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302: LEBESGUE THEORY 

e-Content 

UNIT: I 

OUTER MEASURE 

By K. C. Tammi Raju, Lecturer in Mathematics. DNR College (A) 

Definition: Let I be an interval in ℝ. The length l(I) of I is defined by 

l(I) = {
+ ∞ 𝑖𝑓 𝐼 𝑖𝑠 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑

𝑏 − 𝑎 𝑖𝑓 𝐼 = (𝑎,  𝑏)𝑜𝑟 (𝑎,  𝑏],  𝑜𝑟 [𝑎, 𝑏)𝑜𝑟 [𝑎, 𝑏]
 

 

Definition: Let A be any subset of real numbers.  

Let {In} be a countable collection of open intervals that cover A.  

Let l(In) be the length of the interval In.  

Outer measure of A is defined as 

m*(A) = 𝑖𝑛𝑓
𝐴⊆⋃𝐼𝑛

{∑ 𝑙(𝐼𝑛)∞
𝑛=1 }. 

ie. m*(A) = inf {∑ 𝑙(𝐼𝑛)∞
𝑛=1 /𝐴 ⊆ ⋃ 𝐼𝑛 𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝐼𝑛𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙∞

𝑛=1 }. 

 

Observations:  

(i) If A  I, where I is an open interval, then m*(A)  l(I). 

(ii) For  > 0  a sequence of open intervals {In}  A  ⋃ 𝐼𝑛𝑛  and                                                               

∑ 𝑙(𝐼𝑛)𝑛 < 𝑚 ∗ (𝐴) +  

 

Properties:  

(i) m*(A)  0  A  ℝ. 

(ii) m*() = 0 

(iii)  If A  B then m*(A)  m*(B) 

(iv)  m*({a}) = 0  a ℝ. 

Proof:  (i)  Let A  ℝ. 𝐿𝑒𝑡 𝐴 ⊆ ⋃ 𝐼𝑛 𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝐼𝑛𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙}∞
𝑛=1  
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Then ∑ 𝑙(In)∞
n=1   0  

m*(A) = 𝑖𝑛𝑓
𝐴⊆⋃𝐼𝑛

{∑ 𝑙(𝐼𝑛)∞
𝑛=1 } 0. 

(ii) By (i) m*()  0…(1) 

 Clearly   (−
1

𝑛
,  

1

𝑛
)  n ℕ 

𝑚∗() 𝑙 (−
1

𝑛
,  

1

𝑛
)   nℕ 

Ie. 𝑚∗()  
2

𝑛
  n ℕ 

 𝑚 ∗ ()  0 𝑎𝑠
2

𝑛
 → 0 as n → …(2) 

From (1) and (2) 

From (1) and (2) m*() = 0. 

(iii) 𝐿𝑒𝑡 {𝐼𝑛} 𝑏𝑒 𝑎 𝑠𝑒𝑞  𝑜𝑓 𝑜𝑝𝑒𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠  𝐵 ⊆ ⋃ 𝐼𝑛 ∞
𝑛=1  

𝑇ℎ𝑒𝑛 𝐴 ⊆ ⋃ 𝐼𝑛 

∞

𝑛=1

 

m*(A)  ∑ 𝑙(In)  {(In)} with B⋃ 𝐼𝑛
∞
n=1    

m*(A)  𝑖𝑛𝑓
𝐵⊆⋃𝐼𝑛

{∑ 𝑙(𝐼𝑛)∞
𝑛=1 } = m*(B). 

(iv) By (i) m*({a})  0…(1) 

Clearly {a}  (𝑎 −
1

𝑛
,  𝑎 +

1

𝑛
)  n ℕ 

𝑚 ∗ ({𝑎})  𝑙 (𝑎 −
1

𝑛
,  𝑎 +

1

𝑛
)   n ℕ 

Ie. 𝑚 ∗ ({𝑎}) 
2

 𝑛
  n  ℕ 

 𝑚 ∗ ({𝑎})  0 𝑎𝑠
2

𝑛
→ 0 as n →  …(2) 

From (1) and (2) m*({a}) = 0 

 

Proposition: m* is countably sub additive. Ie. If {An} is a countable collection of 

subsets of real numbers, then 𝑚∗(⋃ 𝐴𝑛) ≤ ∑ 𝑚∗(𝐴𝑛). 

Proof: Let {An} is a countable collection of subsets of real numbers.  

If 𝑚∗(𝐴𝑛) =  for some n, then the inequality is trivial. 
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Suppose 𝑚∗(𝐴𝑛) <   n. Let  > 0. Fix n. Then  a countable collection of open 

intervals, {𝐼𝑛,𝑖} such that An  ⋃ 𝐼𝑛,𝑖𝑖  and ∑ 𝑙(𝐼𝑛,𝑖𝑖 ) < m*(An) + 
𝜀

2𝑛
. 

Now ⋃ 𝐼𝑛,𝑖𝑛,𝑖  = ⋃ (⋃ 𝐼𝑛,𝑖𝑖 )𝑛  is the union of a countable collection of open intervals. 

⋃ 𝐴𝑛𝑛   ⋃ (⋃ 𝐼𝑛,𝑖𝑖 )𝑛  

 By definition, m*(⋃ 𝐴𝑛𝑛 )  ∑ 𝑙(𝐼𝑛,𝑖𝑛,𝑖 ) = ∑ [∑ 𝑙(𝐼𝑛,𝑖𝑖 )]𝑛   ∑ {𝑚∗(𝐴𝑛)  + 
𝜀

2𝑛
. }𝑛                          

= ∑ {𝑚∗(𝐴𝑛)}𝑛  + ∑
𝜀

2𝑛𝑛  = ∑ {𝑚∗(𝐴𝑛)}𝑛  + ∑
1

2𝑛𝑛  = ∑ {𝑚∗(𝐴𝑛)}𝑛  + . 

 m*(⋃ 𝐴𝑛𝑛 )  ∑ {𝑚∗(𝐴𝑛)}𝑛  +    > 0. 

Hence 𝑚∗(⋃ 𝐴𝑛) ≤ ∑ 𝑚∗(𝐴𝑛). 

 

Corollary: If A is countable then m*(A) = 0. 

Proof: Let A = {a1, a2, … } be a countable set in ℝ. 

Then A = ⋃ {𝑎𝑛}∞
𝑛=1 . 

 0  m*(A)  ∑ 𝑚∗({𝑎𝑛})∞
𝑛=1  = 0 since m*({an}) = 0. 

 

Corollary: The set [a, b] is uncountable for all a, b  ℝ with a < b. 

Proof: If possible suppose [a, b] is countable for a, b  ℝ with a < b.  

Then by above corollary m*[a, b] = 0. 

But m*[a, b] = l([a, b]) = b – a  0 which is a contradiction.  

This is due to our assumption [a, b] is countable. 

our assumption is wrong. 

Hence the set [a, b] is uncountable for all a, b  ℝ with a < b.   

 

Proposition: Given any set A and any  > 0, (i) there is an open set G such that A  G             

and 𝑚∗(𝐺) < 𝑚∗(𝐴) + 𝜀. (ii) There is a G  G such that A  G and 𝑚∗(𝐴) = 𝑚∗(𝐺). 

Proof: Let A be any set and  > 0. 

Case (i): Suppose m*(A) = . Take G = ℝ. Then m*(G) = m*( ℝ) =  = m*(A). 

Case (ii): Assume m*(A) < .  



4 
 

For  > 0  a countable collection of open intervals {In}  A  ⋃ 𝐼𝑛𝑛  and                             

∑ 𝑙(𝐼𝑛)𝑛 < 𝑚∗(𝐴) + . Take G = ⋃ 𝐼𝑛𝑛 . Then G is open and A  G.                                                                   

Also m*(G) = m*(⋃ 𝐼𝑛𝑛  )  ∑ 𝑚∗(𝐼𝑛)𝑛  = ∑ 𝑙(𝐼𝑛)𝑛  < m*(A) + . 

(ii) If m*(A) =  then it is true as in (i). 

Suppose m*(A) < . 

Take  = 
1

𝑛
 . Then for each positive integer n,   an open set Gn such that A  Gn             

and 𝑚∗(𝐺𝑛) < 𝑚∗(𝐴) +
1

𝑛
. 

Put G =  Gn. Then G is a G set and A  G.  

So m*(A)  m*(G) … (1) 

Also m*(G)  m*(Gn) (since G  Gn) < 𝑚∗(𝐴) +
1

𝑛
  n  ℕ. 

 m*(G)  m*(A) … (2). 

From (1) and (2) m*(A) = m*(G). 

 

Note: (i) Let A be a set of all rational numbers between 0 and 1. Let {Ii}, 1  i  n be a 

finite collection of open intervals that covers A. Then  𝑙(𝐼𝑛)  1 

         (ii) m* is translation invariant. 

         (iii) If m*(A) = 0 then m*(A B) = m*(B). 

Proof: (i) Given A = {r  Q / r  (0, 1)} and A  ⋃ 𝐼𝑖
𝑛
𝑖=1  

 �̅� ⊆ ⋃ 𝐼𝑖
𝑛
𝑖=1

̅̅ ̅̅ ̅̅ ̅̅  = ⋃ 𝐼�̅�
𝑛
𝑖=1   

1 = l [0, 1] = m*[0,1] = m*(�̅�)  m*(⋃ 𝐼�̅�
𝑛
𝑖=1 )  ∑ 𝑚∗(𝐼�̅�

𝑛
𝑖=1 ) = ∑ 𝑙(𝐼�̅�

𝑛
𝑖=1 ) = ∑ 𝑙(𝐼𝑖

𝑛
𝑖=1 ) 

(ii) Let  > 0. Then  a countable collection of open intervals {In}  A  ⋃ 𝐼𝑛𝑛  and 

∑ 𝑙(𝐼𝑛)𝑛 < 𝑚 ∗ (𝐴) + . 

Then A + x  (⋃ 𝐼𝑛)𝑛  + x = ⋃ (𝐼𝑛 + 𝑥)𝑛  

 m*(A + x)   𝑙(𝐼𝑛 + 𝑥) =  𝑙(𝐼𝑛) < m*(A) +    > 0 

 m*(A + x)  m*(A)…(1) 

Put B = A + x. Then by above argument m*(B + - x)  m*(B) 

Now m*(A) = m*(A + x + -x) = m*(B + -x)  m*(B) = m*(A + x) 



5 
 

Ie. m*(A)  m*(A + x)… (2) 

From (1) and (2) m*(A + x) = m*(A)  

(iii) Suppose m*(A) = 0.  

m*(B)  m*(A B)  m*(A) + m*(B) = 0 + m*(B) = m*(B) 

 m*(A B) = m*(B) if m*(A) = 0. 

 

Proposition: The outer measure of an interval is its length. 

Proof: Let I be an interval.  

Case (i) : Let I be a closed and finite interval say [a, b] where a, b  ℝ.  

Then I  (a – , b + )   > 0. 

m*(I)  l(a – , b + )  = b – a + 2   > 0. 

 m*(I)  b – a … (1) 

Let {Ii} be a countable collection of open intervals  I   Ii.  

Then I is compact.  

 a finite subcover {I1, I2, …, In} of {Ii}  I  I1  I2 … In. 

If Ik is infinite interval for some k, then ∑ 𝐼𝑗
𝑛
𝑗=1 =   b – a.  

So assume that Ii is finite interval say (ai, bi) for i = 1, 2, …, n. 

Then a  I  ⋃ 𝐼𝑖
𝑛
𝑖=1  

 a  Ij for some j.  

W.l.g. assume that a  I1 = (a1, b1). Ie. a1 < a < b1. 

Then either b < b1 or b1  b.      

Assume b < b1. Then b – a  b1 – a1 = l(I1)  ∑ 𝐼𝑗
𝑛
𝑗=1   ∑ 𝐼𝑗


𝑗=1 .  

Suppose b1  b. Then b1  [a, b] = I  ⋃ 𝐼𝑖
𝑛
𝑖=1  

W. l. g. assume that b1  I2 = (a2, b2). Ie. a2 < b1 < b2. 

Again either b < b2 or b2  b.  

If b < b2 then l(I1) + l(I2) = b1 – a1 + b2 – a2 = b2 – (a2 – b1) – a1  b2 – a1  b – a.  

 b – a  l(I1) + l(I2)  ∑ 𝐼𝑗
𝑛
𝑗=1   ∑ 𝐼𝑗


𝑗=1 . 

Suppose b2  b. Then b2  [a, b] = I  ⋃ 𝐼𝑖
𝑛
𝑖=1 . 
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W. l. g. assume that b2  I3 = (a3, b3). Ie a3 < b2 < b3. 

Continue this process. It will terminate in a finite number of steps. Ie.  k  n  b < bk.  

Then we have b – a  l(I1) + l(I2) + … + l(Ik)  ∑ 𝑙(𝐼𝑗
𝑛
𝑗=1 )  ∑ 𝑙(𝐼𝑗)

𝑗=1 .  

 b – a is a lower bound of {∑ 𝑙(𝐼𝑛)∞
𝑛=1 : 𝐼  𝐼𝑛}  

 b – a  𝑖𝑛𝑓
𝐼⊆⋃𝐼𝑛

{∑ 𝑙(𝐼𝑛)∞
𝑛=1 } = m*(I)… (2). 

From (i) and (ii) m*(I) = b – a.  

Case (ii): Let I be any finite interval. 

Let  > 0. 

Then  a closed interval J  I  l(J)  l(I) – . 

 l(I) –   l(J) = m*(J)  m*(I)  m*(𝐼)̅ = l(𝐼)̅ = l(I)   > 0. 

Ie.  l(I)  m*(I)  l(I)  m*(I) = l(I). 

Case (iii): Let I be an infinite interval. 

Let  > 0. 

Then  a closed interval J  I  l(J) = . 

 m*(I)  m*(J) = l(J) =    > 0. 

 m*(I) =  = l(I). 

Hence the proposition. 

  

MEASURABLE SETS AND LEBESGUE MEASURE. 

 

Definition: A set E is said to be measurable if for each set A we have                                     

m*(A) = m*(A  E) + m*(A  �̅�). 

 

Remark: Let E  ℝ. (i) A set E is measurable if for each set A  ℝ  we have                         

m*(A)   m*(A  E) + m*(A  �̅�). 

(ii) If E is measurable then �̅� is measurable. 

(iii)  and ℝ are measurable. 

Proof: (i) For each set A  ℝ, let m*(A)   m*(A  E) + m*(A  �̅�)...(1) 
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Clearly A = A  ℝ = A  (E  �̅�) = (A  E)  (A  �̅�).  

m*(A)  m*(A  E) + m*(A  �̅�)...(2) 

From (1) and (2) m*(A) = m*(A  E) + m*(A  �̅�)  

Hence E is measurable. 

(ii) Let E be a measurable set.  

Let A be any set of real numbers. 

Then m*(A) = m*(A  E) + m*(A  �̅�). 

                    = m*(A  �̅̅�) + m*(A  �̅�). 

 m*(A) =  m*(A  �̅�) + m*(A  �̅̅�)  A ( ℝ) 

 �̅� is measurable 

Hence �̅� is measurable whenever E is measurable. 

(iii) For any set A, we have                                                                                                      

m*(A  ) + m*(A  ̅) = m*() + m*(A  ℝ) = 0 + m*(A) = m*(A). 

Ie. m*(A) = m*(A  ) + m*(A  ̅)  A  ℝ.  

Hence  is measurable. 

Since  is measurable, by (ii) ̅ is measurable. Ie. ℝ is measurable. 

 

Lemma: If, for a set E, m*(E) = 0 then E is measurable. ie. a set of measure zero is 

measurable. 

Proof: Let m*(E) = 0 for a set E and A be any set of real numbers. 

 Since A  E  E, m*(A  E)  m*(E) = 0. 

 m*(A  E) = 0. 

Again m*(A  �̅�)  m*(A) since A  �̅�  A. 

 m*(A  E) + m*(A  �̅�) = 0 + m*(A) = m*(A). 

Ie. m*(A) = m*(A  E) + m*(A  �̅�)  A ( ℝ). 

 E is measurable. 

Hence E is measurable if m*(E) = 0. 

 

Lemma: If E1 and E2 are measurable then so is E1  E2. 
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Proof: Let E1 and E2 be any two measurable subsets of real numbers. 

Let A be any set of real numbers. 

Then clearly A  (E1  E2) = (A  E1)  (A  E2  𝐸1
̅̅ ̅). 

 m*[A  (E1  E2)]  m* (A  E1) + m* (A  E2  𝐸1
̅̅ ̅) 

So m*[A  (E1  E2)] + m*[A  E1  E2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]  

         m* (A  E1) + m* (A  E2  𝐸1
̅̅ ̅) + m*[A  E1

̅̅ ̅̅    E2
̅̅ ̅̅ ]  

        = m* (A  E1) + m* (A   𝐸1
̅̅ ̅) = m*(A). 

 m*(A)  m*[A  (E1  E2)] + m*[A  E1  E2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]   A ( ℝ). 

 E1  E2 is measurable. 

Hence E1  E2 is measurable if E1 and E2 are measurable. 

Note: If E1, E2, ..., En are measurable then ⋃ 𝐸𝑖
𝑛
𝑖=1  is measurable.  

 

Corollary: The family 𝔐 of measurable sets is an algebra of sets. 

Proof:   𝔐.  

 𝔐  . 

E1  E2  𝔐 whenever E1, E2  𝔐.                                                                                                     

�̅�  𝔐 whenever E  𝔐. 

Hence 𝔐 is an algebra of sets. 

 

Lemma: Let A be any set, and E1, E2, ..., En be a finite sequence of pair wise disjoint 

measurable sets. Then 𝑚∗(𝐴 ∩ ⋃ 𝐸𝑖
𝑛
𝑖=1 ) = ∑ 𝑚∗(𝐴 ∩ 𝐸𝑖)𝑛

𝑖=1 ...(I) 

Proof: If n = 1, then the statement (I) is clearly true. 

Let n > 1 and assume that (I) is true for n – 1. 

viz. we assume that 

𝑚∗ (𝐴 ∩ ⋃ 𝐸𝑖

𝑛−1

𝑖=1

) = ∑ 𝑚∗(𝐴 ∩ 𝐸𝑖)

𝑛−1

𝑖=1

 

whenever {E1, E2, ... En-1}is a finite sequence of pair wise disjoint measurable sets. 

Let {E1, E2, ... En} be a finite sequence of pair wise disjoint measurable sets. 

Observe that Ei  𝐸𝑛
̅̅ ̅= Ei for 1  i  n – 1, and  for i = n. 
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*Since Ei  En =  for 1  i  n – 1, Ei  𝐸𝑛
̅̅ ̅ so that Ei  𝐸𝑛

̅̅ ̅= Ei for 1  i  n – 1, and  

for i = n. 

 (⋃ 𝐸𝑖
𝑛
𝑖=1 )𝐸𝑛

̅̅ ̅= ⋃ (𝐸𝑖
𝑛
𝑖=1 ∩ 𝐸𝑛

̅̅ ̅)  = ⋃ 𝐸𝑖
𝑛−1
𝑖=1   and (⋃ 𝐸𝑖) ∩ 𝐸𝑛

𝑛
𝑖=1  = En. 

Since En is measurable we have  

𝑚∗ (𝐴 ∩ ⋃ 𝐸𝑖

𝑛

𝑖=1

) = 𝑚∗ {(𝐴 ∩ ⋃ 𝐸𝑖

𝑛

𝑖=1

) ∩ 𝐸𝑛} + 𝑚∗ {(𝐴 ∩ ⋃ 𝐸𝑖

𝑛

𝑖=1

) ∩ 𝐸𝑛
̅̅ ̅}

= 𝑚∗(𝐴 ∩ 𝐸𝑛) + 𝑚∗ (𝐴 ∩ ⋃ 𝐸𝑖

𝑛−1

𝑖=1

) == 𝑚∗(𝐴 ∩ 𝐸𝑛) + ∑ 𝑚∗(𝐴 ∩ 𝐸𝑖)

𝑛−1

𝑖=1

=  ∑ 𝑚∗(𝐴 ∩ 𝐸𝑖)

𝑛

𝑖=1

 

Ie. (I) is true for n. 

Hence by induction 𝑚∗(𝐴 ∩ ⋃ 𝐸𝑖
𝑛
𝑖=1 ) = ∑ 𝑚∗(𝐴 ∩ 𝐸𝑖)𝑛

𝑖=1  for all integral values of n 

whenever {E1, E2, ... En}is a finite sequence of pair wise disjoint measurable sets. 

 

Theorem:  The collection 𝔐 of all measurable sets is a σ - algebra of sets. 

Proof:  𝔐   since   𝔐. 

Let E  𝔐 Then �̅� is measurable so that �̅�  𝔐. 

Let {Ei} be a countable collection of measurable sets and E = ⋃ 𝐸𝑖
∞
𝑖=1 . 

Then  a disjoint sequence {Fi} of measurable sets such that ⋃ 𝐸𝑖
∞
𝑖=1 = ⋃ 𝐹𝑖

∞
𝑖=1   

Put Gn = ⋃ 𝐹𝑖
𝑛
𝑖=1  for n = 1, 2, ... 

Then Gn  𝔐 for all n. 

Also Gn = ⋃ 𝐹𝑖
𝑛
𝑖=1  = ⋃ 𝐸𝑖

𝑛
𝑖=1 ⊆ ⋃ 𝐸𝑖

∞
𝑖=1 = E 

 𝐺𝑛
̅̅ ̅ ⊇ �̅�  A   𝐺𝑛

̅̅ ̅ ⊇ 𝐴  �̅� ...(1). 

And since A  E = A  F = A  ⋃ 𝐹𝑖
∞
𝑖=1 =  ⋃ (𝐴  𝐹𝑖)∞

𝑖=1 ,   

m*(A  E)  ∑ 𝑚∗(𝐴 ∩ 𝐹𝑖)∞
𝑖=1  ... (2). 

 For any set A, m*(A) = 𝑚∗(𝐴 ∩ 𝐺𝑛) + m* (A   𝐺𝑛
̅̅ ̅) 

 𝑚∗(𝐴 ∩ 𝐺𝑛) + m* (A   �̅�) by (1)  

= 𝑚∗(𝐴 ∩ ⋃ 𝐹𝑖
𝑛
𝑖=1  ) + m* (A   �̅�) = ∑ 𝑚∗(𝐴 ∩ 𝐹𝑖)𝑛

𝑖=1  + m* (A   �̅�). 
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Viz. m*(A)   ∑ 𝑚∗(𝐴 ∩ 𝐹𝑖)𝑛
𝑖=1  + m* (A   �̅�)  n. 

 m*(A)   ∑ 𝑚∗(𝐴 ∩ 𝐹𝑖)∞
𝑖=1  + m* (A   �̅�)  

                   m*(A  E) + m*(A  �̅�) by (2). 

Ie. m*(A)  m*(A  E) + m*(A  �̅�)  A  ℝ. 

 ⋃ 𝐸𝑖
∞
𝑖=1  is measurable if {Ei} is a countable collection of measurable sets. 

Hence 𝔐 is a  - algebra of sets. 

  

Lemma: The interval (a, ∞) is measurable. 

Proof: Let A be any set. Let A1 = A (a, ), A2 = A  (𝑎, ∞)̅̅ ̅̅ ̅̅ ̅̅   = A  (– , a]. 

Claim: m*(A1) + m*(A2)  m*(A). 

Let m*(A) <  and  > 0. Then  a countable collection { In } of open intervals such 

that A  ⋃ 𝐼𝑛
∞
𝑛=1  and ∑ 𝑙(𝐼𝑛)∞

𝑛=1   m*(A) +  

Let In = In  (a, ) and In = In  (– , a] 

Then In and In are either intervals or empty.  

Also In = In  In and In  In = . 

 l(In) = l(In) + l(In)  = m*(In) + m*(In) ...(1) 

But A1 = A  (a, )  ⋃ 𝐼𝑛
∞
𝑛=1   (a, ) = ⋃ {𝐼𝑛 ∩ (𝑎, ∞)}∞

𝑛=1  = ⋃ 𝐼𝑛
∞
𝑛=1 ′ 

 m*(A1)  ∑ 𝑚∗(𝐼𝑛
′ )∞

𝑖=1 ....(2). 

Similarly A2 ⋃ 𝐼𝑛
∞
𝑛=1 " and m*(A2)  ∑ 𝑚∗(In)

∞
𝑖=1 ....(3). 

From (2) and (3), m*(A1) + m*(A2)  ∑ 𝑚∗(𝐼𝑛
′ )∞

𝑖=1  + ∑ 𝑚∗(In)
∞
𝑖=1   

= ∑ {𝑚∗(𝐼𝑛
′ ) + 𝑚∗(In)

∞
𝑖=1 } = ∑ 𝑙(𝐼𝑛)∞

𝑛=1   m*(A) + . 

Ie m*(A1) + m*(A2)  m*(A) +    > 0 

 The interval (a, ∞) is measurable. 

 

Theorem: Every Borel set is measurable. In particular each open set and closed set is 

measurable. 

Proof: For each real a, we have proved (a, ) is measurable 

 (𝑎, ∞)̅̅ ̅̅ ̅̅ ̅̅  = (– , a] is measurable.  
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Now for any real b, (– , b) = ⋃ ]−∞, 𝑏 −
1

𝑛
]∞

𝑛=1  is a countable union of measurable 

sets. 

 (– , b) is measurable. 

Now for any real a and b such that a < b we have (a, b) = (– , b)  (a, ) is 

measurable.  

Since any open set is a countable union of open intervals, that every open set is also 

measurable.   

Since Borel field is the smallest  - algebra generated by the set of all open sets, each 

Borel set is measurable.  

F is closed  �̅� is open .  

Since every open set is measurable, �̅� is measurable.  

 �̅̅� = F is measurable.  Every closed set is measurable. 

 

Definition: If E is a measurable set, then define Lebesgue measure m(E) to be the 

outer measure of E. 

 

Proposition: Let {Ei} be a sequence of measurable sets. Then ( ) ( ) ii EmEm
 

If the sets Ei are pairwise disjoint, then ( ) ( )= ii EmEm
 

Proof: m(Ei) = m*( Ei)  m*(Ei) =  m(Ei)  

Thus m(Ei)   m(Ei). 

Suppose {Ei} are pairwise disjoint.  

Then m(Ei)   

𝑚(⋃ 𝐸𝑖
𝑛
𝑖=1 ) = 𝑚∗(⋃ 𝐸𝑖

𝑛
𝑖=1 ) = ∑ 𝑚∗(𝐸𝑖)𝑛

𝑖=1  = ∑ 𝑚(𝐸𝑖)𝑛
𝑖=1   n. 

 𝑚(⋃ 𝐸𝑖
∞
𝑖=1 )  ∑ 𝑚(𝐸𝑖)

∞
𝑖=1 . 

Hence 𝑚(⋃ 𝐸𝑖
∞
𝑖=1 ) = ∑ 𝑚(𝐸𝑖)∞

𝑖=1 . 
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Proposition 15: Let {Ei} be an infinite decreasing sequence of measurable sets and let 

m(E1) be finite. Then ( )n
n

1i

i EmlimEm
→



=

=







  

Proof: Put E = ⋂ 𝐸𝑖
∞
𝑖=1  and Fi = Ei – Ei+1. 

Since, each Ei is measurable, each Fi is also measurable.  

Claim:  E1 \ E =  Fi 

Let x  E1 \ E.  x  E1, x  E =  Ei 

 x  Ei for some i. Assume that i is the least number such that x  Ei. 

Then x  Ei – 1   x  Ei – 1 \ Ei = Fi – 1   Fi. 

 E1 \ E   Fi. 

Now let x   Fi 

 x  Fi = Ei \ Ei + 1 for some i. 

 x  Ei + 1 and x  Ei  E1. 

 x   Ei = E and x  E1  x  E1 \ E. 

 Fi  E1 \ E 

Hence E1 \ E =  Fi 

Claim: Fi  Fj =  if i  j. 

W.L.G assume that i < j. 

Then Fi  Fj = (Ei \ Ei + 1)  (Ej \ Ej+1)  = Ei  �̃�𝑖+1 Ej  �̃�𝑗+1  Ej  �̃�𝑖+1                       

 Ei+1  �̃�𝑗+1 = . 

 Fi  Fj =  if i  j. 

Suppose B  A. Then A = B  (A \ B)  m*(A) = m*(B) + m*(A \ B)  

  m*(A \ B) = m*(A) – m*(B).  

 m(E1 \ E) = m(E1) – m(E) and m(Ei \ Ei+1) = m(Ei) – m(Ei+1) 

Consider m(E1) – m(E) = m(E1 \ E)  = m(  Fi) = ∑ 𝑚(𝐹𝑖)∞
𝑖=1                                                                               

= ∑ {𝑚(𝐸𝑖) − 𝑚(𝐸𝑖+1)}∞
𝑖=1  = lim

𝑛→∞
[∑ {𝑚(𝐸𝑖) − 𝑚(𝐸𝑖+1)}𝑛

𝑖=1 ]                                                    

= m(E1) – lim
𝑛→∞

𝑚(𝐸𝑛) 

 m(E1) – m(E) = m(E1 \ E) = m(E1) – lim
𝑛→∞

𝑚(𝐸𝑛) 
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 ( )n
n

1i

i EmlimEm
→



=

=







  

 

Proposition: Let E be a given set. The following five statements are equivalent: 

(i) E is measurable. 

(ii) Given  > 0, there is an open set O  E with 
 )E~O(m

 

(iii) Given  > 0, there is a closed set F  E with
 )F~E(m

 

(iv) There is a G in G with E  G, 𝑚∗(𝐺~𝐸) = 0. 

(v) There is a F in F with F  E, 𝑚∗(𝐸~𝐹) = 0. 

 

If m*(E) is finite, the above statements are equivalent to:  

(vi) Given  > 0, there is a finite union U of open intervals such that ( )  EUm . 

 

Proof: Claim: (i)  (ii). Assume (i).  

Case (i) Suppose m*(E) <  and   > 0.  

Then  an open set O  E  m*(O)  m*(E) + /2 < m*(E) + . 

 m*(O \ E) = m*(O) – m*(E) < ...(I) 

Case (ii): Suppose m*(E) is infinite. 

Clearly ℝ = ⋃ 𝐼𝑛
∞
𝑛=1 , where In = (- n, n). 

Put En = E  In. 

Then E = E  ℝ = E  ⋃ 𝐼𝑛
∞
𝑛=1  = ⋃ (𝐸 𝐼𝑛)∞

𝑛=1  = ⋃ 𝐸𝑛
∞
𝑛=1   

Also m*(En)  m*(In) = 2n <  for all n and En is measurable for all n. 

By case (i)  open set On  En  m*(On \ En) <  / 2n+1. 

Put O = ⋃ 𝑂𝑛
∞
𝑛=1 . 

Then O is an open set such that O  E. 

Now O \ E  ⋃ (𝑂𝑛
∞
𝑛=1  −𝐸𝑛).  

 m*(O \ E)  ∑ 𝑚∗(𝑂𝑛\𝐸𝑛)∞
𝑛=1  ∑

𝜀

2𝑛+1
∞
𝑛=1 =  / 2 < . 

Thus we have proved that (i)  (ii). 
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Claim: (ii)  (iv) 

Let us assume (ii).   

Ie. for each positive integer n  an open set On  E  m*(On \ E) <  
1

𝑛
. 

Then G = ⋂ 𝑂𝑛
∞
𝑛=1  is an G set and G  E. 

So 0  m*(G \ E)  m*(On \ E) <  
1

𝑛
  n. 

Hence m*(G \ E) = 0 

Thus we have proved that (ii)  (iv). 

 

Claim: (iv)  (i).  

Ie.  a set G =  Gi where each Gi is open (ie. G in )  E  G and                                       

m*(G \ E) = 0 

 G \ E is measurable. 

Since each Gi is open Gi is measurable and hence G is measurable.  

 E = G \ (G \ E) is measurable. 

Thus we have proved that (iv)  (i). 

 

Claim: (i)  (iii) 

Assume (i). Ie. Let E be measurable.  

 �̅� is measurable. 

Let  > 0. Since (i)  (ii),  an open set O  �̅�   m*(O \ �̅�) < . 

Put F = �̅� 

Then F is closed F  E. 

 m*(E \ F) = m*(O \ �̅�) < . 

Thus we have proved that (i)  (iii). 

 

Claim: (iii)  (v)  

Assume (iii). Let n  ℕ. Then by (iii)  a closed set Fn  E  m*(E \ Fn) < 
1

𝑛
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Put F =  Fn. Then F  G, F  E and m*(E \ F)  m*(E \ Fn) < 
1

𝑛
   n > 0. 

 m*(E \ F)  = 0. 

Now m*(E) = m*[(E \ F)  F] = m*(E \ F) + m*(F) = 0 + m*(F) = m*(F) 

Thus we have proved that (iii)  (v). 

 

Claim: (v)  (i). 

Assume (v).  

Ie.  a set F  =  Fi, Fi closed, (ie. F  G)  F  E and m*(E \ F) = 0. 

  E \ F is measurable.   

Since F is union of closed sets, F is measurable.  

Hence E = (E \ F)  F is measurable. 

Thus we have proved that (v)  (i). 

 

Claim: (i)  (vi). 

Assume (i). Suppose  E is measurable. Let  > 0. Since m*(E) < ,  a sequence {In} of 

open intervals  E  ⋃ 𝐼𝑛
∞
𝑛=1  and ∑ 𝑙(𝐼𝑛)∞

𝑛=1 < 𝑚∗(𝐸) +
𝜀

2
 

  ∑ 𝑙(𝐼𝑛)∞
𝑛=1  is a convergent series and hence  mℕ ∑ 𝑙(𝐼𝑛)∞

𝑛=𝑚+1 <
𝜀

2
 

Put U = ⋃ 𝐼𝑛
𝑚
𝑛=1 . Then m*(E \ U)  𝑚∗(⋃ 𝐼𝑛

∞
𝑛=𝑚+1 )  ∑ 𝑙(𝐼𝑛)∞

𝑛=𝑚+1 <
𝜀

2
. 

Also U \ E = ⋃ 𝐼𝑛
𝑚
𝑛=1  \ E  ⋃ 𝐼𝑛

∞
𝑛=1 \ E 

m*(U \ E )  m*(⋃ 𝐼𝑛
∞
𝑛=1 ) – m*(E)   ∑ 𝑙(𝐼𝑛)∞

𝑛=1  – m*(E) <
𝜀

2
. 

 U is a finite union of open intervals and  

m*(U  E)  m*(U \ E) + m*(E \ U) <
𝜀

2
 + 

𝜀

2
 = . 

 Claim: (vi)  (i). 

Assume (vi). It is enough to show that (ii) holds. 

Let  > 0. Then  a finite union U of open intervals  m*(U  E) <
𝜀

2
 

Since m*(E) < ,  a sequence {In} of open intervals  E  ⋃ 𝐼𝑛
∞
𝑛=1  and                            

∑ 𝑙(𝐼𝑛)∞
𝑛=1 < 𝑚∗(𝐸) +

𝜀

2
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Put G = U  (⋃ 𝐼𝑛
∞
𝑛=1 ) 

Then G is open, E  G and m*(G \ E)  m*(U \ E) + m*[(⋃ 𝐼𝑛
∞
𝑛=1 ) \𝐸] 

                                                       m*(U \ E) + ∑ 𝑙(𝐼𝑛) −∞
𝑛=1 m*(E) 

                                                       
𝜀

2
 + m*(E) + 

𝜀

2
 – m*(E) =  

 (ii) holds  

 

 

A NON MEASURABLE SET. 

Definition: If x and y are any real numbers in [0, 1), we define the sum modulo 1 of x 

and y denoted by yx


+ to be x + y, if x + y < 1 and x + y – 1 if x + y  1. Note: 


+ is 

commutative and associative operation taking pairs of numbers in [0, 1). 

If E is a subset of [0, 1) then define the translate modulo 1 of E to be the set 









+=+ ExsomeforyxyE


 

Lemma: Let E  [0, 1] be a measurable set. Then for each y [0, 1) the set yE


+ is 

measurable.  

  

Definition: Define x ~ y if x – y is a rational number for x , y [0, 1). This is an 

equivalence relation and hence partitions [0, 1) into equivalence classes. By the axiom 

of choice there is a set P which contains exactly one element from each equivalence 

class. 

 

Theorem: There exists a non-measurable set. 

Proof: Let x, y  [0, 1). 

Define x ~ y iff x – y is a rational number. 

Then ~ is an equivalence relation. 

Observe that any two elements in the same class differ by a rational number. 

[x] = {y  [0, 1) / x ~ y}  
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= {y  [0, 1) / x – y or y – x is a positive rational number}. 

= {y  [0, 1)  / y =  x + r or y = x – r for some rational r in [0, 1)} 

Thus the class containing [0] is the set of all rationals in [0, 1). By axiom of choice we 

can choose one element from each equivalence class. Let P be the set which contains 

exactly one element from each equivalence class. 

Let {𝑟𝑖}𝑖=0
∞  be the enumeration of all rationals in [0, 1) with r0 = 0. 

Put Pi = P +̇ ri.  

Then P0 = P (Since P0 = P + r0 = P + 0 = P) 

Claim:  Pi = [0, 1) and Pi’s are disjoint.  

Let x  [0, 1). Then x ~ xk for some xk  P.  

 x  – xk or xk – x is a rational in [0, 1) 

 x = xk + ri or x = xk – ri for some i.  

Suppose x = xk + ri.  

Now x = xk + ri = xk +̇ ri (since x < 1)  P + ̇ ri = Pi  Pi. 

If  x = xk – ri, then put rj = 1 – ri. 

Now xk + rj = xk + 1 – ri = x + 1  1 

 xk +̇ rj = xk + rj – 1 = xk + 1 – ri – 1 = xk – ri = x.  

 x = xk +̇rj  P +̇rj = Pj   Pi. 

So  Pi = [0, 1). 

Claim: Pi’s are pair wise disjoint. 

Let n  m.  

Suppose z  Pn  Pm.  

Then z = x + rn, z = x + rm where x, x  P. x – x is a rational  x ~ x                               

  =  since P contains exactly one element from each equivalence class. 

x + rn = x + rm  rn = rm  n = m, a contradiction. This shows that Pi’s are disjoint.  

Claim: P is a non - measurable set. 

m*(Pn) = m*(P + rn) = m*(P).  

Suppose P is a measurable set.  

Then each Pi is measurable.  
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Now 1 = m*[0, 1) = 𝑚∗(⋃ 𝑃𝑖
∞
𝑖=1 ) = ∑ 𝑚∗(𝑃𝑖)∞

𝑖=1  = ∑ 𝑚∗(𝑃)∞
𝑖=1  = 0 if m*(P) = 0  or  if 

m*(P) is positive which is a contradiction. 

Thus P is a non - measurable set. 

  

Theorem:  If m is a countably additive, translation invariant measure defined on a                         

σ – algebra containing the set P, then m[0, 1) is either zero or infinite. 

 

 

MEASURABLE FUNCTIONS: 

 

Proposition 18: Let f be an extended real valued function whose domain E is 

measurable. Then the following statements are equivalent. 

(i) For each real number  the set { x : f(x) >  } is measurable. 

(ii) For each real number  the set { x : f(x)   } is measurable. 

(iii) For each real number  the set { x : f(x) <  } is measurable. 

(iv) For each real number  the set { x : f(x)   } is measurable. 

These statements imply 

(v) For each real number  the set { x : f(x) =  } is measurable. 

Proof:  

Claim: (i)  (iv) 

Assume (i). For each , { x / f(x)  } = E \ {x / f(x) > }. 

Since E is measurable by (i), {x / f(x) > } is measurable. Since the difference of two 

measurable sets is also measurable we get { x / f(x)  } is measurable. 

Thus we have proved that (i)  (iv). 

Assume (iv). For each , { x / f(x) > } = E \ {x / f(x)  }. 

Since E is measurable, by (iv), {x / f(x)  } is measurable.                                                       

Since the difference of two measurable sets is also measurable we get                                     

{x / f(x) > } is measurable. 

Thus we have proved that (iv)  (i). 
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Claim: (ii)  (iii) 

Assume (i). For each , {x / f(x) < } = E \ {x / f(x)  }. 

Since E is measurable by (ii), {x / f(x)  } is measurable. Since the difference of two 

measurable sets is also measurable we get { x / f(x) < } is measurable. 

Thus we have proved that (ii)  (iii). 

Assume (iii). For each , { x / f(x)  } = E \ {x / f(x) < }. 

Since E is measurable, by (iii),  {x / f(x) < } is measurable.                                               

Since the difference of two measurable sets is also measurable we get                                 

{ x / f(x)  } is measurable. 

Thus we have proved that (iii)  (ii). 

  

Claim: (i)  (ii) 

Assume (i). For each , { x / f(x)  } = ⋂ {𝑥 ∶ 𝑓(𝑥) > 𝛼 −
1

𝑛
}∞

𝑛=1 . 

Since E is measurable by (i),  {𝑥 ∶ 𝑓(𝑥) > 𝛼 −
1

𝑛
} is measurable for all n > 0. 

 {𝑥 ∶ 𝑓(𝑥) > 𝛼 −
1

𝑛
} is measurable. 

we get { x / f(x)  } is measurable for all . 

Thus we have proved that (i)  (ii). 

Now assume (ii). For each , { x / f(x) > } = ⋃ {𝑥 ∶ 𝑓(𝑥) 𝛼 +
1

𝑛
}∞

𝑛=1 .. 

Since E is measurable, by (ii),  {𝑥 ∶ 𝑓(𝑥) 𝛼 +
1

𝑛
} is measurable for all n > 0.                                                       

⋃ {𝑥 ∶ 𝑓(𝑥) 𝛼 +
1

𝑛
}∞

𝑛=1 . 𝑊e get {x / f(x) > } is measurable. 

Thus we have proved that (ii)  (i). 

 (i)  (ii). 

Claim: {x / f(x) = } is measurable assuming any one of the conditions (i) to (iv) is 

true. 

Let  be any extended real number and assuming any one of the conditions (i) to (iv) is 

true. 
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Case (i)  is real.  

We have {x / f(x) = } = {x / f(x)  }  {x / f(x)  }. 

By our assumption {x / f(x)  },  {x / f(x)  } are measurable and hence their 

intersection. 

{x / f(x) = } is measurable. 

Case (ii). Let  = . 

Clearly {x / f(x) = } = ⋂ {𝑥 ∶ 𝑓(𝑥) > 𝑛}∞
𝑛=1 . 

But by (i) {x / f(x) > n} is measurable for all n. 

⋂ {𝑥 ∶ 𝑓(𝑥) > 𝑛}∞
𝑛=1  is measurable. 

Hence {x / f(x) = } is measurable. 

Similarly we can prove it in the case  = – . 

 

Definition: An extended real – valued function f is said to be Lebesgue measurable if 

its domain is measurable and if it satisfies one of the first four statements of the 

proposition. 

 

Proposition: Let c be a constant and f and g be two measurable real valued functions 

defined on the same domain. Then the functions (i) f + c, (ii) cf, (iii) f  + g, (iv) g – f , 

and (v) fg are also measurable. 

 

Proof: Let D be the domain of f and g and c be any constant. 

(i) For any real , {x  D : (f + c)(x) > } = {x  D : f(x) + c > }                                       

={x  D : f(x) >  – c} is measurable since f is measurable 

 the function f + c is measurable. 

 

(ii) Claim: cf is measurable. 

Let c > 0. 

Now {x  D : (cf)(x) > } ={x  D : c f (x) > } = {x  D : f(x) >  / c} is measurable 

since f is measurable and /c is real. 
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 when c > 0,  cf is measurable. 

Let c < 0. 

Now {x  D : (cf)(x) > } ={x  D : c f (x) > } = {x  D : f(x) < /c} is measurable 

since f is measurable and /c is real. 

 when c < 0,  cf is measurable. 

Let c = 0. Then cf = 0 is constant function. 

 cf is measurable for any c. 

 

(iii) for any , {x  D : (f + g)(x) < } = {x  D : f(x) + g(x) < }                                         

If f(x) + g(x) < , then f(x) <  – g(x) 

 a rational number r such that f(x) < r <  – g(x) 

Ie.  a rational number r such that f(x) < r  and g(x) <  – r 

 {x  D : f(x) + g(x) < } =  [{x / f(x) < r}  {x / g(x) <  – r}] 

But {x / f(x) < r} and {x / g(x) <  – r} are measurable.                                                                  

 {x / f(x) < r}  {x / g(x) <  – r} is measurable.  

Since the rationals are countable,  [{x / f(x) < r}  {x / g(x) <  – r}] is countable. 

Hence f + g is measurable. 

 

(iv) Since g is measurable by (ii) – g is measurable. Now by (iii) f + (– g) is 

measurable. Ie. f – g is measurable. 

(v). Let  be a real and   0. 

Then {x / f2(x) > } = {x / f(x) > √𝛼 } {x / f(x) < – √𝛼 } which is the union of 

measurable sets and so measurable. Hence f2 is measurable. 

Let  be a real and  < 0. 

Since f2(x)  0 for all x  D, {x / f2(x) > } = D which is measurable. 

Hence f2 is measurable. 

Thus applying above results (f + g)2, – f2, – g2 are measurable. 

 fg = 
1

2
{(𝑓 + 𝑔)2 − 𝑓2 − 𝑔2} is measurable. 
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Theorem: Let {fn} be a sequence of measurable functions (with the same domain of 

definition). Then the functions (i) sup{ f1, f2, ..., fn}, (ii) inf{ f1, f2, ..., fn}, (iii) sup
𝑛

𝑓𝑛  

(iv) inf
𝑛

𝑓𝑛  (v) 𝑙𝑖𝑚𝑓𝑛 and (vi)  𝑙𝑖𝑚𝑓𝑛 are measurable. 

Proof: Let D be the domain of the sequence of functions {fn}. 

(i) Define g(x) = sup{ f1, f2, ..., fn}(x) 

= sup{ f1(x), f2(x),  ..., fn(x)}. 

Now for each real , {x / g(x) > } = ⋃ {𝑥/𝑓𝑖(𝑥) > 𝛼}𝑛
𝑖=1 . 

Since each fi is measurable, {x / fi(x) > } is measurable  ℝ and for each                                     

i = 1,2, ..., n. 

  ⋃ {𝑥/𝑓𝑖(𝑥) > 𝛼}𝑛
𝑖=1  is measurable.  

 {x / g(x) > } is measurable  ℝ. 

 sup{ f1, f2, ..., fn} is measurable. 

 

(ii) Define h(x) = inf{ f1, f2, ..., fn}(x) 

= inf { f1(x), f2(x),  ..., fn(x)}. 

Now for each real , {x / h(x) > } = ⋂ {𝑥 ∶ 𝑓𝑖(𝑥) > 𝛼}𝑛
𝑖=1 . 

Since each fi is measurable, {x / fi(x) > } is measurable  ℝ and for each                      

i = 1,2, ..., n. 

 ⋂ {𝑥 ∶ 𝑓𝑖(𝑥) > 𝛼}𝑛
𝑖=1  is measurable.  

 {x / h(x) > } is measurable  ℝ. 

 inf{ f1, f2, ..., fn} is measurable. 

 

(iii) Define G(x) = {sup
𝑛

𝑓𝑛}(𝑥) = sup
𝑛

𝑓𝑛 (𝑥) 

Now for each real , {x / G(x) > } = ⋃ {𝑥/𝑓𝑖(𝑥) > 𝛼}∞
𝑖=1 . 

Since each fi is measurable, {x / fi(x) > } is measurable  ℝ and for each i = 1,2, ... 

  ⋃ {𝑥/𝑓𝑖(𝑥) > 𝛼}∞
𝑖=1  is measurable.  

 {x / G(x) > } is measurable  ℝ. 
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 sup
𝑛

𝑓𝑛 is measurable. 

 

(iv) Define H(x) = {inf
𝑛

𝑓𝑛}(x) = inf
𝑛

𝑓𝑛 (𝑥) 

Now for each real , {x / H(x) > } = ⋂ {𝑥 ∶ 𝑓𝑖(𝑥) > 𝛼}∞
𝑖=1 . 

Since each fi is measurable, {x / fi(x) > } is measurable  ℝ and for each                      

i = 1,2, ... 

 ⋂ {𝑥 ∶ 𝑓𝑖(𝑥) > 𝛼}∞
𝑖=1  is measurable.  

 {x / H(x) > } is measurable  ℝ. 

 𝑖𝑛𝑓
𝑛

𝑓𝑛 is measurable. 

(v) 𝑙𝑖𝑚𝑓𝑛= 𝑖𝑛𝑓
𝑛

{sup
𝑘𝑛

𝑓𝑘}. 

Write gn = sup
𝑘𝑛

𝑓𝑘 

Since each fk is measurable for all k  n, by (iii) gn is measurable for all n. 

By (iv) 𝑖𝑛𝑓
𝑛

𝑔𝑛 is measurable. Ie. 𝑙𝑖𝑚𝑓𝑛 is measurable. 

(𝑣𝑖) 𝑙𝑖𝑚𝑓𝑛= 𝑠𝑢𝑝
𝑛

{inf
𝑘𝑛

𝑓𝑘}. 

Write hn = inf
𝑘𝑛

𝑓𝑘 

Since each fk is measurable for all k  n, by (iv) hn is measurable for all n. 

By (iii) 𝑠𝑢𝑝
𝑛

 ℎ𝑛 is measurable. Ie. 𝑙𝑖𝑚𝑓𝑛 is measurable. 

 

Definition: A property is said to hold almost everywhere ( abbreviated a.e.) if the set of 

points where it fails to hold is a set of measure zero.   

 

Proposition: If f is a measurable function and f = g a.e., then g is measurable. 

Proof: Let E be a measurable set and f, g be defined on E. 

Let ℝ. Write E1 = { x  E / f(x) = g(x)}, E2 = { x  E / f(x)  g(x)}. 

Also E = E1  E2 and E1  E2 =  and E \ E2 = E1 and so E1 is measurable. 

Since f = g a.e. m(E2) = 0. 
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 E2 is measurable. 

Write A = {x  E / g(x) > }.  

Then A  E1 = {x / g(x)  > }  E1 =  {x / f(x)  > }  E1 

Since f and E1 are measurable, A  E1 is measurable. 

Now m(A  E2)  m(E2)  = 0. 

 m(A  E2) = 0  A  E2 is measurable.  

 A = A  E = A  (E1  E2) = (A  E1)  (A  E2). 

Since A  E1 and A  E2 are measurable, A is measurable  . 

Hence g is measurable. 

 

Proposition 22: Let f be a measurable function defined on an interval [a, b], and 

assume that f takes the values  only on a set of measure zero. Then given  > 0, we 

can find a step function g and a continuous function h such that − gf  and − hf

.except on a set of measure less than ; ie.   − )x(g)x(f:xm  and 

  − )x(h)x(f:xm  

If in addition m  f  M, then we may choose the functions g and h so that                              

m  g  M and m  h  M. 

 

Definition: If A is any set, we define the characteristic function A of the set A to be 

the function given by 







=

Axif0

Axif1
)x(A

. 

Result: The function A is measurable iff A is measurable. 

Proof: Suppose A is measurable. Then clearly A = {x / A(x) > ½} 

Since  A is measurable, {x / A(x) > ½} is measurable.  

Conversely suppose that A is measurable. 

If  < 0, then {x / A(x) > } = ℝ. is measurable. 

If 0   < 1, then {x / A(x) > } = A is measurable. 

If   1, then {x / A(x) > } =  is measurable. 
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Thus for any , {x / A(x) > } is a measurable set. 

Hence A is measurable. 

 

 Note: Existence of a non measurable set implies the existence of a non-measurable 

function.   

 

Definition: A real valued function  is called simple if it is measurable and assumes 

only a finite number of values. If  is simple and has the values 1, 2, ..., n then 


=

=
n

1i

Ai i
where Ai = { x : (x) = i}. 

Note: The sum, product, and difference of two simple functions are simple. 

 

LITTLEWOOD’S THREE PRINCIPLES. 

 

There are three principles, roughly expressible in the following terms:  

Every (measurable) set is nearly a finite union of intervals,  

Every (measurable) function is nearly continuous;  

Every convergent sequence of (measurable) functions is nearly uniformly convergent.  

Various forms of the first principle are given by Proposition 15, One version of second 

principle is given by Proposition 22. 

The following proposition gives one version of the third principle. 

 

Proposition 23: Let E be a measurable set of finite measure, and {fn} a sequence of 

measurable functions defined on E. Let f be a real valued function such that for each x 

in E we have fn(x) → f(x). Then given  > 0 and  > 0, there  is a measurable set A  E 

with m(A) <  and an integer N such that  x  A and  n  N, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀. 

Proof: Let  > 0 and  > 0.   

For each positive integer write, 𝐺𝑛 = {𝑥 ∈ 𝐸/|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀}. 

Since each fn is measurable, we have that f = lim fn is measurable.  

So (fn – f) is measurable. So each Gn is measurable.   
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Put En = ⋃ 𝐺𝑚 = {𝑥 ∈ 𝐸: |𝑓𝑚(𝑥) − 𝑓(𝑥)| ≥ 𝜀 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ≥ 𝑛}∞
𝑚=𝑛 . 

Now En+1  En  n and so {En} is a decreasing sequence of measurable sets. 

Claim:  En = . 

Suppose x   En. 

 x  En  n. Since each En  E, x  E.  

By hypothesis, fn(x) →f(x).  

  an integer N such that n  N, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀.  

So x  EN, which is a contradiction. Thus  En = . 

Now E1  E  m(E1)  m(E) < . 

 lim
𝑛→∞

𝑚(𝐸𝑛) = 𝑚(⋂ 𝐸𝑛
∞
𝑛=1 ) = m() = 0. 

  an integer N such that m(En) <   n  N. 

Write A = EN. Then A is a measurable subset of E and m(A) < . 

Now �̃�= 𝐸�̃� = {𝑥 ∈ 𝐸: |𝑓𝑚(𝑥) − 𝑓(𝑥)| < 𝜀 ∀ 𝑚 ≥ 𝑛}. 

 x  �̃�  |𝑓𝑚(𝑥) − 𝑓(𝑥)| < 𝜀 ∀ 𝑚 ≥ 𝑛. 

Hence the Theorem. 

 

Proposition 24: Let E be a measurable set of finite measure, and {fn} a sequence of 

measurable functions that converge to a real valued function f a.e. on E. Then given  > 

0 and  > 0, there is a measurable set A  E with m(A) <  and an integer N such that 

for all x  A and all n  N, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀. 

 

Proof: since fn → f a.e. on E,  a measurable sudset B  E with m(B) = 0 and 

lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥) for all x  E \ B.  

Since each fn is measurable, f is measurable function. 

  a measurable set A  E \ B with m(A) <  and an integer N such that 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 for all x  (E \ B) \ A = E \ (A  B) and for all n  N. 

Now A  B is measurable and A  B  E. 

m(A  B)  m(A) + m(B) = m(A) < , since m(B) = 0.  
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Now for all x  E \ (A  B) and for all n  N, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀. 

 

Egoroff’s Theorem: If {fn} a sequence of measurable functions that converge to a real 

valued function f  a.e. on a measurable set E of finite measure,. Then given  > 0 there 

is a measurable set A  E with m(A) <  and fn → f uniformly on E \ A. 

 

Proof: By the above proposition, for each positive integer n, there exists a measurable 

subset An  E with m(An)  
𝜂

2𝑛
  and an integer kn such that for all x An, 

|𝑓𝑚(𝑥) − 𝑓(𝑥)| <
1

𝑛
 for all m  kn. 

Write A =  An.  

Clearly A is measurable subset of E and m(A) = m(An)  

 ∑ 𝑚(𝐴𝑛) <  ∑
𝜂

2𝑛
 ∞

𝑛=1
∞
𝑛=1 = 𝜂 ∑

1

2𝑛
 ∞

𝑛=1  = . 

m(A) < . 

Let  > 0. Choose n  
1

𝑛
< 𝜀.  

Then for x  E \ A and m  kn, |𝑓𝑚(𝑥) − 𝑓(𝑥)| <
1

𝑛
 < . 

 fn → f uniformly on E \ A. 

 

Lusin’s Theorem: Let f be a measurable real – valued function on an interval [a, b]. 

Then given  > 0, there is a continuous function  on [a, b] such that m{x: f(x)  (x)} 

< . 

 

Proof: Take  > 0, and a measurable function f on [a, b]. 

 to each n ℕ,  a continuous function hn and a measurable set An  [a, b]   

|ℎ𝑛(𝑥) − 𝑓(𝑥)| <
𝛿

2𝑛+1
  x  An and m(An) <

𝛿

2𝑛+1
....(i) 

Write E = ⋂ 𝐴𝑛
̅̅̅̅∞

𝑛=1  .  

Clearly E is a measurable set.  

Also E  𝐴𝑛
̅̅̅̅   [a, b]  m(E) <  and for all x  E, |ℎ𝑛(𝑥) − 𝑓(𝑥)| <

𝛿

2𝑛+1
  n 
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 lim
𝑛

ℎ𝑛 = f(x)  x  E. 

Observe that each hn is a measurable function.  

So by egoroff’s theorem  a measurable set A  E with m(A) < /4...(ii) 

and hn → f uniformly on E \ A. 

Since E is measurable and A is measurable, E \ A is measurable. 

  a closed set F  E \ A  m((E \ A) \ F) <  / 4 ... (iii). 

Since f is the uniform limit of a sequence of continuous functions on the set E\A, we 

have that f is continuous on E \ A. 

Thus f is continuous on a closed set F. 

Since F  [a, b] and f is continuous on F, we have f has unique continuous extension g 

on [a, b]. 

Now {x/ f(x)  g(x)}  �̅� and so m{x / f(x)  g(x)}  m(�̅�). 

Since F  E \ A, �̅� (�̅�𝐴)(𝐸 \ 𝐴) \ 𝐹). 

 m(�̅�)  m(�̅�𝐴) + m((𝐸 \ 𝐴) \ 𝐹)  m(�̅�) + m(A) + m((E \ A) \ F) 

= m(�̅�) +  / 2 from (ii) and (iii). 

Since E = ⋂ 𝐴𝑛
̅̅̅̅∞

𝑛=1 , we have �̅� = ⋃ 𝐴𝑛
∞
𝑛=1  

 m(�̅�)  ∑ 𝑚(𝐴𝑛)∞
𝑛=1 < ∑

𝛿

2𝑛+1
∞
𝑛=1  =  / 2. 

By substituting m(�̅�) < 
𝛿

2
 + 

𝛿

2
+

𝛿

4
  = . 

 m{x/ f(x)  g(x)} < . 
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           UNIT II 

Riemann Integral 

Let f be a bounded real – valued function defined on the interval [a, b] and let                  

a = 𝜉0 <  𝜉1 <  …  < 𝜉𝑛 = 𝑏 be a subdivision of [a, b].                                                                          

Define U(P, f) = S = ∑ 𝑀𝑖(𝜉𝑖 − 𝜉𝑖−1)𝑛
𝑖=1  and L(P, f) = s = ∑ 𝑚𝑖(𝜉𝑖 − 𝜉𝑖−1)𝑛

𝑖=1  

where 𝑀𝑖 = sup
𝜉𝑖−1<𝑥<𝜉𝑖

𝑓(𝑥) and 𝑚𝑖 = inf
𝜉𝑖−1<𝑥<𝜉𝑖

𝑓(𝑥). Then we define the upper 

integral of f by 𝑅 ∫ 𝑓(𝑥)𝑑𝑥
�̅�

𝑎
= inf 𝑆 with the infimum taken over all possible 

subdivisions of [a, b] 

the lower integral of f by 𝑅 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

�̅�
= sup 𝑠 with the supreum taken over all 

possible subdivisions of [a, b]. If upper and lower integrals are equal then we say 

that f is Riemann Integrable and call the common value the Riemann integral of f 

and is denoted by 𝑅 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

Definition: By a step function we mean a function  which has the form  

  

Problem: 3*: Define f(x) = 0 if x is irrational and 1 if x is rational. Then prove that 

f is not R-integrable but Lebesgue integrable. 

Solution: Let a = 𝑥0 <  𝑥1 <  …  < 𝑥𝑛 = 𝑏 be a subdivision of [a, b]. 

𝑀𝑖 = sup
𝑥𝑖−1<𝑥<𝑥𝑖

𝑓(𝑥) = Sup {0, 1} = 1, 

and 𝑚𝑖 = inf
𝑥𝑖−1<𝑥<𝑥𝑖

𝑓(𝑥) = Inf {0, 1} = 0. 

U(P, f) = ∑ 𝑀𝑖(𝑥𝑖 − 𝑥𝑖−1)𝑛
𝑖=1  = 1 ∑ (𝑥𝑖 − 𝑥𝑖−1)𝑛

𝑖=1  = b – a.  

L(P, f) = ∑ 𝑚𝑖(𝑥𝑖 − 𝑥𝑖−1)𝑛
𝑖=1  = 0 ∑ (𝑥𝑖 − 𝑥𝑖−1)𝑛

𝑖=1  = 0. 

𝑅 ∫ 𝑓(𝑥)𝑑𝑥
�̅�

𝑎
= inf  {𝑈(𝑃, 𝑓): 𝑃 ∈ ℘[𝑎, 𝑏]} = inf {b – a} = b – a. 

𝑅 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

�̅�
= Sup  {𝐿(𝑃, 𝑓): 𝑃 ∈ ℘[𝑎, 𝑏]} = sup { 0 } = 0. 

 𝑅 ∫ 𝑓(𝑥)𝑑𝑥
�̅�

𝑎
≠ 𝑅 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

�̅�
 so that f is not Riemann integrable. 

Let A be the set of all rationals in [0, 1]. Then f = 1A+0𝜒�̅� f = A 

And m(A) = 0. ∫ 𝑓𝑑𝑥 = 1 × 𝑚(𝐴) + 0 × 𝑚(�̅�) = 0. 

 

Definition: A function defined on R is called a simple if it is measurable and 

assumes only finite number of values.  

Definition: Canonical representation: If  is simple taking nonzero values a1, a2, 

…, an, then 𝜑 = ∑ 𝑎𝑖𝜒𝐴𝑖

𝑛
𝑖=1  where Ai = {x: (x) = ai}, ai’s are distinct and Ai’s are 

disjoint. 



 

 

Definition: Lebesgue Integral of a simple function: Let  be a simple function and 

vanishes outside a set of finite measure and 𝜑 = ∑ 𝑎𝑖𝜒𝐴𝑖

𝑛
𝑖=1 is canonical 

representation. Then Lebesgue Integral of  is defined as (x)dx = ∑ 𝑎𝑖𝑚(𝐴𝑖)𝑛
𝑖=1  

Lemma: If 𝜑 = ∑ 𝑎𝑖𝜒𝐸𝑖

𝑛
𝑖=1  is a simple function where Ei’s are pairwise disjoint, 

then (x)dx = ∑ 𝑎𝑖𝑚(𝐸𝑖)𝑛
𝑖=1 . 

 

Proposition: 1*: Let  and  be simple functions which vanish outside a set of 

finite measure. Then (i) (a + b) = a + b (ii)       . 

Proof: Let 𝜑 = ∑ 𝑎𝑖𝜒𝐴𝑖

𝑛
𝑖=1  and  = ∑ 𝑏𝑗𝜒𝐵𝑗

𝑚
𝑗=1 be canonical representations.                       

Then E = ⋃ 𝐴𝑖
𝑛
𝑖=0  = ⋃ 𝐵𝑗

𝑚
𝑗=0 . 

Let A0 = {x: (x) = 0} and B0 = {x: (x) = 0}.                                                                          

Then 𝜑 = ∑ 𝑎𝑖𝜒𝐴𝑖

𝑛
𝑖=0  and  = ∑ 𝑏𝑗𝜒𝐵𝑗

𝑚
𝑗=0  where a0 = 0, b0 = 0. 

Let Cij = Ai  Bj. Then Cij  Ckl =  if i  k or j  l. 

Also, Ai = Ai  E = Ai  ⋃ 𝐵𝑗
𝑚
𝑗=0  = ⋃ (𝐴𝑖 ∩ 𝐵𝑗

𝑚
𝑗=0 ) = ⋃ 𝐶𝑖𝑗

𝑚
𝑗=0  

Similarly, Bj = ⋃ 𝐶𝑖𝑗
𝑛
𝑖=0  

𝜑 = ∑ 𝑎𝑖𝜒𝐴𝑖

𝑛
𝑖=0  = ∑ 𝑎𝑖𝜒⋃ 𝐶𝑖𝑗

𝑚
𝑗=0

𝑛
𝑖=0  = ∑ 𝑎𝑖 ∑ 𝜒𝐶𝑖𝑗

𝑚
𝑗=0

𝑛
𝑖=0  = ∑ ∑ 𝑎𝑖𝜒𝐶𝑖𝑗

𝑚
𝑗=0

𝑛
𝑖=0  

Similarly,  = ∑ ∑ 𝑏𝑗𝜒𝐶𝑖𝑗

𝑚
𝑗=0

𝑛
𝑖=0  

a + b =  ∑ ∑ (𝑎𝑎𝑖 + 𝑏𝑏𝑗)𝜒𝐶𝑖𝑗

𝑚
𝑗=0

𝑛
𝑖=0  

Then (a + b) = ∑ ∑ (𝑎𝑎𝑖 + 𝑏𝑏𝑗)𝑚(𝐶𝑖𝑗)𝑚
𝑗=0

𝑛
𝑖=0  = ∑ ∑ (𝑎𝑎𝑖)𝑚(𝐶𝑖𝑗)𝑚

𝑗=0
𝑛
𝑖=0  + 

∑ ∑ (𝑏𝑏𝑗)𝑚(𝐶𝑖𝑗)𝑚
𝑗=0

𝑛
𝑖=0  = 𝑎 ∑ 𝑎𝑖 ∑ 𝑚(𝐶𝑖𝑗)𝑚

𝑗=0
𝑛
𝑖=0  + 𝑏 ∑ 𝑏𝑗 ∑ 𝑚(𝐶𝑖𝑗)𝑛

𝑖=0
𝑚
𝑗=0   

= 𝑎 ∑ 𝑎𝑖𝑚(𝐴𝑖)𝑛
𝑖=0  + 𝑏 ∑ 𝑏𝑗𝑚(𝐵𝑗)𝑚

𝑗=0  = 𝑎 ∑ 𝑎𝑖𝑚(𝐴𝑖)𝑛
𝑖=1  + 𝑏 ∑ 𝑏𝑗𝑚(𝐵𝑗)𝑚

𝑗=1                                         

= a + b 

(ii) Let    . Then  -   0  ( - )  0   -   0    . 

 

 

Proposition: 10*: Let f be defined and bounded on a measurable set E with finite 

measure. In order that inf
𝑓≤𝜓

∫
𝐸

𝜓(𝑥)𝑑𝑥 = sup
𝜑≤𝑓

∫
𝐸

𝜑(𝑥)𝑑𝑥 for all simple functions  

and  it is necessary and sufficient that f be measurable. 

 

Proof: Suppose f is measurable.  

Since f is bounded  M > 0  |𝑓(𝑥)| ≤ 𝑀  x  E. ie. f(x)  [– M, M]. 

For each k define Ek = {𝑥:
(𝑘−1)𝑀

𝑛
< 𝑓(𝑥) ≤

𝑘𝑀

𝑛
} for any n  1. 

Then clearly [– M, M]  ⋃ ]
(𝑘−1)𝑀

𝑛
,

𝑘𝑀

𝑛
]𝑛

𝑘=−𝑛 .                                                                                           

If x  E, then f(x) [– M, M]  ⋃ ]
(𝑘−1)𝑀

𝑛
,

𝑘𝑀

𝑛
]𝑛

𝑘=−𝑛    unique integer k  



 

 

(𝑘−1)𝑀

𝑛
< 𝑓(𝑥) ≤

𝑘𝑀

𝑛
   x  Ek for some k.                                                                                    

Thus, E = ⋃ 𝐸𝑘
𝑛
𝑘=−𝑛  so that m(E) = ∑ 𝑚(𝐸𝑘)𝑛

𝑘=−𝑛  

Now for x 𝑓−1 ]
(𝑘−1)𝑀

𝑛
,

𝑘𝑀

𝑛
] define 𝜑𝑛(𝑥) =

(𝑘−1)𝑀

𝑛
 and 𝜓𝑛(𝑥) =

𝑘𝑀

𝑛
. 

𝜑𝑛, 𝜓𝑛 are simple since each of them takes only finitely many values and  

 

 

Definition: Let f be a bounded measurable function on a set of finite measure E. 

∫
𝐸

𝑓(𝑥)𝑑𝑥 = inf
𝜓≥𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓(𝑥)𝑑𝑥  = sup
𝜑≤𝑓

𝜑 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜑(𝑥)𝑑𝑥   

 

Proposition: 9*: Let f be a bounded function defined on [a, b]. If f is R-integrable 

on [a, b], then it is measurable and R-∫ 𝑓(𝑥)𝑑𝑥 =
𝑏

𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
. 

Proof: Let f be R-integrable on [a, b]. Let 𝜓′ be a step function such that 𝜓′ ≥ 𝑓.                                                

Then inf
𝜓≥𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓(𝑥)𝑑𝑥   ∫
𝜓′≥𝑓

𝜓′ 𝑠𝑡𝑒𝑝 𝑓𝑢𝑛

𝜓′(𝑥)𝑑𝑥  

 inf
𝜓≥𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓(𝑥)𝑑𝑥   inf
𝜓′≥𝑓

𝜓′𝑠𝑡𝑒𝑝𝑓𝑢𝑛

∫ 𝜓′(𝑥)𝑑𝑥   

Similarly, if  𝜑′ is a step function such that 𝜑′ ≤ 𝑓.                                                

then sup
𝜑≤𝑓

𝜑 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜑(𝑥)𝑑𝑥   sup
𝜑′≤𝑓

𝜑′𝑠𝑡𝑒𝑝𝑓𝑢𝑛

∫ 𝜑′(𝑥)𝑑𝑥   

Now by def of Riemann integral, 𝑅 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= sup

𝜑′≤𝑓

𝜑′𝑠𝑡𝑒𝑝𝑓𝑢𝑛

∫ 𝜑′(𝑥)𝑑𝑥      

 sup
𝜑≤𝑓

𝜑 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜑(𝑥)𝑑𝑥   inf
𝜓≥𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓(𝑥)𝑑𝑥   inf
𝜓′≥𝑓

𝜓′𝑠𝑡𝑒𝑝𝑓𝑢𝑛

∫ 𝜓′(𝑥)𝑑𝑥  =  𝑅 ∫ 𝑓(𝑥)𝑑𝑥
�̅�

𝑎
 

Since f is Riemann integrable 𝑅 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=  𝑅 ∫ 𝑓(𝑥)𝑑𝑥

�̅�

𝑎
 

 𝑅 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 = sup

𝜑≤𝑓
𝜑 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜑(𝑥)𝑑𝑥  = inf
𝜓≥𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓(𝑥)𝑑𝑥   

 f is Riemann integrable and ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑅 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
  

 

Proposition: Let f and g be bounded measurable functions on a set of finite 

measure E and a, b R. Then (i) ∫
𝐸

(𝑎𝑓 + 𝑏𝑔) = 𝑎 ∫
𝐸

𝑓 + 𝑏 ∫
𝐸

𝑔 

(ii) If f = g a. e. then ∫
𝐸

𝑓 = ∫
𝐸

𝑔 



 

 

(iii) If f  g a. e. then ∫
𝐸

𝑓 ≤ ∫
𝐸

𝑔.  In particular |∫
𝐸

𝑓| ≤ ∫
𝐸

|𝑓| 

(iv) a and b are constants such that a  f(x)  b  a m(E) ∫
𝐸

𝑓(𝑥)𝑑𝑥  b m(E) 

(v) If A and B are disjoint measurable sets of finite measure then ∫
𝐴∪𝐵

𝑓 = ∫
𝐴

𝑓 + ∫
𝐵

𝑓 

 

Proof: (i) Claim: ∫
𝐸

(𝑎𝑓) = 𝑎 ∫
𝐸

𝑓 

If a = 0 then it is trivial. Let a > 0. Let  be a simple function    af.  

∫
𝐸

𝑎𝑓 =  inf
𝜓≥𝑎𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓  = inf
𝜓

𝑎
≥𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝑎
𝜓

𝑎
  = inf

𝜓′≥𝑓

𝜓′ 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝑎𝜓′  = inf
𝜓′≥𝑓

𝜓′ 𝑠𝑖𝑚𝑝𝑙𝑒

𝑎 ∫ 𝜓′  = 

𝑎 inf
𝜓′≥𝑓

𝜓′ 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓′  = 𝑎 ∫
𝐸

𝑓 

Let a < 0.  

Then ∫
𝐸

𝑎𝑓 =  inf
𝜓≥𝑎𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓  = inf
𝜓

𝑎
≤𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝑎
𝜓

𝑎
  = inf

𝜓′≤𝑓

𝜓′ 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝑎𝜓′  = inf
𝜓′≤𝑓

𝜓′ 𝑠𝑖𝑚𝑝𝑙𝑒

𝑎 ∫ 𝜓′  = 

𝑎 sup
𝜓′≤𝑓

𝜓′ 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓′  = 𝑎 ∫
𝐸

𝑓 

Claim: ∫
𝐸

(𝑓 + 𝑔) = ∫
𝐸

𝑓 + ∫
𝐸

𝑔 

Let ,  be simple functions    f and   g.  Then 𝜓 + 𝜓′ is a simple function 

 𝜓 + 𝜓′ f + g                                                                                                                                

∫
𝐸

(𝑓 + 𝑔) ≤ ∫
𝐸

(𝜓 + 𝜓′) = ∫
𝐸

𝜓 + ∫
𝐸

𝜓′  inf
𝜓≥𝑓,𝜓′≥𝑔

𝜓+𝜓′ 𝑠𝑖𝑚𝑝𝑙𝑒

(∫ 𝜓
𝐸

+ ∫ 𝜓
𝐸

′)                                                 

= inf
𝜓≥𝑓

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

(∫ 𝜓) + inf
𝜓′≥𝑔

𝜓′ 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜓
𝐸

′ = ∫
𝐸

𝑓 + ∫
𝐸

𝑔 Thus, ∫
𝐸

(𝑓 + 𝑔) ≤ ∫
𝐸

𝑓 + ∫
𝐸

𝑔 

Similarly using definition ∫
𝐸

𝑓(𝑥)𝑑𝑥 = sup
𝜑≤𝑓

𝜑 𝑠𝑖𝑚𝑝𝑙𝑒

∫ 𝜑(𝑥)𝑑𝑥  we get                                                            

∫
𝐸

(𝑓 + 𝑔) ≥ ∫
𝐸

𝑓 + ∫
𝐸

𝑔. Hence ∫
𝐸

(𝑓 + 𝑔) = ∫
𝐸

𝑓 + ∫
𝐸

𝑔 

(ii) Let f = g a.e. So, f – g = 0 a.e.                                                                                               

Let  be a simple function    f – g    0 a.e. ∫
𝐸

𝜓  0    f – g  

In particular inf
𝜓≥𝑓−𝑔

𝜓 𝑠𝑖𝑚𝑝𝑙𝑒

(∫ 𝜓)  0  ∫
𝐸

(𝑓 + 𝑔)  0  ∫
𝐸

𝑓 − ∫
𝐸

𝑔  0  ∫
𝐸

𝑓 ≥ ∫
𝐸

𝑔 

By interchanging f and g we get ∫
𝐸

𝑓 ≤ ∫
𝐸

𝑔. Hence ∫
𝐸

𝑓 = ∫
𝐸

𝑔 



 

 

(iii) Let f  g a.e. Then g – f  0 a.e. 

Let  be a simple function    g – f    0 a.e.                                                    

By (ii) ∫
𝐸

(𝑔 − 𝑓)  0  ∫
𝐸

𝑔 − ∫
𝐸

𝑓  0  ∫
𝐸

𝑔 ≥ ∫
𝐸

𝑓 

Since −|𝑓|  f  |𝑓|, −∫
𝐸

|𝑓| ≤ ∫
𝐸

𝑓 ≤ ∫
𝐸

|𝑓|  |∫
𝐸

𝑓| ≤ ∫
𝐸

|𝑓| 

(iv) Let a and b are constants such that a  f(x)  b  ∫
𝐸

𝑎 ≤ ∫
𝐸

𝑓 ≤ ∫
𝐸

𝑏  

 a∫
𝐸

1 ≤ ∫
𝐸

𝑓 ≤ b∫
𝐸

1 

 a m(E) ∫
𝐸

𝑓(𝑥)𝑑𝑥  b m(E)  

(v) Let A and B are disjoint measurable sets of finite measure.                                             

Then ∫
𝐴∪𝐵

𝑓 = ∫
𝐸

𝑓𝜒𝐴∪𝐵  = ∫
𝐸

𝑓(𝜒𝐴 + 𝜒𝐵) = ∫
𝐸

𝑓(𝜒𝐴 + 𝑓𝜒𝐵)  =  ∫
𝐸

𝑓𝜒𝐴 + ∫
𝐸

𝑓𝜒𝐵) = 

∫
𝐴

𝑓 + ∫
𝐵

𝑓      

                            

Bounded Convergence Theorem: Let {𝑓𝑛} be a sequence of measurable functions 

defined on a set E of finite measure and suppose that there is a real number M such 

that |𝑓𝑛(𝑥)| ≤ 𝑀 for all x and for all n. If f(x) = lim
𝑛

𝑓𝑛(𝑥) for each x in E, then 

∫
𝐸

𝑓 = lim
𝑛

∫
𝐸

𝑓𝑛. 

Proof: Let  > 0. By Littlewood’s third principle, corresponding to 1 = 
𝜀

2𝑚(𝐸)
 and 

𝛿 =
𝜀

4𝑀
  N  ℕ and a measurable set A  E with m(A) < 

𝜀

4𝑀
…(i)  

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 
𝜀

2𝑚(𝐸)
 … (ii)  n  N and  x  E \ A. 

Now |∫𝐸
𝑓𝑛 − ∫

𝐸
𝑓| = |∫𝐸

(𝑓𝑛 − 𝑓)|  ∫
𝐸

|𝑓𝑛 − 𝑓| = ∫
𝐴

|𝑓𝑛 − 𝑓| + ∫
𝐸\𝐴

|𝑓𝑛 − 𝑓|                           

 ∫
𝐴

(|𝑓𝑛| + |𝑓|) + ∫
𝐸\𝐴

|𝑓𝑛 − 𝑓| < ∫
𝐴

(𝑀 + 𝑀) + ∫
𝐸\𝐴

𝜀

2𝑚(𝐸)
                                           

= 2M m(A) + 
𝜀

2𝑚(𝐸)
 m(E \ A) < 2M 

𝜀

4𝑀
 + 

𝜀

2𝑚(𝐸)
 m(E \ A)  

𝜀

2
 + 

𝜀

2
 = . 

i.e. given  > 0,  N  ℕ  |∫𝐸
𝑓𝑛 − ∫

𝐸
𝑓| <   n  N. 

 lim
𝑛

∫
𝐸

𝑓𝑛 = ∫
𝐸

𝑓. 

 

INTEGRAL OF NON – NEGATIVE FUNCTION. 

*Definition: If f is a non – negative measurable function defined on a measurable 

set E, f vanishes outside a set of finite measure if there exists measurable set E0  

E with m(E0) <  and f = 0 on E – E0. 



 

 

Definition: If f is a non – negative measurable function defined on a measurable 

set E, then Lebesgue integral of f over E is defined as 

∫
𝐸

𝑓(𝑥)𝑑𝑥 = sup
ℎ≤𝑓

{∫
𝐸

ℎ : ℎ 𝑖𝑠 𝑎 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∋ 𝑚{𝑥: ℎ(𝑥) ≠ 0} < ∞}.  

Proposition: Let f and g be non-negative measurable functions on a set of finite 

measure E and a, b R. Then (i) ∫
𝐸

(𝑐𝑓) = 𝑐 ∫
𝐸

𝑓 if c > 0 

(ii) ∫
𝐸

(𝑓 + 𝑔) = ∫
𝐸

𝑓 + ∫
𝐸

𝑔 

(iii) If f  g a.e. then ∫
𝐸

𝑓 ≤ ∫
𝐸

𝑔.   

Proof: (i) Let c > 0. Let h be any bounded measurable function such that m{x: h(x) 

 0} <  and h  cf.  

∫
𝐸

𝑐𝑓 =  sup
ℎ≤𝑐𝑓

∫ ℎ  = sup
ℎ

𝑐
≤𝑓

∫ 𝑐
ℎ

𝑐
  = sup

ℎ′≤𝑓
∫ 𝑐ℎ′  = sup

ℎ′≤𝑓
 𝑐 ∫ ℎ′  = 𝑐 sup

ℎ′≤𝑓
∫ ℎ′  = 𝑐 ∫

𝐸
𝑓 

(ii) ∫
𝐸

(𝑓 + 𝑔) = ∫
𝐸

𝑓 + ∫
𝐸

𝑔 

Let h, h be bounded measurable functions such that m{x: h(x)  0} <  and h  f  

and k  g.  Then ℎ + 𝑘 is a bounded measurable function  ℎ + 𝑘  f + g and                     

m{x: (h + k)(x)  0} < .                                                                                                                               

∫
𝐸

(ℎ + 𝑘) ≤ ∫
𝐸

(𝑓 + 𝑔)  ∫
𝐸

ℎ + ∫
𝐸

𝑘  ∫
𝐸

(𝑓 + 𝑔)  h  f, k  g  

 sup
ℎ≤𝑓,𝑘≤𝑔

(∫ ℎ
𝐸

+ ∫ 𝑘
𝐸

)  ∫
𝐸

(𝑓 + 𝑔).  ∫
𝐸

𝑓 + ∫
𝐸

𝑔 ≤ ∫
𝐸

(𝑓 + 𝑔) … (1) 

Let l be a bounded measurable function such that l  f + g and m (E0) <  where             

E0 ={x: l(x)  0} and l(x) = 0 on E – E0.  

Define h(x) = min {f(x), l(x) and k(x) = l(x) – h(x). 

Clearly h(x)  f(x) and h(x) = 0 on E – E0. Also, k(x) = 0 on E – E0. 

Now if h(x) = f(x), then k(x) = l(x) – f(x)  g(x) and  

         if h(x) = l(x), then k(x) = 0  g(x) ie k(x)  g(x) 

 h and k are bounded measurable functions such that h(x)  f(x) and k(x)  g(x) 

and vanish outside E0. 

 ∫
𝐸

ℎ ≤ ∫
𝐸

𝑓 and ∫
𝐸

𝑘 ≤ ∫
𝐸

𝑔  

 ∫
𝐸

ℎ + ∫
𝐸

𝑘 ≤ ∫
𝐸

𝑓 + ∫
𝐸

𝑔  

 ∫
𝐸

( ℎ + 𝑘) ≤ ∫
𝐸

𝑓 + ∫
𝐸

𝑔  

Taking sup over all such l we get ∫
𝐸

( 𝑓 + 𝑔) ≤ ∫
𝐸

𝑓 + ∫
𝐸

𝑔 … (2) 

From (1) and (2) ∫
𝐸

( 𝑓 + 𝑔) = ∫
𝐸

𝑓 + ∫
𝐸

𝑔 

(iii) Let f  g a.e. Then  measurable set E0 with m(E0) = 0 and f  g on E – E0. 



 

 

Then ∫
𝐸

(𝑔 − 𝑓) = ∫
𝐸−𝐸0

(𝑔 − 𝑓)  = ∫
𝐸0

(𝑔 − 𝑓) + ∫
𝐸−𝐸0

(𝑔 − 𝑓) = ∫
𝐸−𝐸0

(𝑔 − 𝑓)  0 

since g – f  0 on E – E0.  

 0  ∫
𝐸

(𝑔 − 𝑓) = ∫
𝐸−𝐸0

(𝑔 − 𝑓) = ∫
𝐸−𝐸0

𝑔 – ∫
𝐸−𝐸0

𝑓 = ∫
𝐸

𝑔 – ∫
𝐸

𝑓  

 ∫
𝐸

𝑓 ≤ ∫
𝐸

𝑔 

 

Fatou’s Lemma: If {𝑓𝑛} is a sequence of non-negative measurable functions 

defined on a measurable set E and if 𝑓𝑛(𝑥) → f(x) a. e. on E, then ∫
𝐸

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛. 

Proof: Since integrals over sets of measure zero are equal to zero, we may assume 

without loss of generality that the convergence is everywhere on E.                                                 

ie. 𝑓𝑛(𝑥) → f on E. 

Let h be a bounded measurable function  E0 = {x: h(x)  0}is a set of finite 

measure, and h(x)  f(x).  

Since h is bounded,  M ℝ+  h(x)  M for all x.                                                                    

Define ℎ𝑛(𝑥) = min {h(x), 𝑓𝑛(𝑥)} for n = 1, 2, 3, …                                                                                                  

Also ℎ𝑛 is bounded by M and ℎ𝑛(𝑥) = 0  ∀ 𝑥 ∈  𝐸0
′ .                                                                           

Also, ℎ𝑛(𝑥) → h(x) for each x  𝐸0.  

Now by Bounded convergence theorem, we have ∫
𝐸0

ℎ = lim
𝑛

∫
𝐸0

ℎ𝑛                                              

 ∫
𝐸

ℎ = lim
𝑛

∫
𝐸

ℎ𝑛  since h = 0, hn = 0 on E – E0                                                                                                                     

Since 0  ℎ𝑛(𝑥)  𝑓𝑛(𝑥)  n,  x,  𝑙𝑖𝑚
𝑛

∫
𝐸

ℎ𝑛 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛,                                                                      

 lim
𝑛

∫
𝐸

ℎ𝑛 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 

 ∫
𝐸

ℎ  𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛  h  f. 

This being true for every h(x)  f(x), taking supremum over all such h, 

 Sup
ℎ≤𝑓

∫
𝐸

ℎ  𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛  

 ∫
𝐸

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 

 

Proof: Since 𝑓𝑛(𝑥) → f a. e. on E,  a measurable set A  E  m(A) = 0 and                           

𝑓𝑛(𝑥) → f  x  E \ A.                                                                                                                                        

Then ∫
𝐴

𝑓 = 0, ∫
𝐴

𝑓𝑛 = 0  n since m(A) = 0.                                                                             

∫
𝐸

𝑓 = ∫
𝐴

𝑓 + ∫
𝐸\𝐴

𝑓.                                                                                                                         



 

 

Similarly,  ∫
𝐸

𝑓𝑛 = ∫
𝐸\𝐴

𝑓𝑛                                                                                                          

So, it is enough to show that ∫
𝐸\𝐴

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸\𝐴

𝑓𝑛. 

Let h be a bounded measurable function defined on E \ A  h  f and h vanishes 

outside a set of finite measure.                                                                                                    

Put h = {x  E / h(x)  0}. Then m(h) < . 

Now we show that  ∫
𝐸\𝐴

ℎ ≤ lim
𝑛

∫
𝐸\𝐴

𝑓𝑛.                                                                                           

Define ℎ𝑛(𝑥) = min {h(x), 𝑓𝑛(𝑥)}.                                                                                                  

Now x  h  h(x) = 0.  ℎ𝑛(𝑥) = 0  x  ∆ℎ𝑛
 where ∆ℎ𝑛

 = {x  E: ℎ𝑛(𝑥)  0} 

 ∆ℎ𝑛
  h  n.  m(∆ℎ𝑛

)  m(h) <   n. 

Now ℎ𝑛  h and h is bounded  ℎ𝑛 is bounded. Also, ℎ𝑛  𝑓𝑛  n.                                        

Since lim
𝑛

𝑓𝑛 (𝑥) = f(x)  x  E \ A, we have lim
𝑛

ℎ𝑛 (𝑥) = lim
𝑛

 min {ℎ(𝑥), 𝑓𝑛 (𝑥)}         

= min {h(x), lim
𝑛

𝑓𝑛 (𝑥) } = min {h(x), f(x)} = h(x)  x  E \ A. 

Given  > 0,  N  |ℎ𝑛(𝑥) − ℎ(𝑥)| <   n  N. 

Since h  E \ A we have that lim
𝑛

ℎ𝑛 (𝑥) = h(x)  x  h.  

 {ℎ𝑛} is a sequence of bounded measurable functions  lim
𝑛

ℎ𝑛 (𝑥) = h(x)  x  

h and m(h) < .  

Now by Bounded convergence theorem, we have ∫
∆ℎ

ℎ = lim
𝑛

∫
∆ℎ

ℎ𝑛. 

 ∫
𝐸\𝐴

ℎ = lim
𝑛

∫
𝐸\𝐴

ℎ𝑛 … (1) since h(x) = 0 and hn(x) = 0  x  h. 

Now hn  fn on E \ A and hence on h.                                                                                                                      

 ∫
∆ℎ

ℎ𝑛 ≤ ∫
∆ℎ

𝑓𝑛 … (2) 

Consider ∫
𝐸\𝐴

ℎ = lim
𝑛

∫
𝐸\𝐴

ℎ𝑛  𝑙𝑖𝑚
𝑛

∫
𝐸\𝐴

𝑓𝑛 by (2)  

 Sup
ℎ≤𝑓

∫
𝐸\𝐴

ℎ  𝑙𝑖𝑚
𝑛

∫
𝐸\𝐴

𝑓𝑛  

 ∫
𝐸

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 

 

Monotone Convergence Theorem: Let {𝑓𝑛} be an increasing sequence of non-

negative measurable functions defined on a measurable set E and let f = lim
𝑛

𝑓𝑛. 

Then ∫
𝐸

𝑓 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛. 

Proof: Since {𝑓𝑛} be an increasing sequence f = lim
𝑛

𝑓𝑛, we have 𝑓𝑛  f  n.  

Since each 𝑓𝑛 is measurable, f is also measurable.  ∫
𝐸

𝑓𝑛  ∫
𝐸

𝑓  



 

 

  𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 ≤ ∫
𝐸

𝑓… (i) 

By Fatou’s Lemma, ∫
𝐸

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 … (ii). 

From (i) and (ii), ∫
𝐸

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛  𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 ≤ ∫
𝐸

𝑓. 

 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 = ∫
𝐸

𝑓.  

𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 exists and ∫
𝐸

𝑓 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛. 

 

Proposition: 2*: Let f be a non-negative function which is measurable over a 

measurable set E. Then given  > 0, there is a  > 0 such that ∫
𝐴

𝑓 <  for every set 

A  E with m(A) < . 

Proof: Define 𝑓𝑛(𝑥) = {
𝑓(𝑥), 𝑖𝑓 𝑓(𝑥) ≤ 𝑛

𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Then |𝑓𝑛(𝑥)| ≤ 𝑛 ∀ 𝑛 

𝑓𝑛 is bounded for all n. 

Since f is measurable, 𝑓𝑛 is measurable and 𝑓𝑛 ≤ 𝑓𝑛+1 n. 

𝐴𝑙𝑠𝑜 lim
𝑛

𝑓𝑛 = 𝑓 (since f(x)    fn(x) = f(x).) 

By Monotone convergence theorem, ∫
𝐸

𝑓 = lim
𝑛

∫
𝐸

𝑓𝑛 

Since 𝑓𝑛(𝑥) ≤ 𝑓(𝑥) ∀ 𝑛 and f is integrable over E, 𝑓𝑛is integrable over E. 

Now ∫
𝐸

(𝑓 − 𝑓𝑛) = ∫
𝐸

𝑓 − ∫
𝐸

𝑓𝑛 … (i) 

Given  > 0,  N  ℕ  |∫
𝐸

𝑓 − ∫
𝐸

𝑓𝑛| <
𝜀

2
   n  N. 

But ∫
𝐸

𝑓 = lim
𝑛

∫
𝐸

𝑓𝑛 ≥ ∫
𝐸

𝑓𝑛 since 𝑓𝑛 are increasing. 

 ∫
𝐸

𝑓 − ∫
𝐸

𝑓𝑛 <
𝜀

2
. Ie. ∫

𝐸
(𝑓 − 𝑓𝑛) < 

𝜀

2
 by (i). 

Choose    < 
𝜀

2𝑁
. 

Let A  E  m(A) < . Then ∫
𝐴

𝑓 = ∫
𝐴

(𝑓 − 𝑓𝑁 + 𝑓𝑁)                                                                                    

= ∫
𝐴

(𝑓 − 𝑓𝑁) + ∫
𝐴

𝑓𝑁 ∫
𝐸

(𝑓 − 𝑓𝑁) + ∫
𝐴

𝑓𝑁 < 
𝜀

2
 + 𝑁 𝑚(𝐴) < 

𝜀

2
 + N < . 

Hence the result. 

 

4. THE GENRAL LEBESGUE INTEGRAL 

 



 

 

By a positive part 𝑓+ of a function f we mean 𝑓+(𝑥) = {
𝑓(𝑥)  𝑖𝑓 𝑓(𝑥) ≥ 0

0       𝑖𝑓 𝑓(𝑥) < 0 
                                       

= max {f(x), 0}. 

Similarly, by a negative part 𝑓− of a function f we mean                                                                        

𝑓−(𝑥) = {
−𝑓(𝑥)  𝑖𝑓 𝑓(𝑥) ≤ 0

0        𝑖𝑓 𝑓(𝑥) > 0 
  = max {-f(x), 0} = - min {f(x), 0}. 

Note: (i) Both 𝑓+and 𝑓− are non – negative functions. 

          (ii) 𝑓+ − 𝑓− = 𝑓 and 𝑓+ + 𝑓− = |𝑓| 

Definition: A measurable function f is said to be integrable on E, if 𝑓+and 𝑓− are 

integrable and integral of f over E is defined as ∫
𝐸

𝑓 = ∫
𝐸

𝑓+ − ∫
𝐸

𝑓− 

Proposition: Let f and g be integrable functions on a set of finite measure E. Then 

(i) ∫
𝐸

(𝑐𝑓) = 𝑐 ∫
𝐸

𝑓. 

(ii) ∫
𝐸

(𝑓 + 𝑔) = ∫
𝐸

𝑓 + ∫
𝐸

𝑔 

(iii) If f  g a.e. then ∫
𝐸

𝑓 ≤ ∫
𝐸

𝑔.   

(iv) If A and B are disjoint measurable sets of finite measure then                                                

∫
𝐴∪𝐵

𝑓 = ∫
𝐴

𝑓 + ∫
𝐵

𝑓 

Proof: (i) Claim: ∫
𝐸

(𝑐𝑓) = 𝑐 ∫
𝐸

𝑓 if c > 0 

Let c  R. If c = 0 then it is trivial.  

Let c > 0. Then (𝑐𝑓)+(𝑥) = {
𝑐𝑓(𝑥)  𝑖𝑓 𝑐𝑓(𝑥) ≥ 0

0       𝑖𝑓 𝑐𝑓(𝑥) < 0 
 = c{

𝑓(𝑥)  𝑖𝑓 𝑓(𝑥) ≥ 0

0       𝑖𝑓 𝑓(𝑥) < 0 
 = c(𝑓)+  

Similarly (𝑐𝑓)−(𝑥) = 𝑐𝑓−(𝑥). 

∫
𝐸

(𝑐𝑓) = ∫
𝐸

(𝑐 𝑓)+ − ∫
𝐸

(𝑐𝑓)− = ∫
𝐸

𝑐(𝑓+) − ∫
𝐸

𝑐(𝑓−) = c{∫
𝐸

𝑓+ − ∫
𝐸

𝑓−} = c∫
𝐸

𝑓 

Let c < 0. Then (𝑐𝑓)+(𝑥) = {
𝑐𝑓(𝑥)  𝑖𝑓 𝑐𝑓(𝑥) ≥ 0

0       𝑖𝑓 𝑐𝑓(𝑥) < 0 
 = -c{

−𝑓(𝑥)  𝑖𝑓 𝑓(𝑥) ≤ 0

0       𝑖𝑓 𝑓(𝑥) > 0 
                                     

= -c(𝑓)−  

Similarly (𝑐𝑓)−(𝑥) = {
−𝑐𝑓(𝑥)  𝑖𝑓 𝑐𝑓(𝑥) ≤ 0

0       𝑖𝑓 𝑐𝑓(𝑥) > 0 
 = -c{

𝑓(𝑥)  𝑖𝑓 𝑓(𝑥) ≥ 0

0       𝑖𝑓 𝑓(𝑥) < 0 
= −𝑐𝑓+(𝑥). 

∫
𝐸

(𝑐𝑓) = ∫
𝐸

(𝑐 𝑓)+ − ∫
𝐸

(𝑐𝑓)− = ∫
𝐸

− 𝑐(𝑓−) − ∫
𝐸

−𝑐(𝑓+) = c{∫
𝐸

𝑓+ − ∫
𝐸

𝑓−}                                           

= c∫
𝐸

𝑓 

(ii) Claim: If 𝑓1 and 𝑓2 are non-negative integrable functions such that f = f1 – f2, 

then ∫
𝐸

𝑓 = ∫
𝐸

𝑓1 − ∫
𝐸

𝑓2. 

Let 𝑓 = 𝑓1 − 𝑓2 where 𝑓1, 𝑓2 are non-negative integrable functions. 



 

 

𝑓+ − 𝑓− = 𝑓 = 𝑓1 − 𝑓2   𝑓+ + 𝑓2 = 𝑓2 + 𝑓− ⇒  ∫
𝐸

(𝑓+ + 𝑓2) = ∫
𝐸

(𝑓2 + 𝑓−)                  

 ∫
𝐸

𝑓+ + ∫
𝐸

𝑓2 = ∫
𝐸

𝑓2 + ∫
𝐸

𝑓−  ∫
𝐸

𝑓 = ∫
𝐸

𝑓1 − ∫
𝐸

𝑓2.  

Now f + g = 𝑓+ − 𝑓− + 𝑔+ − 𝑔− = 𝑓+ + 𝑔+ − (𝑓− + 𝑔−)                                                             

 ∫
𝐸

(𝑓 + 𝑔) = ∫
𝐸

(𝑓+ + 𝑔+) − ∫
𝐸

(𝑓− + 𝑔−) by claim  

                       = ∫
𝐸

𝑓+ + ∫
𝐸

𝑔+ − ∫ 𝑓−

𝐸
− ∫

𝐸
𝑔− = ∫

𝐸
𝑓+ − ∫ 𝑓−

𝐸
+ ∫

𝐸
𝑔+ − ∫

𝐸
𝑔−                             

              = ∫
𝐸

𝑓 + ∫
𝐸

𝑔 

(iii) Let f  g a.e. Then g – f  0 a.e.                                                   

By (ii) ∫
𝐸

(𝑔 − 𝑓)  0  ∫
𝐸

𝑔 − ∫
𝐸

𝑓  0  ∫
𝐸

𝑔 ≥ ∫
𝐸

𝑓 

(iv) Let A and B are disjoint measurable sets.                                                                           

Then ∫
𝐴∪𝐵

𝑓 = ∫
𝐸

𝑓𝜒𝐴∪𝐵  = ∫
𝐸

𝑓(𝜒𝐴 + 𝜒𝐵) = ∫
𝐸

𝑓(𝜒𝐴 + 𝑓𝜒𝐵)  =  ∫
𝐸

𝑓𝜒𝐴 + ∫
𝐸

𝑓𝜒𝐵) = 

∫
𝐴

𝑓 + ∫
𝐵

𝑓    

 

Lebesgue Convergence Theorem: Let g be an integrable function over E and let 

{𝑓𝑛} be a sequence of measurable functions such that |𝑓𝑛|  g on E and                                      

f(x) = lim
𝑛

𝑓𝑛 (𝑥) a. e. on E. Then ∫
𝐸

𝑓 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛. 

Proof: Given that 0  |𝑓𝑛|  g on E.                                                                                                 

So, g is non-negative, – g  𝑓𝑛  g for all n.                                                                                       

Since g is integrable, 𝑓𝑛 is integrable for all n.                                                                                

Now 𝑓𝑛  g  lim
𝑛

𝑓𝑛  g  f = lim
𝑛

𝑓𝑛  g a. e.  f  g a. e.                                                              

Now g is integrable  f is integrable. Since g  𝑓𝑛, g – 𝑓𝑛  0 on E. 

 {g – 𝑓𝑛} is a sequence of non-negative measurable functions  {g – 𝑓𝑛} 

converges to g – f a. e. on E. 

By Fatou’s lemma, ∫
𝐸

𝑔 – ∫
𝐸

𝑓 = ∫
𝐸

(𝑔 − 𝑓)  𝑙𝑖𝑚
𝑛

∫
𝐸

(𝑔 − 𝑓𝑛) = ∫
𝐸

𝑔 – 

𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛.  𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛  ∫
𝐸

𝑓. … (i) 

{g + 𝑓𝑛} is a sequence of non-negative measurable functions  {g + 𝑓𝑛} converges 

to g + f a. e. on E. 

By Fatou’s lemma, ∫
𝐸

𝑔 + ∫
𝐸

𝑓 = ∫
𝐸

(𝑔 + 𝑓)  𝑙𝑖𝑚
𝑛

∫
𝐸

(𝑔 + 𝑓𝑛) = ∫
𝐸

𝑔 + 

𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛.   ∫
𝐸

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 … (ii). 

From (i) and (ii), ∫
𝐸

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛  𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 ≤ ∫
𝐸

𝑓. 



 

 

 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 = ∫
𝐸

𝑓.  

𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 exists and ∫
𝐸

𝑓 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛. 

 

Proposition: 6*: Let {fn} be a sequence of measurable functions that convergences 

in measure to f. Then, there is a subsequence of {fn} which converges to f almost 

everywhere. 

 

Theorem: Generalized Lebesgue Convergence theorem 

Let {gn} be a sequence of integrable functions converge to an integral function g a. 

e. Let {fn} be a sequence of measurable functions such that |𝑓𝑛|  gn  n and fn(x) 

→ f(x) a. e. If ∫
𝐸

𝑔 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑔𝑛. Then ∫
𝐸

𝑓 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛. 

Proof: Given that 0  |𝑓𝑛|  gn on E.                                                                                                 

So, gn is non-negative, – gn  𝑓𝑛  gn for all n.                                                                                       

Since gn is integrable, 𝑓𝑛 is integrable for all n.                                                                                 

Since 𝑓𝑛 → f and 𝑔𝑛 → g and 𝑓𝑛  gn; f  g a. e.                                                              

Now g is integrable  f is integrable. Since gn  𝑓𝑛, gn – 𝑓𝑛  0 on E. 

 {gn – 𝑓𝑛} is a sequence of non-negative measurable functions  {gn – 𝑓𝑛} 

converges to g – f a. e. on E. 

By Fatou’s lemma, ∫
𝐸

𝑔 –∫
𝐸

𝑓 = ∫
𝐸

(𝑔 − 𝑓)  𝑙𝑖𝑚
𝑛

∫
𝐸

(𝑔𝑛 − 𝑓𝑛)                                              

= 𝑙𝑖𝑚
𝑛

 ∫
𝐸

𝑔𝑛 – 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑔𝑛 – 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 =  ∫
𝐸

𝑔 − 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛                                                                        

ie. ∫
𝐸

𝑔 – ∫
𝐸

𝑓   ∫
𝐸

𝑔 − 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛  𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛  ∫
𝐸

𝑓. … (i) 

{gn + 𝑓𝑛} is a sequence of non-negative measurable functions  {gn + 𝑓𝑛} 

converges to g + f a. e. on E. 

By Fatou’s lemma, ∫
𝐸

𝑔 + ∫
𝐸

𝑓 = ∫
𝐸

(𝑔 + 𝑓)  𝑙𝑖𝑚
𝑛

∫
𝐸

(𝑔𝑛 + 𝑓𝑛)                                                        

= 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑔𝑛 + 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑔𝑛 + 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 = ∫
𝐸

𝑔 + 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛                                                            

⇒ ∫
𝐸

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 … (ii). 

From (i) and (ii), ∫
𝐸

𝑓 ≤ 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛  𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 ≤ ∫
𝐸

𝑓. 

 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 = ∫
𝐸

𝑓.  

𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛 exists and ∫
𝐸

𝑓 = 𝑙𝑖𝑚
𝑛

∫
𝐸

𝑓𝑛. 



 

 

 

CONVERGENCE IN MEASURE: 

 

Definition: A sequence {fn} of measurable functions is said to converge to f in 

measure if   > 0, m{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)|  ≥  } → 0                                                                             

Ie.   > 0,   > 0  k  ℕ  m{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)|  ≥  } <   n  k. 

 

Result: If {fn} is a sequence of measurable functions on E with finite measure and 

fn → f a. e, then fn → f in measure. 

Proof: Suppose fn → f a.e. Let  > 0, and  > 0. By Little Woods third principle  

 a measurable set A  E with m(A) <  and k  ℕ   |𝑓𝑛(𝑥) − 𝑓(𝑥)| <   n  k 

and  x  Ac. 

 |𝑓𝑛(𝑥) − 𝑓(𝑥)|   then x  A. 

 {𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)|  ≥   ∀ n ≥ k} ⊆ 𝐴.    

 m{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)|  ≥  } ≤ 𝑚(𝐴)  n  k 

 𝑚{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)|  ≥  } < 𝜂  n  k. 

 fn → f in measure.  

 

Note: Converse is not true. 

 

Proposition: Let {fn} be a sequence of measurable functions that converges to f in 

measure. Then there is a subsequence {𝑓𝑛𝑘
} that converges to f a. e. 

Proof: Given that the sequence {fn} converges to f in measure. 

By definition, corresponding to 
1

2
,  n1  ℕ   m{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)|  ≥

1

2
 } <

1

2
                           

 n  n1. And so on, having chosen nk – 1, choose nk as follows.  

Corresponding to 
1

2𝑘
,  nk  ℕ   m{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)|  ≥

1

2𝑘
 } <

1

2𝑘
  n  nk.  

Then {𝑓𝑛𝑘
} is a subsequence of {fn}. 

Write 𝐸𝑘 = {𝑥: |𝑓𝑛𝑘
(𝑥) − 𝑓(𝑥)|  ≥

1

2𝑘
 }. Then 𝑚(𝐸𝑘) < 

1

2𝑘
  k; 

If x ∉ ⋃ 𝐸𝑘
∞
𝑘=𝑗 , then x  𝐸𝑘 k  j. 

 |𝑓𝑛𝑘
(𝑥) − 𝑓(𝑥)| <

1

2𝑘
  k  j. 

 𝑓𝑛𝑘
(𝑥) → 𝑓(𝑥), 

 𝑓𝑛𝑘
(𝑥) → 𝑓(𝑥) ∀ 𝑥 ∉ ⋃ 𝐸𝑘

∞
𝑘=𝑗  … (i) 

Put A = ⋂ ⋃ 𝐸𝑘
∞
𝑘=𝑗 .∞

𝑗=1  



 

 

If x  A, then x ∉ ⋃ 𝐸𝑘
∞
𝑘=𝑗  for some j. 

 by (i) 𝑓𝑛𝑘
(𝑥) → 𝑓(𝑥) 

 𝑓𝑛𝑘
(𝑥) → 𝑓(𝑥) ∀ 𝑥 ∉ 𝐴. 

Then 𝑚(⋃ 𝐸𝑘) ≤ ∑ 𝑚(𝐸𝑘
∞
𝑘=𝑗

∞
𝑘=𝑗 ) ≤ ∑

1

2𝑘
∞
𝑘=𝑗  = 

1

2𝑗−1
  j. 

But A  ⋃ 𝐸𝑘
∞
𝑘=𝑗   

 m(A)  m(⋃ 𝐸𝑘)∞
𝑘=𝑗  < 

1

2𝑗−1
  j. 

 m(A) = 0 

 the subsequence {𝑓𝑛𝑘
} of the sequence {fn} converges to f a. e.  
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302: LEBESGUE THEORY  

UNIT III 

K. C. TAMMI RAJU 

DIFFERENTIATION AND INTEGRATION 

 

SECTION – 1: DIFFERENTIATION OF MONOTONE FUNCTIONS 

Definition: Let ℐ be a collection of intervals in ℝ. ℐ covers a set E in the sense 

of Vitali if for each  > 0 and x in E, there exists an interval I in ℐ with l(I) <  

and x  I. 

Vitali Covering Lemma: Let E be a set of finite measure and ℐ, a collection of 

intervals which cover E in the sense of Vitali. Then given  > 0, there is a finite 

disjoint collection {I1, I2, ... , In} of intervals in ℐ such that 𝑚∗(𝐸~ ⋃ 𝐼𝑖
𝑛
𝑖=1 ) < . 

Proof: We may assume that each interval in ℐ is closed. Since m*(E) <  there 

exists an open set O containing E with m*(O) < . Write ℐ0 = { I  ℐ / I  O}. 

Then ℐ0 covers E in the sense of Vitali. So we can assume that each interval in ℐ 

is contained in the open set O.  

Let I1 be any interval from ℐ. Suppose I1, I2, ..., In were chosen. Now we can 

choose In+1 as follows: Put kn = sup {𝑙(𝐼): 𝐼𝜖 ℐ, 𝐼 ∩ ⋃ 𝐼𝑖 = 𝜙𝑛
𝑖=1 }....(i).                                                 

I  O for all I  ℐ  m*(I)  m*(O) < .  l (I)  m*(O). This is true for all I 

belonging to the set given in (i).                                                                                                        

 m*(O) is an upper bound for that set. So kn  m*(O) < .                                                         

If E  ⋃ 𝐼𝑖
𝑛
𝑖=1 , then the lemma is trivial.                                                                                

Otherwise there exists an element x  E ~ ⋃ 𝐼𝑖
𝑛
𝑖=1 .                                                                                   

Since x  ⋃ 𝐼𝑖
𝑛
𝑖=1   a  > 0  N(x)  ⋃ 𝐼𝑖

𝑛
𝑖=1  = .                                                              

Now corresponding to for x  E and  >0,  I  ℐ  x  I and l (I) <  since ℐ 

covers E in the sense of Vitali                                                                                              

Clearly I  N(x).                                                                                                               

Hence, I  (⋃ 𝐼𝑖
𝑛
𝑖=1 )  N(x)  (⋃ 𝐼𝑖

𝑛
𝑖=1 ) =   I  (⋃ 𝐼𝑖

𝑛
𝑖=1 ) =   l (I)  kn.       

Also, I   since x  I.                                                                                                                   

 l (I)  0. Now 0 < kn.                                                                                                                 

So 
𝑘𝑛

2
 < kn.   

𝑘𝑛

2
 is not an upper bound of the set given in (i).                                                                  

  an interval In+1  ℐ    
𝑘𝑛

2
 < l (In+1) and In+1  (⋃ 𝐼𝑖

𝑛
𝑖=1 ) = .    Thus by 

induction we get a sequence of disjoint intervals from I  kn < 2l (In+1). ... (ii). 
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Now   ⋃ 𝐼𝑖
𝑛
𝑖=1   O  m*(⋃ 𝐼𝑖

𝑛
𝑖=1 )  m*(O) <                                                       

 ∑ 𝑙(𝐼𝑛) < ∞.∞
𝑖=1                                                                                                                             

  ∑ 𝑙(𝐼𝑛)∞
𝑖=1  converges.                                                                                                    

corresponding to /5 > 0,  an integer N  ∑ 𝑙(𝐼𝑛) <
𝜀

5
.∞

𝑖=𝑁+1                                                                                           

Put R = E ~ (⋃ 𝐼𝑖
𝑁
𝑖=1 ). Let x  R.                                                                                                     

Then x  ⋃ 𝐼𝑖
𝑁
𝑖=1  and ⋃ 𝐼𝑖

𝑁
𝑖=1  is closed.                                                                                            

  > 0  N(x)  (⋃ 𝐼𝑖
𝑁
𝑖=1 ) = .                                                                                            

Also, x  E and so  I  ℐ  x  I and I  (⋃ 𝐼𝑖
𝑁
𝑖=1 ) = .                                                                                                                                                                                                                       

Let n be any positive integer such that I  Ii =  for all i  n.                                                       

ie. I  (⋃ 𝐼𝑖
𝑛
𝑖=1 ) = .                                                                                                                  

Then l (I)  kn by (i).                                                                                                                

< 2 l (In+1) by (ii).                                                                                                                        

But l (In) → 0 as n → .                                                                                                           

 l (I) = 0 which is a contradiction.                                                                                                    

  a positive integer m  I  Im  .                                                                                        

Let n be the least positive integer such that I  In  .                                                             

Then I  Ii =  for all i  n – 1.                                                                                                                 

 I  (⋃ 𝐼𝑖
𝑛−1
𝑖=1 ) = .                                                                                                                      

 l (I)  kn – 1 by (i)                                                                                                    

< 2l (In) by (ii).                                                                                                                             

Let an be the midpoint of In.                                                                                                  

Let y  I  In.                                                                                                                                 

Now |𝑥 − 𝑎𝑛|  ≤ |𝑥 − 𝑦| + |𝑦 − 𝑎𝑛| ≤ 𝑙(𝐼) +
𝑙(𝐼𝑛)

2
< 2𝑙(𝐼𝑛) +

𝑙(𝐼𝑛)

2
=

5𝑙(𝐼𝑛)

2
.   

 Let Jn be the closed interval having an as its midpoint such that 𝑙(𝐽�̅�) = 5𝑙(𝐼𝑛). 

Then x  Jn. Also I  In   since n > N.                                                                           

 given x  R,  n > N  x  Jn.                                                                                                

So, R  ⋃ 𝐽𝑛
∞
𝑛=𝑁+1 .                                                                                                                             

m*(R)  ∑ 𝑚∗(𝐽𝑛)∞
𝑛=𝑁+1  = ∑ 𝑙(𝐽𝑛) = ∑ 5𝑙(𝐼𝑛)∞

𝑛=𝑁+1
∞
𝑛=𝑁+1  =

5 ∑ 𝑙(𝐼𝑛)  < 5
𝜀

5
=∞

𝑛=𝑁+1 𝜀.                                                                                                             

 m*(R) < .                                                                                            

Definition: Let f be an extended real valued function defined for all x in an 

interval containing the point y. We define 
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lim
𝑥→𝑦
̅̅ ̅̅ ̅𝑓(𝑥) =  inf

𝛿>0
{ sup

0<|𝑥−𝑦|<𝛿
𝑓(𝑥)} 

lim
𝑥→𝑦+
̅̅ ̅̅ ̅̅ 𝑓(𝑥) =  inf

𝛿>0
{ sup

0<𝑥−𝑦<𝛿
𝑓(𝑥)} 

lim
𝑥→𝑦−
̅̅ ̅̅ ̅̅ 𝑓(𝑥) =  inf

𝛿>0
{ sup

0<𝑦−𝑥<𝛿
𝑓(𝑥)} 

𝑙𝑖𝑚
𝑥→𝑦

𝑓(𝑥) =  sup
𝛿>0

{ 𝑖𝑛𝑓
0<|𝑥−𝑦|<𝛿

𝑓(𝑥)} 

𝑙𝑖𝑚
𝑥→𝑦+

𝑓(𝑥) =  sup
𝛿>0

{ inf
0<𝑥−𝑦<𝛿

𝑓(𝑥)} 

𝑙𝑖𝑚
𝑥→𝑦−

𝑓(𝑥) =  sup
𝛿>0

{ inf
0<𝑦−𝑥<𝛿

𝑓(𝑥)} 

Definition: Let f be an extended real valued function defined on an interval 

containing a point x.  

D+f(x) = lim
ℎ→0+
̅̅ ̅̅ ̅̅ 𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 is called the upper right derivative of f at x.  

𝐷−f(x) = lim
ℎ→0+
̅̅ ̅̅ ̅̅ 𝑓(𝑥)−𝑓(𝑥−ℎ)

ℎ
 is called the upper left derivative of f at x.  

𝐷+𝑓(𝑥) = 𝑙𝑖𝑚
ℎ→0+

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
  is called the lower right derivative of f at x. 

𝐷−𝑓(𝑥) = 𝑙𝑖𝑚
ℎ→0+

𝑓(𝑥)−𝑓(𝑥−ℎ)

ℎ
  is called the lower left derivative of f at x. 

Note: D+f(x)  D+f(x); D–f(x)  D–f(x) for any function f. 

Definition: If  D+f(x) = D+f(x) = D–f(x) = D–f(x)  , then we say that f is 

differentiable at x  

Exercise: If f is continuous on [a, b] and D+ exists, every where and non-

negative on [a, b], then f(b)  f(a). 

Solution: In contrary suppose f(b) < f(a).  
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 < 0  − [

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
] > 0.    

Choose  > 0 such that − [
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
] >  > 0.                                                                           

 f(b) – f(a) + (b – a) < 0.                                                                                                   

Define a function  on [a, b] by (x) = f(x) – f(a) +  (x –a).                                           

Then (a) = 0. Let  be the largest value in (a, b] such that () = 0.                                  

Then for all x  (, b), (x) < 0.                                                                                   

D+() = lim
ℎ→0+
̅̅ ̅̅ ̅̅ 𝜙(𝜉+ℎ)

ℎ
  0.                                                                                                             
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But D+() = lim
ℎ→0+
̅̅ ̅̅ ̅̅ 𝜙(𝜉+ℎ)

ℎ
 = lim

ℎ→0+
̅̅ ̅̅ ̅̅ 𝑓(𝜉+ℎ)−𝑓(𝑎)+(+ℎ−𝑎)

ℎ
 = lim

ℎ→0+
̅̅ ̅̅ ̅̅ 𝑓(𝜉+ℎ)−𝑓()+ℎ

ℎ
 

since () = 0. 

= lim
ℎ→0+
̅̅ ̅̅ ̅̅ 𝑓(𝜉+ℎ)−𝑓()

ℎ
 +  = D+f() +    > 0. Ie. D+() > 0, a contradiction. 

Hence f(b)  f(a). 

Lebesgue Theorem: Let f be an increasing real valued function on [a, b]. Then 

f is differentiable almost everywhere. The derivative f  is measurable and 

∫ 𝑓′(𝑥)𝑑𝑥 ≤ 𝑓(𝑏) − 𝑓(𝑎).
𝑏

𝑎
  

Proof: We prove D+f(x) = D+f(x) = D–f(x) = D–f(x) = f (x) exists ever where. 

Ie. to prove the sets where any two of the derivatives mentioned here are 

unequal, have measure zero.                                                                                  

Let E = { x / D+f(x)  >  D–f(x) }. Now we prove that m(E) = 0.                                                            

The sets arising from other derivatives can be handled similarly.                                                                                       

For each pair of rationals u and v with u > v, write                                                                                  

Eu, v = {x / D+f(x)  > u  > v > D–f(x) }.                                                                                          

Then E = ⋃ 𝐸𝑢,𝑣𝑢>𝑣  is a countable union.                                                                            

Clearly m*(E)  ∑ 𝑚∗(𝐸𝑢,𝑣)𝑢>𝑣                                                                                                       

So it is enough if we prove that m*(Eu, v) = 0. Put s = m*(Eu, v).                                                                                                                                               

Let  > 0. Now  an open set O  Eu, v such that m*(O) < m*(Eu, v) +  = s + . 

Now for each x  Eu, v  an arbitrarily small interval                                                        

[x – h, x]  O such that f(x) – f(x – h)  vh and {[x – h, x] : x  Eu, v } covers                        

Eu, v in the sense of Vitali.                                                                                     

 By Vitali covering lemma,  a finite disjoint collection of intervals                              

{Ii = [xi – hi, xi]  O}, i = 1, 2, ..., N  𝑚∗(𝐸𝑢,𝑣\ ⋃ 𝐼𝑖
𝑁
𝑖=1 ) < 𝜀.  

Put A = 𝐸𝑢,𝑣 ∩ ⋃ (𝑥𝑖 − ℎ𝑖 , 𝑥𝑖
𝑁
𝑖=1 ). Then A  Eu,v.                                                                                                                                

Summing over these N intervals                                                                                    

∑ [𝑓(𝑥𝑛) − 𝑓(𝑥𝑛 − ℎ𝑛)𝑁
𝑛=1 ] < v∑ ℎ𝑛

𝑁
𝑛=1  < v m(O) < v(s + )...(ix).                                     

Here h1, ..., hN are so small that h1 + ... + hN < m(O)                                         

Now for each y  A  an arbitrarily small interval of the form [y, y + k]  Ii for 

some i  {1, 2, ... N} such that f(y + k) – f(y) > uk.                                                             

The collection of intervals {(y, y + k) / y  A} forms a Vitali covering for the   

set A.  By Vitali covering lemma,  a finite disjoint collection of intervals                        

{Ji = (yi, yi + ki)  O}, i = 1, 2, ...,M   𝑚∗(𝐴\ ⋃ 𝐽𝑖
𝑀
𝑖=1 ) < 𝜀 … (v). 



6 
 

 

Put A1 =  𝐴 ∩ ⋃ (𝑦𝑗 , 𝑦𝑗
𝑀
𝑗=1 + 𝑘𝑗). Now s –   <  𝑚∗(𝐴) (proved)                                                                                             

= 𝑚∗(𝐴′) + 𝑚∗ (𝐴\(⋃ 𝐽𝑖
𝑀
𝑖=1 ))  since O2 is measurable.                                                              

= m*(A1) +  by (vii)                                                                                                                          

 m*(A1) > s – 2... (viii)                                                                                                    

Summing over these M intervals                                                                                   

∑ [𝑓(𝑦𝑗 + 𝑘𝑗) − 𝑓(𝑦𝑗)𝑀
𝑗=1 ] > u∑ 𝑘𝑗

𝑛
𝑗=1  > u(s - 2).                                                                                                  

By (iv) we have that each interval Ji is contained in some In and if we sum over 

those i, for which Ji  In we have                                                                                                                                        

∑ [𝑓(𝑦𝑖 + 𝑘𝑖) − 𝑓(𝑦𝑖)]𝐽𝑖⊆𝐼𝑛
  𝑓(𝑥𝑛) − 𝑓(𝑥𝑛 − ℎ𝑛) (since f is an increasing 

function). Thus ∑ [𝑓(𝑥𝑛) − 𝑓(𝑥𝑛 − ℎ𝑛)𝑁
𝑛=1 ]  ∑ [𝑓(𝑦𝑗 + 𝑘𝑗) − 𝑓(𝑦𝑗)𝑀

𝑗=1                                                                                                                                        

and so v(s + ) > u(s - 2) for all  > 0.                                                                                           

 vs > us, a contradiction since u > v.                                                                                            

 s = 0.                                                                                                                                                                                                                                                  

Write (𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 .                                                                                                        

The above means that f is differentiable a. e. whenever g is finite.                                          

Define 𝑔𝑛(𝑥) = 𝑛 {𝑓 (𝑥 +
1

𝑛
) − 𝑓(𝑥)} and set f(x) = f(b) for all x  b.                                

Then {gn} is a sequence of non – negative functions since f is increasing.                                                                                                 

Since f is measurable, each gn is measurable and so lim
𝑛→∞

𝑔𝑛(𝑥) is measurable.                                                                                                                            

Now lim
𝑛→∞

𝑔𝑛(𝑥) = lim
𝑛→∞

𝑛 {𝑓 (𝑥 +
1

𝑛
) − 𝑓(𝑥)}.                                             = 

lim
1

𝑛
→0

𝑓(𝑥+
1

𝑛
)−𝑓(𝑥)

1

𝑛

    =  lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
  = g(x) a. e.                                                                                                                                                                                

Since each gn is measurable, lim gn = g = f  is measurable.                                                                                                                                              

 By Fatou’s Lemma, ∫ 𝑔
𝑏

𝑎
≤ 𝑙𝑖𝑚

𝑛
∫ 𝑔𝑛

𝑏

𝑎
 = 𝑙𝑖𝑚 

𝑛

𝑛 ∫ {𝑓 (𝑥 +
1

𝑛
) − 𝑓(𝑥)}

𝑏

𝑎
                                                

= 𝑙𝑖𝑚 
𝑛

(𝑛 ∫ 𝑓 − 𝑛 ∫ 𝑓
𝑎+

1

𝑛
𝑎

𝑏+
1

𝑛
𝑏

) = 𝑙𝑖𝑚 
𝑛

(𝑓(𝑏) − 𝑛 ∫ 𝑓
𝑎+

1

𝑛
𝑎

)  f(b) – f(a)                            

since – f(x)  – f(a)                                                                                                                               

ie. ∫ 𝑓′(𝑥)𝑑𝑥
𝑏

𝑎
  f(b) – f(a). This completes the proof.  
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                                                        SECTION – 2:  

FUNCTIONS OF BOUNDED VARIATION 

Definition: (i) If r is a real number, then we define r+ = max{r, 0} and                                                   

𝑟− = max { – r, 0}.                                                                                                                         

Clearly r = 𝑟+ − 𝑟−, |𝑟| =  𝑟+ + 𝑟−  

(ii) Let f be a real valued function defined on [a, b]. Let a = x0 < x1 < ... < xk = b 

be a subdivision of [a, b].                                                                                                    

Define p = ∑ [𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)]+𝑘
𝑖=1 ,  n = ∑ [𝑓(𝑥𝑖 )−𝑓(𝑥𝑖−1)]−𝑘

𝑖=1  

(iii) t = n + p  = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑘
𝑖=1  

(iv) p – n = ∑ [𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)]+𝑘
𝑖=1  – ∑ [𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)]−𝑘

𝑖=1                                                        

= ∑ [{𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)}+𝑘
𝑖=1 − {𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)}−] =  ∑ [𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)]𝑘

𝑖=1  

= f(b) – f(a). 

(v) Define P = sup p, N = sup n and T = sup t where supremums are taken over 

all possible subdivisions of [a, b]. 

(vi) Clearly p < t.                                                                                                                           

 sup p  sup t  P  T.  Similarly N  T and T  P + N. We call P, N and T 

the positive, negative and total variations of f over [a, b]. 

We denote them by 𝑃𝑎
𝑏(f), 𝑁𝑎

𝑏(f) and 𝑇𝑎
𝑏(f) respectively. 

 

Definition: A function f on an interval [a, b] is said to be a function of bounded 

variation over the interval [a, b] if 𝑇𝑎
𝑏(𝑓) < . 

Note: any monotonic function is of bounded variation.  

Lemma: If f is a function of bounded variation on [a, b], then 𝑇𝑎
𝑏 = 𝑃𝑎

𝑏 + 𝑁𝑎
𝑏 

and f(b) – f(a) = 𝑃𝑎
𝑏 − 𝑁𝑎

𝑏 

Proof: Let f be a function of bounded variation on the interval [a, b].                                      

By definition 𝑇𝑎
𝑏 <  .                                                                                                                    

For any partition of  [a, b], we have                                                                                                       

p – n = ∑ [{𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)}+𝑘
𝑖=1 − {𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)}−]                                          

 =  ∑ [𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)]𝑘
𝑖=1  = f(b) – f(a) ...(i)                                                                                                                               

 p = f(b) – f(a) + n  f(b) – f(a) + 

N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

 P  f(b) – f(a) + N.                                                                                                                          

 P – N  f(b) – f(a).                                                                                                               

Again n = p + f(a) – f(b)  P + f(a) – f(b)  N  P + f(a) – f(b).                                                               
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 P – N  f(b) – f(a)                                                                                                                      

 P – N = f(b) – f(a).   ie. 𝑃𝑎
𝑏 − 𝑁𝑎

𝑏 = 𝑓(𝑏) − 𝑓(𝑎)                                                                             

t = p + n = p + [p – {f(b) – f(a)}] = 2p – {f(b) – f(a)}                                                                         

 T  t = 2p – {f(b) – f(a)} for all p.                                                                                                             

 T  2P – {f(b) – f(a)} = 2P – (P – N) = P + N. But we have T  P + N 

Hence T = P + N.   

Theorem: A function f is of bounded variation on [a, b] if and only if f is the 

difference of two monotone real valued functions on the interval [a, b]. 

Proof: Suppose f is a function of bounded variation on the interval [a, b]. 

Define g and h as g(x) = 𝑃𝑎
𝑥, h(x) = 𝑁𝑎

𝑥.                                                                                         

Now x1 ≤ x2  𝑃𝑎
𝑥1  ≤ 𝑃𝑎

𝑥2  g(x1) ≤ g(x2)  g is increasing.                                              

Similarly, h is increasing.                                                                                                        

Also, by definition, 0  𝑃𝑎
𝑥 𝑇𝑎

𝑥  𝑇𝑎
𝑏 <  and 0  𝑁𝑎

𝑥 𝑇𝑎
𝑥  𝑇𝑎

𝑏 < .                                                      

Thus, both g and h are real valued functions.                                                                                                  

Now g(x) – h(x) = 𝑃𝑎
𝑥– 𝑁𝑎

𝑥 = f(x) – f(a) by lemma                                                                             

 f(x) = g(x)  – {h(x) – f(a)}  x  [a, b] where g and h are increasing real 

valued functions. 

Conversely suppose f = g – h where g and h are monotonic.                                               

Let a = x0 < x1 < ... < xn = b be a partition of [a, b].                                                                 

Now t = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑛
𝑖=1  = ∑ |{𝑔(𝑥𝑖) − ℎ(𝑥𝑖)} − {𝑔(𝑥𝑖−1) −𝑛

𝑖=1

ℎ(𝑥𝑖−1)}|  ∑ |𝑔(𝑥𝑖) − 𝑔(𝑥𝑖−1)|𝑛
𝑖=1  + ∑ |ℎ(𝑥𝑖) − ℎ(𝑥𝑖−1)|𝑛

𝑖=1                               

= |𝑔(𝑏) − 𝑔(𝑎)| + |ℎ(𝑏) − ℎ(𝑎)| since g and h are monotonic. 

< . 

 𝑇𝑎
𝑏 < |𝑔(𝑏) − 𝑔(𝑎)| + |ℎ(𝑏) − ℎ(𝑎)| <  since each function is bounded.     

Hence f is a function of bounded variation on [a, b]. 

Corollary: If f is a function of bounded variation on [a, b] then f is 

differentiable a.e. 

Proof: Since f is a function of bounded variation on [a, b], f can be written as a 

difference of two monotone functions. Suppose f = g – h where g and h are 

monotonic functions. W. L. G. We may assume that  f = g  h where g and h are 

increasing functions. Then, we have that g and h are differentiable almost 

everywhere and hence f = g = h is also differentiable a. e. 

Example: If a  c  b then (i) 𝑇𝑎
𝑏 =  𝑇𝑎

𝑐 + 𝑇𝑐
𝑏;  𝑇𝑎

𝑐  𝑇𝑎
𝑏                                     

(ii) 𝑇𝑎
𝑏(𝑓 + 𝑔)𝑇𝑎

𝑏(𝑓) + 𝑇𝑎
𝑏(𝑔) (iii) 𝑇𝑎

𝑏(𝑐𝑓) =  |𝑐|𝑇𝑎
𝑏(𝑓). 
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Proof: (i) Let f be a function defined on [a, b], c  [a, b], a = x0 < x1 < ... < xn = 

b be a partition of [a, b] and  i  xi  c  xi+1.                                                                                                                            

Now a = x0 < x1 < ... < xi  c is a partition of [a, c] and c  xi+1 < xi+2 < ... < xn = 

b is a partition of [c, b].                                                                                                               

Write t1 = ∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|𝑖
𝑗=1 + |𝑓(𝑐) − 𝑓(𝑥𝑖)|                                                                   

and t2 = ∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|𝑛
𝑗=𝑖+2 + |𝑓(𝑥𝑖+1) − 𝑓(𝑐)|  

 t1   𝑇𝑎
𝑐 and t2  𝑇𝑐

𝑏                                                                                                           

Now t = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑛
𝑖=1 = ∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|𝑖

𝑗=1 + |𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)| 

+ ∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|𝑛
𝑗=𝑖+2                                                                                                                       

  ∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|𝑖
𝑗=1 + |𝑓(𝑥𝑖+1) − 𝑓(𝑐)| + |𝑓(𝑐) − 𝑓(𝑥𝑖)| 

+∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|𝑛
𝑗=𝑖+2   = t1 + t2   𝑇𝑎

𝑐 + 𝑇𝑐
𝑏                                                                        

 t  𝑇𝑎
𝑐 + 𝑇𝑐

𝑏     Hence 𝑇𝑎
𝑏   𝑇𝑎

𝑐 + 𝑇𝑐
𝑏                                                                                                                    

Let a = x0 < x1 < ... < xm = c is a partition of [a, c] and c = y0 < y1 < ... < yk = b is 

a partition of [c, b].                                                                                                                    

Put t = ∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|𝑚
𝑗=1   and t = ∑ |𝑓(𝑦𝑗) − 𝑓(𝑦𝑗−1)|𝑘

𝑗=1                                       

Now a = x0 < x1 < ... < xm = c  = y0 < y1 < ... < yk = b is a partition of [a, b].                            

So t = ∑ |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗−1)|𝑚
𝑗=1  + ∑ |𝑓(𝑦𝑗) − 𝑓(𝑦𝑗−1)|𝑘

𝑗=1    = t + t                                       

But  𝑇𝑎
𝑏   𝑡 = 𝑡 + t.                                                                                                                   

 𝑇𝑎
𝑏  sup{𝑡 + 𝑡}        𝑇𝑎

𝑏 ≥ sup {𝑡′) + sup  {𝑡′′)                                                                                    

  𝑇𝑎
𝑐 + 𝑇𝑐

𝑏    𝑇𝑎
𝑏 = 𝑇𝑎

𝑐 + 𝑇𝑐
𝑏                                                                                                                                                                                   

(ii) consider a partition a = x0 < x1 < ... < xn = b of [a, b].                               

Now 𝑇𝑎
𝑏(𝑓 + 𝑔) = ∑ |(𝑓 + 𝑔)(𝑥𝑖) − (𝑓 + 𝑔)(𝑥𝑖−1)|𝑛

𝑖=1                                                                         

 =  ∑ |𝑓(𝑥𝑖) + 𝑔(𝑥𝑖) − 𝑓(𝑥𝑖−1) − 𝑔(𝑥𝑖−1)|𝑛
𝑖=1  

 ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑛
𝑖=1 + ∑ |𝑔(𝑥𝑖) − 𝑔(𝑥𝑖−1)|𝑛

𝑖=1  = 𝑇𝑎
𝑏(𝑓) + 𝑇𝑎

𝑏(𝑔).  

(𝑖𝑖𝑖) 𝑇𝑎
𝑏(𝑐𝑓) = sup{∑ |𝑐𝑓(𝑥𝑖) − 𝑐𝑓(𝑥𝑖−1)|𝑛

𝑖=1 } = sup{∑ |𝑐||𝑓(𝑥𝑖) −𝑛
𝑖=1

𝑓(𝑥𝑖−1)|} = |𝑐| sup{∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑛
𝑖=1 } = |𝑐|𝑇𝑎

𝑏(𝑓). 

Result: Show that if f  exists and is bounded on [a, b] then f is of bounded 

variation on [a, b]. 

Proof: Let a = x0 < x1 < ... < xn = b be a partition of [a, b].  Since f  is bounded 

there exists M such that |𝑓′(𝑥)|  ≤ 𝑀  x  [a, b]. 

Now 𝑡𝑎
𝑏(𝑓) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑛

𝑖=1   ∑ |𝑓′(𝑡𝑖)|(𝑥𝑖 − 𝑥𝑖−1)𝑘
𝑖=1   
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 M∑ (𝑥𝑖 − 𝑥𝑖−1)𝑘
𝑖=1  = M(b – a)  

 𝑇𝑎
𝑏(𝑓) = sup 𝑡𝑎

𝑏(𝑓)  M(b – a) < . 

SECTION – 3. DIFFERENTIATION OF AN INTEGRAL 

Lemma: If f is integrable on [a, b], then the function F defined by                                     

F(x) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 is a continuous function of bounded variation. 

Proof:  Since f is integrable, we have that |𝑓| is a non negative integrable 

function on [a, b].                                                                                                                 

Let  > 0.                                                                                                                                 

By a proposition   > 0   ∫
𝐴

|𝑓| <   A  [a, b] with m(A) < .                                                       

Let x, y  [a, b]  |𝑥 − 𝑦| < 𝛿.                                                                                               

Without loss of generality, we assume that x < y.                                                                              

Now |𝐹(𝑦) − 𝐹(𝑥)| =  |∫ 𝑓(𝑡)𝑑𝑡
𝑦

𝑎
− ∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
| =  |∫ 𝑓(𝑡)𝑑𝑡

𝑦

𝑥
|                                                            

 ∫ |𝑓(𝑡)|𝑑𝑡
𝑦

𝑥
 < .                                                                                                                         

Thus, F is uniformly continuous and hence F is continuous.                                                        

Let a = x0 < x1 < ... < xn = b be a partition of [a, b].                                                                  

Now ta
b(F) = ∑ |𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1)|𝑛

𝑖=1                                                                                                   

= ∑ |∫ 𝑓(𝑡)𝑑𝑡
𝑥𝑖

𝑥𝑖−1
| 𝑛

𝑖=1  ∑ ∫ |𝑓|𝑑𝑡
𝑥𝑖

𝑥𝑖−1

𝑛
𝑖=1  = ∫ |𝑓|𝑑𝑡

𝑏

𝑎
 [since  

=  

= 
n

1i EE i

ff ,                  

where E = Ei and the union is disjoint.]                                                                                                    

<  since |𝑓| is integrable.                                                                                                     

 Ta
b(F) <  and so F is of bounded variation on [a, b]. 

Lemma: If f is integrable on [a, b] and ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 = 0  x  [a, b], then f(t) = 0 

a. e. on [a, b]. 

Proof: Write E = {t  [a, b] / f(t) > 0}.                                                                                                       

Claim: m(E) = 0.                                                                                                                                       

If possible, suppose m(E) > 0.                                                                                                              

[Since E is measurable,  F ℱ𝜎   F  E and m(E\F) = 0.                                                        

Now m(E) = m(F) + m(E\F) = m(F) + 0 = m(F).                                                                                                    

Also, F  ℱ𝜎  F =  Fi, Fi is closed.                                                                                    

Now 0 < m(E) = m(F) = m(Fi) ≤ ∑ 𝑚(𝐹𝑖)∞
𝑖=1                                                                                          

ie.  ∑ 𝑚(𝐹𝑖)∞
𝑖=1   > 0  
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 m(Fi) > 0 for some i.]                                                                                           

So,  a closed set Fi  E  m(Fi) > 0 since E is measurable.                                                        

Write O = (a, b) ~ Fi.                                                                                                                        

Since Fi is closed, O is open.                                                                                                  

Suppose O = ⋃ (𝑎𝑛, 𝑏𝑛)𝑛  where {(an, bn)}n is a countable disjoint family of open 

intervals.                                                                                                                                       

Clearly (a, b) = O  Fi.                                                                                                          

Now 0 = ∫ 𝑓
𝑏

𝑎
 since ∫ 𝑓 

𝑥

𝑎
= 0  x  [a, b].                                                                                 

  = ∫
𝑂

𝑓 + ∫
𝐹𝑖

𝑓                                                                                                                                        

 ∫
𝑂

𝑓 =  −∫
𝐹𝑖

𝑓   0 since f > 0 on Fi, and m(Fi) > 0.                                                                   

 0  Of = ∑ ∫ 𝑓
𝑏𝑛

𝑎𝑛
𝑛  since O = ⋃ (𝑎𝑛, 𝑏𝑛)𝑛  and the union is disjoint.                                            

∫ 𝑓
𝑏𝑛

𝑎𝑛
  0 for some n.                                                                                                        

 0  ∫ 𝑓
𝑏𝑛

𝑎𝑛
= ∫ 𝑓

𝑏𝑛

𝑎
− ∫ 𝑓

𝑎𝑛

𝑎
                                                                                                   

 0  ∫ 𝑓
𝑏𝑛

𝑎
, 𝑜𝑟 ∫ 𝑓

𝑎𝑛

𝑎
  0 a contradiction to the hypothesis.                                                     

 m(E) = 0.                                                                                                                                         

Similarly we can show that m{t  [a, b] / f(t) < 0} = 0.                                                                     

Hence f = 0 a. e. on [a, b]. 

Lemma: If f is bounded and measurable on [a, b] and F(x) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 + F(a) 

then F(x) = f(x) for almost all x in [a, b]. 

Proof:  By a lemma F is a function of bounded variation and continuous.                             

By a theorem F (x) exists a. e. Since f is bounded  a real k such that |𝑓| ≤ 𝑘.                   

Write fn(x) = 
𝐹(𝑥+ℎ)−𝐹(𝑥)

ℎ
  with h = 

1

𝑛
 .                                                                                                

Now |𝑓𝑛(𝑥)| =  |
𝐹(𝑥+ℎ)−𝐹(𝑥)

ℎ
| = |

1

ℎ
∫ 𝑓(𝑡)𝑑𝑡

𝑥+ℎ

𝑥
|  ≤

1

ℎ
∫ |𝑓(𝑡)|𝑑𝑡

𝑥+ℎ

𝑥
 ≤

1

ℎ
ℎ𝑘 = 𝑘. 

So each fn is bounded.                                                                                             

lim
𝑛→∞

𝑓𝑛(𝑥) = lim
ℎ→0

𝐹(𝑥+ℎ)−𝐹(𝑥)

ℎ
 = F(x) a. e.                                                                              

By the bounded convergence theorem, for all x  [a, b],                                           

∫ 𝐹′(𝑡)𝑑𝑡
𝑥

𝑎
= lim

𝑛→∞
∫ 𝑓𝑛(𝑡)𝑑𝑡

𝑥

𝑎
 = lim

𝑛
[∫ [𝑛 {𝐹 (𝑡 +

1

𝑛
) − 𝐹(𝑡)}] 𝑑𝑡

𝑥

𝑎
]                                

= lim
𝑛

𝑛 [∫ 𝐹 (𝑡 +
1

𝑛
) 𝑑𝑡 − ∫ 𝐹(𝑡)𝑑𝑡

𝑥

𝑎

𝑥

𝑎
] = lim

𝑛
[𝑛 ∫ 𝐹(𝑡)𝑑𝑡

𝑥+
1

𝑛

𝑎+
1

𝑛

− 𝑛 ∫ 𝐹(𝑡)𝑑𝑡
𝑥

𝑎
] = 

lim
𝑛

[𝑛 ∫ 𝐹(𝑡)𝑑𝑡
𝑥+

1

𝑛
𝑥

− 𝑛 ∫ 𝐹(𝑡)𝑑𝑡
𝑎+

1

𝑛
𝑎

]  = F(x) – F(a) by mean value theorem. = 
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∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
.                                                                                                                                   

Thus, we have proved that ∫ 𝐹′(𝑡)𝑑𝑡
𝑥

𝑎
 = ∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
.                                                                 

 ∫ (𝐹′(𝑡) − 𝑓(𝑡))𝑑𝑡
𝑥

𝑎
 = 0  x  [a, b].                                                                                 

 F(t) – f(t) = 0 a. e.                                                                                                                     

 F(t) = f(t) a. e. 

Theorem: Let f be an integrable function on [a, b] and F(x) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 + F(a). 

Then F(x) = f(x) for almost all x in [a, b]. 

Proof: Assume that the theorem is true for all non – negative integrable 

functions. Let f be an integrable function. Then f + and f – are non-negative 

integrable functions.                                                                                                                        

Define f1 and f2 by f1(x) = ∫ 𝑓+(𝑡)𝑑𝑡 +  𝑓1(𝑎)
𝑥

𝑎
 where f1(a) = F(a). 

                              f2(x) = ∫ 𝑓−(𝑡)𝑑𝑡 + 𝑓2(𝑎)
𝑥

𝑎
 where f2(a) = 0.                                                                

Then by the assumption, f1(x) = f +(x) a. e. and f2(x) = f – (x) a. e.                                           

 f1(x) – f2(x) = f +(x) – f –(x)  = f(x)  a. e.                                                                              

 (∫ 𝑓+(𝑡)𝑑𝑡 + 𝑓1(𝑎)
𝑥

𝑎
)

′
− (∫ 𝑓−(𝑡)𝑑𝑡 + 𝑓2(𝑎)

𝑥

𝑎
)′ = f(x) a. e.                                              

  (∫ 𝑓+(𝑡)𝑑𝑡 +  𝐹(𝑎)
𝑥

𝑎
)

′
− (∫ 𝑓−(𝑡)𝑑𝑡

𝑥

𝑎
)′ = f(x) a. e.                                                          

  (∫ 𝑓(𝑡)𝑑𝑡 +  𝐹(𝑎)
𝑥

𝑎
)

′
 = f(x) a. e.                                                                                              

 F(x) = f(x) a. e.                                                                                                                         

Assume that f is non – negative. i.e. f  0.                                                                           

Define fn(x) = f(x) if f(x)  n and n if f(x) > n.       

Let f(x) = 10.9; Then f1(x) = 1, f2(x) = 2, …, f10(x) = 10, f11(x) = f12(x) = … = 

10.9                                                                                                                                      

Then |𝑓𝑛(𝑥)| ≤ n  n; also |𝑓𝑛(𝑥)| ≤ |𝑓(𝑥)|  x and each fn is measurable 

since f is measurable.                                                                                                           

Since fn(x) = f(x)  f(x)  n, fn is a sequence of bounded measurable functions 

such that lim
𝑛

𝑓𝑛(𝑥) = f(x).                                                                                                                   

Also, f – fn  0, since fn  f  n.                                                                                                     

Put Gn(x) =∫ (𝑓 − 𝑓𝑛)(𝑡)𝑑𝑡.
𝑥

𝑎
                                                                                                  

Then Gn is an increasing function of x since f – fn  0.                                                         

 Gn is differentiable a. e. and Gn is increasing.                                                         

 Gn(x) is positive.                                                                                                              

Now F(x) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 + F(a) = ∫ (𝑓 − 𝑓𝑛)(𝑡)𝑑𝑡 

𝑥

𝑎
+ ∫ 𝑓𝑛(𝑡)𝑑𝑡 + 𝐹(𝑎) 

𝑥

𝑎
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= Gn(x) + ∫ 𝑓𝑛(𝑡)𝑑𝑡 + 𝐹(𝑎) 
𝑥

𝑎
                                                                                                                  

 F(x) = Gn(x) + (∫ 𝑓𝑛(𝑡)𝑑𝑡 + 𝐹(𝑎) 
𝑥

𝑎
)′ = Gn(x) + fn(x) a. e. by a lemma                        

 fn(x)                                                                                                                                            

ie. F(x)  fn(x)  a. e.  n.                                                                                                        

 F(x)  lim
𝑛

𝑓𝑛(𝑥)  a. e. = f(x) a. e.                                                                                  

i.e. F(x)  f(x) a. e.                                                                                                  

 ∫ 𝐹′(𝑥)𝑑𝑥
𝑏

𝑎
 ≥ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 = F(b) – F(a).                                                                      

Since F is increasing by a theorem, ∫ 𝐹′(𝑥)𝑑𝑥
𝑏

𝑎
  F(b) – F(a)...(ii)                                        

From (i) and (ii), ∫ 𝐹′(𝑥)𝑑𝑥
𝑏

𝑎
  = F(b) – F(a) = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 

ie. ∫ (𝐹′ − 𝑓)(𝑥)𝑑𝑥
𝑏

𝑎
 = 0.   F(x) – f(x) = 0 a. e.                                                                           

Hence F(x) = f(x) a. e.  

                              SECTION 4: ABSOLUTE CONTINUITY. 

Definition: A real valued function f defined on [a, b] is said to be absolutely 

continuous on [a, b] if given  > 0, there is a  > 0  ∑ |𝑓(𝑥𝑖
′) − 𝑓(𝑥𝑖)|𝑛

𝑖=1  <  

for every finite collection {(xi, xi) / 1  i  n} of non-overlapping intervals with 

∑ |𝑥𝑖′ − 𝑥𝑖|𝑛
𝑖=1  < . 

Note: Every absolutely continuous function is continuous. 

Lemma: Every absolutely continuous function is of bounded variation. 

Proof: let f be an absolutely continuous function.                                              

Take  = 1.  Then   > 0  ∑ |𝑓(𝑥𝑖
′) − 𝑓(𝑥𝑖)|𝑛

𝑖=1  < 1 for every finite collection 

{(xi, xi) / 1  i  n} of non-overlapping intervals with ∑ |𝑥𝑖′ − 𝑥𝑖|𝑛
𝑖=1  < . 

Choose an integer n  n > (b – a) / . 

Let a = x0 < x1 < x2 < ... < xn = b be a partition of [a, b] where xi – xi–1 = (b – a) / 

n for all i = 1, 2, ..., n. 

Let xi = y0 < y1 < ... < yk = xi+1 be a partition of [xi, xi+1] 

Now {(y0, y1), (y1, y2), ..., (yk – 1, yk)} is a finite collection of non-overlapping 

intervals of [xi, xi+1] such that ∑ (𝑦𝑖 − 𝑦𝑖−1)𝑘
𝑖=1  = xi+1 – xi = 

𝑏−𝑎

𝑛
 < . 

Since f is absolutely continuous, we have  ∑ |𝑓(𝑦𝑖) − 𝑓(𝑦𝑖−1)|𝑛
𝑖=1  < 1. 

Ie. 𝑇𝑥𝑖

𝑥𝑖+1  1. 

𝑇𝑎
𝑏 = ∑ 𝑇𝑥𝑖

𝑥𝑖+1𝑛−1
𝑖=0  n < . Hence f is a function of bounded variation. 
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Corollary: If f is absolutely continuous then f has a derivative a. e. 

Proof: Let f be absolutely continuous.                                                                                          

 f is a function of bounded variation.                                                                                     

 f is differentiable a. e.                                                                                                                       

 f(x) exists a. e. 

Lemma: If f is absolutely continuous on [a, b] and f (x) = 0 a. e. then f is 

constant.  

Proof: let f be absolutely continuous on [a, b]and f  (x) = 0 a. e. 

Claim: f(c) = f(a)  c  [a, b]. 

Let c  [a, b]. Write E = (a, c)  {x / f  (x) = 0}.                                                               

[Then E  [a, c]. Also [a, c] = E  {[a, c] \ E}.                                                                          

Let x  [a, c] \ E. So, x  [a, c] and x  E.  f(x)  0.                                                                  

Ie. [a, c] \ E  {x : f(x)  0}.                                                                                                       

 m{[a, c] \ E} = 0. m(E ) = m{[a, c]} + m{[a, c] \ E} = c – a + 0] 

Then m(E) = c – a.  

Let  > 0 and  > 0. 

Since f is absolutely continuous, corresponding to  > 0,   > 0  

∑ |𝑓(𝑥𝑖
′) − 𝑓(𝑥𝑖)|𝑛

𝑖=1  <  for every finite collection { (xi, xi) / 1  i  n } of 

non-overlapping intervals with ∑ |𝑥𝑖′ − 𝑥𝑖|𝑛
𝑖=1  < . 

Now f (x) = 0 for every x  E  lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 = 0. 

  arbitrarily small interval [x, x + h]  [a, c]  |𝑓(𝑥 + ℎ) − 𝑓(𝑥)| < h ... (i). 

Now take h < . So the collection of all such intervals [x, x + h] form a Vitali 

covering for the set E. By Vitali covering lemma,  a finite disjoint collection of 

intervals, say {[x1, x1 + h1], ... , [xn, xn + hn]} such that                                            

m(𝐸~ ⋃ [𝑥𝑖 , 𝑥𝑖 + ℎ𝑖
𝑛
𝑖=1 ]) < 𝛿.  

 m([𝑎, 𝑐]\ ⋃ [𝑥𝑖 , 𝑥𝑖 + ℎ𝑖
𝑛
𝑖=1 ]) < 𝛿.... (ii) 

Now we label xk such that xk  xk+1. 

So, we have x0 = a  x1 < x1 + h1  x2 < x2 + h2  x3 < x3 + h3  ...  xn < xn + hn 

 c = xn+1. 

Write h0 = 0. 

Now ⋃ (𝑥𝑖 + ℎ𝑖 , 𝑥𝑖+1)𝑛
𝑖=0  = [𝑎, 𝑐] \ ⋃ [𝑥𝑖 , 𝑥𝑖 + ℎ𝑖

𝑛
𝑖=1 ]  

 𝑚[⋃ (𝑥𝑖 + ℎ𝑖 , 𝑥𝑖+1)𝑛
𝑖=0 ] = 𝑚([𝑎, 𝑐] \ ⋃ [𝑥𝑖 , 𝑥𝑖 + ℎ𝑖

𝑛
𝑖=1 ])   

 ∑ |𝑥𝑖+1 − (𝑥𝑖 + ℎ𝑖)|𝑛
𝑖=0  = m([𝑎, 𝑐]\ ⋃ [𝑥𝑖 , 𝑥𝑖 + ℎ𝑖

𝑛
𝑖=1 ]) < 𝛿  

 ∑ |𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖 + ℎ𝑖)|𝑛
𝑖=0  <  ... (iii) since f is absolutely continuous. 

But ⋃ [𝑥𝑖 , 𝑥𝑖 + ℎ𝑖]𝑛
𝑖=0   [a, c] 

 ∑ ℎ𝑖
𝑛
𝑖=0   c – a....(iv). 

Now |𝑓(𝑐) − 𝑓(𝑎)| =  |∑ 𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖 + ℎ𝑖) +  ∑ 𝑓(𝑥𝑖 + ℎ𝑖) − 𝑓(𝑥𝑖)𝑛
𝑖=1

𝑛
𝑖=0 |  

 ∑ |𝑓(𝑥𝑖 + ℎ𝑖) − 𝑓(𝑥𝑖)|𝑛
𝑖=1  + ∑ |𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖 + ℎ𝑖)|𝑛

𝑖=0  < ∑ 𝜂ℎ𝑖
𝑛
𝑖=1  +                            
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= ∑ ℎ𝑖
𝑛
𝑖=1  +   (c – a) + . 

Since and  are arbitrarily small numbers, |𝑓(𝑐) − 𝑓(𝑎)| = 0   

 f(c) = f(a)  

Hence f is constant. 

 

Definition: If f is an integrable function on [a, b], then we define its indefinite 

integral to be the function F on [a, b] by F(x) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 + F(a). 

Theorem: Any real valued function F defined on [a, b] is absolutely continuous 

if and only if it is an indefinite integral.  

Proof: Assume that F is an indefinite integral. Then there is an integrable 

function f on [a, b] such that F(x) = = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 + F(a).                                          

Let  > 0. Since f is integrable, |𝑓| is integrable as |𝑓| = f + + f –.                                       

   > 0  ∫
𝐴

|𝑓(𝑡)𝑑𝑡| < 𝜀 ... (i)  measurable sets A  [a, b] with m(A) < .   

Let {(a1, b1), (a2, b2), ... , (an, bn)} be a finite collection of non-overlapping 

intervals of [a, b] such that ∑ |𝑏𝑖 − 𝑎𝑖|𝑛
𝑖=1  < .                                                                          

Write A = ⋃ (𝑎𝑖 , 𝑏𝑖)𝑛
𝑖=1   [a, b].                                                                                                   

Then m(A) = 𝑚{⋃ (𝑎𝑖 , 𝑏𝑖)𝑛
𝑖=1 }  ∑ |𝑏𝑖 − 𝑎𝑖|𝑛

𝑖=1  < .                                                        

Hence ∫
𝐴

|𝑓(𝑡)𝑑𝑡| < 𝜀  by (i).                                                                                                                             

Now ∑ |𝐹(𝑏𝑖) − 𝐹(𝑎𝑖)|𝑛
𝑖=1  = ∑ |∫ 𝑓(𝑡)𝑑𝑡

𝑏𝑖

𝑎
 +  F(a) − ∫ 𝑓(𝑡)𝑑𝑡

𝑎𝑖

𝑎
−  F(a)|𝑛

𝑖=1    

= ∑ |∫ 𝑓(𝑡)𝑑𝑡
𝑏𝑖

𝑎𝑖
 |𝑛

𝑖=1    ∑ ∫ |𝑓(𝑡)|𝑑𝑡
𝑏𝑖

𝑎𝑖

𝑛
𝑖=1  = ∫

𝐴
|𝑓(𝑡)𝑑𝑡| < 𝜀.                                                                                

 F is absolutely continuous. 

Converse: Suppose F is absolutely continuous.                                                                          

 F is a function of bounded variation.  F = F1 – F2, where F1 and F2 are two 

increasing real valued functions.                                                                                                                         

Since f is a function of bounded variation, F(x) exists a. e. by a cor. and 

|𝐹′(𝑥)| ≤ |𝐹1
′(𝑥)| + |𝐹2

′(𝑥)| = 𝐹1
′(𝑥) + 𝐹2

′(𝑥)                                                                             

 ∫|𝐹′(𝑥)|𝑑𝑥  ∫ 𝐹1
′(𝑥)𝑑𝑥

𝑏

𝑎
 + ∫ 𝐹2

′(𝑥)𝑑𝑥
𝑏

𝑎
  F1(b) – F1(a) + F2(b) – F2(a) < .          

 F is an integrable function.                                                                                                    

Let G(x) = ∫ 𝐹′(𝑡)𝑑𝑡
𝑥

𝑎
. Then G is absolutely continuous [by first part of this 

proof.]. Note that G(x) = F(x). Write f = F – G.                                                                    

Since F and G are absolutely continuous, f is absolutely continuous.                                    

Also f (x) = F(x) - G(x) = F(x) - F(x) = 0. a. e. by lemma.                                                                 

 f is a constant function. So  c  f(x) = c  x  [a, b].                                                                              
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Now f(x) = F(x) – G(x).                                                                                                            

 F(x) = G(x) + f(x) = ∫ 𝐹′(𝑡)𝑑𝑡
𝑥

𝑎
 + c.                                                

Now F(a) = ∫ 𝐹′(𝑡)𝑑𝑡
𝑎

𝑎
 + c = 0 + c = c.                                                                                        

 F(x) = ∫ 𝐹′(𝑡)𝑑𝑡
𝑥

𝑎
 + F(a).                                                                                                              

 F is an integrable function. 

Corollary: Every absolutely continuous function is the indefinite integral of its 

derivative. 
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LEBESGUE THEORY UNIT IV 

The Classical Banach Spaces 

Section I: The Lp  Spaces. 

 

Definition: Let p be a positive real number. We define                                                              

𝐿𝑝= 𝐿𝑝[0,1]= {𝑓/ 𝑓: [0,1] → ℝ 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 ∫ |𝑓|𝑝 < ∞
1

0
}.  

𝐿1= 𝐿1[0,1]= {𝑓/ 𝑓: [0,1] → ℝ 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 ∫ |𝑓| < ∞
1

0
} = the set of all 

Legesgue integrable functions on [0, 1]. 

 

Lemma: 𝐿𝑝 space is a linear space. 

Proof: Let f, g  𝐿𝑝[0,1]. 

Then |𝑓 + 𝑔|𝑝   max  {|𝑓 + 𝑓|𝑝, |𝑔 + 𝑔|𝑝}.                                                                 

= 2𝑝  max{|𝑓|𝑝, |𝑔|𝑝}                                                                                                               

 2𝑝(|𝑓|𝑝 + |𝑔|𝑝) < ∞. 

Let 𝛼 ∈ ℝ, f  𝐿𝑝[0,1].                                                                                                               

 f is measurable and ∫ |𝑓|𝑝 < ∞
1

0
. 

Then f is measurable and ∫ |𝛼𝑓|𝑝 = |𝛼| ∫ |𝑓|𝑝 < ∞
1

0

1

0
.                                         

 𝛼f  𝐿𝑝[0,1].                                                                                                                          

Hence 𝐿𝑝[0,1] is a linear space.  

Definition: For a function f  𝐿𝑝[0,1], 𝑑𝑒𝑓𝑖𝑛𝑒 ‖𝑓‖𝑝 = (∫ |𝑓|𝑝1

0
)

1

𝑝
. 

 

Definition: Two measurable functions f, g are said to be equivalent if there are 

equal almost everywhere. Ie. f ~ g iff f = g a. e.  

 

Note: (i) ‖𝑓‖𝑝 0. 

Proof: Let f  𝐿𝑝[0,1] and p be a positive real number. 
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Then |𝑓| ≥ 0.                                                                                                                                     

 |𝑓|𝑝 ≥ 0                                                                                                                                        

∫ |𝑓|𝑝1

0
≥ 0                                                                                                                                 

 (∫ |𝑓|𝑝1

0
)

1

𝑝
≥ 0                                                                                                                                    

 ‖𝑓‖𝑝 ≥ 0. 

 

(ii) ‖𝑓‖𝑝 = 0 iff f = 0. 

Proof: Let f = 0.                                                                                                                          

Then |𝑓| = 0.                                                                                                                                     

 |𝑓|𝑝 = 0                                                                                                                                        

∫ |𝑓|𝑝1

0
= 0                                                                                                                                 

(∫ |𝑓|𝑝1

0
)

1

𝑝
= 0                                                                                                                                    

‖𝑓‖𝑝 = 0. 

Conversely suppose ‖𝑓‖𝑝 = 0                                                                                 

(∫ |𝑓|𝑝1

0
)

1

𝑝
= 0                                                                                                                 

∫ |𝑓|𝑝1

0
= 0                                                                                                                   

|𝑓|𝑝 = 0 a. e.                                                                                                                           

|𝑓| = 0 𝑎. 𝑒.                                                                                                                                 

 f = 0 a. e.  

(iii) Let 𝛼 ∈ ℝ, f  𝐿𝑝[0,1]. Then ‖𝛼𝑓‖𝑝= |𝛼|‖𝑓‖𝑝.  

Proof: ‖𝛼𝑓‖𝑝 = (∫ |𝛼𝑓|𝑝1

0
)

1

𝑝
 

                        = (∫ |𝛼|𝑝|𝑓|𝑝1

0
)

1

𝑝
  

                         = |𝛼| (∫ |𝑓|𝑝1

0
)

1

𝑝
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                         = |𝛼|‖𝑓‖𝑝. 

 

Definition: A real number M is said to be an essential bound for the function f 

if |𝑓(𝑥)| ≤ 𝑀 𝑎. 𝑒. on [0, 1]. A function f defined on [0, 1] is essentially 

bounded if it is bounded except possibly on a set of measure zero. 

The essential supremum of f on [0, 1] is defined by inf {M : |𝑓(𝑥)| ≤ 𝑀 𝑎. 𝑒. on 

[0, 1] and denoted by ‘ess sup |𝑓|′.                                                                           

Equivalently ess sup |𝑓| = inf {M: m({xE: |𝑓(𝑥)| > 𝑀}) = 0}.                                                            

If f does not have any essential bound then its essential suprimum  is defined to 

be +. 

We denote the class of all measurable functions defined on [0, 1] which are 

essentially bounded on [0, 1] by 𝐿∞[0,1].                                                                                     

For f  we define ‖𝑓‖∞= ess sup |𝑓|.  

 

Problem: If f  𝐿1 and g  𝐿∞, then ∫|𝑓𝑔|  ‖𝑓‖1‖𝑔‖∞ 

Solution: Put ‖𝑔‖∞= M.                                                                                                            

Then m({t : |𝑔(𝑡)| > 𝑀′}) = 0  

 |𝑔(𝑡)| ≤ 𝑀′ a. e.                                                                                                               

 |𝑓(𝑡)||𝑔(𝑡)| ≤ |𝑓(𝑡)|𝑀′ a. e.  

|𝑓(𝑡)𝑔(𝑡)| ≤ |𝑓(𝑡)||𝑀′| a. e. 

 ∫|𝑓𝑔| ≤ 𝑀′ ∫|𝑓| 

 ∫|𝑓𝑔|  ‖𝑓‖1‖𝑔‖∞. 

 

Problem: Let f be a bounded measurable function on [0, 1]. Then 

lim
𝑝→∞

‖𝑓‖𝑝 = ‖𝑓‖∞ 

Proof: Put M = ‖𝑓‖∞. Then m({t : |𝑓(𝑡)| > 𝑀}) = 0  



5 
 

 |𝑓(𝑡)| ≤ 𝑀 a. e.                                                                                                               

 |𝑓(𝑡)|𝑝 ≤ 𝑀𝑝 a. e.  

 ∫|𝑓|𝑝 ≤ 𝑀𝑝. 

‖𝑓‖𝑝  ≤ 𝑀 for all p. 

lim
𝑝→∞
̅̅ ̅̅ ̅‖𝑓‖𝑝 ≤ 𝑀...(i) 

Suppose a < M. Then m({t : |𝑓(𝑡)| > 𝑎}) ≠ 0.                                                                                          

(if  m({t : |𝑓(𝑡)| > 𝑎}) = 0 then by the definition of the norm in L, M  a, a 

contradiction.) 

Put A = {t  [0, 1] / |𝑓(𝑡)| > 𝑎}.                                                                                               

Then m(A)  0. ∫ |𝑓|𝑝 ≥
1

0
p

A

f   p

A

a   = ap m(A).                                                                

(∫ |𝑓|𝑝1

0
)

1

𝑝
≥ 𝑎. {𝑚(𝐴)}

1

𝑝 for all p  1.                                                                                                                          

 𝑙𝑖𝑚
𝑝→∞

‖𝑓‖𝑝  𝑙𝑖𝑚
𝑝→∞

 𝑎. {𝑚(𝐴)}
1

𝑝 

= a 𝑙𝑖𝑚
𝑝→∞

{𝑚(𝐴)}
1

𝑝 = a 

 𝑙𝑖𝑚
𝑝→∞

‖𝑓‖𝑝  a for all a such that a < M...(ii) 

From (i) and (ii) M  𝑙𝑖𝑚
𝑝→∞

‖𝑓‖𝑝  lim
𝑝→∞
̅̅ ̅̅ ̅‖𝑓‖𝑝 ≤ 𝑀  

∴ lim
𝑝→∞

‖𝑓‖𝑝 = 𝑀 = ‖𝑓‖∞. 

 

SECTION II : THE MINKOWSKI AND HOLDER INEQUALITIES 

 

Lemma: Let ,  be non – negative real numbers and 0 <  < 1.  Then 

𝛼𝜆𝛽1−𝜆 ≤ 𝜆𝛼 + (1 − 𝜆)𝛽 with equality if  = .  

Proof: Define  as (t) = (1 – ) + t – t for all real numbers t.                                                    

Then (1) = 1 –  +  – 1 = 0.                               
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Also (t) =  – t - 1 = (1 – t - 1) 

(t) = – ( – 1)t – 2.  

And (t) = 0 iff t = 1 and (1) = –( – 1) > 0.                                                                                    

  has local minimum at t = 1.                                                                                                         

 t < 1   is decreasing. Ie. (t) > (1) ant t > 1   is increasing                                           

ie. (t) > (1).                                                                                                                                               

Thus t  1  (t) > (1)   (1 – ) + t – t > 0  t < (1 – ) + t                                            

 we may say that t  (1 – ) + t for all t and with equality if t = 1...(i) 

If   0 put t =  /  in (i).                                                                                                             

Then  (
𝛼

𝛽
)

𝜆
≤ 1 − 𝜆 + 𝜆 (

𝛼

𝛽
)                                                                                                     

 
𝛼𝜆

𝛽𝜆
≤ (1 − 𝜆) +

𝜆𝛼

𝛽
                                                                                                                       

 𝛼𝜆𝛽1−𝜆 ≤ 𝜆𝛼 + (1 − 𝜆)𝛽 with equality if  = . 

 

HOLDER’S INEQUALITY: 

If p and q are non – negative extended real numbers such that 
1

𝑝
+

1

𝑞
= 1 and                         

if f 𝐿𝑝, g 𝐿𝑞 , 𝑡ℎ𝑒𝑛 𝑓𝑔 ∈ 𝐿1and ∫|𝑓𝑔|  ≤ ‖𝑓‖𝑝 ‖𝑔‖𝑞  equality holds iff for 

some non – zero constants  and , we have 𝛼|𝑓|𝑝 = 𝛽|𝑔|𝑞  𝑎. 𝑒.  

Proof: If p 1, q = , then the in equality holds. So assume that 1 < p < . First 

assume that ‖𝑓‖𝑝= 1 = ‖𝑔‖𝑞 

Take 𝛼 =  |𝑓(𝑡)|𝑝, 𝛽 =  |𝑔(𝑡)|𝑞and 𝜆 =
1

𝑝
, 1 − 𝜆 =

1

𝑞
.                                                          

Then by Lemma we get |𝑓(𝑡)||𝑔(𝑡)|  ≤
1

𝑝
|𝑓(𝑡)|𝑝 +

1

𝑞
|𝑔(𝑡)|𝑞 and equality holds 

if  =  ie. |𝑓(𝑡)|𝑝 =  |𝑔(𝑡)|𝑞...(i)  

 ∫|𝑓𝑔|  ≤
1

𝑝
∫|𝑓(𝑡)|𝑝 +

1

𝑞
∫|𝑔(𝑡)|𝑞= 

1

𝑝
‖𝑓‖𝑝 +

1

𝑞
‖𝑔‖𝑞=

1

𝑝
+

1

𝑞
= 1  

Ie. ∫|𝑓𝑔|  ≤ 1 = ‖𝑓‖𝑝‖𝑔‖𝑞 



7 
 

Let f 𝐿𝑝, g  𝐿𝑞. Now if ‖𝑓‖ = 0 or ‖𝑔‖ = 0 then the inequality is obvious. 

Assume that ‖𝑓‖ ≠ 0 and ‖𝑔‖ ≠ 0.                                                                      

Then 
𝑓

‖𝑓‖
∈ 𝐿𝑝,

𝑔

‖𝑔‖
∈ 𝐿𝑞 .                                                                                                                                  

Also ‖
𝑓

‖𝑓‖
‖ = 1 and ‖

𝑔

‖𝑔‖
‖ = 1.                                                                                                      

So by the above case ∫ |
𝑓

‖𝑓‖

𝑔

‖𝑔‖
| ≤ 1 and equality holds iff  |

𝑓

‖𝑓‖
|

𝑝
= |

𝑔

‖𝑔‖
|

𝑞
 iff 

|𝑓|𝑝

‖𝑓‖𝑝
𝑝 =

|𝑔|𝑞

‖𝑔‖𝑞
𝑞 iff ‖𝑔‖𝑞

𝑞|𝑓|𝑝 = ‖𝑓‖𝑝
𝑝|𝑔|𝑞 a. e. ... (ii). 

Now ∫ |
𝑓

‖𝑓‖

𝑔

‖𝑔‖
| ≤ 1  

1

‖𝑓‖‖𝑔‖
∫|𝑓𝑔|  ≤ 1 ∫|𝑓𝑔|  ≤ ‖𝑓‖𝑝‖𝑔‖𝑞                                                                              

Also equality holds iff ‖𝑔‖𝑞
𝑞|𝑓|𝑝 = ‖𝑓‖𝑝

𝑝|𝑔|𝑞 a. e. ie equality holds iff for some 

non – zero constants  = ‖𝑔‖𝑞
𝑞
 and  = ‖𝑓‖𝑝

𝑝
 , we have 𝛼|𝑓|𝑝 = 𝛽|𝑔|𝑞  𝑎. 𝑒.  

  

MINKOWSKI’S INEQUALITY: 

 

 If f, g ∈ 𝐿𝑝with 1  p  , then f + g ∈ 𝐿𝑝 and ‖𝑓 + 𝑔‖𝑝  ≤  ‖𝑓‖𝑝 + ‖𝑔‖𝑝 

Proof: Let f, g ∈ 𝐿𝑝with 1  p  .  Then f + g ∈ 𝐿𝑝 since Lp is linear. 

Now ‖𝑓 + 𝑔‖1 = ∫|𝑓 + 𝑔|𝑑𝑥  

                         ≤ ∫(|𝑓| + |𝑔|)𝑑𝑥  

                         = ∫|𝑓| 𝑑𝑥 + ∫|𝑔|𝑑𝑥   

                         =  ‖𝑓‖1 + ‖𝑔‖1 

Also ‖𝑓 + 𝑔‖∞ = ess sup |(𝑓 + 𝑔)(𝑡)|  

                        ess sup |𝑓(𝑡)| +  ess sup |𝑔(𝑡)|  

                       = ‖𝑓‖∞ + ‖𝑔‖∞ 

So, assume that 1 < p < . Let q be the real number such that 
1

𝑝
+

1

𝑞
= 1.                             

Now |𝑓 + 𝑔|𝑝 =  |𝑓 + 𝑔|𝑝−1 ∙ |𝑓 + 𝑔|   

                         |𝑓 + 𝑔|𝑝−1 ∙ (|𝑓| + |𝑔|) 

                        = |𝑓 + 𝑔|𝑝−1 ∙ |𝑓| + |𝑓 + 𝑔|𝑝−1 ∙ |𝑔| ... (i) 
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Claim: |𝑓 + 𝑔|𝑝−1 ∈ 𝐿𝑞  

Now (|𝑓 + 𝑔|𝑝−1)𝑞 = |𝑓 + 𝑔|(𝑝−1)𝑞 = |𝑓 + 𝑔|𝑝                                                                         

Since f + g  Lp, we have ∫|𝑓 + 𝑔|𝑝 < ∞.                                                                                                     

Now ∫(|𝑓 + 𝑔|𝑝−1)𝑞=∫|𝑓 + 𝑔|𝑝 < ∞.                                                                                              

So we have |𝑓 + 𝑔|𝑝−1 ∈ 𝐿𝑞. Since f, g ∈ 𝐿𝑝 and |𝑓 + 𝑔|𝑝−1 ∈ 𝐿𝑞, we have by 

Holder’s inequality, ∫|𝑓||𝑓 + 𝑔|𝑝−1 ≤ ‖𝑓‖𝑝‖(𝑓 + 𝑔)𝑝−1‖𝑞. 

∫|𝑔||𝑓 + 𝑔|𝑝−1 ≤ ‖𝑔‖𝑝‖(𝑓 + 𝑔)𝑝−1‖𝑞 

But ‖(𝑓 + 𝑔)𝑝−1‖𝑞 = {∫(|𝑓 + 𝑔|𝑝−1)𝑞}
1

𝑞 = (∫|𝑓 + 𝑔|(𝑝−1)𝑞)
1

𝑞 = (∫|𝑓 + 𝑔|𝑝)
1

𝑞 = 

{(∫|𝑓 + 𝑔|𝑝)
1

𝑝}

𝑝

𝑞

 = ‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
 

 ∫|𝑓||𝑓 + 𝑔|𝑝−1 ≤ ‖𝑓‖𝑝‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
  and  

∫|𝑔||𝑓 + 𝑔|𝑝−1 ≤ ‖𝑔‖𝑝‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
...(ii). 

 From (i) and (ii), ∫|𝑓 + 𝑔|𝑝 ≤ ‖𝑓‖𝑝‖𝑓 + 𝑔‖𝑝

𝑝

𝑞 + ‖𝑔‖𝑝‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
                                                        

 ∫|𝑓 + 𝑔|𝑝 ≤ (‖𝑓‖𝑝 + ‖𝑔‖𝑝) ∙ ‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
                                                                             

 ‖𝑓 + 𝑔‖𝑝
𝑝

≤ (‖𝑓‖𝑝 + ‖𝑔‖𝑝) ∙ ‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
                                                                      

 ‖𝑓 + 𝑔‖𝑝

𝑝−
𝑝

𝑞 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝 

 ‖𝑓 + 𝑔‖𝑝  ≤  ‖𝑓‖𝑝 + ‖𝑔‖𝑝 since  𝑝 −
𝑝

𝑞
 = 𝑝 (1 −

1

𝑞
) = 𝑝 (

1

𝑝
) = 1. 

 

Note: 𝐿𝑝[0,1] is a linear space. For a function f  𝐿𝑝[0,1], 𝑑𝑒𝑓𝑖𝑛𝑒 ‖𝑓‖𝑝 =

(∫ |𝑓|𝑝1

0
)

1

𝑝
. Then it satisfies 

(i) ‖𝑓‖𝑝 0. and ‖𝑓‖𝑝 = 0 iff f = 0. 

(ii) Let 𝛼 ∈ ℝ, f  𝐿𝑝[0,1]. Then ‖𝛼𝑓‖𝑝= |𝛼|‖𝑓‖𝑝.  
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(iii) ‖𝑓 + 𝑔‖𝑝  ≤  ‖𝑓‖𝑝 + ‖𝑔‖𝑝.                                                                                        

This is a norm on 𝐿𝑝[0,1].                                                                                                                      

Hence 𝐿𝑝[0,1] is a normed linear space with this norm  

 

 

SECTION III: CONVERGENCE AND COMPLETENESS. 

 

Definition: A series ∑ 𝑓𝑛
∞
𝑛=1  in a normed linear space is said to be summable to 

a sum s if the partial sum sequence of the series converges to s. 

 

Definition: A series is said to be absolutely summable if ∑ ‖𝑓𝑛‖∞
𝑛=1  < . 

 

Theorem: A normed linear space X is complete iff every absolutely summable 

series is summable. 

Proof: Assume that X is complete.                                                                                                 

Let ∑ 𝑓𝑛
∞
𝑛=1  be an absolutely summable series.                                                                                

Then ∑ ‖𝑓𝑛‖∞
𝑛=1  <  by definition n.  

So given  > 0,  a positive integer N such that ∑ ‖𝑓𝑛‖∞
𝑛=𝑁  < . 

Let {gn} be the sequence of partial sum of the series of ∑ 𝑓𝑛
∞
𝑛=1 . 

 For n > m  N, ‖𝑔𝑛 − 𝑔𝑚‖ =  ‖∑ 𝑓𝑘
𝑛
𝑘=𝑚+1 ‖  

≤ ∑ ‖𝑓𝑘‖ 

𝑛

𝑘=𝑚+1

 

≤ ∑‖𝑓𝑘‖

𝑛

𝑘=𝑁

 

                                                       < ∑ ‖𝑓𝑘‖ < 𝜀∞
𝑘=𝑁  

 {gn} is a Cauchy sequence in X.                                                                                            

Since X is complete {gn} converges in X.                                                                              
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Ie.  g  X  lim
𝑛

𝑔𝑛 = 𝑔.                                                                                                         

 ∑ 𝑓𝑛
∞
𝑛=1  = g                                                                                                                           

 the series ∑ 𝑓𝑛
∞
𝑛=1  is summable. 

Conversely suppose that every absolutely summable series is summable. 

Let {fn} be a Cauchy sequence in X.                                                                                                  

For each positive integer k  an integer nk  ‖𝑓𝑛 − 𝑓𝑚‖ <
1

2𝑘
  n, m ≥ nk.                                                                                                                                                                 

Without loss of generality, assume that nk < nk+1 for all k.                                                                

Consider {𝑓𝑛𝑘
}, a subsequence of the sequence {fn}.                                                                                                                         

Put g1 = 𝑓𝑛1
, g2 = 𝑓𝑛2

− 𝑓𝑛1
, ..., gk = 𝑓𝑛𝑘

− 𝑓𝑛𝑘−1
, ... for k > 2.                                               

Then g1 + g2 + ... + gk = 𝑓𝑛𝑘
.                                                                                                  

 {𝑓𝑛𝑘
} is a sequence of partial sums of the series ∑ 𝑔𝑘

∞
𝑘=1 ,                                                                                                                                     

and ‖𝑔𝑘‖ = ‖𝑓𝑛𝑘
− 𝑓𝑛𝑘−1

‖  ≤
1

2𝑘−1
 𝑓𝑜𝑟 𝑘 > 1 ... (i).                                        

∑ ‖𝑔𝑘‖ = ‖𝑔1‖ +∞
𝑘=1 ∑ ‖𝑔𝑘‖∞

𝑘=2   

                      ≤ ‖𝑔1‖ + ∑
1

2𝑘−1
∞
𝑘=2  by (i)                          

                      = ‖𝑔1‖ + 1 < ∞ 

 ∑ 𝑔𝑘
∞
𝑘=1  is absolutely summable. 

By assumption ∑ 𝑔𝑘
∞
𝑘=1  is summable.                                                                                  

Suppose ∑ 𝑔𝑘
∞
𝑘=1  = s                                                                                                                                     

 lim
𝑘

𝑓𝑛𝑘
= s since gk is the partial sum of {𝑓𝑛𝑘

}. 

Let  > 0. Now {fn} is a Cauchy sequence, and there exists a subsequence {𝑓𝑛𝑘
} 

which converges to s.                                                                                                                                     

 fn →s.                                                                                                                                                                                       

This shows that X is complete. 
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Exercise: (i) Let {fn} be a sequence of functions in L. Prove that {fn} 

converges to f in L iff  there is a set E of measure zero such that fn converges 

to f uniformely on E. (ii) Prove that L is complete. 

RIESZ FISHER THEOREM 

The Lp spaces are complete. 

Proof: Let 1  p < .                                                                                                                                 

By a theorem it suffices if we prove that every absolutely summable series in Lp 

is summable.  

Let ∑ 𝑓𝑛
∞
𝑛=1 be an absolutely summable series in Lp.                                                                          

Put ∑ ‖𝑓𝑛‖∞
𝑛=1  = M < ∞ since ∑ 𝑓𝑛

∞
𝑛=1  is absolutely summable. 

We have to show that ∑ 𝑓𝑛
∞
𝑛=1 (𝑥) converges absolutely.                                                                  

Define 𝑔𝑛(𝑥) = ∑ |𝑓𝑘(𝑥)|.𝑛
𝑘=1                                                                                                                 

Then |𝑔𝑛| = 𝑔𝑛.                                                                                                                          

By Minkowski inequality, ‖𝑔𝑛‖ ≤ ∑ ‖𝑓𝑛‖∞
𝑛=1  ≤ M                                                                    

 (∫|𝑔𝑛|𝑝)
1

𝑝 ≤ 𝑀 ∫|𝑔𝑛|𝑝 ≤ 𝑀𝑝  ∫ 𝑔𝑛
𝑝 ≤ 𝑀𝑝 < .  

 for each x, {gn(x)} is an increasing sequence of extended real numbers and so 

must converge to an extended real number say g(x).                                                                       

Ie. 𝑔(𝑥) = lim
𝑛

𝑔𝑛(𝑥) for all n. 

Since each gn is measurable, g is measurable.                                                                             

Also 𝑔𝑝(𝑥) = lim
𝑛

𝑔𝑛
𝑝(𝑥) for all x.                                                                                        

Since gn(x)  0 for all n, by Fatou’s lemma, 

∫ 𝑔𝑝 ≤ lim
𝑛

∫ 𝑔𝑛
𝑝 ≤ 𝑀𝑝 < ∞. 

∫ 𝑔𝑝 is finite.                                                                                                                                  

gp is an integrable function and gp is finite almost everywhere.                                           

 g is finite almost everywhere.                                                                                                           

So for each x for which g(x) is finite lim
𝑛

𝑔𝑛(𝑥) < .                                                                     
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 ∑ |𝑓𝑘(𝑥)|∞
𝑘=1  < .                                                                                                                          

 the series ∑ |𝑓𝑘(𝑥)|∞
𝑘=1  converges absolutely.                                                                            

Thus for each x, the series ∑ |𝑓𝑘(𝑥)|∞
𝑘=1  is an absolutely summable series of real 

numbers and hence summable to real number.                                                                                                  

Define s(x) = {
∑ 𝑓𝑘(𝑥)∞

𝑘=1  𝑖𝑓 𝑔(𝑥)𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒

0                        𝑖𝑓 𝑔(𝑥) = ∞
 

Claim: ∑ 𝑓𝑛
∞
𝑛=1  = s. 

Write sn = ∑ 𝑓𝑘
𝑛
𝑘=1 .                                                                                                                

Now {sn} is the sequence of partial sums of the series ∑ 𝑓𝑛
∞
𝑛=1 .                                                

Now we have to show that lim
𝑛

𝑠𝑛 = 𝑠 𝑖𝑛 𝐿𝑝.                                                                                  

If g(x) is finite, then s(x) = ∑ 𝑓𝑘(𝑥)∞
𝑘=1  = lim

𝑛
∑ 𝑓𝑘

𝑛
𝑘=1  = lim

𝑛
𝑠𝑛.                                               

Since g is finite a.e., s = lim
𝑛

𝑠𝑛 a. e.                                                                                     

Since each sn is measurable s is measurable.                                                                                  

Now |𝑠𝑛| = |∑ 𝑓𝑘
𝑛
𝑘=1 | ≤ ∑ |𝑓𝑘|𝑛

𝑘=1  = |𝑔𝑛|  |𝑔| = g since 𝑔 = lim
𝑛

𝑔𝑛.                                            

Ie. |𝑠𝑛|  g for all n.                                                                                                                    

 |𝑠|  ≤ 𝑔                                                                                                                                           

 |𝑠|𝑝  ≤ 𝑔𝑝                                                                                                                           

 ∫|𝑠|𝑝 ≤ ∫ 𝑔𝑝 < .                                                                                                                            

 s  Lp.                                                                                                                                

Now we show that |𝑠𝑛 − 𝑠|𝑝 ≤ 2𝑝𝑔𝑝.                                                                         

So |𝑠𝑛 − 𝑠|  ≤ |𝑠𝑛| + |𝑠| < 𝑔 + 𝑔 = 2𝑔.                                                                                         

So |𝑠𝑛 − 𝑠|𝑝 ≤ 2𝑝𝑔𝑝.                                                                                                                           

Ie. {|𝑠𝑛 − 𝑠|𝑝} is a sequence of non – negative measurable functions such that 

|𝑠𝑛 − 𝑠|𝑝 ≤ 2𝑝𝑔𝑝 where 2𝑝𝑔𝑝 is integrable and lim
𝑛

|𝑠𝑛 − 𝑠|𝑝 = 0 𝑎. 𝑒. since s = 

lim
𝑛

𝑠𝑛 a. e.                                                                                                                                

 By Lebesgue convergence theorem, lim
𝑛

∫|𝑠𝑛 − 𝑠|𝑝 = 0                                
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 lim
𝑛

‖𝑠𝑛 − 𝑠‖𝑝 = 0.                                                                                                               

  lim
𝑛

‖𝑠𝑛 − 𝑠‖ = 0.                                                                                                   

  lim
𝑛

𝑠𝑛 = 𝑠 𝑖𝑛 𝐿𝑝.                                                                                                                       

 the given series is summable to the sum s.                                                              

Hence Lp is complete. 


