that [a, b] is the smallest closed interval

containing the range of f and without loss of generalitya=—1and b = 1.
Write fy = f. Then the domain of f; is F.

Now we define two subsets A and By of F as Ay = {xeF fo(x) < — g} and

By = {xeF tfo(x) = %} Since [ 1, 1] is the smallest closed interval containing the
range of fy, we have A and By are non-empty. Clearly Ay and B are disjoint.
Since f, is continuous, we have that Ag = f, " [— 1, %] and Bo=f, " E, 1] are

closed in F. Since F is a closed subspace of X, we have A and By are closed in X.
[Now X is a normal space, Ay, By are disjoint closed subspaces of X, and

[— % , %] is a closed interval.] Then by the Uryshon’s lemma, there exists continuous
function gop: X — [—%,ﬂ such that go(Ao) = —% and go(By) = %
Write f) = fy — go. Then fj is a continuous function of F and |f; (x)] < g VxePF

Next, we define two subsets A; and B; of Fas A; = {xeF fi(x) < (— %) (g)}} and

B, = {xeF f1(x) = G) (é)}} Then A, and B, are non-empty disjoint closed

subsets of F and hence A, and B, are disjoint closed subspaces of X.
Since X is normal by Urysohn’s lemma, there exists a continuous function

8: X {(=3)(5) () G)] >ean=(=3) (5) - and @)= (5) (5)-
Write £, = f; — g; = fo — (g0 + g1). Then f; 1s a continuous function on F, and

2
()] < G) forall x e F.

If we continue this process, we get a sequence {f,} of continuous functions defined
on F and {g,} of continuous functions defined on X with the property that:

fi=fo—(go+g +..+g 1) and |f,(x)] < (g)nv x € Fand |g,(x)]| < G) (g)n
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Step (ii1). Write s, = go + g1 +... + g, 1. Then {s,} is a sequence of partial sums of
an infinite series of functions of C(X, R).

C(X, R) is complete and | g, (x)| < (%) (g)n

n
Now Yoo G) G) = 1. By Cauchy’s criterion for uniform convergence, ). g, (x)
converges uniformly to a bounded continuous real function f! defined on X such
that |f1(x)| < 1. That is, {s,} converges uniformly to f' on X.

ie,, lims, = on X ... (i).

. 2\" . .. Y
Since the sequence {(5) } converges to 0, for € > 0 there exists a positive integer

n
N such that (g) <gforalln>N. = |f,(x)| <eforalln>Nand forall x € F

= f, > O uniformly on F = lim s, =fyon F ... {i1)
From (i) and (ii) fo=f' on F.

That is, f'/F = f,, that is, f'/F = f.

This shows that f! is a continuous extension of f on X.

Note: If X is a normal space which contains only a finite number of points, then
the topology on X is the discrete topology.

Problem: Deduce the Urysohn’s lemma from Tietze extension theorem.

Proof: Let A, B be two disjoint closed subsets of a normal space X. Since A, B are
closed, we have that F = A U B is also a closed subset of X.

Define f: F — [0, 1] by f(a) =0 for alla € A and f(b) =1 for all b € B.

Since A N B = ¢, we have that f'1s well defined. Clearly fis a constant function on
A and also on B. So, f'is continuous on both A and B and hence f is continuous on
F=A U B (since An B=¢).

Now by Tietze extension theorem, there exists a continuous function f':X — [0, 1]
such that f' is an extension of f. Now f' (A)=f(A)=0and f' (B)=f(B)=1.
This completes the proof.

THE URYSOHN’S IMBEDDING THEOREM

Definition: A topological space X is said to be metrizable if and only if there exists
a metric ‘d’ for X which induces the same topology as the topology of X.

Note: If X is a metric space with finite number of points then the topology on X
induced by the given metric is the discrete topology on X.

Verification: Let (X, d) be a metric space with finite number of points.

So, take X = {x1, X2, ..., Xn}. Write r = min {d(xi, Xj): 1#]J, 1 £1<n; 1 <j<n}.
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Then for any x; € X, S«(xi) = {x;} which is an open set.
This shows that singleton sets are open in X.
Hence the topology on X is the discrete topology on X.

URYSOHN’S IMBEDDING THEOREM: (3%*)

If X is a second countable normal space then there exists a homeomorphism f of X

onto a subspace of R*, and therefore X is metrizable.

Proof: we may assume that X has infinitely many points, for otherwise it would be

finite and discrete, and clearly homeomorphic to any subspace of R* with the same

number of points.

Since X is second countable, X has a countable infinite open base B = {Gy, Go, ...}

whose members are different from ¢ and X. Let G; € B and x € G;. Then {x} is a

closed set. Since X i1s normal, there exists G; € B such that x € G; Ci c G;.

So, for a given Gj and x € G;j, we have a pair (G;, G;) of open sets in B such that G;

c G;. The set of all ordered pairs (G;, Gj) 1s countably infinite.

So, we can arrange them as a sequence Py, P», ..., for any arbitrary n, P, = (G, Gj).

By Urysohn’s lemma there exist continuous functions f,: X — [0, 1] such that
f.(G;) = 0 and £,(Gy) = 1.

Now define f:X —R” by setting f(x) = {fi(x), B (x) f3§x) ) for all x e X.

For any 1ntegern >1,fu(x) e [0,1]=0< fn(X) < 1= ® fn(X) <2
%} Jn( ) o) 1
= Zn=1 nx < Zn=1 2

2
U "r(lx)l is also convergent.

. 1 .
Since Y. o-q — is convergent, we have Vg

So, f(x) = {fi(x), fzgx), fg;x), ...} € R”. Itis clear that f: X — R™ is a function.

Next we will show that f'is one-one: Let x, y € X such that x #y.

Since X i1sa Ty - space, 3 Gj € Bax € Gjandy ¢ G;j. Thatis, x € Gjandy € Gj'.
By the above fact we have an ordered pair P, = (G, G;) such that x € G; c G; < G;.
= £(G;) = 0 and £,(G") = 1. So, fu(x) = 0 and f,(y) = 1.

= fu(x) # fu(y) = f(x) # f(y). Therefore, fis 1 — 1.

Now we show that fis continuous: Let x € X, and € > 0.

) 1. e 1 g2 )
Since Z,‘le — 1s convergent, 3 a positive integer N > Z;‘f; N+1732 < T ..(1).

Forn=1,2,..,N, f, is continuous = 3 an open set H, containing x 5y € H,
= 1,60 - )] <= Hefor=1,2,.,N

= M| <—...(11) forn=1,2, .., N.
n 2N
Write G=NN_, H,,. Then G is an open set containing X.
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Lety € G. Consider ||f (x) — fFO)II* = L7

fn()=fn() fn@)|? oo
<yN_4 $| +Zn Nt+1 || t Xn=n+1

n
2 1 2
<Zﬁ:1§N Yin= N+17, +2n N+13z2 <%+%+%:€2-
= If () = fFOII? <e2= IIf(x) fOll<e.So,ye G=f(x) - fWll <e.
This shows that f is continuous at x.
Since x is arbitrary, we have that f is continuous on X.
Now we show that f'is an open mapping: Let G; be any basic open set.
Now we claim that f(G;) is open in f(X).
Let z € f(G;j) = z = f(x) for some x € G;.
x € Gj= There exists G; € B such that x € G; Gi c G
Write B, = (G, G;) = fn,(G)) =0, f,(G;") = 1. Choose € such that 0 < & < zi

No
Consider S.(z), the open set in R®. Then S, (z) N f(X) is open in f(X).

o 2172
Let f(y) € 5.(2) N FO0) = IIf () = FOIl < = | iz, [POL0] e
fn(x)—fn(y)|2 < 2 <(L)2
2n,

frng(X)— fno(Y)| < _:> |fn0(x) fno(y)| < -

= |fn0(y)| <3 (smce x € Giand f, (G;) =0). =y € G;. (Ify ¢ G;, theny e
= fn,(¥) = 1= 1<’)2a contradiction). So, y € G; = f(y) € f(G)).

This shows that Se(z) N f(X) < f(G;j): Thus, we have an open set G = S¢(z) N f(X)
in f(X) such that z € G c f(G;) = f(G;) 1s open in f(X).

Consequently f: X — f(X) is open mapping.

Hence X is homeomorphic to a subspace f(X) of R*. Thus, X is metrizable.
STONE-CECH COMPACTIFICATION.

Theorem: Let X be an arbitrary completely regular space. Then there exists a
compact Hausdorff space B(X) with the following properties: (i) X is dense
subspace of B(X); (i) every bounded continuous real function defined on X has a
unique extension to a bounded continuous real function defined on B(X).

fn(x)—fn(J/)lz
n

mr

= Yine1

fno(x) fro (y)| (E)Z N




