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OUTER MEASURE

By K. C. Tammi Raju, Lecturer in Mathematics. DNR College (A)

Definition: Let I be an interval in R. The length I(I) of | is defined by

" = + oo if I is unbounded
(1) = {b —aif I = (a, b)or (a, b, or [a,b)or [a,b]

Definition: Let A be any subset of real numbers.
Let {I,} be a countable collection of open intervals that cover A.
Let I(1,) be the length of the interval I,.

Outer measure of A is defined as

m*(A) = inf {Xn1 (1)}

AcUl,

ie. m*(A) =inf{3.;7-, l(I,) /A € Uy-1I,, where each I,,is an open interval}.

Observations:
(i) If Ac|, where lisan open interval, then m*(A) < I(l).
(i)  For e >0 3 asequence of open intervals {I.} > A c U, I,, and

Lnl(ly) <mx(A) +e

Properties:
i) m*(A)>0VAcCR.
(i)  m*(¢$)=0

(iii)  If A < B then m*(A) < m*(B)
(ivy m*({a})=0VaceR.

Proof: (i) LetAc R. Let A € U, -1 I, where each I,,is an open interval}




Then Y02, I(I,) =0
m*(A) = inf {(Xn=11(I)}20.

acU,
(i) By (i) m*(¢) > 0...(1)

Clearly ¢ = (—=, =) ¥ n eN
m*(P)<l (—% %) V neN

le. m* (@) _<% VneN

nmx(f) <0as=—0asn—w..(2)
From (1) and (2)

From (1) and (2) m*(¢) = 0.

(iii) Let{l,} be aseq of openinterval intervals 5B € Uj-, I,

Then A € U I,
n=1

m*(A) < Xz [(In) V{(In)} withBcU I,
m*(A) < inf {¥n=, (1)} = m*(B).

BcUI,
(iv) By (@i)m*{a}) >0...(1)

Clearly {a} c (a—%, a +%) vV neN
m {}_<l( 1a+1)Vn N
* — — —
(a) a n, n S

le.mx({a}) == VneN

~mx({a}) <0 as%—)Oasn—mo ..(2)

From (1) and (2) m*({a}) =0

Proposition: m* is countably sub additive. le. If {A,} is a countable collection of
subsets of real numbers, then m*(U 4,,) < Y m*(4,).
Proof: Let {An} is a countable collection of subsets of real numbers.

If m*(4,,) = « for some n, then the inequality is trivial.
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Suppose m*(A4,) <« V n. Let € > 0. Fix n. Then 3 a countable collection of open

intervals, {I,, ;} such that Ay < U; I,; and ¥ 1, ;) < m*(An) + zin

Now Uy, ; I, = Un(UiIm-) Is the union of a countable collection of open intervals.
2 Un 4y 2 Un(UiIny)

. By definition, m*(Up, Ay) < i L(l,) = Zul Bl )] < Zu fm (4) + .}

= Talm (A} + Za e = Zadm* (An)} + €357 = Znfm (A} + 6.
= M*(Un An) < Znfm* (4p)} + &V &> 0.
Hence m*(U 4,) < X m"(4,).

Corollary: If A is countable then m*(A) = 0.

Proof: Let A= {aj, a, ... } be a countable set in R.
Then A= U;=:{a,}.

S 0<m*(A) < Yoo, m*({a,}) =0 since m*({a}) = 0.

Corollary: The set [a, b] is uncountable for all a, b € R with a <b.
Proof: If possible suppose [a, b] is countable for a, b € R with a<b.
Then by above corollary m*[a, b] = 0.

But m*[a, b] = I([a, b]) = b —a = 0 which is a contradiction.

This is due to our assumption [a, b] is countable.

..our assumption is wrong.

Hence the set [a, b] is uncountable for all a, b € R witha <b.

Proposition: Given any set A and any & > 0, (i) there is an open set G such that A < G
and m*(G) < m*(A) + . (ii) Thereisa G € Gs such that A — G and m*(4) = m*(G).
Proof: Let A be any set and € > 0.

Case (i): Suppose m*(A) = oo. Take G = R. Then m*(G) = m*( R) = oo = m*(A).

Case (ii): Assume m*(A) < oo.
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For ¢ > 0 3 a countable collection of open intervals {lI.} > A < U, I,, and
Yal(l,) <m*(A) + ¢ Take G=U,I,. ThenGisopenand A c G.

Also m*(G) = m*(Up I, ) < Xnm™(I) = Lp L) < M*(A) +&.

(i) If m*(A) = o then it is true as in (i).

Suppose m*(A) < .

Take ¢ = % . Then for each positive integer n, 3 an open set G, such that A ¢ G,
and m*(Gy) < m*(4) + .

PutG=nG, Then Gisa Gssetand A c G.

So m*(A) < m*(G) ... (1)

Also m*(G) < m*(Gy) (since G = Gy) <m*(4) + -V n e N.

= m*(G) <m*(A) ... (2).
From (1) and (2) m*(A) = m*(G).

Note: (i) Let A be a set of all rational numbers between O and 1. Let {l;i},1<i<nbea
finite collection of open intervals that covers A. Then > I[(I,) > 1
(if) m* is translation invariant.
(iii) If m*(A) = 0 then m*(Au B) = m*(B).
Proof: (i) GivenA={re Q/re (0,1)}and Ac UL, [;
=>AC UL [, =UL ]
~1=¢[0,1] = m*[0,1] = m*(4) < m*(UPL, ) < Ty m* () = Bk, 1(T) = T, (1)
(if) Let € > 0. Then 3 a countable collection of open intervals {I.} > A< U,, I, and
Yal(l) <mx(4) + e
Then A+xc (U, L,) +x=U,{, + x)
SMFAEX) <2 I, +x) =2 U(L) <m*(A)+eVe>0
S M*(A +X) < m*(A)...(1)
Put B = A + x. Then by above argument m*(B + - x) < m*(B)

Now m*(A) = m*(A + x + -x) = m*(B + -x) < m*(B) = m*(A + x)




le. m*(A) <m*(A +x)... (2)

From (1) and (2) m*(A + x) = m*(A)

(i) Suppose m*(A) = 0.

m*(B) < m*(Au B) <m*(A) + m*(B) =0 + m*(B) = m*(B)
= m*(Au B) = m*(B) if m*(A) = 0.

Proposition: The outer measure of an interval is its length.

Proof: Let | be an interval.

Case (i) : Let I be a closed and finite interval say [a, b] where a, b € R.
Thenlc(@a—¢, b+¢g)Ve>0.

~m*()<da—-¢,b+e) =b—a+2eVe>0.

=m*()<b-a...(1)

Let {l;} be a countable collection of open intervals > | c U I..

Then | is compact.

-3 afinite subcover {Iy, Io, ..., .} of {li}slcliul,U... Ul,.

If I« is infinite interval for some Kk, then Z}‘zl [=0>b-a.

So assume that I; is finite interval say (a;, b)) fori=1, 2, ..., n.
Thenaelc UL, [;

= a € |j for some j.

W.l.g. assume thata € 1; = (as, by). le. a; <a < b;.

Then either b <b; or b; <b.

Assume b <b;. Thenb—-a<b; —a; =¢l;) < Z};l L <Yi .
Suppose by <b. Thenb; € [a,b] =1 c Ui, [;

W. I. g. assume that b; € 1, = (az, by). le. a; < by < b,.

Again either b < b, or b, <b.

Ifb<bythengly) +4l) =b;—az+b,—a,=by,—(a2—b1))—a;>b,—a; >b-—a.
=b—a<dl)+al)<Yi_ [ <Y1

Suppose b, <b. Then b, € [a, b] =1 c UjL, [;.
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W. I. g. assume that b, € 13 = (a3, b3). le az < b, < bs.

Continue this process. It will terminate in a finite number of steps. le. 3k <n>b <.
Then we have b —a <) + elp) + ... +el) < X7, 1(Ij) < X572, L)),

= b —ais alower bound of {};—, I(I,): Ic UI,}

—b-a< inf {£2, 1)} =m*Q)... 2).

1cUry,

From (i) and (ii) m*(l) = b —a.

Case (ii): Let I be any finite interval.
Lete>0.

Then 3 a closed interval J 1 5 ¢J) > (1) —&.
i) —e<qd)=m*Q) <m*(I) <m*() =¢l) =¢l) V &> 0.
le. ¢(1) <m*(1) < 1) = m*(l) =1).

Case (ii): Let I be an infinite interval.
Lete> 0.

Then 3 aclosed interval Jc 1 5 ¢J) = «.
Sm*() >m*J)=¢J) = V>0,

= m*(l) =0 = ().

Hence the proposition.

MEASURABLE SETS AND LEBESGUE MEASURE.

Definition: A set E is said to be measurable if for each set A we have
m*(A) = m*(A N E) + m*(A N E).

Remark: Let E — R. (i) A set E is measurable if for each set A — R we have
m*(A) > m*(A NE) + m*(ANE).

(ii) If E is measurable then E is measurable.

(ii1) ¢ and R are measurable.

Proof: (i) For each set A c R, let m*(A) > m*(A N E) + m*(A " E)...(1)
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Clearly A=ANR=AN(EUVE)=(ANE)U(ANE).
~m*(A) <m*(A NE) + m*(A N E)...(2)
From (1) and (2) m*(A) = m*(A N E) + m*(A N E)
Hence E is measurable.
(if) Let E be a measurable set.
Let A be any set of real numbers.
Then m*(A) = m*(A N E) + m*(A N E).
=m*(A N E) + m*(A N E).
— m*(A)= m*(ANE)+m*(AnE) VA (CR)
= E is measurable
Hence E is measurable whenever E is measurable.
(i) For any set A, we have
M*(A N §) + M*(A N @) = m*(d) + M*(A N R) =0+ m*(A) = m*(A).
le. m*(A) =m*(ANn )+ m*(An @ VACR.
Hence ¢ is measurable.

Since ¢ is measurable, by (ii) ¢ is measurable. le. R is measurable.

Lemma: If, for a set E, m*(E) = 0 then E is measurable. ie. a set of measure zero is
measurable.

Proof: Let m*(E) = 0 for a set E and A be any set of real numbers.

Since ANEcCE m*(AnE)<m*E)=0.

= m*(AnE)=0.

Again m*(A N E) <m*(A)since AN E C A.

S M*(ANE) +m*(A N E)=0+m*A) =m*(A).

le. m*(A) = m*(A N E) + m*(A N E) V A(cR).

— E is measurable.

Hence E is measurable if m*(E) = 0.

Lemma: If E; and E, are measurable then so is E; U E,.
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Proof: Let E; and E; be any two measurable subsets of real numbers.
Let A be any set of real numbers.
Then clearly AN (E; U E)) = (AN E) U (ANE,NE)).
SMAN(ErUBE)]<m*(ANE)+m*(ANENE))
So m*[A N (E1 U E2)] + m*[A N E; UE,]
<m*(ANE)+m*(ANE,NE)+mM*[ANE; N E,]
=m* (AN E)+m* (AN E)) =m*(A).
- m*(A) > m*[A N (E; U E)] + m*[ANE; UE,] VA (cR).
= E; U E; is measurable.
Hence E; U E; is measurable if E; and E; are measurable.

Note: If E, E, ..., Eq are measurable then UL, E; is measurable.

Corollary: The family 9t of measurable sets is an algebra of sets.
Proof: ¢ € M.

SO §.

Ei1 U E, € M whenever E4, E; € M.

E e M whenever E € M.

Hence 9t is an algebra of sets.

Lemma: Let A be any set, and E;, E, ..., E, be a finite sequence of pair wise disjoint

measurable sets. Then m* (AN Ui, E;) = XL, m"(ANEy)..()
Proof: If n = 1, then the statement (I) is clearly true.

Let n> 1 and assume that (I) is true for n — 1.

n-—1 n-1
i=1 i=1

Viz. we assume that

whenever {E;, E,, ... En.1}is a finite sequence of pair wise disjoint measurable sets.

Let {E1, E,, ... En} be a finite sequence of pair wise disjoint measurable sets.

Observe that Ej " E,=Eifor1<i<n-1,and ¢ fori=n.
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*Since EiNE,=¢forl<i<n-1,EcE,sothatEENE,=Eifor1<i<n-1,and ¢
fori=n.

o (Uky E)NE,= UL (E; N Ey) = UL E; and (UL, E)) N E, = En.

Since E, is measurable we have

(w0 Je) o f(an )2} o5 (30 ) o7

i=1 i=1 i=1

UE") ==m"(ANE,)+ ’im*m N E;)

=1

le. (1) is true for n.
Hence by induction m*(4 N Ui, E;) = Yj=; m"(4 n E;) for all integral values of n

whenever {E;, E,, ... E }is a finite sequence of pair wise disjoint measurable sets.

Theorem: The collection 9t of all measurable sets is a 6 - algebra of sets.
Proof: I = ¢ since ¢ € M.

Let E € M Then E is measurable so that E € M.

Let {E;} be a countable collection of measurable sets and E = U;2, E;.
Then 3 a disjoint sequence {Fi} of measurable sets such that U;2, E; = Uj2, F;
PutG,=U,F;forn=1,2, ..

Then G, € Mt for all n.

Also Gn=Uju, F;=UL, E; € U2, E=E

=G, 2E=>AN G, 2ANnE ..(1).
AndsinceANE=ANnF=ANnUZ F, = U2,(4ANF),
M*(ANE)<Y2, m"(ANF) .. (2).

. Forany set A, m*(A) =m*(ANG,) +m* (AN G,)

>m*(ANG,) +m*(An E)by (1)

=m*(ANUL F)+m*(An E)=Y-, m"(AnF)+m*(An E).
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Viz. m*(A)> YL . m*"(AnF)+m*(An E)Vn.
=>m*A)> Y2 m"(ANF)+m*(An E)
> m*(ANE)+m*(AnE)by(2).
le. m*(A) >m*(ANE)+m*(ANE)VAcCR.
- U2, E; is measurable if {E;} is a countable collection of measurable sets.

Hence 9t is a o - algebra of sets.

Lemma: The interval (a, «) is measurable.

Proof: Let A be any set. Let A; = A n(a, ©), A2, = A N (a,0) = AN (—x,a.
Claim: m*(A;) + m*(Az) < m*(A).

Let m*(A) <o and € > 0. Then 3 a countable collection { I, } of open intervals such
that A c U=y I, and Yo I(1,) < m*(A) + ¢

Letl,=1,n(a, o) and I,” =1, N (— oo, a]

Then I/ and I,” are either intervals or empty.

Also I, =1y Ul and I N 1" = .

AR = 1) + 11 = m*(1) + m*(1,") ...(2)

But Ay=An(a,©) c UpsiIn N (8, 0) = UpZy{ln N (@, 0)} = Upa I
SomFA) < Y2, mr(1)....(2).

Similarly A, cUp=1 L, " and m*(Az) < X752, m*(1,")....(3).

From (2) and (3), M*(A;) + m*(Az) < 22, m* (I) + X2, m* (I,,")

= 32, (m (1) + m* (1,0} = T (1) < MH(A) + &,

le m*(Ay) + m*(A2) <m*(A)+eVvVe>0

.. The interval (a, o) is measurable.

Theorem: Every Borel set is measurable. In particular each open set and closed set is
measurable.
Proof: For each real a, we have proved (a, «) is measurable

= (a, o) = (— oo, a] is measurable.
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Now for any real b, (— o, b) = U;‘f;l]—oo, b — ﬂ Is a countable union of measurable

sets.

= (— oo, b) is measurable.

Now for any real a and b such that a < b we have (a, b) = (— o, b) N (a, ») is
measurable.

Since any open set is a countable union of open intervals, that every open set is also
measurable.

Since Borel field is the smallest o - algebra generated by the set of all open sets, each
Borel set is measurable.

F is closed = F is open .

Since every open set is measurable, F is measurable.

= F = F is measurable. = Every closed set is measurable.

Definition: If E is a measurable set, then define Lebesgue measure m(E) to be the

outer measure of E.

Proposition: Let {E;} be a sequence of measurable sets. Then m(UE,) Zm
If the sets E; are pairwise disjoint, then m(UE;) Zm

Proof: m(UE;) = m*(U E;) < Zm*(Ej) = £ m(Ej)

Thus m(UE;) <X m(E).

Suppose {Ei} are pairwise disjoint.

Then m(UE;j) >

m(UlL, E)=m" (U, E) = Sy m*(B) = Yoy m(E) V.

= m(UiZ, E) 2 X2y m(Ey).

Hence m(U;2, E;) = Xi2 m(E;).
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Proposition 15: Let {E;} be an infinite decreasing sequence of measurable sets and let

m(Ex) be finite. Then m(ﬁ EiJ =limm(E,)

. nN—oo
i=1

Proof: PutE =N;2, E; and Fi = Ej — Ejs1.

Since, each E; is measurable, each F; is also measurable.

Claim: E;\E=UF;

Letx e E1\E. =X e E;, x ¢ E=NE;

— X ¢ E; for some i. Assume that i is the least number such that x ¢ E;.
Thenx e Ei.1 =>xeE_1\Ei=F_1cUF,.

L EI\EcCUF.

Now let x € U F;

= X € Fi = Ei\ Ej+ for some i.

=X ¢ Ei+1and X € Ej c E1.

=>X¢gNE=Eandx e E; =>x e E;\ E.

~UFcE\E

Hence E;1\E=UF;

Clam: FinFj=¢ifi#]j.

W.L.G assume that i < j.

Then Fin Fj= (Ei\Ei+1) N (Ej\Ejs1) =EinEjynEjnEjy cE N Eyy
c Eimnm Ej+1 = ¢.

L RinF = ifi#].

Suppose B < A. Then A=B U (A\B) = m*(A) = m*(B) + m*(A\ B)
= m*(A\B) = m*(A) — m*(B).

- m(E1\ E) = m(E;) — m(E) and m(Ei \ Ei+1) = m(E;) — m(Ei+1)
Consider m(E;) —m(E) =m(E1\E) =m(uU F) =X2, m(F;)

= Yz {m(E) — m(Eiq1)} = 1113.10[ i=1{m(Ey) — m(Ei11)}]

=m(Ey) - lim m(Ey)

oo M(E1) —m(E) =m(E1\E) = m(Ey) — %Lr& m(E,)
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:m(ﬁEijzmm(En)

i=1

Proposition: Let E be a given set. The following five statements are equivalent:
(1)  Eis measurable.

(i)  Given g > 0, there is an open set O o E with m(O~E)<e

(iii) Given &> 0, there is a closed set F — E with ™ (E~F)<e

(iv) ThereisaGinGswithEc G, m*"(G~E) = 0.
(v) ThereisaFinFswithFcE, m*(E~F) = 0.

If m*(E) is finite, the above statements are equivalent to:

(vi) Given ¢ >0, there is a finite union U of open intervals such thatm*(UAE) < «.

Proof: Claim: (i) = (ii). Assume (i).

Case (i) Suppose m*(E) <o and € > 0.

Then 3 an open set O o E > m*(0O) < m*(E) + &/2 <m*(E) + «.
- m*(O\E) =m*(O) - m*(E) <e...(I)

Case (ii): Suppose m*(E) is infinite.

Clearly R = Up-4 I,,, where I, = (- n, n).

Pute,=Enl,.

ThenE=ENR=EnUnz1 I, = Up=1i(ENL,) =Un=1 E,
Also m*(E,) < m*(l,) = 2n < oo for all n and E, is measurable for all n.
By case (i) 3 open set O, o E, > m*(0O, \ Ep) < /2™,

Put O = Up-1 O,.

Then O is an open set such that O o E.

Now O \E ¢ Up=1(0, —E,).

&

A M*(O\E) <X m*(0O,\E,)< ¥ ——=¢/2<e.

on+1l

Thus we have proved that (i) = (ii).
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Claim: (i) = (iv)
Let us assume (ii).

le. for each positive integer n 3 an open set O, o E > m*(O, \ E) < %

ThenG=N;-,0, isan Gssetand G o E.
S0 0 <m*(G\E) <m*(On\E) < — ¥ n,
Hence m*(G\E) =0

Thus we have proved that (ii) = (iv).

Claim: (iv) = (i).

le. 3 aset G = Gjwhere each G; is open (ie. G in {s) > E < G and
m*(G\E)=0

= G\ E is measurable.

Since each G; is open G; is measurable and hence G is measurable.
= E =G\ (G\E) is measurable.

Thus we have proved that (iv) = (i).

Claim: (i) = (i)

Assume (i). le. Let E be measurable.

= E is measurable.

Let £ > 0. Since (i) = (ii), Fan openset O o E > m*(O\E) < e.
PutF=0

Then Fis closed F c E.

A M*E\F) =m*O\E) < e.

Thus we have proved that (i) = (iii).

Claim: (iii) = (v)

Assume (iii). Let n € N. Then by (iii) 3 a closed set F, c E> m*(E\ Fy) <%
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PutF=UF, ThenF € G, F c E and m*(E\F)sm*(E\Fn)<% vn>0.
S m*(E\F) =0.
Now m*(E) =m*[(E\F) U F] = m*(E\ F) + m*(F) =0 + m*(F) = m*(F)

Thus we have proved that (iii) = (v).

Claim: (v) = (i).

Assume (V).

le.FasetF =uU F;, Ficlosed, (ie. F € Gs) >Fc Eand m*(E\F) = 0.
— E\ Fis measurable.

Since F is union of closed sets, F is measurable.

Hence E = (E\ F) U F is measurable.

Thus we have proved that (v) = (i).

Claim: (i) = (vi).

Assume (i). Suppose E is measurable. Let € > 0. Since m*(E) < «, 3 a sequence {l,} of
open intervals > E < Uy I and X2 [(I,) < m*(E) +~

5. Yimeq L(I,) 1s a convergent series and hence 3 meN> Y01 1(1,) < g
PutU=U™, L, Thenm*(E\U) <m* (U s1ln) < 3 mes L(L) < g
AlsoU\E=U-, [, \Ec Uy, I,\E

LMUNE) <m*(Uszy In) —m*(E) < 3y 1(I,) —m*(E) < .

. U is a finite union of open intervals and

m*(U A E) <m*(U\E) +m*E\U) < +-==¢.

Claim: (vi) = (i).

Assume (vi). It is enough to show that (ii) holds.

Let € > 0. Then 3 a finite union U of open intervals > m*(U A E) < g
Since m*(E) < oo, 3 a sequence {l,} of open intervals > E < Uy~ I,, and

Teq () < m*(E) + =
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PutG=Uu (Unzi 1)

Then Gisopen,EcGand m*(G\E) <m*(U\E) + m*[(Uy=1 I,) \E]
<m*(U\E) + X, I(I,) —m*(E)
<SS+ m*E) +--m*E)=¢

= (i) holds

A NON MEASURABLE SET.

Definition: If x and y are any real numbers in [0, 1), we define the sum modulo 1 of x

and y denoted by xjryto bex+y,ifx+y<landx+y-—1ifx+y2>1. Note: +is
commutative and associative operation taking pairs of numbers in [0, 1).
If E is a subset of [0, 1) then define the translate modulo 1 of E to be the set

Ejry:{xjry for some xe E}

Lemma: Let E c [0, 1] be a measurable set. Then for each ye [0, 1) the set E:Ly IS

measurable.

Definition: Define x ~ y if x —y is a rational number for x , y €[0, 1). This is an
equivalence relation and hence partitions [0, 1) into equivalence classes. By the axiom
of choice there is a set P which contains exactly one element from each equivalence

class.

Theorem: There exists a non-measurable set.
Proof: Letx,y € [0, 1).

Define x ~ y iff x —y is a rational number.
Then ~ is an equivalence relation.

Observe that any two elements in the same class differ by a rational number.
[X]={y €[0,1)/x~Yy}
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={y €[0,1)/x—yory—xis a positive rational number}.

={y e[0,1) /y= x+rory=x-rforsome rational rin [0, 1)}

Thus the class containing [0] is the set of all rationals in [0, 1). By axiom of choice we
can choose one element from each equivalence class. Let P be the set which contains
exactly one element from each equivalence class.

Let {r;};2, be the enumeration of all rationals in [0, 1) with ro = 0.

PutPi=P 4.

Then Po=P (SincePo=P +ro=P+0=P)

Claim: U P;i =0, 1) and P;’s are disjoint.

Let X € [0, 1). Then x ~ xx for some xi € P.

= X — Xk Or Xk — X is a rational in [0, 1)

= X = Xk + I or X = X, — i for some .

Suppose X = Xk + ;.

Now X = Xk + I = X + ri (since x< 1) € P+ r; = P; < UP;.

If X=xXx—ri,thenputr;=1-r;.

Now Xk + =Xk +1-ri=x+12>1
SxXkFrExetr—1=x+1l-r-1=Xx-ri=X

SoX =X+ e P 4r=PjcUP.

So U P =0, 1).

Claim: Py’s are pair wise disjoint.

Let n = m.

Suppose z € Py N Ppy.

Then z = X+ In, Z = Xp + I'm Where Xq, Xg € P.= Xo — Xp IS @ rational = X ~ Xp

= a = 3 since P contains exactly one element from each equivalence class.

Xo+ In = Xp+ I'm = Iy = Iy, = N =m, a contradiction. This shows that P;’s are disjoint.
Claim: P is a non - measurable set.

m*(P,) = m*(P + r,) = m*(P).

Suppose P is a measurable set.

Then each P; is measurable.
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Now 1=m*[0, 1) =m*"(Uj2, P;) = X2 ,m"(P) =2, m"(P)=0ifm*(P) =0 or wif
m*(P) is positive which is a contradiction.

Thus P is a non - measurable set.

Theorem: If mis a countably additive, translation invariant measure defined on a

o — algebra containing the set P, then m[0, 1) is either zero or infinite.

MEASURABLE FUNCTIONS:

Proposition 18: Let f be an extended real valued function whose domain E is

measurable. Then the following statements are equivalent.
(i)  Foreach real number o the set { x : f(x) > a } is measurable.
(i)  For each real number o the set { x : f(x) > a } is measurable.
(i)  For each real number o the set { x : f(X) < a } is measurable.
(iv)  For each real number o the set { x : f(x) < a } is measurable.
These statements imply
(v)  For each real number o the set { x : f(x) = a } is measurable.
Proof:
Claim: (i) < (iv)
Assume (i). For each a,, { X/ f(X) < a} = E\ {x/f(X) > a}.
Since E is measurable by (i), {x/ f(x) > a} is measurable. Since the difference of two
measurable sets is also measurable we get { x / f(x) < a.} is measurable.
Thus we have proved that (i) = (iv).
Assume (iv). For each o, { x/ f(X) > a} = E\ {x/ f(X) < a}.
Since E is measurable, by (iv), {x / f(x) < o} is measurable.
Since the difference of two measurable sets is also measurable we get
{x /f(x) > a} is measurable.

Thus we have proved that (iv) = (i).
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Claim: (ii) < (iii)

Assume (i). For each o, {x/f(x) < a} = E\ {x/f(X) > a}.

Since E is measurable by (ii), {x / f(x) > a.} is measurable. Since the difference of two
measurable sets is also measurable we get { x / f(x) < o} is measurable.

Thus we have proved that (ii) = (iii).

Assume (iii). For each o, { X/ f(xX) > o} = E\ {X / f(X) < a}.

Since E is measurable, by (iii), {x/f(X) < o} is measurable.

Since the difference of two measurable sets is also measurable we get

{ x/f(x) > a} is measurable.

Thus we have proved that (iii) = (ii).

Claim: (i) < (ii)

Assume (i). For each o, { x / f(x) > a} = Ny {x : f(2) > @ — =},

Since E is measurable by (i), {x f(x) > a-— %} Is measurable for all n > 0.
{x f(x) > a-— %} IS measurable.

we get { x / f(x) > a.} is measurable for all a.

Thus we have proved that (i) = (ii).

Now assume (). For each o, { x/ f(x) > o} = Uz, {x : f()2a +2}..

Since E is measurable, by (ii), {x f(x)2>a+ %} is measurable for all n > 0.
SoUneq {x f(x)2>a+ %} .We get {x/f(x) > a} is measurable.

Thus we have proved that (ii) = (i).

- (1) < ().

Claim: {x/ f(x) = o} is measurable assuming any one of the conditions (i) to (iv) is
true.

Let a be any extended real number and assuming any one of the conditions (i) to (iv) is

true.
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Case (i) o is real.

We have {x/f(xX) = a} = {x/f(X) <a} n {x/f(X) > a}.

By our assumption {x / f(x) < a}, {x/f(X) > a} are measurable and hence their
intersection.

~AX T 1(X) = o} is measurable.

Case (ii). Let o = oo.

Clearly {x /f(x) = o} = Ny=1{x : f(x) > n}.

But by (i) {x/ f(x) > n} is measurable for all n.

SNgeq{x : f(x) > n}is measurable.

Hence {x / f(xX) = «} is measurable.

Similarly we can prove it in the case o = — .

Definition: An extended real — valued function f is said to be Lebesgue measurable if
its domain is measurable and if it satisfies one of the first four statements of the

proposition.

Proposition: Let ¢ be a constant and f and g be two measurable real valued functions
defined on the same domain. Then the functions (i) f + c, (ii) cf, (ili)) f +g, (iv)g—f,

and (v) fg are also measurable.

Proof: Let D be the domain of f and g and ¢ be any constant.
(i) Foranyreala,{xeD:(f+c)(x)>a}={xeD:f(x)+c>a}
={x € D : f(x) > a—c} is measurable since f is measurable

.. the function f + ¢ is measurable.

(if) Claim: cf is measurable.
Letc> 0.
Now {x e D: (cH)(X)>a}={x e D:cf(X)>a}={x € D:f(x) > a/c}is measurable

since f is measurable and o/c is real.
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. when ¢ >0, cfis measurable.

Letc<O.

Now{x e D:(cHh(X)>a}={xe D:cf(x)>a}={x € D:f(x) <alc}is measurable
since f is measurable and a/c is real.

- when ¢ <0, cfis measurable.

Let c = 0. Then cf = 0 is constant function.

.. cf is measurable for any c.

@) forany o, {xeD:(f+g)X)<a}={xeD:f(x) +9g(X) <a}

If f(X) + g(X) < a, then f(X) < a —g(X)

.3 arational number r such that f(x) <r < a — g(x)

le. 3 a rational number r such that f(x) <r and g(X) <a —r
SAXeDf(X)+gX)<a}=uU [{x/f(X)<r} n{x/g(X) <a—r}]

But {x/f(x) <r}and {x/ g(x) < a —r} are measurable.

SAXTEX) < r} n {x/g(X) < o —r} is measurable.

Since the rationals are countable, U [{x/f(xX) <r} n {x/g(X) < o —r}] is countable.

Hence f + g is measurable.

(iv) Since g is measurable by (ii) — g is measurable. Now by (iii) f+ (- g) is
measurable. le. f — g is measurable.

(v). Let o be areal and o > 0.

Then {x / 2(x) > a} = {x / f(x) > Va } u{x/ f(x) <—+/a } which is the union of
measurable sets and so measurable. Hence f2 is measurable.

Let o be areal and a < 0.

Since f2(x) > 0 for all x € D, {x/ f3(x) > o} = D which is measurable.

Hence f2 is measurable.

Thus applying above results (f + g)?, — 2, — g? are measurable.

- fg= %{(f + 9)? — f? — g%} is measurable.
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Theorem: Let {f,} be a sequence of measurable functions (with the same domain of
definition). Then the functions (i) sup{ fi, f2, ..., f.}, (i) inf{ f;, f5, ..., f,}, (iii) sup f;,
n

(iv) inff, (v) limf, and (vi) limf, are measurable.
Proof: Let D be the domain of the sequence of functions {f,}.
(i)  Define g(x) = sup{ fi, f2, ..., f.}(X)
= sup{ fi(x), fa(x), ..., fa(X)}.
Now for each real o, {x/ g(x) > o} = Ul {x/f;(x) > a}.
Since each f; is measurable, {x / fi(x) > a.} is measurable V a.cR and for each
i=12,..n.
= UL, {x/fi(x) > a} is measurable.
= {Xx/g(x) > a} is measurable V aeR.

= sup{ f1, 2, ..., fn} is measurable.

(ii)  Define h(x) = inf{ f1, f5, ..., f.}(X)
= inf { f1(x), f2(%), ..., fa(X)}.
Now for each real o, {x/h(x) >a} =Nk {x: fi(x) > a}.
Since each f; is measurable, {x / fi(x) > a.} is measurable ¥ aeR and for each
=12, ..n.
= N~ {x : fi(x) > a} is measurable.
= {X/h(x) > a} is measurable V aeR.

= inf{ fy, T2, ..., f,} is measurable.

(iii)  Define G(x) = {sup f,}(x) = sup f;, (x)

Now for each real o, {x/ G(x) > o} = Uiz {x/fi(x) > a}.
Since each f; is measurable, {x / fi(x) > a.} is measurable V¥ a.eR and foreachi=1,2, ...
= Uj2.{x/f;(x) > a} is measurable.

= {X/ G(x) > a} is measurable V aeR.
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= sup f;, IS measurable.
n

(iv) Define H(x) = {igf (X)) = igf frn (%)
Now for each real o, {x/ H(X) > o} = N2{x : fi(x) > a}.
Since each f; is measurable, {x / fi(x) > a} is measurable ¥ acR and for each
=12, ..
= N2 {x : fi(x) > a} is measurable.
= {X/H(X) > a} is measurable ¥V acR.

= inf f, 1S measurable.
n
(v)  limfp=inf{sup fi;}.
n k2n
Write g, = sup f
k>n

Since each fi is measurable for all k > n, by (iii) g, is measurable for all n.

By (iv) inf g, is measurable. le. limf, is measurable.
n

(vi) limf, = sup{jnf f,}.

Write h,, = inf f},

Since each fy is measurable for all k > n, by (iv) h, is measurable for all n.

By (iii) sup h,, is measurable. le. limf,, is measurable.
n

Definition: A property is said to hold almost everywhere ( abbreviated a.e.) if the set of

points where it fails to hold is a set of measure zero.

Proposition: If f is a measurable function and f = g a.e., then g is measurable.
Proof: Let E be a measurable set and f, g be defined on E.

LetaeR. Write E; ={x € E/f(X) = g(X)}, E2 ={ x € E/f(X) # g(x)}.
AlsoE=E; UE;and E; nE;=¢ and E\ E, = E; and so E; is measurable.

Since f=ga.e. m(E;) =0.
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= E, is measurable.

Write A={x € E/g(X) > a}.

ThenANE; ={x/g(X) >a} nE1= {xX/f(X) >a} N E;
Since f and E; are measurable, A " E; is measurable.

Now m(A N Ez) <m(Ez) =0.

= M(A N Ez) =0 = A E;is measurable.
JA=ANE=AN(E1VUE)=(AnE)uU(ANE)).

Since A n E; and A n E; are measurable, A is measurable V a.

Hence g is measurable.

Proposition 22: Let f be a measurable function defined on an interval [a, b], and

assume that f takes the values +oo only on a set of measure zero. Then given € > 0, we

can find a step function g and a continuous function h such that |f —g| <e and |f —h|<e
.except on a set of measure less than g; ie. m{x : \f (%) —g(x)\ > a}< g and

m{x:[f(x) —h(x)| > }<e

If in addition m < f < M, then we may choose the functions g and h so that

m<g<Mandm<h<M.

Definition: If A is any set, we define the characteristic function ya of the set A to be

. . lifxeA
the function given by ., (x) = {O ifxg A
Result: The function ya is measurable iff A is measurable.
Proof: Suppose ya is measurable. Then clearly A = {x/ ya(x) > %2}
Since ya is measurable, {x / ya(x) > %2} is measurable.
Conversely suppose that A is measurable.
If o <0, then {x/ xa(X) > o} = R. is measurable.
If 0 <a<1,then {x/ya(X)>a}=AIis measurable.

If o> 1, then {x / ya(X) > a} = ¢ is measurable.
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Thus for any o, {X/ ya(X) > a} is a measurable set.

Hence ya is measurable.

Note: Existence of a non measurable set implies the existence of a non-measurable

function.

Definition: A real valued function ¢ is called simple if it is measurable and assumes

only a finite number of values. If ¢ is simple and has the values a4, ay, ..., a, then

b= Zn:aiXAi where Aj = { x : ¢(X) = ai}.

i=1

Note: The sum, product, and difference of two simple functions are simple.

LITTLEWOOD’S THREE PRINCIPLES.

There are three principles, roughly expressible in the following terms:

Every (measurable) set is nearly a finite union of intervals,

Every (measurable) function is nearly continuous;

Every convergent sequence of (measurable) functions is nearly uniformly convergent.
Various forms of the first principle are given by Proposition 15, One version of second
principle is given by Proposition 22.

The following proposition gives one version of the third principle.

Proposition 23: Let E be a measurable set of finite measure, and {f,} a sequence of

measurable functions defined on E. Let f be a real valued function such that for each x
in E we have f,(x) — f(x). Then given € > 0 and & > 0, there is a measurable set Ac E
with m(A) < & and an integer N suchthat V x ¢ Aand vV n> N, |f,(x) — f(x)| < e.
Proof: Lete >0and 6 > 0.

For each positive integer write, G,, = {x € E/|f,,(x) — f(x)| = €}.

Since each f, is measurable, we have that f = lim f,, is measurable.

So (f, —f) is measurable. So each G, is measurable.
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PUtE,=UmenGn = {x EE: |fn(x) — f(x)| = € for some m = n}.
Now En+1 < En V nand so {En} is a decreasing sequence of measurable sets.
Claim: N E, = ¢.

Suppose X € N Ep.

= X e E, V n.SinceeachE,cE, x € E.

By hypothesis, f(x) =>f(X).

- daninteger Nsuchthatn >N, |f,(x) — f(x)]| < &.

So x ¢ En, which is a contradiction. Thus N Ej = ¢.

Now E; c E = m(E;) < m(E) < .

- lim m(Ey) = m(Nizy En) = m(9) = 0.

= Jan integer N such that m(E,) <& ¥ n>N.

Write A = En. Then A is a measurable subset of E and m(A) < 6.
Now A= Ey = {x € E:|f,,(x) — f(x)| < eVm > n}.

XeA= |fp() - f(X)|<eVm=>n.

Hence the Theorem.

Proposition 24: Let E be a measurable set of finite measure, and {f,} a sequence of

measurable functions that converge to a real valued function f a.e. on E. Then given ¢ >
0 and 6 > 0, there is a measurable set A ¢ E with m(A) < 6 and an integer N such that

forallx ¢ Aandalln> N, |f,(x) — f(x)| < &.

Proof: since f, — fa.e. on E, 3 a measurable sudset B < E with m(B) =0 and

lim f,(x) = f(x) forall x € E\B.

Since each fn is measurable, f is measurable function.

. dameasurable set A — E \ B with m(A) < 6 and an integer N such that
lfn(x) —f(x)| <eforallx e E\B)\A=E\(AuB)andforalln>N.
Now A U B is measurable and A w B c E.

m(A U B) <m(A) + m(B) = m(A) < 5, since m(B) = 0.
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Now forallx e E\(AuwB)andforalln>N, |f,,(x) — f(x)] < e.

Egoroff’s Theorem: If {f,} a sequence of measurable functions that converge to a real

valued function f a.e. on a measurable set E of finite measure,. Then given n > 0 there

Is @ measurable set A c E with m(A) <n and f, — f uniformly on E\ A.

Proof: By the above proposition, for each positive integer n, there exists a measurable
subset A, < E with m(A,) < zln and an integer k, such that for all x ¢ A,,

() = F()| < = for all m > k.

Write A =U A,

Clearly A is measurable subset of E and m(A) = m(UA,)

<Tam(An) < Tpiim =N Tniizy =,

~.m(A) <n.

Let £ > 0. Choose n > % <e.

Thenforx e E\Aand m >k, |f,,,(x) — f(x)] <%<g.

. fo > funiformly on E\ A.

Lusin’s Theorem: Let f be a measurable real — valued function on an interval [a, b].

Then given & > 0, there is a continuous function ¢ on [a, b] such that m{x: f(x) = ¢(x)}

<.

Proof: Take 6 > 0, and a measurable function f on [a, b].

.. to each n eN, 3 a continuous function h, and a measurable set A, < [a, b] >

B () = FOO] < 5o ¥ X & A and m(A,) < —...(1)

Write E= N5, 4, .

Clearly E is a measurable set.

1)
2n+1

Also E c 4, c[a,b] = m(E) <wand forall x € E, |h,(x) — f(x)| < v n
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lirrln h, =f(x) Vx € E.

Observe that each h, is a measurable function.

So by egoroff’s theorem 3 a measurable set A < E with m(A) < 6/4...(ii)

and h, — funiformly on E\ A.

Since E is measurable and A is measurable, E \ A is measurable.

~.JdaclosedsetFc ENA>mM((EVA)\F) <o /4 ... (ii1).

Since f is the uniform limit of a sequence of continuous functions on the set E\A, we
have that f is continuous on E \ A.

Thus f is continuous on a closed set F.

Since F < [a, b] and f is continuous on F, we have f has unique continuous extension g
on [a, b].

Now {x/ f(x) # g(xX)} = F and so m{x / f(x) = g(X)} < m(F).

Since FcE\A, Fc (ECA)U(E \ A) \ F).

=mF)<mECA) +m(E\A)\F) <m(E) + m(A) + m((E\A) \ F)

=m(E) + &/ 2 from (ii) and (iii).

Since E= N, 4,, we have E = U, 4,

= m(E) < TEy mAy) < Ty o =8/ 2.

By substituting m(F) < g + g + % = 9.

- mdx/ F(x) = g(x)} < 6.
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302, LEBESGUE THEORY
K. C. TAMMI RAJU
UNIT Il
Riemann Integral
Let f be a bounded real — valued function defined on the interval [a, b] and let
a=¢&, < & < .. <&, = bbeasubdivision of [a, b].
Define U(P, f) =S =27, M;(§; — §-1) and L(P, ) =5 = X7, my (& — &-1)
where M; = sup f(x)andm; = ; inf«,. f(x). Then we define the upper

§i—1<x<§; i-1

integral of fby R ff f(x)dx = infS with the infimum taken over all possible
subdivisions of [a, b]

the lower integral of f by R f; f (x)dx = sup s with the supreum taken over all
possible subdivisions of [a, b]. If upper and lower integrals are equal then we say
that f is Riemann Integrable and call the common value the Riemann integral of f
and is denoted by R fab f(x)dx

Definition: By a step function we mean a function y which has the form

Problem: 3*: Define f(x) = 0 if x is irrational and 1 if x is rational. Then prove that
f is not R-integrable but Lebesgue integrable.

Solution: Leta=x, < x; < ... < x, = b be asubdivision of [a, b].

M; = sup f(x)=Sup{0,1}=1,

Xi—1<Xx<X;

andm; = inf f(x)=Inf{0,1}=0.

UP, f) = 5?:17\7;((;% —xi_1) =1 0,0 —x_) =b-a

L(P, f) = Xieami(x; — x;-4) = 0 X3, (% — x;-4) = 0.

R [’ f(x)dx = inf {U(P, f): P €pla, b} =inf{b—a}=b—a,

R [; f(x)dx = Sup {L(P,f):P €@[a,b]}=sup{0}=0.

R fff(x)dx + R fdbf(x)dx so that f is not Riemann integrable.

Let A be the set of all rationals in [0, 1]. Then f = 1-4a+0-x 5 ..T= %A
And m(A) =0. [ fdx = 1 x m(A) + 0 x m(A) =0.

Definition: A function defined on R is called a simple if it is measurable and
assumes only finite number of values.

Definition: Canonical representation: If ¢ is simple taking nonzero values aj, ay,
..., an, then @ = YL, a; x4, where Ai = {X: ¢(X) = ai}, &’s are distinct and A;’s are
disjoint.



Definition: Lebesgue Integral of a simple function: Let ¢ be a simple function and
vanishes outside a set of finite measure and ¢ = }.i_; a; x4 is canonical

representation. Then Lebesgue Integral of ¢ is defined as f(p(x)dx Y am(4;)
Lemma: If ¢ = YL, a;xg, is a simple function where E;’s are pairwise disjoint,

then [p(x)dx = Y™, a;m(E)).

Proposition: 1*: Let ¢ and y be simple functions which vanish outside a set of
finite measure. Then (i) J(agp + by) = alo + by (i) ¢ > v = Jo > Jy.
Proof: Let p = Y a; x4, and w= XL, b Xp;be canonical representations.
Then E = Uiy 4; = UjL, B}
Let Ao = {X: ¢(X) = 0} and By = {x: y(x) = 0}.
Then o =Y oa;xa and =37, bjxs; Where ao =0, bo = 0.
LetCij:Aim Bj. Then CijﬁCk|_(|)ifi¢k0rj¢|
Also, Ai = AinE=AinUJL, B = UjL(4; N B)) = UL, Cjj
Similarly, B; = UjZ, C;;
® =i aiXa; = Yico AiXUTL,cif = im0 4 7]n=o)(cij: 021 =0 AiXc;;
Similarly, v = Yo X% bixc,
nae +by = YL, Yito(aa; + bby)xe,;
Then J(ag + by) = X1y X7 o(aa; + bb)m(Cyj) = Ty XM o(aa)m(Cyj) +
i=o Zj=o(bb)m(Cyj) = a Xi—g a; XjZom(Cyj) + b Xl by Xizo m(Cij)
=aYh,am(4) + by bm(B) = a X, am(4;) Fb S bm(B))
= a_f(p + bI\V
(ii)Let o>y.Theno-y>0=J(¢-y)>0=Jop-Jy>0=Jo>y.

Proposition: 10*: Let f be defined and bounded on a measurable set E with finite

measure. In order that 1nff Y(x)dx = sup [ ¢(x)dx for all simple functions
p<f E
and o it is necessary and suff|C|ent that f be measurable.

Proof: Suppose f is measurable.
Since fisbounded 3IM>05 |f(x)| <M V x € E. ie. f(x) € [- M, M].

For each k define Ey = { (DM f(x) < —} forany n> 1.
Then clearly [- M, M] U"z_n]w,k—M].

n
If X € E, then f(x) e[- M, M] < U"__n](k_l)M,kTM] = 3 unique integer k >




(k—nl)M <f(x) < kTM — X e Ey for some k.

Thus, E = Uj-_, Ex sothat m(E) = ¥ 3__,, m(Ey)
Now for x ef 1 ]@ kM] define ¢, (x) = (=DM ond Y, (x) =
©n, W, are simple since each of them takes only flnltely many values and

Definition: Let f be a bounded measurable function on a set of finite measure E.
J f()dx = inf [Y(x)dx = sup [@(x)dx
E Y=2f p<f

Y simple @ simple

Proposition: 9*: Let f be a bounded function defined on [a, b]. If f is R-integrable
on [a, b], then it is measurable and R-f:f(x)dx = fff(x)dx.

Proof: Let f be R-integrable on [a, b]. Let 1’ be a step function such that y" > f.
Then llljrzlfc [Y(x)dx < [ Y (x)dx

pizf

P simple Y1 step fun
= inf x)dx < inf "(x)dx
inf [yp@de< nf o 9@
Y simple P'stepfun

Similarly, if ¢’ is a step function such that ¢’ < f.

then sup [o()dx > sup [ @' (x)dx
(p< (pl<
@ simple @'stepfun

Now by def of Riemann integral, R f‘ff(x)dx = sup [ (x)dx
a QI<f

@'stepfun B
< sup [@(x)dx < 1},n]fc [Y(x)dx < 1l}nff [Y'(x)dx = Rf(ff(x)dx
<f 2 >
© ;l;mple Y simple lp’step]iun

Since f is Riemann integrable R f‘ff(x)dx =R f:f(x)dx
R fbf(x)dx = sup [o@()dx = inf [YP(x)dx
i Q<f Y=f

@ simple Y simple
= f is Riemann integrable and fff(x)dx =R f;f(x)dx

Proposition: Let f and g be bounded measurable functions on a set of finite
measure Eand a, b eR. Then (i) [ (af + bg) =af f+b[ g
E E E

(iiyIff=ga.ethenf f=[g



(i) Iff<ga.e.then [ £ <[ g. Inparticular
E E

[ fl<Lir
(iv) a and b are constants such that a < f(x) <b = am(E) <[ f(x)dx <b m(E)
E

(v) If A and B are disjoint measurable sets of finite measurethen | f=[f+[f
AUB A B

Proof: (i) Claim: [ (af) =a [ f
E E
If a=0thenitis trivial. Let a > 0. Let y be a simple function > y > af.

fer= gl Jvs gt Jegs g Jaits g afy's

Y simple " saimple P! simple Y’ simple
a inf "zZa
Y'=2f fl/) gf
P’ simple
Leta<O.
. . P . ’ . /
Then | af = inf = inf a— = inf ay’ = inf a =
£ / Ypzaf Jv Yer J a Y'sf Jay Y'sf ¥
Y simple " sC;mple P! simple Y’ simple
a sup [¢'=aff
Y'sf E
P’ simple

CIaim:{(f+g)=£f+£g
Let y, ' be simple functions > w > fand v’ >g. Theny + ¢’ is a simple function
>y +yY'>f+g
JF+p <@+ =[yp+[y'<s nf [P+ )
E E E E wg‘:;fﬂlf’ZHl E E
1 simple

= inf (Jy)+ inf [’ =[f+[gThs [(F+<S f+[ g
wll{Zfl ¢¢{Zgl E E E E E E
simple 1 simple

Similarly using definition [ f(x)dx = sup [ @(x)dx we get
E <f
(pgmple

J(f+9 =) f+)gHence [ (f+g)=]f+]g
E E E E E E
(if) Letf=gae.So,f-g=0a.e.
Let y be asimple function>y >f-g=wy>0ae. [ p>0Vy>f—g

E

Inparticular _inf (fY)>0=[(f+9)>0=>[f-[g>0=[f=>[g
w‘l’z_f_!{ E E E E E
simple
By interchanging fandgweget [ f <[ g.Hence [ f=[ g
E E E E



(i) Letf<gae. Theng—-f>0a.e.
Let y be a simple function>y >g-f=wy>0a.e.

By(ii)g(g—f)20:>£g—£f20:>£92£f

Since—|f|SfS|f|,—Ef|f|S£f$£|f|=> Sglfl

(iv) Leta and b are constants such thata<f(x)<b=f[a<[ f<[ b
E E E

—af1<[f<bf1

E E E
=am(E) <[ f(x)dx <bm(E)
E

(v) Let A and B are disjoint measurable sets of finite measure.

Then [ f= ffXAuB‘ff()(A"‘XB) ff()(A"‘fXB)‘ff)(A"‘ffXB)—

AUB

el

Bounded Convergence Theorem: Let {f,,} be a sequence of measurable functions
defined on a set E of finite measure and suppose that there is a real number M such
that |f,,(x)| < M for all x and for all n. If f(x) = lim f;,(x) for each x in E, then

n

[of =1im [ fr.

Proof: Let € > 0. By Littlewood’s third principle, corresponding to e =

and

&
2m(E)
6 =— 3 NeN and a measurable set A < E with m(A) < ..(1)>

Ifn(x) f(x)| < - (E) L(@)Vn>NandV x e E\A.

Now |[pfo = Jpf| =/ eUn = DI < Selfa = FI= L4l = FI+ [ palfa = £
<J (Ifn|+|f|)+fE\A|fn—f|<f <M+M)+IE\Aﬁ(E)

=2M m(A) + — m(E\A)<2M— — (E)m(E\A)< +§_
|.e.g|veng>0,3NeNaUEfn Jofl<evn=N.

liprfn=fEf

INTEGRAL OF NON - NEGATIVE FUNCTION.

*Definition: If f is a non — negative measurable function defined on a measurable
set E, f vanishes outside a set of finite measure if there exists measurable set Eq <
E with m(Eo) <o and f=0 on E — E,.



Definition: If f is a non — negative measurable function defined on a measurable
set E, then Lebesgue integral of f over E is defined as

f f(x)dx =sup{J h:his a bounded measurable function 3 m{x: h(x) # 0} < oo}.
h<f E

Progosmo Let f and g be non-negative measurable functions on a set of finite
measure E and a, b €R. Then (i) [ (¢f) =c[ fifc>0
E E

(ii)g(f+g)=£f+£g
(iii)Iff<gae.then [ f <[ g.
E E

Proof: (i) Let ¢ > 0. Let h be any bounded measurable function such that m{x: h(x)
#0} <ooand h <cf.

fcf— supfh—supfc——supfch’ —supcfh’ —csupfh’ —cff
h<C _<f

(“)f(f"‘g)=ff+fg
E E E

Let h, h’" be bounded measurable functions such that m{x: h(x) # 0} <wand h < f
and k <g. Then h + k is a bounded measurable function > h + k <f + g and
m{x: (h + k)(x) = 0} < c0.
f(h+k) <f(f+g):>f h+f k<f(f+g)Vh<f k<g
:Q%%U}+fm<fv+g):ff+fg<fﬁ+g) (D)
Let | be a bounded measurable function such that | <f + g and m (Ep) < oo where
Eo ={x: I1(X) # 0} and I(x) = 0 on E — E,.
Define h(x) = min {f(x), I(x) and k(x) = I(x) — h(x).
Clearly h(x) < f(x) and h(x) =0 on E — Eo. Also, k(x) =0 on E — E,.
Now if h(x) = f(x), then k(x) = 1(x) — f(x) < g(x) and

If h(x) =1(x), then k(x) =0 < g(x) ie k(x) < g(x)
.. hand k are bounded measurable functions such that h(x) < f(x) and k(x) < g(x)
and vanish outside Eo.

:>fh<ffandfk<fg

:fh+fk<ff+fg

:f(h+m<ff+fg

Taklng sup over aIIsuchIwe et [(fF+<[f+[g..(
From(l)and(2)£(f+g)=£]€+£g ’ ’

(iii) Let f < g a.e. Then 3 measurable set Eq with m(Eg) =0 and f < g on E — Eq.



Then [ (g—f= J @-N=J@-HND+ [ @-HN=1J (g-f)=0
E Eo E-E, E

E-E, —Ej
sinceg—f>0on E - E,.

2 0<f-N= S @-HN=[9-[ fF=lg-Jf
E E—-E, E—-Ej E—-E, E E
:>£f§£g

Fatou’s Lemma: If {f,,} is a sequence of non-negative measurable functions

defined on a measurable set E and if f,,(x) — f(x) a. e. on E, then fEf < li_mefn.
n

Proof: Since integrals over sets of measure zero are equal to zero, we may assume
without loss of generality that the convergence is everywhere on E.

le. f,(x) > fonkE.

Let h be a bounded measurable function > Eo = {x: h(x) = 0}is a set of finite
measure, and h(x) < f(x).

Since h is bounded, 3 M eR* 5 h(x) <M for all x.

Define h,,(x) = min {h(x), f,(x)} forn=1, 2, 3, ...

Also h,, is bounded by M and h,,(x) =0 Vx € Ej.

Also, h, (x) — h(x) for each x € E,.

Now by Bounded convergence theorem, we have [ th = li;ln | E, h,

= [ h=1lim [ h, sinceh=0,h,=00nE-E
n
Since 0 < h, (x) < f,(x) V N, VX, lim [ hy, < Uim [,
n n
= lim [ by, < lim [ f;
n

n
= [,p<lim [, f, Vh<f.
n

This being true for every h(x) < f(x), taking supremum over all such h,
Sup[ h <lim [ f,
hsf n

= [ f <lim] f,

Proof: Since f,,(x) — fa. e.on E, 3 ameasurable set A c E>m(A) =0 and
fn(x) >fVxeE\A.
Then [ ,f =0, [ ,f, =0V nsince m(A) =0.

S f =+ paf



Similarly, [, f, = fE\Afn
So, it is enough to show that [, ,f < lim [, ,fy-
n
Let h be a bounded measurable function defined on E \ A 5 h <fand h vanishes
outside a set of finite measure.
Put Ap = {x € E/h(x) = 0}. Then m(Ay) < oo.
Now we show that fE\Ah < lim fE\Afn.

Define h,,(x) = min {h(x), f,,(x)}.
Now X ¢ An = h(X) =0. = h,(x) =0=Xx ¢ A, where A, ={X € E: h,(x) =0}
S Ap, S AV N M4, ) <M(Ap) <o VN
Now h,, <hand h is bounded = h,, is bounded. Also, h, < f,, ¥V n.
Since lim f,, (x) = f(X) V x € E\ A, we have lim h,, (x) = lim min {h(x), f,, (x)}

n n n
= min {h(x), lim f,, (x) } = min {h(x), f{(xX)} =h(X) V x € E\ A.

n
Givene>0,dN> |h,(x) —h(x)|<eVn>N.
Since An, < E\ A we have that lim h,, (x) = h(X) V X € An.
n
. {h, } is a sequence of bounded measurable functions > lim h,, (x) =h(x) V X €
n

An and m(Ap) < oo.
Now by Bounded convergence theorem, we have [ a1 =1im [ o, P
n

fE\Ah = lim fE\A .. (1) since h(x) =0 and hy(X) =0 V X & An.
Now h, <f, on E\A and hence on An.

:>fAhhn < fAhfn

Consider fE\Ah = lim fE\A o < lzm fE\Afn by (2)

= %B?IE\Ah = llefE\Afn

= [ f <lim[ f,

Monotone Convergence Theorem: Let {f,,} be an increasing sequence of non-
negative measurable functions defined on a measurable set E and let f = lim f;,.
n

Then [ f =lim [ _fy.
n
Proof: Since {f,,} be an increasing sequence f = lim f,,, we have f,, <f V n.
n

Since each f, is measurable, f is also measurable. ... [, f, <[ .f



= lim [ fo < f ... (@)
By Fatou’s Lemma, fEf < li_mefn ... (11).

From (i) and (i), f ,f < lim [ of, <Tm f ofu < [ of.
:H_ijfn =@f5fn = fEf

n
slim [ fyexistsand [ f = lim [ f,.
n n

Proposition: 2*: Let f be a non-negative function which is measurable over a
measurable set E. Then given € > 0, there is a & > 0 such that fAf < g for every set

A c E with m(A) <. |
Proof: Define £, (x) = {f(x), if fx)<n

n, otherwise
Then |f,(x)| <nVn

.. f» 1s bounded for all n.
Since f is measurable, f,, is measurable and f,, < f,,41V n.
Also lim f,, = f (since f(X) < o0 = f(X) = f(x).)

n

By Monotone convergence theorem, [ f = lim [ £
Since f,,(x) < f(x) V nand fis integrable over E, f,is integrable over E.
NOWf(f_fn) :f f_f fa - (D)
E E E
.]g f - .}{: fn
But [ f = lirrlnff" > [ £, since f,, are increasing.
s f = < le (= f) <3by ().
E E E
Choose 858 < —.
Let AcEsm(A)<&. Then [ fF=[(f—fy+ fa)
A A
=L = s [ F=f)+] fu <3+ NmA) <g+Ns<e.

Hence the result.

..Givene>0,7N e N>

<EVn2N

4. THE GENRAL LEBESGUE INTEGRAL



fG) if f(x) =0
0 iff(x)<o0

By a positive part f* of a function f we mean f*(x) = {

= max {f(x), 0}.
Similarly, by a negative part f~ of a function f we mean

£ (x) = {_Of (x)l_ ]f];’(fg)foo = max {-f(x), 0} = - min {f(x), 0}.

Note: (i) Both f*and f~ are non — negative functions.
(i) fr*—f"=fandf*+f" =|fl
Definition: A measurable function f is said to be integrable on E, if f*and £~ are
integrable and integral of fover E isdefinedas [ f=[ f*—[ f~
E E E

Proposition: Let f and g be integrable functions on a set of finite measure E. Then
(i) { (cf) =c£ f
(ii)i(f+g)=£f+£ g
(iii)yIff<gae.thenf f<[ g.
E E

(iv) If A and B are disjoint measurable sets of finite measure then

J = ff+ff

AUB

Proof: (|) Clalm [(cf)=c[ fifec>0
E E

Letc € R. If c =0 thenitis trivial.
vy ff) if cf(x)=0_ (f(x) if f(x) =0
Letc>0. Then (cf) (x)_{o ifcf(x) <0 {0 if f(x) <0
Similarly (¢f)~(x) = cf ~ (x).
{(Cf)=£(6f)+ f(Cf) —fC(f*)—f c(f~ )—C{f fr- ff F= Cff
" Cf(x) if Cf(x) 20 _ f(x) lff(x) <0
Letc<0. Then (¢f)"(x) = {0 if cf0) <0 - C{O if F(x) > 0

=-c(f)”

Similarly (cf)~(x) = {_gf ("? fif fc(]; g"iﬁ 0= -c{{)(x) l;f jf (Ecx))g ) =—cf @)
{(Cf)=£(6f)+—£(0f)‘=£ —C(f‘)—£ —c(f* )‘C{£ fr- gf by

= C{ f

(if) Claim: If f; and f, are non-negative integrable functions such that f = f; — f,
thengfzgfl—gfz.

Let f = f; — f, where f;, f, are non-negative integrable functions.

= c(p)*



ff=f~=f=Ha-1, :>f++f2=f2+f_=>£U++f2)=£(f2+f_)
=>[fr+h=lh+[f=>f=[A-]f
E E E E E E E
Nowf+g=f*—f"+g*—g =f"+g" - +4g7)
=] +9) =] (" +g9 =] +g7)byclaim
—ff++fg —ff —fg —ff+ I1 +f gg
[+l
(i) Letf<gae. Theng—-f>0a.e.
By(ii)g(g—f)20:>£g—£f20:>£92£f
(iv) Let A and B are disjoint measurable sets.

Then [ f= ffXAuB‘ff()(A"‘XB) ff()(A"‘fXB)‘ff)(A"‘ffXB)_

AUB

RSt

Lebesgue Convergence Theorem: Let g be an integrable function over E and let
{f»} be a sequence of measurable functions such that |f,,| < g on E and
f(x) =lim f, (x) a.e.on E. Then [ .f = lim [ _f,.

n n

Proof: Giventhat 0 < |f,,] <gonE.

So, g is non-negative, — g < f,, < g for all n.

Since g is integrable, f,, is integrable for all n.
Nowfn3g:>1irrlnfn£g:>f:li£nfnSQa. e.=>f<ga.e

Now g is integrable = f is integrable. Sinceg > f,,, g — f,, >0 on E.
- {9 - f,} is a sequence of non-negative measurable functions > {g — f,,}
convergestog—fa.e.onE.

By Fatou’s lemma, ng_fEf = fE(g _f) Sh_ij(g _fn) = ng_
im [ fo. = Um [ fo < Jf. ... (0)

{g + f,,} is a sequence of non-negative measurable functions > {g + f,,} converges
tog+fa e onE.

<.By Fatow’s lemma, [ g+ [ .f = [ (g + ) <lm [ (g+f)=)z9+
umf fo. [pf <limff ... (). '
From (i) and (ii), [ ,f < lim [ f <Uim [ fo < [ f .



:H_ijfn =@f5fn = fEf
n
slim [ fyexistsand [ f = lim [ f,.
n n
Proposition: 6*: Let {f,} be a sequence of measurable functions that convergences

in measure to f. Then, there is a subsequence of {f,} which converges to f almost
everywhere.

Theorem: Generalized Lebesgue Convergence theorem
Let {gn} be a sequence of integrable functions converge to an integral function g a.

e. Let {f,} be a sequence of measurable functions such that |f,,| <ga V nand f,(x)
—>f(x)a.elf [ g= lizlnngn. Then [ f = lignfEfn.

Proof: Giventhat0 < |f,,| <gnOnE.

So, g is non-negative, — gn < f,, < g for all n.

Since g, is integrable, £, is integrable for all n.

Since f,, > fand g, >gand f, <gn.f<ga.e.

Now g is integrable = f is integrable. Since gn > f,,, g — f,, 20 ON E.

- {on— f} is a sequence of non-negative measurable functions > {g, — f,,}
convergestog—fa.e.onE.

<.By Fatou’s lemma, [ g —[ . f = [ (g = ) <lim [ ,(gn = f»)

n

=lim | gu T [ f = lim [ g0 ~Um [ ofy = g = Tmf
E

ie. ng ff<f g — llmefnjllmefn—fEf ()

{on + f,,} is a sequence of non-negative measurable functions > {g. + f,,}
convergestog + fa. e. onE.

~.By Fatou’s lemma, [ g+ [.f = [ (g +f) < Uﬂf,;(gn + fn)
—llmegn+llmefn—llmegnHlmefn—ng+UﬂfEfn
=1, f<llmf fo ... . '
From (i) and (i), | of SUm [ fo<lim [ fo < [ f.

= Um [ f =lim [ fy =nfEf-

li){rlz J ofoexistsand [ f = lim J ot



CONVERGENCE IN MEASURE:

Definition: A sequence {f,} of measurable functions is said to converge to f in
measure if V ¢ >0, m{x: |f,,(x) — f(x)| = &} -0
le.Ve>0,Vvn>03ke Nom{x:|f,,(x) — f(x)| = e} <nVnx>k

Result: If {f,} is a sequence of measurable functions on E with finite measure and
fo — fa. e, then f, — fin measure.

Proof: Suppose f, — fa.e. Let £ >0, and 1 > 0. By Little Woods third principle

3 ameasurable set Ac Ewithm(A) <nandk e N> |f,(x) — f(x)|<eVn>k
and V x € AS.

= |f,(x) — f(x)] >ethenx € A.

= {x:|f(x)—f(x)] = eVn >k} C A

S m{x:|f,(x) = f(x)] = e <m(A) Vn=>Kk

=mi{x:|f,(x) —f(x)| = e} <nVnxk

= f, > fin measure.

Note: Converse is not true.

Proposition: Let {f,} be a sequence of measurable functions that converges to f in
measure. Then there is a subsequence {fnk} that converges to f a. e.
Proof: Given that the sequence {f,} converges to f in measure.

By definition, corresponding to % dn; eN> m{x: lfn(x) = f(x)] = %} <

N |-

Vv n > n;. And so on, having chosen ni 1, choose ni as follows.
Corresponding to zik dnce N> m{x: |fn(x) = f(x)]| = zik} < zik v n>n.
Then {f,, } is a subsequence of {f,}.

Write B, = {x: |fo ) = F ()| = zik} Then m(Ey) < 2z V k;

If X & Uy=; Ex, thenx ¢ EV k>].

= [fu () — )| < zV k2]

= fru () = f(x),

= fn, () > f(O)Vx € UL Ex ... (1)
Put A = nj-‘;l U,‘j;jEk.



If X ¢ A, then X & U,‘f:j E, for some j.

~oby (i) fr, () = f(x)
= fn, () > f(X)Vx €A,

co co 0 1 .
Then m(Uk:]’ Ek) S Zk:jm(Ek) S Zk:jz_k = F VJ
0 1 .
= M(A) < MU= Ex) < Y1 Y.
= m(A)=0

.. the subsequence {fnk} of the sequence {f,} convergestof a. e.
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302: LEBESGUE THEORY
UNIT HI
K. C. TAMMI RAJU
DIFFERENTIATION AND INTEGRATION

SECTION — 1: DIFFERENTIATION OF MONOTONE FUNCTIONS

Definition: Let 7 be a collection of intervals in R. 7 covers a set E in the sense
of Vitali if for each € > 0 and x in E, there exists an interval | in 7 with I(I) < ¢
and x e I.

Vitali Covering Lemma: Let E be a set of finite measure and 7, a collection of
intervals which cover E in the sense of Vitali. Then given ¢ > 0, there is a finite
disjoint collection {l, I, ..., I} of intervals in 7 such that m*(E~ U}, [;) <e.

Proof: We may assume that each interval in 7 is closed. Since m*(E) < oo there
exists an open set O containing E with m*(0) <. Write Jo={1 € 7 /1 c O}.
Then J, covers E in the sense of Vitali. So we can assume that each interval in 7
Is contained in the open set O.

Let I, be any interval from 7. Suppose Iy, I, ..., I, were chosen. Now we can
choose Iy as follows: Put k, = sup {{(I): Ie I, n U}, I; = ¢}....(I).
|cOforalll € 3 = m*(I) <m*(0) <oo. = ¢(I) <m*(O). This is true for all |
belonging to the set given in (i).

.. m*(O) is an upper bound for that set. So k, < m*(0O) < oo.

If E < Uj-, [;, then the lemma is trivial.

Otherwise there exists an element x € E ~ Ui~ I;.

Sincex ¢ UL, 1;3ad>03Ns(X) n UL, I; = ¢.

Now corresponding to forx e Eand 6 >0,31 e J>x e land¢(l) <dsinceJ
covers E in the sense of Vitali

Clearly I < Ns(x).

Hence, | N (Ui, ) < Ns(X) n (UL L) =0 =1 n(Uik L) =d = (1) < k.
Also, | = ¢ since x e I.

~oe (1) #0. Now 0 < K.

So kz—" <k, = kz—” is not an upper bound of the set given in (i).
= Janinterval I,y € 7 > k;” <¢(lns1) and lnss N (U, ) = ¢. Thus by

induction we get a sequence of disjoint intervals from | > k, < 2¢ (In+1). ... (ii).




Now UiL;l; cO=m*(UjL; ;) <m*(O0) <

= Xizq L) < oo

= Y2, L(I,) converges.

-.corresponding to €/5 >0, 3 aninteger N > .72 v, I(1,,) < §
PutR=E~ (UL ;) Letx e R.

Thenx ¢ U, I; and UY, I; is closed.

~38>05Ns(x) N (UL, L) = ¢.

Also,x e Eandso 3l eJ>x e land I n (UL, L) =9¢.
Let n be any positive integer such that | n I; = ¢ for all i <n.
ie. 1" (Uie ) = 0.

Then ¢ (1) <k, by (i).

< 2 ¢ (In+2) by (ii).

But¢(l,) > 0asn— o,

= ¢(l) = 0 which is a contradiction.

- Japositive integerms | N Iy # 6.

Let n be the least positive integer such that | ~ I, # ¢.
Thenlnli=¢foralli<n-1.

=1 (UEEL) = 6.

=¢(1) <kn_1 by (i)

< 2¢ (1) by (ii).

Let a, be the midpoint of I,.

Lety e I n I,

Now [x — ay| < lx =y + |y — anl < 10D + 52 < 21(1,) + X2 = 2

Let J, be the closed interval having a, as its midpoint such that I(J,,) = 51(I,,).
Then x € Jn. Also I n 1, = ¢ since n > N.

sgivenx e R, An>N>x € J,.

S0, R € Upzn+1/n-

S M*(R) < Xnon+1 M Un) = Znzn+1 LUn) = Znzn+1 SUUR) =

5% men+1l(n) <52 =¢

= m*(R) <e.

Definition: Let f be an extended real valued function defined for all X in an
interval containing the point y. We define




IImf(x) = 1nf{ sup f(x)}

x>y 6>0

Iim f(x) = énf{ sup  f(x)

x-y+

Xy —

limf (x) = sup{ inf  f(x)

Iim f(x) = 1nf{ sup f(x)}

x—y 6>0 \0<|x—y|<8
lim () = sup {O<m§<5f(X)
xliT_f (x) = Sup {O<ym£ s/ (x)}

Definition: Let f be an extended real valued function defined on an interval

containing a point x.
h+0+

D=f(x)= Iim

h—-0+

D.f(x) = lim w is called the lower right derivative of f at x.
h—-0+

D_f(x) = lim w is called the lower left derivative of f at x.
h—-0+

Note: D*f(x) < D.f(x); D f(x) < D_f(x) for any function f.

is called the upper right derivative of f at x.

—(") fl(" M is called the upper left derivative of f at x.

Definition: If D*f(x) = D.f(x) = Df(x) = D_f(x) # o0, then we say that f is
differentiable at x

Exercise: If fis continuous on [a, b] and D" exists, every where and non-
negative on [a, b], then f(b) > f(a).

Solution: In contrary suppose f(b) < f(a). = M [f ®)-f (a)] > 0.

Choose € > 0 such that — [%} >e > 0.

- f(b) —f(a) + e(b—a) <0.

Define a function ¢ on [a, b] by ¢(x) = f(x) — f(a) + € (x —a).

Then ¢(a) = 0. Let & be the largest value in (a, b] such that ¢(&) = 0.
Then for all x € (&, b), ¢(x) <O.

D+¢(§) - 1 ¢(fh+h) <0.




But D*(%) “Tim ¢E+h) _ mf(f+h)—f(a)+8(§+h—a) - mf(f+h)—f(§)+€h
h—-0+ h h-0+ h h—0+ h

since ¢(&) = 0.

= hhr(r)1+ w +e=D'f(§) +e>¢>0.le. D'¢(§) > 0, a contradiction.

Hence f(b) > f(a).

Lebesque Theorem: Let f be an increasing real valued function on [a, b]. Then
f is differentiable almost everywhere. The derivative f ' is measurable and

[2f(x)dx < f(b) - f(a).

Proof: We prove D*f(x) = D.f(x) = D f(x) = D_f(x) = f '(x) exists ever where.
le. to prove the sets where any two of the derivatives mentioned here are
unequal, have measure zero.
Let E={x/D*f(x) > D _f(x) }. Now we prove that m(E) = 0.
The sets arising from other derivatives can be handled similarly.
For each pair of rationals u and v with u > v, write
E,v={x/D'f(x) >u >v>D_f(x) }.
Then E = Uy, Ey,, 1S @ countable union.
Clearly m*(E) < Xysv m" (Ey )
So it is enough if we prove that m*(E, v) = 0. Put s = m*(E, ).
Let € > 0. Now 3 an open set O o E, , such that m*(O) < m*(E,,v) + € =S + €.
Now for each x € E, , 3 an arbitrarily small interval
[X —h, X] < O such that f(x) — f(x —h) <vh and {[x — h, x] : X € E,, } covers
E., v in the sense of Vitali.
.. By Vitali covering lemma, 3 a finite disjoint collection of intervals
{Ii = [Xi — hi, Xi] - O}, i=1,2,..,N> m*(Eu,v\ Uliv=1 Ii) < E&.
Put A=E,, n UL, (x; — h,x;). Then A c E,,.
Summing over these N intervals
n=1lf (en) — f (tn = h)] < VER=1 hy <V M(O) < V(S + g)...(iIX).
Here hy, ..., hy are so small that h; + ... + hy < m(O)
Now for each y € A 3 an arbitrarily small interval of the form [y, y + k] < I; for
somei € {1, 2, ... N} such that f(y + k) — f(y) > uk.
The collection of intervals {(y, y + k) / y € A} forms a Vitali covering for the

set A. .. By Vitali covering lemma, 3 a finite disjoint collection of intervals
{i=iyitk)c0}i=1,2,..,M> m(A\UL,J;) < e..(V).




Put A= An UL (v, v + k;). Nows—¢ < m*(A) (proved)
=m*(4") + m* (A\(Uﬁ”zlji)) since O, is measurable.
= m*(Al) + ¢ by (vii)
= m*(A?) >s — 2¢... (viii)
Summing over these M intervals
Fealf (v + ki) = fF] > uXioy K > u(s - 2e).
By (iv) we have that each interval J; is contained in some I, and if we sum over
those i, for which J; < I, we have

S enlf O + k) = F ()] < f () — f (= ) (since Fis an increasing
function). Thus X3_;[f (%) — f(x — hy)] 2 y:1[f(3’j + kj) - fp)
and so v(s + €) > u(s - 2¢) for all € > 0.

.. VS > us, a contradiction since u > v.

. s=0.
Write (x) = lim F22-L0

The above means that f is differentiable a. e. whenever g is finite.
Define g, (x) = n{f (x + =) — £ (x)} and set f(x) = f(b) for all x> b.

Then {g,} is a sequence of non — negative functions since f is increasing.
Since f is measurable, each g, is measurable and so lim g,,(x) is measurable.
n—oo

. . 1
Nowiligogn(x)=iljlgon{f (x+;) —f(x)}. =
F(a43)=f () = i FEED @)
h—-0 h

N—

=g(x) a. e.

lim
1

—0
n

SRk

Since each g, is measurable, lim g, = g = f’ is measurable.
.. By Fatou’s Lemma, fab g < ll_mf: n = li_mnf: {f (x + %) — f(x)}
n n

=tim ([} f =[O f) = lim (£5) = [0 F) < 60) - 12
since — f(x) <—f(a)
ie. fabf’(x)dx < f(b) — f(a). This completes the proof.




SECTION - 2:
FUNCTIONS OF BOUNDED VARIATION
Definition: (i) If r is a real number, then we define r* = max{r, 0} and
r~=max {-r, 0}.
Clearlyr=r* —r~,|r|= r* +r~
(i) Let f be a real valued function defined on [a, b]. Leta=Xo<X; <...<Xk=Db
be a subdivision of [a, b].
Define p= Y1, [f(x) — fF(xi— )], n= T [f (xiy-f (xi-1)]”
(iii)t=n+p =3 1f () — f G-
(V) p—n =X, [f () = fOq)]t - Bl [f () = fxi—)]”
= Ti [ ) = FO—)¥ = () = F(xim)Y T = Thoa[F () — f(xiz)]
= f(b) — f(a).
(v) Define P =sup p, N =sup nand T = sup t where supremums are taken over
all possible subdivisions of [a, b].
(vi) Clearly p < t.
ssupp<supt=P<T. Similarly N<Tand T<P+ N.WecallP,Nand T
the positive, negative and total variations of f over [a, b].
We denote them by P2 (f), N2 (f) and T2 (f) respectively.

Definition: A function f on an interval [a, b] is said to be a function of bounded
variation over the interval [a, b] if T2 (f) < c.

Note: any monotonic function is of bounded variation.

Lemma: If f is a function of bounded variation on [a, b], then T? = PP + N}
and f(b) — f(a) = PP — N?

Proof: Let f be a function of bounded variation on the interval [a, b].
By definition T? < oo,
For any partition of [a, b], we have
p-n=X [0 () = fOa)} — (F () — i)} ]
= T () = f(xiop)] = f(b) - f(a) ...(7)
= p =1f(b)-f(a) + n<f(b) —f(a) +
N.
= P <f(b) —f(a) + N.
= P - N <f(b) - f(a).
Againn=p +f(a) — f(b) <P + f(a) — f(b) = N <P + f(a) — f(b).




= P—N2>f(b) —f(a)

. P=N=f(b)-f(a). ie. P’ — NP = f(b) — f(a)
t=p+n=p+[p-{f(b) - f(a)}] = 2p — {f(b) — f(a)}

= T>t=2p - {f(b) —f(a)} for all p.

= T>2P—{f(b)-f(a)} =2P—-(P—-N)=P+N.Butwe have T<P+N
Hence T =P + N.

Theorem: A function f is of bounded variation on [a, b] if and only if f is the
difference of two monotone real valued functions on the interval [a, b].

Proof: Suppose f is a function of bounded variation on the interval [a, b].
Define g and h as g(x) = P}, h(x) = NZ.

Now x; <xp = P,* < P2 = g(X1) < g(x2) = g is increasing.

Similarly, h is increasing.

Also, by definition, 0 < PX<TX* <TP <woand 0 < N*< T < TP < oo,

Thus, both g and h are real valued functions.

Now g(x) —h(x) = P~ N7 = f(x) — f(a) by lemma

= f(x) =g(x) —{h(x) —f(a)} V x € [a, b] where g and h are increasing real
valued functions.

Conversely suppose f = g —h where g and h are monotonic.

Leta=Xo<X; <..<X,=h be a partition of [a, b].

Now t = X7, |f () — £ (xi—)| = Bk l{g (x) — h(x)} — {9 (ximy) —
h(xi-)} < Xizalg (o) — g (g | + Xt A () — h(xi-1)]

=]g(b) — g(a)| + |h(b) — h(a)| since g and h are monotonic.

< o0,

= TP < |g(b) — g(a)| + |h(b) — h(a)| < « since each function is bounded.
Hence f is a function of bounded variation on [a, b].

Corollary: If f is a function of bounded variation on [a, b] then fis
differentiable a.e.

Proof: Since f is a function of bounded variation on [a, b], f can be written as a
difference of two monotone functions. Suppose f =g —h where g and h are
monotonic functions. W. L. G. We may assume that f=g +h where g and h are
increasing functions. Then, we have that g and h are differentiable almost
everywhere and hence f = g = h is also differentiable a. e.

Example: Ifa<c<bthen (i) T? = T¢ + TP; TS <TP
(i) 7o (f + @) <TZ (f) + T3 (9) (i) T (cf) = |c|TZ (f).




Proof: (i) Let f be a function defined on [a, b],c € [a, b],a=Xo < X1 <...<Xp =
b be a partition of [a, b] and 3 1 5 X; < ¢ < X1,

Now a = Xo < X1 <...<X;<cisapartition of [a, c] and ¢ < Xj+1 < Xjs2 < ... <X =
b is a partition of [c, b].

Write t; = X5 |f () — F(xj=0)| + 1 () = F (I

and t; = ;l:i+2|f(xj) — f(x-)| + 1f (xien) = £ (O

ST and i < ch

Now t= X7, 1f (e) = f el = Zjoa|[f (%) = F(g-0) | + 1f i) — £ G
+ Xieinal F () = £(35-0))

< Yiaalf () = Flg-0)| + 1f (ie) = FOI+ I (©) = fx)
30l f () = f(xo1)| =ta+ < TE+TY

SESTE+TP Hence TP < TS+ TP
Leta=Xo<X;<..<Xp=cisapartitionof [a,clandc=yo<y: <..<yk=Dbis
a partition of [c, b].

Putt = X7 |f (%) — £ (x-)| and t" = X5 |F () — F(j-1)]

Now a=Xo<X;<..<Xm=C =Yo<Y1<..<Yk=Dbisapartition of [a, b].
Sot=X7L|f(x) — f(x-)| + Ej=al () = F(j-a)| =t + 1

But TP >t=t/+t".

=Tl >sup{t’+t} = TP >sup{t)) +sup {t")

= TS+TP TP =TE+TP

(ii) consider a partition a = Xo < X1 <... < Xp = b of [a, b].

Now 77 (f + g) = X1 (f + 9)(x) — (f + 9) Cxi—y)

= Nizalf () + 9Cx) — f(xi-1) — g(xi-1)|

<TEf ) = Fla-Dl + Zitilg(x) — G- = T2 () + T2 (9).

(iit) Ty (cf) = sup{ZiLlef (x) — cf (- [} = sup{Ziqlellf (x) —
fOe—)I} = lel sup{Zilf () = f G-} = el T2 ().

Result: Show that if f ’ exists and is bounded on [a, b] then f is of bounded
variation on [a, b].

Proof: Leta = Xo < X1 <... <X, = b be a partition of [a, b]. Since f’ is bounded
there exists M such that |f'(x)|] < M V x € [a, b].

Now £ (f) = itqlf () — f G-I S Tl €)1 Ce = xi-1)
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<MZE, (x; — xi-1) = M(b —a)

= TP(F) =sup t2(f) < M(b - a) < o,
SECTION — 3. DIFFERENTIATION OF AN INTEGRAL

Lemma: If fis integrable on [a, b], then the function F defined by
F(x) = f;f(t)dt Is a continuous function of bounded variation.

Proof: Since fis integrable, we have that |f| is a non negative integrable
function on [a, b].

Lete>0.

By a proposition 38 >05 [,|f| <&V A < [a, b] with m(A) <.
Letx,y € [a, b]>|x —y| <§6.

Without loss of generality, we assume that x <.

Now |F(y) = F()| = |f; f(©)dt — [ f(©)dt| = |[ F()dt]

<[If(®ldt <e.

Thus, F is uniformly continuous and hence F is continuous.

Leta=Xo<X; <..<X,=h be a partition of [a, b].

Now t°(F) = XL |F (x;) — F (xi—1)|

=S, | fdt| <3 [ If1de = [If|de [since [f= ¥ [f,
E

where E = UE;and the union is disjoint.]
< oo since | f| is integrable.
. T&(F) <« and so F is of bounded variation on [a, b].

Lemma: If fis integrable on [a, b] and f‘ff(t)dt =0V xelab],thenf(t)=0
a.e.on [a, b].

Proof: Write E = {t € [a, b] / f(t) > 0}.

Claim: m(E) = 0.

If possible, suppose m(E) > 0.

[Since E is measurable, 3 F €F,; > F < E and m(E\F) = 0.
Now m(E) = m(F) + m(E\F) = m(F) + 0 = m(F).

Also, F € F;, = F = U Fj, Fiis closed.

Now 0 < m(E) = m(F) = m(UF) < Y72, m(F;)

ie. ¥, m(F) >0
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= m(F;) > 0 for some i.]

So, F a closed set Fi < E > m(F;) > 0 since E is measurable.

Write O = (a, b) ~ F..

Since F; is closed, O is open.

Suppose O = U, (a,, b,,) where {(an, bn)}. is a countable disjoint family of open
intervals.

Clearly (a, b) =0 U Fi.

N0W0=fffsincef;f=OVX e [a, b].

=Jof +Ipf
= [,f= —fFif = 0 since f > 0 on F;, and m(F;) > 0.
=0=[of=3, f:”f since O = U, (a,, b,) and the union is disjoint.
:>f:"f # 0 for some n.

bn le n

= 0= [ "f=["f = [;"f
= 0= ff"f, or faa"f # 0 a contradiction to the hypothesis.
. m(E) =0.

Similarly we can show that m{t < [a, b] / f(t) <0} = 0.
Hence f=0a. e. on [a, b].

Lemma: If f is bounded and measurable on [a, b] and F(x) = f(f f(t)dt + F(a)
then F'(x) = f(x) for almost all x in [a, b].

Proof: By alemma F is a function of bounded variation and continuous.
By a theorem F’ (x) exists a. e. Since f is bounded 3 a real k such that |f| < k.

Write f,(x) = 22 with h= 2
Now [£,(ol = [P = £ 7" roade] < 2L 1F@lde < ke = ke

So each f; is bounded.

lim £, (x) = lim Z&=E
n—»oo h—-0

By the bounded convergence theorem, for all x € [a, b],

[T F'(H)dt = lim NAGEIE lim [f; [n {F (t + %) — F(t)}] dt]

=limn [f;‘F (t + %) dt — fZF(t)dt] =lim [n f;jF(t)dt — nffF(t)dt] =

=F'(x) a.e.

lim [n [SmE@dt—n [T F (t)dt] = F(x) — F(a) by mean value theorem. =
n
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J; f®a.

Thus, we have proved that [” F'(t)dt = [ f(t)dt.
= [Z(F'(t) — f())dt =0V x < [a, b].

= F(@{t)-f(t)=0a.e.

= F'(t) =f(t) a. e.

Theorem: Let f be an integrable function on [a, b] and F(x) = f(ff(t)dt + F(a).
Then F'(x) = f(x) for almost all x in [a, b].

Proof: Assume that the theorem is true for all non — negative integrable
functions. Let f be an integrable function. Then f * and f ~ are non-negative
integrable functions.

Define f; and f, by f1(Xx) = f;f+(t)dt + f1(a) where f1(a) = F(a).

fo(x) = [ f~(0)dt + f>(a) where fo(a) = 0.
Then by the assumption, fi'(x) = f *(x) a. e. and f,’(x) =~ (X) a. e.
SR -R'X) =" (X)-f(x) =f(x) a.e.

= ([Jfr©dt + @) - ([ f~®0dt + (@) =f(x)ae.
= ([ fr®de + F@) — ([ f(©de) =f(x)a.e.

= ([ fddt + F(@) =f(x)a.e.

= F'(x) = f(x) a. e.

Assume that f is non — negative. i.e. f > 0.

Define f,(x) = f(x) if f(x) < nand n if f(x) > n.

Let f(x) =10.9; Then fy(x) =1, fa(x) =2, ..., fio(X) = 10, fi1(X) = fio(x) = ... =
10.9

Then |f,(x)| <nV n;also |f,(x)] < |f(x)| V x and each f, is measurable
since f is measurable.

Since f(x) = f(x) V f(x) < n, f, is a sequence of bounded measurable functions
such that li,ﬂn [n(x) = f(x).

Also, f—f,>0, since f, <f V n.

Put Go(x) =7 (f — £) (D).

Then G, is an increasing function of x since f—f, > 0.

. Gy is differentiable a. e. and G, is increasing.

= G,/(X) is positive.

Now F(x) = [ f(Dde + F(@) = [ (f = f)(®)dt + [} f(D)dt + F (@)
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=Gn(X) * [ fu(t)dt + F(a)

= F() =G/ + ([ fu(D)dt + F(a) )’ = Gy'(x) + f(x) a. €. by a lemma
> fo(X)

le. F'(x) > fy(x) a.e. vV n.

= F () > li7£n fn(x) a.e.=1f(x) a. e.

le. F'(x) > f(x) a. e.

= f: F'(x)dx > f:f(x)dx = F(b) — F(a).

Since F is increasing by a theorem, ff F'(x)dx < F(b) — F(a)...(ii)
From (i) and (ii), 7 F'(x)dx =F(b) - F(a) = [ f(x)dx

ie. ['(F' — )(x)dx =0. > F(x)-f(x)=0a.e.

Hence F'(x) = f(X) a. e.

SECTION 4: ABSOLUTE CONTINUITY.

Definition: A real valued function f defined on [a, b] is said to be absolutely

continuous on [a, b] if given ¢ >0, thereisad>0> Y"1 |f(x;) — f(x)| <e

for every finite collection {(xi, xi’) / 1 <1 < n} of non-overlapping intervals with
iz lx" — x| < 8.

Note: Every absolutely continuous function is continuous.
Lemma: Every absolutely continuous function is of bounded variation.

Proof: let f be an absolutely continuous function.

Takee=1. Then33>0>)",|f(x;") — f(x;)| < 1for every finite collection
{(xi, xi") 1 1 <i < n} of non-overlapping intervals with ¥:7* , [x;" — x;| < 8.
Choose an integern>n>(b—a) /9.

Leta=Xo<X; <Xz <..<X,=bbe apartition of [a, b] where xi—x;1=(b—2a)/
nforalli=1,2,..n.

Let Xi = Yo <Y1 <... <Yk = Xi+1 be a partition of [Xi, Xj:1]

Now {(Yo, V1), (Y1, Y2), ..., (Yk—1, Y«)} is a finite collection of non-overlapping
intervals of [x;, Xi+1] such that ¥, (y; — vi_1) = Xir1 — Xi = bn;a <d.

Since f is absolutely continuous, we have ™ . |f(v;) — f(yi—1)| < 1.

le. T, "** <1.

S TP =Y T7*1< n < o0, Hence f is a function of bounded variation.

Xi
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Corollary: If f is absolutely continuous then f has a derivative a. e.

Proof: Let f be absolutely continuous.
= f is a function of bounded variation.
= fis differentiable a. e.

= f'(X) exists a. e.

Lemma: If f is absolutely continuous on [a, b] and f'(x) =0 a. e. then fis

constant.

Proof: let f be absolutely continuous on [a, b]Jand f’' (x) =0 a. e.

Claim: f(c) =f(a) V ¢ € [a, b].

Letc e [a, b]. WriteE=(a,c) n{x/f"(x) =0}

[Then E c [a, c]. Also [a, c] = E u {[a, c] \ E}.

Letx e [a,Cc]\E. So,x € [a,c]and x ¢ E. = f'(x) # 0.

le. [a, ] \E < {x: f'(X) = 0}.

~m{[a, c]\E}=0.m(E)=m{[a, c]} + m{[a,c]\E}=c—a+ 0]

Then m(E) =c¢ —a.

Lete>0andn >0.

Since f is absolutely continuous, correspondingto€>0,36>0>5
Lf(x") = f(x;)] < e for every finite collection { (xi, xi') / 1 <i<n} of

non-overlapping intervals with Y |x;" — x;| <.

Now f'(x) =0 foreveryx € E = }lméw =0.

= J arbitrarily small interval [x, x + h] < [a,c] > |f(x + h) — f(x)| <mbh ... (I).
Now take h < 3. So the collection of all such intervals [x, X + h] form a Vitali
covering for the set E. By Vitali covering lemma, 3 a finite disjoint collection of
intervals, say {[Xx1, X1 + hi], ..., [Xn, Xn + hy]} such that

m(E~ UL [x;, x; + hi]) < 6.

= m([a, c]\ Uiz [xi, x; + h;]) < §.... (ii)

Now we label Xk such that X < Xy+1.

So,wehave Xxp=a<Xx;<X1+h <xo<Xp+hy<Xz3<Xz+hs<...<X,<Xp+hy
< C = Xp+1.

Write ho = 0.

Now Ui, (x; + hy, xi41) = [a, c] \ Uiz [x % + Ryl

= m[Uizo(x; + hy, %i41)] = m([a, ] \ Uiz [x;, x; + hy])

= Yizolxiz1 — O + Rl =m([a, c]\ Uizq[x, x; + hy]) < &

= Yt olf(xiy1) — f(x; + hy)| < e ... (iii) since f is absolutely continuous.

But U?zo[xi,xi + hl] c [a, C]

=Yt h <c—a..(iv).

Now |f(c) = f(@)| = IZiZo f(xiv1) = FOxi + hy) + Xizg f O + hy) — f(x)]
<imalf O+ hy) = FOe) |+ Xicol f(xip1) — f O + h) < Xizinhi + &
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=nXizihi te<n(c-a) +e.

Since gand n are arbitrarily small numbers, |f(c) — f(a)| =0
- f(c) =1(a)

Hence f is constant.

Definition: If f is an integrable function on [a, b], then we define its indefinite
integral to be the function F on [a, b] by F(x) = f;f(t)dt + F(a).

Theorem: Any real valued function F defined on [a, b] is absolutely continuous
if and only if it is an indefinite integral.

Proof: Assume that F is an indefinite integral. Then there is an integrable
function f on [a, b] such that F(x) = = f;f(t)dt + F(a).

Let € > 0. Since fis integrable, |f] is integrable as |f| =f* + .

..36>05 fAlf(t)dtl < e ... (i) V measurable sets A < [a, b] with m(A) < 4.
Let {(a1, b1), (az, by), ..., (an, bn)} be a finite collection of non-overlapping
intervals of [a, b] such that /-, |b; — a;| <.

Write A= UL, (a;, b;) < [a, b].

Then m(A) = m{U;_,(a;, b))} < Xty 1b; — a;| <.

Hence [ ,|f (t)dt| < & by (i).

Now Y7L, |F (b)) — F(ap| = ?zllff"f(t)dt + F(a) — [ f(t)dt — F(a)
=X L) f@©de | <SR IfOlde =TI ©de < e

.. F is absolutely continuous.

Converse: Suppose F is absolutely continuous.

= F is a function of bounded variation. = F = F; — F,, where F; and F; are two
increasing real valued functions.

Since f is a function of bounded variation, F'(x) exists a. e. by a cor. and
[F'()| < [F{ )l + [F200] = Fi(x) + Fo(x)

= [IF'(0)ldx < [, F{(x)dx + [ F3(x)dx < Fa(b) — Fi() + Fa(b) — Fa(a) < 0.
. Fis an integrable function.

Let G(x) = f;c F'(t)dt. Then G is absolutely continuous [by first part of this
proof.]. Note that G'(x) = F'(x). Write f = F — G.

Since F and G are absolutely continuous, f is absolutely continuous.

Also f'(x) = F'(x) - G'(X) = F'(X) - F'(x) = 0. a. e. by lemma.

.. fis a constant function. So 3c>f(x) =c V x € [a, b].
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Now f(x) = F(x) — G(X).

= F(x) = G(x) + f(x) = [~ F'(t)dt +c.
Now F(a) = [ F'()dt +c=0+c=c.
. F(Q) = [T F'(Ddt + F(a).

.. Fis an integrable function.

Corollary: Every absolutely continuous function is the indefinite integral of its
derivative.
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LEBESGUE THEORY UNIT IV

The Classical Banach Spaces

Section I: The LP Spaces.

Definition: Let p be a positive real number. We define

LP=LP[0,1]= {f/ f:10,1] » R is measurable and follflp < oo}.

L'=11]0,1]= {f/ f:10,1] » R is measurable and follfl < 00} = the set of all

Legesgue integrable functions on [0, 1].

Lemma: LP space is a linear space.

Proof: Let f, g € LP[0,1].

Then |[f + g|? <max {|f + f|?,]|g + g|?}.
= 2P max{|f|?, |g[}

<2P(IfIP + 1glP) < oo

Leta € R, f e LP[0,1].

.. fis measurable and follflp < o,
Then af is measurable and follaflp = |a| f01|f|P < oo,

- af e LP[0,1].

Hence LP[0,1] is a linear space.

1
Definition: For a function f € LP[0,1], define ||f]l, = (follflp)p.

Definition: Two measurable functions f, g are said to be equivalent if there are

equal almost everywhere. le. f~gifff=ga. e.

Note: (i) [Ifll,>0.

Proof: Let f € LP[0,1] and p be a positive real number.




Then |f| = 0.
=|fIP=0

1
=[,1fIP=0

= (LIfPy =0
= lIfll, =0

(i) If1l, =0 iff f=0.
Proof: Let f=0.
Then |f| = 0.

= IfIP =0

= [y IfIP =0
:>(f01|f|p)% =0

=|If1l, =0.

Conversely suppose ||f|[, =0

::(Euvﬁ%=o
= [ 1fI? =0

=|fIP =0a.e.

=|f] =0a.e.
=f=0a.e.
(iii) Leta € R, f € LP[0,1]. Then |laf]l,= ||l f]l,-

Proof: [lafll, = (follaflp)%
=(HWMﬂﬂ%

=mwﬂvwf




= lallifllp.

Definition: A real number M is said to be an essential bound for the function f
if |f(x)] <M a.e.on [0, 1]. A function f defined on [0, 1] is essentially
bounded if it is bounded except possibly on a set of measure zero.

The essential supremum of f on [0, 1] is defined by inf {M : |f(x)| < M a.e. on
[0, 1] and denoted by ‘ess sup |f]’.

Equivalently ess sup |f| = inf {M: m({x€E: |f(x)| > M}) = 0}.

If f does not have any essential bound then its essential suprimum is defined to
be +oo.

We denote the class of all measurable functions defined on [0, 1] which are
essentially bounded on [0, 1] by L*[0,1].

For f € we define ||f|| .= ess sup | f].

Problem: If f ¢ L' and g € L, then [|fg| < |If1l11191ls

Solution: Put [|glle= M.
Thenm({t:|g(t)| > M} =0
= lgt)| <M ace.

= fONgOI < If(OIM a.e.
=>|fOg®I < IfOIIM]a.e.
= [Ifgl <M [If]

= JIfg < llllgllo.

Problem: Let f be a bounded measurable function on [0, 1]. Then
lim £, = 11fllo

Proof: Put M = ||f|l. Then m({t: |f(t)] > M}) =0




=|f®)|<Ma.e

= |f®)IP < MPa.e.

= [|f|P < MP.

~AIfNl, < M forall p.

T | £1l, < M...0)

Suppose a< M. Then m({t: [f(t)| > a}) # 0.

(if m({t:|f(t)| > a}) =0 then by the definition of the norm in Leo, M < 3, a
contradiction.)

PutA={t<[0,1]/|[f(t)| > a}.

Then m(A) = 0. [JIfIP > [fP> [ a® =" m(A).

1

=>([IFP) 2 a fm(A)}r forall p>1.

= Aim I, >lim a. {m(A)}

p—)OO p—)OO

= a lim{m(A)}? = a

p—)OO

- lim||f1l, > afor all asuch that a < M...(ii)

p—>

From (i) and (i) M < lim|If]l, < m [|f]l, < M
p—)OO

p—o©

 dimIflly = M = 11f o

SECTION 11 : THE MINKOWSKI AND HOLDER INEQUALITIES

Lemma: Let o, B be non — negative real numbersand 0 <A <1. Then
a*p=* < da + (1 — 1)B with equality if a. = f.

Proof: Define ¢ as ¢(t) = (1 — 1) + At — t* for all real numbers t.
Then¢(1)=1-A+r—-1=0.




Also ¢'(t) = A - At 1= (1 -t"1)

¢"(t) == Ar - Dt*2,

And ¢'(t) =0 ifft=1and ¢"(1) =-A(A-1) > 0.

. ¢ has local minimum at t = 1.

- t<1= ¢isdecreasing. le. ¢(t) > ¢(1) antt > 1 = ¢ is increasing

ie. ¢(t) > ¢(1).

Thustz1=0¢0M)>¢(1) =>Q1L-)+M-t'>0=>t"<(1-A)+ At

. we may say that t* < (1 — &) + At for all t and with equality if t = 1...(i)
IfB=0putt=a/Bin (i).

Then (%)/1 <1-1 +A(%)

at Aa
< — —
:ﬁ’l_(l /1)+E

= a*Br* < da + (1 — A)B with equality if o = .

HOLDER’S INEQUALITY:

If p and g are non — negative extended real numbers such that % + 2 =1land

iff eLl?, g el?,thenfg € L'and [|fg|l <|Ifll, llgll, equality holds iff for
some non — zero constants a. and B3, we have a|f|? = Blg|? a.e.

Proof: If p 1, q = oo, then the in equality holds. So assume that 1 < p < . First
assume that || f][,= 1= [lgll,

Takea = |[f(DIP,f = |g®)]%and 1 =-,1 -1

D
Then by Lemma we get |f(t)|lg(t)| < %If(t)lp + é |g(t)]? and equality holds
ifa=pie [f(OF = [g®)]7..(1)

= JIfgl < NI+ [lg@I=IFIP +2llghi=; + 2 =1

le. [Ifgl <1=IIfllllgllq




Letf eLP,g e L?. Now if [|f|| = 0 or ||g|| = O then the inequality is obvious.
Assume that ||f]| # 0 and ||g]| # O.

Then—eLP I g4,
L£1I llgll

Also |57 = Lana [5G =2

So by the above case [ |”f” T < 1 and equality holds iff |”f”| = |IL7II|

fIP_ lgl? p _ P| 1q -
e = g gl = MIf 11511 a. ... Gi).

Now [ | Lle| <1 = [Ifgl < 1=[Ifgl < IIfl,llglly

Also equality holds iff ||g||q|f|p = ||f||§|g|q a. e. ie equality holds iff for some

non — zero constants a. = [|g|I7 and B = [|f]I} , we have a|f|? = Blg|? a.e.

MINKOWSKI’S INEQUALITY:

Iff,g € LPwith1<p<oo,thenf+ge LPand [If + gll, < lIfll, + llgll,
Proof: Let f, g € LPwith 1 <p <oo. Thenf+ g € LP? since Lp is linear.
Now |If + gll, = [If + gldx
< JUf1+ 1ghax
= JIfldx + [lgldx
= lflly + llglly
Also [|f + glle = ess sup [(f + g) ()]
<esssup |f(t)| + esssup |g(t)]
=Iflleo + llglleo

So, assume that 1 < p < . Let q be the real number such that % +$ = 1.

Now |f +gl? = |f +g|P~ - |f + gl
<If+glP - Af1+1gD)
=If+glP - Ufl +1f + 91”7t - gl ... (i)




Claim: |f + g[P~! € LA

Now (If + glP~h) = |f + g|®~ D9 =|f + g|?

Since f + g € LP, we have [|f + g|P < o,

Now [(If + glP~D)=[If + g|P < oo.

Sowe have |f + g|P~1 € L9. Since f,g € L? and |f + g|P~! € L9, we have by
Holder’s inequality, [If1If + gP~* < IfII,II(f + 9)P*llg.

‘ﬁmv+gwﬂsnmbe+m“ﬂh

p

(11 + g} = 17 + o1

p
SN+ glP~ < AIfIIIf + gl and
p

[1g1If + gIP=* < liglipllf + glI3...Gi).

From (i) and (ii), f1f + gI? < Ifll,lIf + g% + lgll,lIf + gl
= [If + g1 < (lflp + llgly) - If + gl
= If + 9112 < dlIfll, + lgll,) - I + gl

p

pP
= Nf+gll, “ <lIfll, +llgll,

= If +gll, < lIfll, + llgll, since p—§=p(1—$) =p(%):1_

Note: LP[0,1] is a linear space. For a function f € LP[0,1], define ||f]|, =

(S 1£1P )7 Then it satisfies
(i) lfll,20.and [Ifll,, = O iff f =0.
(ii) Let & € R, f e LP[0,1]. Then [laf1l,= lallIfl,.




@i lf+gll, < lflly + gl
. This isanorm on LP[0,1].

Hence LP[0,1] is a normed linear space with this norm

SECTION I11: CONVERGENCE AND COMPLETENESS.

Definition: A series ),»—, f,, in a normed linear space is said to be summable to

a sum s if the partial sum sequence of the series converges to s.

Definition: A series is said to be absolutely summable if Y7 || £;,]| < .

Theorem: A normed linear space X is complete iff every absolutely summable
series is summable.

Proof: Assume that X is complete.

Let Y'.o_, f, be an absolutely summable series.

Then Y.2°_ ;| f»|l < oo by definition n.

So given € > 0, 3 a positive integer N such that Y}7_ vl < &.

Let {gn} be the sequence of partial sum of the series of )., f,,.

Forn>mz2N, |lgn — gmll = |1 XR=m+1 ficll

n

< > A

k=m+1

< Z I1fell
k=N

< Yienllfell <€
.. {0n} is a Cauchy sequence in X.

Since X is complete {gn} converges in X.




le.3g e X>3limg, =g.
n

= Yn=1/n=0
= the series )., f,, 1S summable.
Conversely suppose that every absolutely summable series is summable.

Let {f,} be a Cauchy sequence in X.

For each positive integer k 3 an integer nx 3 || f;, — finll < zik v n,m2=ng
Without loss of generality, assume that ng < ny+; for all k.

Consider {fnk}, a subsequence of the sequence {f,}.

PULG1 = foys 02 = foy = fngs o0 Ok = fog = frguys - TOT K> 2.

Thengi+ Qo+ ... + Ok = fr, -

. {fn, } is a sequence of partial sums of the series Y.;_; gk,

1

and [|gxcll = || foy, = fres | < 55 for k> 1. ().

Soeellgell = Ngall + Xe=allgrll

o 1
< llgall + Xz 5= by (i)
=llgall +1 <o

" Yr=1 9k 1s absolutely summable.

By assumption ).;°_; g is summable.

Suppose ;=1 gk =S

= “,{n fn, = S Since gy is the partial sum of {f;,, }.

Let & > 0. Now {f.} is a Cauchy sequence, and there exists a subsequence {f,, }
which converges to s.

- fh—os.

This shows that X is complete.




Exercise: (i) Let {f,} be a sequence of functions in L*. Prove that {f,}
converges to f in L™ iff there is a set E of measure zero such that f, converges
to f uniformely on E. (ii) Prove that L™ is complete.

RIESZ FISHER THEOREM

The LP spaces are complete.

Proof: Let1 <p <o,

By a theorem it suffices if we prove that every absolutely summable series in LP
Is summable.

Let Yo f,be an absolutely summable series in LP.

Put Y-l ]l = M < oo since Y7, f, is absolutely summable.

We have to show that )., f,, (x) converges absolutely.

Define g, (x) = Zp,lf (X)I.

Then |gy| = gn.

By Minkowski inequality, ||g,|l < YXozillfnll <M

1
= ([1gnlP)? <M =[|gnlP < MP = [ g,P < MP <o,
.. for each x, {gn(X)} is an increasing sequence of extended real numbers and so
must converge to an extended real number say g(x).

le. g(x) = lim g, (x) for all n.
n

Since each g, is measurable, g is measurable.

Also g?(x) = lim g,,P (x) for all x.
n

Since gn(x) > 0 for all n, by Fatou’s lemma,

jgpshﬁjgn"SMp@Q
n

= [ g is finite.
—=gP is an integrable function and gP is finite almost everywhere.
.. g is finite almost everywhere.

So for each x for which g(x) is finite lim g,,(x) < c.
n




= Die=1lfe (| < 0.
= the series Y - |fi (x)| converges absolutely.
Thus for each x, the series ).;°_,|fi (x)| is an absolutely summable series of real

numbers and hence summable to real number.

et <[00 400

Claim: Y01 fn =S.
Write sp = X5—1 fx-
Now {sn} is the sequence of partial sums of the series Yo, fr-

Now we have to show that lims,, = s in LP.
n

If g(x) is finite, then s(x) = X7, fr (%) = lirrln Y=t Sk = lirrln Sp.

Since g is finite a.e., s = lirrln Sp a. €.

Since each s, is measurable s is measurable.

Now [sp| = |Xk=1 fil < Zk=1lfil = 19nl <1g] = g since g =lim g,.

le. [s,,| < g foralln.

=|s| <g

= |s|P < gP

= [lslP < [ g7 <.

s e lh

Now we show that |s,, — s|P < 2PgP.

Sols, —=s| <|syl+Is|l<g+g=2g9.

So |s, — s|P < 2PgP.

le. {|s,, — s|P} is a sequence of non — negative measurable functions such that
|s,, — s|P < 2P gP where 2P gP is integrable and lirrlnlsn —s|P =0a.e.sinces =

lims, a.e.
n

.. By Lebesgue convergence theorem, lim [ s, — s|? = 0
n




= lim||s,, — s||P = 0.
n

= lim||s,, — s|| = 0.
n

= lims, = sin LP.
n

.. the given series is summable to the sums.

Hence LP is complete.




