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401, MEASURE THEORY 

K. C. Tammi Raju 

UNIT I: MEASURE SPACE 

 

Definition: A collection 𝒞 of subsets of an arbitrary space X is called an algebra of 

sets if (i) A  B is in 𝒞 whenever A and B are and (ii) A is in 𝒞 whenever A is. 

 

Definition: A class of subsets of an arbitrary space X is said to be a  - algebra, if X 

and  belong to the class and class is closed under the formation of countable unions 

and of complements. 

 

Example: The class of Lebesgue measurable sets is a  - algebra of subsets of ℝ. 

 

Definition: A class of sets, R, is called a ring if whenever E  R, F  R then E  F 

and E – F  R. 

 

Example: The class of finite unions of intervals of the form [a, b) forms a ring. 

 

Definition: A ring is called a  - ring if it is closed under the formation of countable 

unions. 

 

Result: Every algebra is ring and every  - algebra is a  - ring but not conversely. 

 

Definition: A pair (X, 𝔅) where 𝔅 is a  - algebra of subsets of X, is called a 

measurable space. The sets of 𝔅 are called measurable sets. 

 

Definition: A measure  on a measurable space (X, 𝔅) is a non – negative set function 

defined for all sets of 𝔅 satisfying () = 0 and 𝜇(⋃ 𝐸𝑖
∞
𝑖=1 ) = ∑ 𝜇(𝐸𝑖)

∞
𝑖=1   

for any sequence {Ei} of disjoint measurable sets. i.e.  is countably additive. 

 

Definition: A measurable space (X, 𝔅) together with a measure  defined as above on 

𝔅 is called a measure space and it is denoted by a triple (X, 𝔅, 𝜇). 
 

Observation: If (X, 𝔅, 𝜇) is a measure space then it is finitely additive i.e. E1, ..., En 

are sets in 𝔅 such that Ei  Ej =  for i  j, then 𝜇(⋃ 𝐸𝑖
𝑛
𝑖=1 ) = ∑ 𝜇(𝐸𝑖)𝑛

𝑖=1 .
  

Hint: Set En+1 = En+2 = ... = . Then the family {Ei} is a pair wise disjoint family of 

subsets from 𝔅 and (Ei) = 0 for i  n + 1 and the result follows from definition. 

 

Example 1: (ℝ, 𝔐, 𝑚) is a measure space where ℝ is the set of real numbers 𝔐  is 

Lebesgue measurable sets of real numbers and m is Lebesgue measure. 
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Example 2: (ℝ, 𝔅, 𝑚) is a measure space where ℝ is the set of real numbers 𝔅  is the 

class  - algebra of Borel subsets of ℝ and m is Lebesgue measure. 

 

Example 3: ([0, 1], 𝔐, 𝑚) is a measure space where 𝔐  is measurable subsets of                  

[0, 1] and m is Lebesgue measure. 

 

Example 4: Let X be an uncountable set. 𝔅 = {A  X: A is countable or A is 

countable}. Define  on 𝔅 by (A) = 0 if A  𝔅 is countable, (A) = 1 if A  𝔅 and 

A is countable. Show that (X, 𝔅, 𝜇) is a measure space. 

Solution: Given X is uncountable.   = X is countable so that (X) = 1, () = 0.  

Claim: A, B  𝔅 such that A, B are countable  A  B    

Let A, B  𝔅 and A, B be countable. 

A  B can be expressed as a disjoint union of 3 sets as                                                           

A  B = (A  B)  (A  B)  (A  B)...(i) 

Observe that A  B is uncountable, A  B and A  B are countable.  

If A  B =  then RHS of (i) is countable and LHS is uncountable which is a 

contradiction. 

  A  B  . 

Hence it is enough if we verify countable additive property of  in the following two 

cases. Let {Ai, i  ℤ+} consist of pair wise disjoint sets of 𝔅. 

Case (i): Ai are all countable:  

Then ⋃ 𝐴𝑖
∞
𝑖=1  is countable. Thus (𝐴𝑖) = 0 for each i and 𝜇(⋃ 𝐴𝑖

∞
𝑖=1 ) = 0 

This proves 𝜇(⋃ 𝐴𝑖
∞
𝑖=1 ) = ∑ 𝜇(𝐴𝑖)∞

𝑖=1 .
  Case (ii): Only one of 𝐴𝑖

′ say 𝐴1
′ is countable and the remaining 𝐴𝑖 are countable.  

Then ⋃ 𝐴𝑖
∞
𝑖=1  is uncountable. Thus (A1) = 1, (Ai) = 0 for each i = 2, 3, 4, ..., and 

𝜇(⋃ 𝐴𝑖
∞
𝑖=1 ) = 1. This proves 𝜇(⋃ 𝐴𝑖

∞
𝑖=1 ) = ∑ 𝜇(𝐴𝑖)∞

𝑖=1
   is a measure on (X, 𝔅) and hence (X, 𝔅, 𝜇)  is a measure space. 

 

Proposition: Let (X, 𝔅, 𝜇)  be measure space. If A, B  𝔅 and A  B then (A)  

(B). i.e  is monotone. 

Proof: Let A, B  𝔅 and A  B. Clearly B = A  (B  A) is a disjoint union. 

 (B) =  (A) + (B  A) by finite additivity.  

Hence (A)  (B) since ( B  A)  0.  is monotone. 

 

Note: If A  B then  (B) =  (A) + (B  A).  

 

Theorem: Let (X, 𝔅, 𝜇)  be measure space. If A, B  𝔅 then (A  B)   (A) + (B). 
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Proof: Let A, B  𝔅. 

A B can be expressed as a disjoint union of 3 sets as                                                           

A  B = (A ~ B)  (A  B)  (B ~ A). 

By finite additivity of ,   

(A  B) = (A ~ B) + (A  B) + (B ~ A). 

                 (A ~ B) + (A  B) + (B ~ A) + (B  A) since (B  A)  0.                                                                                         

                = (A) + (B) since A  B  A, A  B  B.  

Proposition: Let (X,  𝔅, 𝜇)  be a measure space. If Ei  𝔅, (Ei) <  and Ei  Ei+1 

then 𝜇(⋂ 𝐸𝑖
∞
𝑖=1 ) = lim

𝑛→∞
𝜇(𝐸𝑖).  

Proof: Let Ei  𝔅, (Ei) <  and Ei  Ei+1. 

Then clearly Ei = Ei+1  (Ei  Ei+1) is a disjoint union. 

 (Ei) =  (Ei+1) + (Ei  Ei+1) by finite additivity. 

 (Ei  Ei+1) =  (Ei) –  (Ei+1)...(i).  

Set E = ⋂ 𝐸𝑖
∞
𝑖=1   

Then clearly E1 = E  (E1  E2)  (E2  E3)  (E3  E4)  ...  

                          = 𝐸 ∪ ⋃ (𝐸𝑖~𝐸𝑖+1)∞
𝑖=1  is a countable union of disjoint measurable sets. 

𝜇(𝐸1) = 𝜇(𝐸) + ∑ 𝜇(𝐸𝑖~𝐸𝑖+1) = 𝜇(𝐸) + lim
𝑛→∞

∑ {𝜇(𝐸𝑖) − 𝜇(𝐸𝑖+1)}𝑛−1
𝑖=1

∞
𝑖=1  

= 𝜇(𝐸) + lim
𝑛→∞

{𝜇(𝐸1) − 𝜇(𝐸2) + 𝜇(𝐸2) − 𝜇(𝐸3) + 𝜇(𝐸3) − 𝜇(𝐸4) + ⋯ + 𝜇(𝐸𝑛−1) − 𝜇(𝐸𝑛)} 

= 𝜇(𝐸) + lim
𝑛→∞

{𝜇(𝐸1) − 𝜇(𝐸𝑛)} = 𝜇(𝐸) + 𝜇(𝐸1) − lim
𝑛→∞

𝜇(𝐸𝑛) 

Hence 𝜇(⋂ 𝐸𝑖
∞
𝑖=1 ) = lim

𝑛→∞
𝜇(𝐸𝑖). 

Proposition: Let (X, 𝔅, 𝜇) be measure space. If Ei  𝔅, then 𝜇(⋃ 𝐸𝑖
∞
𝑖=1 ) ≤ ∑ 𝜇(𝐸𝑖)∞

𝑖=1 . 

Proof: Let Ei  𝔅.  

Put G1 = E1, G2 = E2  E1, G3 = E3  (E1  E2), ..., 𝐺𝑛 = 𝐸𝑛~ ⋃ 𝐸𝑖
𝑛−1
𝑖=1 , ... 

Then {Gn} is a disjoint sequence of sets in 𝔅, Gn  En for each n and ⋃ 𝐺𝑖
∞
𝑖=1 =

⋃ 𝐸𝑖
∞
𝑖=1  

 (Gn)  (En) ... (i).  

And 𝜇(⋃ 𝐸𝑖
∞
𝑖=1 ) = 𝜇(⋃ 𝐺𝑖

∞
𝑖=1 ) = ∑ 𝜇(𝐺𝑖)∞

𝑖=1   by additivity 

                                                   ≤ ∑ 𝜇(𝐸𝑖)∞
𝑖=1     by (i). 

Hence 𝜇(⋃ 𝐸𝑖
∞
𝑖=1 ) ≤ ∑ 𝜇(𝐸𝑖)∞

𝑖=1 . 

 

Exercise: Let (X, 𝔅, 𝜇)  be measure space. If {Ai, i ℤ+} is a sequence of sets in 𝔅,  

then show that 𝜇(⋃ 𝐴𝑖
∞
𝑖=1 ) ≤ lim

𝑛→∞
𝜇(⋃ 𝐴𝑖

𝑛
𝑖=1 )  

Solution: Let En = ⋃ 𝐴𝑖
𝑛
𝑖=1  and E = ⋃ 𝐴𝑖

∞
𝑖=1 . Then En  𝔅 and En  En+1 

Then clearly E = E1  (E2  E1)  (E3  E2)  (E4  E3)  ...  

                       = 𝐸1 ∪ {⋃ (𝐸𝑖~𝐸𝑖−1)∞
𝑖=2 } is a countable union of disjoint measurable sets. 
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𝜇(𝐸) = 𝜇(𝐸1) + ∑ 𝜇(𝐸𝑖 − 𝐸𝑖−1)∞
𝑖=2 = 𝜇(𝐸1) + lim

𝑛→∞
∑ 𝜇(𝐸𝑖 − 𝐸𝑖−1)𝑛

𝑖=2                                                 

= 𝜇(𝐸1) + lim
𝑛→∞

∑ [𝜇(𝐸𝑖) − 𝜇(𝐸𝑖−1)]𝑛
𝑖=2  

= 𝜇(𝐸1) + lim
𝑛→∞

{𝜇(𝐸2) − 𝜇(𝐸1) + 𝜇(𝐸3) − 𝜇(𝐸2) + ⋯ + 𝜇(𝐸𝑛) − 𝜇(𝐸𝑛−1)} 

= 𝜇(𝐸1) + lim
𝑛→∞

{𝜇(𝐸𝑛) − 𝜇(𝐸1)} = 𝜇(𝐸1) + lim
𝑛→∞

𝜇(𝐸𝑛) −𝜇(𝐸1). 

𝜇(𝐸) = lim
𝑛→∞

𝜇(𝐸𝑛) 

Hence 𝜇(⋃ 𝐴𝑖
∞
𝑖=1 ) ≤ lim

𝑛→∞
𝜇(⋃ 𝐴𝑖

𝑛
𝑖=1 )  

 

Theorem: Let (X, 𝔅, 𝜇) be measure space and E1, E2  𝔅. Then prove that                                             

(E1  E2) = 0  (E1) = (E2). 

Proof: Since E1  E2 = (E1 \ E2)  (E2 \ E1) is a disjoint union of measurable sets,                         

0 = (E1  E2 ) = (E1 \ E2) + (E2 \ E1). 

But (E1 \ E2)  0 and (E2 \ E1)  0 since  is non – negative.  

 (E1 \ E2) = 0 and (E2 \ E1) = 0. 

Since E1 = (E1 \ E2)  (E1  E2) is a disjoint union of measurable sets, 

(E1) = (E1 \ E2) + (E1  E2) = 0 + (E1  E2) = (E1  E2) 

Since E2 = (E2 \ E1)  (E2  E1) is a disjoint union of measurable sets, 

(E2) = (E2 \ E1) + (E2  E1) = 0 + (E2  E1) = (E1  E2) 

Thus (E1) = (E1  E2) = (E2).  

Definition: Let (X, 𝔅, 𝜇) be measure space.  is said to be finite if (X) < .  is said 

to be  - finite if there is a sequence {Xn} in 𝔅 such that X =  Xn and (Xn) <  for 

each n. 

Definition: The measure space (X, 𝔅, 𝜇) is said to be complete if 𝔅  contains all 

subsets of sets of measure zero. Ie. A 𝔅, (A) = 0 and B  A  B  𝔅. 

Example 1: If a coin is tossed either head or tail comes up when the coin falls.                                

Let us assume these are the only possibilities.                                                                                                     

Let X = {H, T} where H stands for head and T for tail. Let 𝔅 ={, {H}, {T}, X}.                                                                                                     

Define  : 𝔅→[0, 1] by () = 0, ({H}) = ({T}) = ½ and (X) = 1.                                                

Then  is a finite measure on (X, 𝔅). 

Example 2: Let two coins be tossed. Let X = {HH, HT, TH, TT} where H stands for 

head and T for tail. Let 𝔅 = (X). Define  : 𝔅→[0, 1] by (A) = probability of A 

where A  X. Then  is a finite measure on (X, 𝔅). 
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Example 3: Let X be an uncountable set. 𝔅 = {A  X: A is countable or A is 

countable}. Define  on 𝔅 by (A) = 0 if A  𝔅 is countable, (A) = 1 if A  𝔅 and 

A is countable. Then the measure  is finite since (X) = 1 < . 

 

Example 4: Let X = ℝ, 𝔅 be the  - algebra of Lebesgue measurable sets and m be the 

Lebesgue measure on 𝔅. Let Xn = [– n, n] , n  ℤ+. Then m(Xn) = 2n <  for all n and 

 ℝ =  Xn. Hence m is  - finite.  

Proposition: Let (X, 𝔅, 𝜇) be measure space. Let Y  X, Y  𝔅.                                                 

Define 𝔅 Y = {A  𝔅 : A  Y} and Y(A) = (A).                                                                               

Then (Y, 𝔅Y, Y)is a measure space. Y is called restriction of  to Y. 

Hint: 𝔅Y is a  - algebra of subsets of Y. Y() = () = 0 and countable additivity of 

Y is inherited from that of . 

Definition: Let (X, 𝔅, 𝜇) be measure space. A subset E of X is said to be of finite 

measure if E  𝔅 and (E) < . A subset E of X is said to be of  - finite measure if 

E is the union of a countable collection of measurable sets of finite measure. 

Result: Prove that any measurable set contained in a set of  - finite measure is itself a 

 - finite measure. 

Proof: Let A be a set of  - finite measure of a measure space (X, 𝔅, 𝜇) and E be a 

measurable subset of A.                                                                                                                             

Then  a sequence {An} of measurable sets with (An) <  such that 𝐴 = ⋃ 𝐴𝑛
∞
𝑖=1  

Now E = E  A = 𝐸 ∩ ⋃ 𝐴𝑛
∞
𝑖=1 = ⋃ (𝐸 ∩ 𝐴𝑛)∞

𝑖=1  and                                                                                         

since E  An  An, (E  An)  (An) < . 

 E is of  - finite measure. 

  

Result: Prove that union of countable collection of sets of  - finite measure is again of 

 - finite measure. 

Proof: Let {En} be a sequence of sets of  - finite measure of a measure space                                     

(X, 𝔅, 𝜇).                                                                                                                                                         

Then  a sequence {𝐸𝑛𝑖
} of measurable sets  𝐸𝑛 = ⋃ 𝐸𝑛𝑖

∞
𝑖=1  and 𝜇(𝐸𝑛𝑖

) < ∞ for each 

n. 

Now ⋃ 𝐸𝑛
∞
𝑖=1 = ⋃ (⋃ 𝐸𝑛𝑖

∞
𝑖=1 )∞

𝑖=1  and 𝜇(𝐸𝑛𝑖
) < ∞. 

Hence ⋃ 𝐸𝑛
∞
𝑖=1  is of  - finite measure. 
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Proposition: If (X, 𝔅, ) is a measure space, then we can find a complete measure 

space (X, 𝔅0, 𝜇0) such that (i) 𝔅  𝔅0 (ii) E  𝔅  (E) =  𝜇0(E).                                                      

(iii) E  𝔅0 iff E = A  B where B  𝔅 and A  C, C  𝔅, (C) = 0. 

Proof: Let (X, 𝔅, ) be a measure space.                                                                                            

Now we have to construct a complete space (X, 𝔅0, 𝜇0) satisfying (i), (ii) and (iii). 

Define 𝔅0 = {A  B: B  𝔅,  C  𝔅  A  C, (C) = 0}, 

Claim: 𝔅0 is a  - algebra.                                                                                                                             

Clearly   𝔅0.  

Let A  B  𝔅0.  B  𝔅,  C  𝔅  A  C, (C) = 0.                                                                                   

Then (𝐴 ∪ 𝐵)̃ = �̃� ∩ �̃� = �̃� ∩ �̃�  ∩ 𝑋 = �̃� ∩ �̃� ∩ (𝐶 ∪  �̃�)                                                                         

               = (�̃� ∩ �̃� ∩ 𝐶) ∪ (�̃� ∩ �̃� ∩ �̃�) = (�̃� ∩ �̃� ∩ 𝐶) ∪ (�̃� ∩ �̃�)  𝔅0 ⸪ A  C. 

Thus, A  B  𝔅0  ⇒ (𝐴 ∪ 𝐵)̃   𝔅0.  

Let {Ai  Bi} be a countable collection of members of 𝔅0.                                                                    

Then ⋃ (𝐴𝑖 ∪ 𝐵𝑖)∞
𝑖=1  = (⋃ 𝐴𝑖

∞
𝑖=1 )  (⋃ 𝐵𝑖)∞

𝑖=1   𝔅0 since ⋃ 𝐵𝑖
∞
𝑖=1   𝔅,   ⋃ 𝐶𝑖

∞
𝑖=1   𝔅 

 ⋃ 𝐴𝑖
∞
𝑖=1 ⊆ ⋃ 𝐶𝑖

∞
𝑖=1  and 𝜇(⋃ 𝐶𝑖) ≤ ∑ 𝜇(𝐶𝑖) = 0.∞

𝑖=1
∞
𝑖=1  

 𝔅0 is a  - algebra. 

Define 𝜇0: 𝔅0 → ℝ ∪ {−∞, ∞} by 𝜇0(𝐴 ∪ 𝐵) = 𝜇(𝐵)  A  B  𝔅0. 

Claim: 𝜇0 is well defined 

Let A  B = A1  B1  𝔅0                                                                                                                      

 B, B1  𝔅,  C, C1  𝔅, A  C, A1  C1 with C =  C1 = 0. 

Now B1  A1  B1 = A  B  C  B  ie.  B1  C  B                                                                                   

 (B1)  C +  B = B. So B1  B. Similarly, B  B1, so that B1 = B 

 𝜇0(𝐴 ∪ 𝐵) = 𝜇(𝐵) = 𝐵1 =  𝜇0(𝐴1 ∪ 𝐵1). 

Also, 𝜇0(𝐴 ∪ 𝐵) = 𝜇(𝐵) ≥ 0 and 𝜇0(𝜙) = 𝜇(𝜙) = 0 

Let {𝐴𝑖 ∪ 𝐵𝑖} be a sequence of pairwise disjoint sets in 𝔅0.                                                                       

Then ⋃ (𝐴𝑖 ∪ 𝐵𝑖)∞
𝑖=1  = (⋃ 𝐴𝑖

∞
𝑖=1 )  (⋃ 𝐵𝑖)∞

𝑖=1 .                                                                                        

Here ⋃ 𝐵𝑖
∞
𝑖=1   𝔅, ⋃ 𝐴𝑖

∞
𝑖=1  ⋃ 𝐶𝑖

∞
𝑖=1  and (⋃ 𝐶𝑖

∞
𝑖=1 )  ∑ 𝜇(𝐶𝑖)∞

𝑖=1  = 0.  

 𝜇0(⋃ (𝐴𝑖 ∪ 𝐵𝑖)∞
𝑖=1 ) = 𝜇(⋃ 𝐵𝑖

∞
𝑖=1 ) = ∑ 𝜇(𝐵𝑖)∞

𝑖=1  = ∑  𝜇0(𝐴𝑖 ∪ 𝐵𝑖)∞
𝑖=1  

Hence 𝜇0 is a measure on 𝔅0. 

If E  𝔅0 then, 𝜇0(𝐸) = 𝜇0(𝜙 ∪ 𝐸) = 𝜇(𝐸) 

Claim: (X, 𝔅0, 𝜇0) is complete. 

Let A  B  𝔅0, 𝜇0(𝐴 ∪ 𝐵) = 0 and A1  B1  A  B. 

 B𝔅,  C  𝔅, A  C with C = 0. 

 (C  B)  C + B = C + 𝜇0(𝐴 ∪ 𝐵) = 0 + 0 = 0 … (1). 
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Now A1  B1 = A1  B1   = {(A1  B1)  (A  B)}                                                         

= {(A1  B1)  (C  B)}    𝔅0 since   𝔅,  C  B  𝔅  (A1  B1)  (C  B)          

 C  B and (C  B) = 0 by (1). 

 

Definition: Let (X, 𝔅, ) be a measure space. A subset E of X is said to be locally 

measurable if E  B  𝔅 for each B  𝔅  with (B) < .                                                                                             

Proposition: The collection 𝒞 of all locally measurable sets is  - algebra containing 𝔅. 

Proof: Let 𝒞 be a collection of all locally measurable sets.                                                                                                     

Claim: 𝒞 is non-empty: Let B  𝔅  with (B) < . Then   B =   𝔅.    𝒞 so 

that 𝒞 is non – empty. 

Claim: 𝒞 is closed under countable unions:                                                                                                

Let {Ei} be a sequence of sets in 𝒞 and B  𝔅 with (B) < . 

Now (⋃ 𝐸𝑖
∞
𝑖=1 ) ∩ 𝐵 = ⋃ (𝐸𝑖 ∩ 𝐵)∞

𝑖=1   𝔅 since each 𝐸𝑖 ∩ 𝐵 𝔅 and  𝔅  is a  - 

algebra.  ⋃ 𝐸𝑖
∞
𝑖=1   𝒞 so that 𝒞 is closed under countable unions. 

Claim: 𝒞 is closed under complements:                                                                                                            

Let E  𝒞.  Ie E  B  𝔅 for each B  𝔅 with (B) < .                                                              

Let B  𝔅  with (B) < .                                                                                                                                                             

Then 𝐸′ ∩ 𝐵 = (𝐸′ ∩ 𝐵) ∪ 𝜙 = (𝐸′ ∩ 𝐵) ∪ (𝐵′ ∩ 𝐵)                                                                                           

= (𝐸′ ∪ 𝐵′) ∩ 𝐵 = (𝐸 ∩ 𝐵)′ ∩ 𝐵  𝔅 since 𝔅 is closed under complements and 

intersection. Ie. E  𝒞   𝐸′ 𝒞 so that 𝒞 is closed under complements.                                                             

Hence the collection 𝒞 of all locally measurable sets is a  - algebra 

Claim: 𝔅 ⊆ 𝒞                                                                                                                                              

Let E  𝔅 and B  𝔅 with (B) < .                                                                                                      

Since 𝔅 is a  - algebra E  B  𝔅. Ie. E  B  𝔅 for each B  𝔅 with (B) < . 

 E  𝒞. Hence 𝔅 ⊆ 𝒞. 

 

Definition: The measure  is called saturated if every locally measurable set is 

measurable (ie is in 𝔅). 

 

Problem: Every  - finite measure is saturated.  

Solution: Let (X, 𝔅, ) be a measure space and the measure  be  - finite.  

  a sequence {Xn} of measurable sets in 𝔅 such that X =  Xn and (Xn) <  for 

each n. Let E be locally measurable set in X.                                                                                       

Since Xn  𝔅 and (Xn) <  for each n and E is locally measurable, Xn  A  𝔅 for 

each n.                                                                                                                                       

Now E = X  E = ( Xn)  E =  (Xn  E)  𝔅 since 𝔅 is  - algebra.  

Thus, E is measurable. Hence every  - finite measure is saturated.  
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Proposition: Let (X, 𝔅) be a measurable space. ,  be two measures on (X, 𝔅).                        

Let  =  + . Then, (X, 𝔅, ) is a measure space. 

 

Proposition: Let (X, 𝔅) be a measurable space; ,  be two measures on (X, 𝔅) 

such that   . Then there is a measure on (X, 𝔅) such that  +  = . In addition 

if  is  - finite then  is unique. 

 

MEASURABLE FUNCTIONS ON ABSTRACT SPACES 

Definition: Let (X, 𝔅) be a measurable space. Let f be an extended real-valued function 

defined on X. Then f is said to be measurable (w.r.t 𝔅) if  , {x: f(x) > }  𝔅 . 

 

Proposition: Let f be an extended real-valued function defined on X. Then the 

following statements are equivalent. 

(i) {x: f(x) > }  𝔅 for each . 

(ii) {x: f(x)  }  𝔅 for each . 

(iii) {x: f(x) < }  𝔅 for each . 

(iv) {x: f(x)  }  𝔅 for each . 

Proof: Claim: (i)  (ii). Assume (i). Let  be a real number.                                             

Now {x: f(x)  } = ⋂ {𝑥: 𝑓(𝑥) > 𝛼 −
1

𝑛
}∞

𝑛=1   𝔅 since {𝑥: 𝑓(𝑥) > 𝛼 −
1

𝑛
}  𝔅  𝛼 −

1

𝑛
 𝑎𝑛𝑑 𝔅 𝑖𝑠 𝑎  −  𝑎𝑙𝑔𝑒𝑏𝑟𝑎.                                                                                                          

{x: f(x)  }  𝔅  . 

So, (i)  (ii). 

Claim: (ii)  (iii).                                                                                                                             

Suppose {x: f(x)  }  𝔅 for each .  

Let  be a real number. Then {x: f(x) < } = {𝑥: 𝑓(𝑥) ≥ 𝛼}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  𝔅 as it is  - algebra. 

{x: f(x) < }  𝔅  . 

So, (ii)  (iii). 

Claim: (iii)  (iv). Assume (iii).  

Let  be a real number. Then {x: f(x) ≤ } = ⋂ {𝑥: 𝑓(𝑥) < 𝛼 +
1

𝑛
}∞

𝑛=1   𝔅.                                 

 {x: f(x) ≤ }  𝔅 for each . 

So, (iii)  (iv).  

Claim: (iv)  (i), assume (iv). Let  be a real number.  

Then {x: f(x) > } = {𝑥: 𝑓(𝑥) ≤ 𝛼}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  𝔅 since 𝔅 is a  - algebra.  

{x: f(x) > }  𝔅 for each . So, (iv)  (i). 

Hence the proposition is proved. 
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Theorem: If c is a real number and f, g are measurable functions then f + c, cf,                    

f + g, g – f and fg are also measurable, on an abstract measurable space. 

Proof: Let c be a real number and f, g be measurable functions. Let  be a real number. 

{x: (f + c)(x) > } = {x: f(x) + c  > }= {x: f(x) >  – c} which is a measurable set 

since f is measurable.  f + c is measurable.  

If c = 0, cf is measurable, as the set {x: cf(x) > } =  or X according as   0 or           

 < 0, and  and X both belong to 𝔅 as 𝔅 is a -algebra.  

If c > 0, {x: cf(x) > } = {x: f(x) > c–1} and since {x: f(x) > c–1}  𝔅 it follows that 

{x: f(x) > }  𝔅  .                                                                                                         

Also, if c < 0, then {x: cf(x) > } = {x: f(x) < c–1} and since {x: f(x) < c–1}  𝔅 it 

follows that {x: cf(x) > } 𝔅  . So, cf is measurable. 

f(x) + g(x) >  iff  a rational ri such that  – g(x) < ri < f(x) where <ri>, i = 1, 2, 3, … 

is an enumeration of the set of rationals.                                                                                                   

{x: f(x) + g(x) > } = ⋃ [{𝑥: 𝑓(𝑥) > 𝑟𝑖} ∩ {𝑥: 𝑔(𝑥) > 𝛼 − 𝑟𝑖}]∞
𝑖=1 .                                                                                             

Since {𝑥: 𝑓(𝑥) > 𝑟𝑖}  𝔅  ri and {𝑥: 𝑔(𝑥) > 𝛼 − 𝑟𝑖}  𝔅   – ri,                                                                   

[{𝑥: 𝑓(𝑥) > 𝑟𝑖} ∩ {𝑥: 𝑔(𝑥) > 𝛼 − 𝑟𝑖}]  𝔅 and hance {x: f(x) + g(x) > } 𝔅   

since Q is countable.                                                                                                                            

Hence f + g is measurable. Now f – g = f + (– g).                                                                     

Since f and – g are measurable, so, f + (– g) is measurable.                                                 

Hence f – g is measurable.                                                                                                                                                      

Finally, fg = 
1

4
{(𝑓 + 𝑔)2 − (𝑓 − 𝑔)2}.                                                                                                

So, it is sufficient to show that f2 is measurable whenever f is.                                                                                                                                       

If  < 0, {x:𝑓2(𝑥) > 𝛼} = X  𝔅.                                                                                                 

If   0, {x:𝑓2(𝑥) > 𝛼} = {x: f(x) > √𝛼}  {x: f(x) < - √𝛼}.                                                        

Since f is measurable so {x: f(x) > √𝛼} and {x: f(x) < - √𝛼}  𝔅.                                                                                           

Hence their union belongs to 𝔅. Thus, {x:𝑓2(𝑥) > 𝛼}  𝔅 .                                                                                                                        

 f2 is measurable.                                                                                                            

It follows that (f + g)2 and (f – g)2 are measurable.                                                                                               

So, fg is measurable.    

 

Theorem: If {fn} is a sequence of measurable functions then sup fn, inf fn, 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛 and 

lim
𝑛→∞
̅̅ ̅̅ ̅ 𝑓𝑛 are also measurable. 

Proof: Let f1, f2, …, fn be measurable.                                                                                              

Claim: Sup {f1, f2, … fn} is measurable.                                                                                       

Note that Sup {f1 , f2, …, fn}(x) = Sup {f1(x), f2(x), …, fn(x)}.                                                  

Let  be a real number.                                                                                                                
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Now {x  X: Sup {f1, f2, …, fn}(x) > } = ⋂ {𝑥 ∈ 𝑋: 𝑓𝑖(𝑥) > 𝛼}𝑛
𝑖=1   𝔅.                                                                                                                                                   

 Sup {f1, f2, …, fn} is measurable.                                                                                                       

Thus, if f1, f2, …, fn are measurable then Sup {f1, f2, …, fn} and similarly inf {f1, f2, …, 

fn} is measurable.                                                                                                                         

Since {fn} is a sequence of measurable functions on 𝔅, so, for all  and all n,                          

{x: fn(x) > }  𝔅.                                                                                                                      

{x: sup
𝑛

𝑓𝑛 > } = ⋂ {𝑥: 𝑓𝑛(𝑥) > 𝛼}∞
𝑛=1   𝔅 as 𝔅 is  - algebra.                                                           

So, Sup fn is measurable.                                                                                                           

Since inf
𝑛

𝑓𝑛 = – sup (– fn) and since  (– fn)  is measurable by above argument                     

sup (– fn) is and hence – sup (– fn) is measurable. Ie inf
𝑛

𝑓𝑛 is measurable. 

(iii) ⸪ {fn} is a sequence of measurable functions, as above, 𝑔𝑛(𝑥) = sup
𝑖≥𝑛

𝑓𝑖 is 

measurable for each n.                                                                                                                      

As above inf
𝑛

𝑔𝑛 is measurable.  Since lim
𝑛→∞
̅̅ ̅̅ ̅ 𝑓𝑛 = inf

𝑛
{sup

𝑖≥𝑛
𝑓𝑖} , lim

𝑛→∞
̅̅ ̅̅ ̅ 𝑓𝑛 is measurable.                                                                                                                                  

⸪ {fn} is a sequence of measurable functions, as above, ℎ𝑛(𝑥) = inf
𝑖≥𝑛

𝑓𝑖 is measurable 

for each n.                                                                                                                      

As above inf
𝑛

ℎ𝑛 is measurable.  Since 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛= 𝑠𝑢𝑝
𝑛

{inf
𝑖≥𝑛

𝑓𝑖}, it follows that 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛is 

measurable.   

 

Definition: A real valued function defined on X and which assumes at most a finite 

number of values is called a simple function. 

 

: X →ℝ is a simple function iff (x) = ∑ 𝑐𝑖𝜒𝐸𝑖
(𝑥)𝑛

𝑖=1 , x  X where E1, E2, …, En are 

pairwise disjoint subsets of X  X = E1  E2  …  En and c1, c2, …, cn are distinct 

numbers. {E1, E2, …, En} is called a finite partition of X.  𝜒𝐸𝑖
 is the characteristic 

function of Ei. Clearly (x) = ci for x  Ei, i = 1, 2, …, n.  

 

Proposition: A simple function  = ∑ 𝑐𝑖𝜒𝐸𝑖

𝑛
𝑖=1  is measurable iff each Ei is measurable.   

Proof: If the simple function  has another representation as  = ∑ 𝑑𝑗𝜒𝐹𝑗

𝑛
𝑗=1   then, on 

Ei  Fj,  must assume the values ci, dj which is not possible unless ci = dj,  Ei = Fj. 

Hence the representation is unique upto the addition of empty set.                                       

 is measurable implies {x  X: (x) > } = {x  X: ∑ 𝑐𝑖𝜒𝐸𝑖
(𝑥)𝑛

𝑖=1  > }  𝔅.  

Let  < min {c1, c2, …, cn}, Then {x  X: ∑ 𝑐𝑖𝜒𝐸𝑖
(𝑥)𝑛

𝑖=1  > } = X  𝔅.  

Let  > max{c1, c2, …, cn}. Then {x  X: ∑ 𝑐𝑖𝜒𝐸𝑖
(𝑥)𝑛

𝑖=1  > } =   𝔅.                                  

Let min {c1, c2, …, cn}    max {c1, c2, …, cn}.                                                                           
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Then {x  X: ∑ 𝑐𝑖𝜒𝐸𝑖
(𝑥)𝑛

𝑖=1  > } = ⊎
𝑗

𝐸𝑗 where ⊎
𝑗
 indicates the union over all j (from 1 

to n)  cj > . Such j’s are finite in number and hence, ⊎
𝑗

𝐸𝑗  𝔅, for any  we must 

have Ej  𝔅. Hence the simple function  is measurable iff each Ej is measurable.    

 

Proposition: If f is measurable and  is complete, then f = g almost everywhere implies 

g is measurable.   

Proof: Let E = {x  X: f(x)  g(x)}. By hypothesis (E) = 0.                                                       

For any  ℝ, {x  X: g(x) > } = {x  X: f(x) > }  N where                                              

N = {x  X: g(x) >  and f(x)  g(x)}. Hence N  E. Since, f is measurable {x  X: 

f(x) > }  𝔅. Since,  is complete N  𝔅 and hence {x  X: g(x) > } 𝔅. Hence g 

is measurable.          

… 

 

INTEGRATION. 

Definition:  

*If E is a measurable set,  a nonnegative simple function and  any measure, define 

∫
𝐸

𝜑𝑑𝜇 = ∑ 𝐶𝑖𝜇(𝐸𝑖 ∩ 𝐸)𝑛
𝑖=1  where 𝜑(𝑥) = ∑ 𝐶𝑖𝜒𝐸𝑖

𝑛
𝑖=1 (𝑥). 

Proposition: If a and b are positive numbers and  and  are nonnegative simple 

functions, then (a + b) = a + b 

Proof:  

 

If a simple function  takes the values c1, c2, …, cn then 𝜑(𝑥) = ∑ 𝐶𝑖𝜒𝐴𝑖

𝑛
𝑖=1  where Ai = 

{x : (x) = ci}. 

Then the integral of  with respect to  is given by ∫
𝐸

𝜑𝑑𝜇 = ∑ 𝐶𝑖𝜇(𝐴𝑖)𝑛
𝑖=1 . 

 

Definition: Let f be a nonnegative extended real-valued measurable function on the 

measure space (X, 𝔅, ). Then the integral of f is given by                                                              

fd = sup {d:   f} where  is a simple function. 

 

Definition: Let (X, 𝔅, ) be a measure space. Let E  𝔅, and let f be a measurable 

function f: E → (0, ], then the integral of f over E is 

∫
𝐸

𝜑𝑑𝜇 =  f E d. 

 

Fatou’s lemma: Let {fn} be a sequence of nonnegative measurable function which 

converges almost everywhere on a set E to a function f then ∫
𝐸

𝑓   lim
𝑛→∞

∫
𝐸

𝑓𝑛 
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Proof: Without loss of generality, we may assume that fn(x) → f(x) for each x  E. 

From the definition of  f, it suffices to show that  is any nonnegative simple function 

with   f then ∫
𝐸

𝜑   lim
𝑛→∞

∫
𝐸

𝑓𝑛 

If   = , then there is a measurable set A  E with A =  such that 

f  r > 0 on A.                                                                                                                                        

Set An = {x  E: fk (x) > r  k  n}.                                                                             

Then {An} is an increasing sequence of measurable sets whose union contains A, since 

  lim fn.                                                                                                                                      

Thus, lim  An = .                                                                                                                                   

Since ∫
𝐸

𝑓𝑛  r (An) we have lim
𝑛→∞

∫
𝐸

𝑓𝑛 =  = ∫
𝐸

𝜑. 

If  < , then the set A = {x E: (x) > 0} is a measurable set of finite measure.   

Let M be maximum of ,  be a given positive integer, and                                                                                                          

set An = {x  E: fk (x) > (1 – ) (x)  k  n}.                                                                             

Then {An} is an increasing sequence of measurable sets whose union contains A, and 

so, {A ~ An} is a decreasing sequence of sets whose intersection is empty.                                           

By a proposition, lim (A ~ An) = 0, and so, we can find an n  (A ~ Ak) <   k  n.                                                                                                                                                               

Then for k  n we have                                                                                                                                                                                                                                                                           

∫
𝐸

𝑓𝑘 > ∫
𝐴𝑘

𝑓𝑘 > (1 − 𝜀) ∫
𝐴𝑘

𝜑      (1 – )∫
𝐸

𝜑 − ∫
𝐴~𝐴𝑘

𝜑  ∫
𝐸

𝜑 − 𝜀 [∫
𝐸

𝜑 + 𝑀].         

Hence 𝑙𝑖𝑚 ∫
𝐸

𝑓𝑛   ∫
𝐸

𝜑 − 𝜀 [∫
𝐸

𝜑 + 𝑀].                                                                                 

Since  is arbitrary, 𝑙𝑖𝑚 ∫
𝐸

𝑓𝑛   ∫
𝐸

𝜑  

 

Monotone Convergence Theorem:  Let {fn} be a sequence of nonnegative measurable 

function which converges almost everywhere to a function f and suppose that fn  f for 

all n. Then  ∫
𝐸

𝑓  = lim
𝑛→∞

∫
𝐸

𝑓𝑛 

Proof: Since fn  f, we have  fn   f.                                                                                  

       Hence 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 ≤ ∫ 𝑓   

By Fatou’s lemma, ∫ 𝑓 ≤ 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 

From (i) and (ii) we get ∫ 𝑓 ≤ 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 ≤ ∫ 𝑓 

 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 = 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 = lim
𝑛→∞

∫ 𝑓𝑛 

Thus, lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓 

Hence the theorem. 
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Proposition: Suppose a and b are non negative numbers and f and g are nonnegative 

measurable functions, then (i) (af + bg) = af + bg (ii)  f  0 with equality only if f = 0 

a. e. 

Proof: (i) Let {n} and {n} be increasing sequences of simple functions which 

converge to f and g respectively.                                                                                                        

Then {an + bn} is an increasing sequence of simple functions which converge to                          

af + bg.                                                                                                                                                                 

By the Monotone Convergence Theorem,  (af + bg) = lim  (an + bn)                                              

                                                                           = lim (an + b n)  

                                                                                    = a  f + b  g. 

(ii) Obviously  f  0. 

If  f = 0, let An = {x: f(x)  
1

𝑛
 }.                                                                                                

Then f  
1

𝑛
 𝜒𝐴𝑛

 and so,  (An) =  𝜒𝐴𝑛
 = 0.  Since the set where f > 0 is the union of the 

sets An, it has measure zero.                                                                                                      

Hence f = 0 a. e. 

 

Corollary: Let {fn} be a sequence of nonnegative measurable functions. Then 

∫ ∑ 𝑓𝑛𝑑𝜇∞
𝑛=1  = ∑ ∫ 𝑓𝑛𝑑𝜇∞

𝑛=1 .  

Proof: Let sn = ∑ 𝑓𝑘
∞
𝑘=1  so that lim

𝑛→∞
𝑠𝑛 = ∑ 𝑓𝑛

∞
𝑛=1 …(i) 

Now sn is a sequence of measurable functions such that sn  sn + 1 and (i) holds.                                  

 By monotone convergence theorem,                                                                             

∫ ∑ 𝑓𝑛𝑑𝜇∞
𝑛=1  = ∫ lim

𝑛→∞
𝑠𝑛 = lim

𝑛→∞
∫ 𝑠𝑛                                                                                                        

                                 = lim
𝑛→∞

∑ ∫ 𝑓𝑘
𝑛
𝑘=1                                                                                       

                                 = ∑ ∫ 𝑓𝑘
∞
𝑘=1 , proving corollary. 

Definition: A nonnegative function f is said to be integrable over a measurable set E w. 

r. t any measure  if it is measurable and ∫
𝐸

𝑓 𝑑 < .  

 

Any function f can be written as f = 𝑓+ − 𝑓− where f + and f – are positive and negative 

parts of f and that |𝑓| = 𝑓+ + 𝑓−.  

  

Definition: An arbitrary function f is said to be integrable if both f + and f – are 

integrable. In this case we define ∫
𝐸

𝑓 𝑑 = ∫
𝐸

𝑓+ 𝑑 − ∫
𝐸

𝑓− 𝑑.  

Proposition: Let (X, 𝔅, ) be a measure space. If f and g are integrable functions over 

E  𝔅, then (i) ∫
𝐸

(𝑎𝑓 + 𝑏𝑔) 𝑑 = 𝑎 ∫
𝐸

𝑓 𝑑 + 𝑏 ∫
𝐸

𝑔 𝑑. 

(ii) If |ℎ| < |𝑓| and h is measurable then h is integrable.  
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(iii) If f  g a. e., then ∫
𝐸

𝑓 𝑑  ∫
𝐸

𝑔 𝑑. 

Proof: (i)  

(ii) Given |ℎ| < |𝑓| we have |ℎ| = ℎ+ + ℎ−.                                                                            

Then ℎ+ < |ℎ| so that ∫ ℎ+d  ∫ |𝑓| d since f is integrable function, so |𝑓| is 

integrable and ∫
𝐸

|𝑓| 𝑑 <  hence ℎ+ is integrable.                                                                       

Similarly, we can prove that ℎ− is integrable.                                                                                  

Hence h = ℎ+ − ℎ− is integrable.  

(iii) f  g a. e.  f – g  0 a. e.                                                                                                  

Hence (f – g) d  0.                                                                                                                        

  f d –  g d  0 proving ∫
𝐸

𝑓 𝑑  ∫
𝐸

𝑔 𝑑.  

Lebesgue Convergence Theorem: Let (X, 𝔅, ) be a measure space. Let g be 

integrable function over E  𝔅 and suppose {fn} be a sequence of measurable functions 

such that on E, |𝑓𝑛(𝑥)| ≤ 𝑔(𝑥),  and such that almost everywhere on E, 𝑓𝑛(𝑥)→ f(x). 

Then  ∫
𝐸

𝑓𝑑𝜇  = lim
𝑛→∞

∫
𝐸

𝑓𝑛𝑑𝜇.   

Proof: Since, for each x, |𝑓𝑛(𝑥)| ≤ 𝑔(𝑥) and lim fn = f a. e. we have |𝑓| ≤ 𝑔 a. e. 

hence fn and f are integrable. Also, since – g  𝑓𝑛  g, {g + fn} is a sequence of 

nonnegative measurable functions.                                                                                                                     

Now by Fatou’s lemma, ∫ (𝑔 + 𝑓)𝑑𝜇 ≤ 𝑙𝑖𝑚
𝑛→∞

∫ (𝑔 + 𝑓𝑛)𝑑𝜇.                                                                         

So,  ∫
𝐸

𝑔 𝑑𝜇 + lim
𝑛→∞

∫
𝐸

𝑓𝑛𝑑𝜇  ∫
𝐸

𝑔 𝑑𝜇 +∫
𝐸

𝑓 𝑑𝜇.                                                                                    

Since g is integrable ∫
𝐸

𝑔 𝑑𝜇 is finite.   

 ∫
𝐸

𝑓𝑑𝜇   lim
𝑛→∞

∫
𝐸

𝑓𝑛𝑑𝜇 … (i)   

Again, *since 𝑓𝑛  |𝑓𝑛|  g,  {g – fn} is a sequence of nonnegative measurable 

functions.                                                                                                                               

Now by Fatou’s lemma, ∫ (𝑔 − 𝑓)𝑑𝜇 ≤ 𝑙𝑖𝑚
𝑛→∞

∫ (𝑔 − 𝑓𝑛)𝑑𝜇.                                                                         

So,  ∫
𝐸

𝑔 𝑑𝜇 − lim
𝑛→∞

∫
𝐸

𝑓𝑛𝑑𝜇  ∫
𝐸

𝑔 𝑑𝜇 – ∫
𝐸

𝑓 𝑑𝜇. 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 ≤ ∫ 𝑓                                                                                   

Since g is integrable ∫
𝐸

𝑔 𝑑𝜇 is finite.   

 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 ≤ ∫ 𝑓… (ii). 

From (i) and (ii) we get ∫ 𝑓 ≤ 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 ≤ ∫ 𝑓 

 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 = 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛 = lim
𝑛→∞

∫ 𝑓𝑛 

Thus, lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓 
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Hence the theorem. 

 

Theorem: Let f be an integrable function on the measure space (X, 𝔅, ). Then given  

> 0, there is a  > 0, such that for each measurable set E with (E) < , |∫
𝐸

𝑓| < . 

Proof: The theorem is trivial if f is bounded function.                                                                                    

For any n, let fn (x) = f(x) if f(x)  n and fn(x) = n otherwise.                                                                                                          

Then each fn is bounded and fn(x) → f(x) for each x.                                                                          

By the monotone convergence theorem there is an integer N  |∫
𝐸

(𝑓 − 𝑓𝑁)| < 
𝜀

2
. 

Choose  > 
𝜀

2𝑁
.                                                                                                                                       

If  (E ) < , |∫
𝐸

𝑓| = |∫
𝐸

(𝑓 − 𝑓𝑁 + 𝑓𝑁)|  

                                |∫
𝐸

(𝑓 − 𝑓𝑁)| + |∫
𝐸

𝑓𝑁|                                                                               

                      |∫
𝐸

(𝑓 − 𝑓𝑁)| +  ∫
𝐸

|𝑓𝑁|                                                                                       

                      <  
𝜀

2
 + N 

𝜀

2𝑁
  

                               < 
𝜀

2
 + 

𝜀

2
  = .                                                                                                         

Ie. |∫
𝐸

𝑓| < . Hence the theorem.  

Theorem: Let (X, 𝔅, ) be a measure space and g be a nonnegative measurable 

function on X. Set  (E) = ∫
𝐸

𝑔 𝑑𝜇. Then  is a measure on 𝔅.  

Proof: By the definition of , obviously,  is non-negative, () = 0. 

Let {En} be a sequence of pairwise disjoint sets.                                                                                                  

𝜈(⋃ 𝐸𝑛
∞
𝑛=1 ) = ∫

⋃ 𝐸𝑛
∞
𝑛=1

𝑔 𝑑𝜇 = ∫
𝜒

𝑔 𝜒⋃ 𝐸𝑛
∞
𝑛=1

𝑑𝜇 = ∫
𝜒

∑ 𝑔. 𝜒𝐸𝑛
𝑑𝜇∞

𝑛=1                                                                                

= ∑ ∫
𝜒

𝜒𝐸𝑛
𝑔 𝑑𝜇∞

𝑛=1  = ∑ ∫
𝐸𝑛

𝑔 𝑑𝜇∞
𝑛=1  = ∑ 𝜈(𝐸𝑛)∞

𝑛=1 . 

Lemma: Suppose that to each  in a dense set D of real numbers there is assigned a set 

B  𝔅 such that B  B for  < . Then there is a unique measurable extended real-

valued function f on X such that f   on B and f   on X ~ B. 

Proof: For each x  X, define f(x) = inf {D: x  B} where, as usual, inf  = .                           

If x  B, then f(x)  . If x  B, then x  B for each  < , and so f(x)  .                                   

To show that f is measurable, we take   ℝ and choose a sequence {n}, from D with 

n <  and  = lim n. Then {x: f(x) < } = ⋃ 𝐵𝛼𝑛

∞
𝑛=1 . For if f(x) < , then f(x) < n for 

some n, and so x  𝐵𝛼𝑛
. If x  𝐵𝛼𝑛

 for any n, then f(x) < n < .                                                                   

Thus, the sets {x: f(x) < } are all measurable, and so f is measurable. 
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To prove the unicity of f, let g be any extended real-valued function with g   on B 

and g   on 𝐵�̃�.                                                                                                                             

Then x  B implies g(x)  , and so {  D: x  B}  {  D:   g{x)}.                                       

Since g(x) <  implies that x  B we have {  D:  > g(x)}  {  D: x  B}. 

Because of the density of D we have g(x) = inf {  D:  > g{x)}                                                            

= inf {  D:   g(x)} = inf {  D: x  B} = f(x). 

 

Proposition: Suppose that for each  in a dense set D of real numbers there is assigned 

a set B  𝔅 such that (B ~ B) = 0 for  < . Then there is a measurable function f 

such that f   a. e. on B and f   a. e. on X ~ B. If g is any other function with this 

property, then g = f a. e. 

 

Proof: Let C be a countable dense subset of D, and set N =  (B ~ B) for  and  in 

C with  < .                                                                                                                             

Then N is the countable union of sets of measure zero and so is itself a set of measure 

zero.                                                                                                                                      

Let B = B  N.                                                                                                                                       

For  and  in C with  <  we have B ~ B = (B ~ B) ~ N = . 

Thus B  B. By Lemma there is a measurable function f such that f   on B and f 

  on X ~ B.                                                                                                                             

Let   D and choose a sequence {n} from C with  < n and  = lim n.                                           

Then 𝐵𝛼~𝐵′
𝛾𝑛

⊆ 𝐵𝛼~𝐵𝛾𝑛
.                                                                                                        

Thus, P = ∪
𝑛

(𝐵𝛼~𝐵′
𝛾𝑛

) is a countable union of null sets and so a n null set.                               

Let A = ∩ 𝐵′
𝛾𝑛

.                                                                                                                                

Then f < inf 𝛾𝑛 =  on A, and A ~ B  P.                                                                                              

Thus f    almost everywhere on B.                                                                                                

A similar argument shows that f   almost everywhere on �̃�𝛼 

Let g be an extended real-valued function with g   a. e. on B and g   on �̃�𝛾 for each 

  C. Then g   on �̃�𝛾 and g   on �̃�′
𝛾 except for x in a null set Q.                                                                                                  

Thus Q =  Q is a null set and we must have f = g on X ~ Q.  

GENERAL CONVERGENCE THEOREMS 

Proposition: Let (X, 𝔅) be a measurable space, {𝜇𝑛} be a sequence of measures that 

converge setwise to a measure , and {𝑓𝑛} a sequence of non-negative measurable 

functions that converge pointwise to the function f. Then ∫ 𝑓 𝑑𝜇 ≤ 𝑙𝑖𝑚 ∫ 𝑓𝑛 𝑑𝜇𝑛 

 



18 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

 

 

 

 

 

 

 

  

E – CONTENT 

PAPER: M 401,  

MEASURE THEORY 

M. Sc. II YEAR, SEMESTER - IV 

UNIT – II 

 

 

PREPARED BY 

K, C. TAMMI RAJU, M. Sc. 

HEAD OF THE DEPARTMENT 

DEPARTMENT OF MATHEMATICS,  

PG COURSES 

DNR COLLEGE (A), 

BHIMAVARAM – 534202 

 



20 
 

 

M 401, MEASURE THEORY 

K. C. TAMMI RAJU 

UNIT II  

SIGNED MEASURE 

 

Definition: By a signed measure on the measurable space (X, 𝔅) we mean an extended 

real-valued set function  defined for the sets of 𝔅 and satisfying the following 

conditions: 

(i)  assumes at most one of the values + , – . 

(ii) () = 0 

(iii) 𝜈(⋃ 𝐸𝑖
∞
𝑖=1 ) = ∑ 𝜈(𝐸𝑖)∞

𝑖=1 , for any sequence {Ei}of disjoint measurable sets,  

the equality taken to mean that the series on the right converges absolutely if 

𝜈(⋃ 𝐸𝑖
∞
𝑖=1 ) is finite and that it properly diverges otherwise. 

 

Note: Thus, a measure is a special case of a signed measure, but a signed measure is 

not in general a measure. 

  

Definition: A set A is a positive set with respect to a signed measure  if A is 

measurable and for every measurable subset E of A we have E  0. 

Ie. A  𝔅 is positive w.r.t. signed measure  if E  𝔅, E  A  E  0.  

 

Result; (i)  set is a positive set. 

(ii) If we take the restriction of  to a positive set we obtain a measure.  

 

Definition: A set B is called a negative set if it is measurable and every measurable 

subset of it has nonpositive  measure.  

 

Definition: A set that is both positive and negative with respect to  is called a null set.  

 

Note: A measurable set is a null set if and only if every measurable subset of it has  

measure zero.  

 

Note the distinction between a null set and a set of measure zero. While every null set 

must have measurable subsets of measure zero, a set of measure zero may well be a 

union of two sets whose measures are not zero but are negatives of each other.                                                            

Similarly, a positive set is not to be confused with a set that merely has positive 

measure. Similar statements hold, of course, for negative sets. 
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Lemma: (i) Every measurable subset of a positive set is itself positive.                                      

(ii) The union of a countable collection of positive sets is positive. 

Proof: (i) Let (X, 𝔅) be a measurable space and  be a signed measure.                                     

Let A be a positive set of . Let B  A and B be measurable.                                     Let 

E  B and E be measurable. Then E  0 since E  B  A and A is positive.  

 B is a positive set. Hence every measurable subset of a positive set is itself 

positive.                                                                                                                                                                                    

(ii) Let {An} be a sequence of positive sets and A = ⋃ 𝐴𝑛
∞
𝑛=1 .                                                                       

Let E be any measurable subset of A.                                                                                              

Set En = 𝐸 ∩ 𝐴𝑛 ∩ �̃�𝑛−1 ∩ �̃�𝑛−2 ∩ … ∩ �̃�1 

Then En is a measurable subset of An and so En  0.                                                               

Since the En are disjoint and E =  En, we have E = ∑ 𝜈𝐸𝑛
∞
𝑛=1  0.  

Thus, A is a positive set.  

 

Lemma: Let (X, 𝔅) be a measurable space and  be signed measure on 𝔅. Let E be a 

measurable set such that 0 < E < . Then there is a positive set A contained in E with 

A > 0. 

 

Proof: Case (i): Let E itself be a positive set, in which case the lemma is trivial. Case 

(ii): Suppose E contains measurable sets of negative measure. Let n1 be the smallest 

positive integer such that there is a measurable set E1  E with E1 < −
1

𝑛1
,  

Proceeding inductively, if E ~ ⋃ 𝐸𝑛
𝑘−1
𝑛=1 , is not already a positive set, let nk, be the 

smallest positive integer for which there is a measurable set Ek such that                               

Ek  E ~ ⋃ 𝐸𝑛
𝑘−1
𝑛=1 , and Ek < −

1

𝑛𝑘
.                                                                                                

If we set A = E ~ ⋃ 𝐸𝑛
∞
𝑛=1 , then  𝐸 = 𝐴 ∪ [⋃ 𝐸𝑛

∞
𝑛=1 ]. 

Since this is a disjoint union, we have E = A + ∑ 𝜈𝐸𝑛
∞
𝑛=1  with the series on the right 

absolutely convergent, as E is finite.                                                                                       

Thus, ∑
1

𝑛𝑘
 converges, and we have nk → .                                                                               

Since Ek  0 and E > 0, we must have A > 0.  

To show that A is a positive set, let  > 0 be given.                                                                    

Since nk → , we may choose k so large that (𝑛𝑘 − 1)−1 < .                                                       

Since A  E ~ ⋃ 𝐸𝑛
𝑘
𝑛=1 , A can contain no measurable sets with measure less than                  

– (𝑛𝑘 − 1)−1, which is greater than – .                                                                                  

Thus, A contains no measurable sets of measure less than – .                                                   

Since  is an arbitrarily positive number, it follows that A can contain no sets of 

negative measure and so must be a positive set. 

 

Proposition (Hahn Decomposition Theorem): Let v be a Signed measure on the 

measurable space (X, 𝔅). Then there is a positive set A and a negative set B such that X 

= A  B and A  B = . 

Proof: Let (X, 𝔅) be a measurable space and  be signed measure on (X, 𝔅). Without 
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loss of generality, we may assume that +  is not assumed by .                                Ie. 

E  𝔅  E  .                                                                                                                                

Let  = Sup {E: E  𝔅, E is positive}. Since  is positive set,  = 0 so that   0.                    

For each n,  – 
1

𝑛
 is not an upper bound of {E: E  𝔅, E is positive}.                                         

 a positive set En  En >  – 
1

𝑛
.                                                                                                          

  – 
1

𝑛
  < En  .                                                                                                                                                                

 lim
𝑛→∞

(𝜆 −
1

𝑛
)  ≤  lim

𝑛→∞
𝜈𝐸𝑛  lim

𝑛→∞
𝜆.    lim

𝑛→∞
𝜈𝐸𝑛 .                                                                     

 a sequence of positive sets {En}  lim
𝑛→∞

𝜈𝐸𝑛 = .                                                                       

Set A = ⋃ 𝐸𝑛
∞
𝑛=1 .                                                                                                                                

Then A is a positive set since each En is a positive set.                                                                     

 by definition of , A  … (i). 

Since A ~ En  A for any n, and A is positive (A ~ En)  0.                                                            

Since A = En  (A ~ En),  A = En + (A ~ En)  En  n. 

 A   … (ii). 

From (i) and (ii) A =  <  … (iii). 

Let B = X – A. Then X = A  B and A  B = . 

Claim: B is a negative set.  

If B contains a measurable subset D of positive measure then we have 0 < D < . So, 

D contains a positive set E  E > 0.                                                                                     

Then E and A are disjoint and E  A is a positive set.                                                                   

But then (E  A) = E + A >  which is a contradiction.                                                            

Hence B is a negative set. Hence the theorem. 

 

Result: Hahn decomposition is not unique.  

Proof: Let v be a Signed measure on the measurable space (X, 𝔅).                                               

Then by Hahn decomposition there is a positive set A and a negative set B such that X 

= A  B and A  B = .                                                                                                      

Let E ( )  A, E  𝔅 with (E) = 0. Let A = A – E and B = B  E. 

Claim: A, B is also a Hahn Decomposition for X.  

A  B = (A  �̃�)  (B  E) = {A  (B  E)}  (�̃�  B  E)                                                         

= {(A  B)  E}  {(�̃�  E)  B} = X  X = X. 

A  B = (A  �̃�)  (B  E) = {(A  �̃�)  B}  {(A  �̃�) E}                                                        

= {(A  B)  �̃�}  {A  (�̃� E)} =    = . 

A is positive: For F  A  F  A – E  F  A  (F)  0 since A is positive. 

B is negative: For F  B  F  B  E  F = F  (B  E) = (F  B)  (F  E)                    

 (F) = (F  B) + (F  E).                                                                                                  

But (F  E)  0 since F  E  E  A and (F  E)  0 since (F  E)  (E) = 0 

Ie (F  E) = 0.                                                                                                                                   

 (F) = (F  B)  (B)  0. 

Hence A, B is also Hahn Decomposition for X. 
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Lemma: Any two Hahn decompositions differ by a null set. 

Proof: Let (A, B) and (F, G) be two Hahn decompositions of .                                                             

Then, A and F are positive sets of , B and G are negative sets of .                                            

A  B = , A  B = X, F  G = , F  G = X.                                                                                                                            

We can easily derive that (AF) = 0 = (BG), A  F = (A  F)  (A  F). 

By additivity of , 0 = (A  F) = (A  F) + (A  F). 

Since, A and F are positive sets, (A  F) = 0 = (A  F). Thus, (A  F) = 0, (A 

 F) = 0, (B  F) = 0, (B  F) = 0. 

Now, A = (A  F)  (A  F)  A = (A  F) 

F = (A  F)  (A  F)  F = (A  F) 

Hence A = F. Similarly, B = G. Hence the lemma. 

 

Definition: Let (X, 𝔅) be a fixed measurable space. If  and  are two measures 

defined on (X, 𝔅) we say that  and  are mutually singular, denoted by  ⊥  if there 

are disjoint measurable sets A and B with X = A  B such that  (B) = (A) = 0.  A 

measure  is said to be absolutely continuous with respect to the measure  (written as 

 ≪ ) if A = 0 for each set A for which A = 0. 

 

Jordan Decomposition theorem: Let  be a signed measure on the measurable space 

(X, 𝔅). Then there are two mutually singular measures 𝜈+ and 𝜈− on (X, 𝔅) such that 

𝜈 = 𝜈+ − 𝜈−. Moreover, there is only one such pair of mutually singular measures. 

Proof: Let (A, B) be a Hahn decomposition of X w.r.t .                                                     

Define 𝜈+ and 𝜈− on 𝔅 by 𝜈+(𝐸) = 𝜈(𝐸 ∩ 𝐴) and 𝜈−(𝐸) = −𝜈(𝐸 ∩ 𝐵) … (i) for E  

𝔅.                                                                                                                                                                                     

Since A is a positive set 𝜈(𝐸 ∩ 𝐴) ≥ 0 and for similar reasons                                                          

𝜈(𝐸 ∩ 𝐵) ≤ 0 ∀ E  𝔅.                                                                                                                                   
So, 𝜈+(𝐸)  0, 𝜈−(𝐸)  0.  𝜈+() = (  A) = 0, 𝜈−() = (  B) = 0.                                       

Let {Ei} be a sequence of pairwise disjoint measurable subsets of X.                                        

Then 𝜈+(⋃ 𝐸𝑖
∞
𝑖=1 ) = 𝜈{(⋃ 𝐸𝑖

∞
𝑖=1 ) ∩ 𝐴} = 𝜈{⋃ (𝐸𝑖 ∩ 𝐴)∞

𝑖=1 } = ∑ 𝜈(𝐸𝑖 ∩ 𝐴)∞
𝑖=1  = 

∑ 𝜈+(𝐸𝑖)
∞
𝑖=1 .                                                                                                                                

Similarly, 𝜈−(⋃ 𝐸𝑖
∞
𝑖=1 ) = ∑ 𝜈−(𝐸𝑖)∞

𝑖=1 . 

Thus, 𝜈+ and 𝜈− are measures on (X, 𝔅).                                                                                           
Also, 𝜈+(𝐵) = 𝜈(𝐵 ∩ 𝐴) = 𝜈(𝜙) = 0 and 𝜈−(𝐴) = −𝜈(𝐴 ∩ 𝐵) = −𝜈(𝜙) = 0. Hence 

𝜈+⊥ 𝜈−.                                                                                                                           

Further for E  𝔅, E = (E  A)  (E  B) so that E = (E  A) + (E  B) which 
gives (E) = 𝜈+(𝐸) − 𝜈−(𝐸) ie. 𝜈 = 𝜈+ − 𝜈−. 

Claim: Decomposition is unique.                                                                                                     

Let  = 𝜈1 − 𝜈2 be any other decomposition of  into mutually singular measures.                                                                                                 

Then we have disjoint measurable subsets A and B such that X = A  B where                          

B = A and 𝜈1(𝐵) = 𝜈2(𝐴) = 0.                                                

Let D  𝔅, and D  A.  Then B  D  B  A =  so that ν2(B  D) = ν2() = 0 But 

D  B  D  A. 0 = 𝜈2(𝐷 𝐵)  𝜈2(𝐷)  𝜈2(𝐴) = 0. 

 𝜈2(𝐷) = 0 … (ii) 
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Then (D) =  𝜈1(𝐷) − 𝜈2(𝐷) = 𝜈1(𝐷)…(iii). Thus, D  0  D  A.                                             

 A is positive set w.r.t .                                                                                                                                    

Similarly, B is a negative set.                                                                                                        

Now for each E  𝔅,  E  A  A so ν1(E  A) = (E  A) from (iii)… (iv)  

Now ν1(𝐸) = ν1{(E − B)(E − A) = ν1(E − B) + ν1(E − A) = ν1(E𝐵′) since 

ν1(E ∩ B) ≤ ν1(B) = 0.                                                                                                                         

Thus, ν1(𝐸) = ν1(𝐸 ∩ 𝐴) = (E  A)  E  𝔅.                                                                                

Ie. ν1(𝐸) = (E  A) = 𝜈+(𝐸) &                                                                                                

similarly ν2(𝐸) = –(E  B) = 𝜈−(𝐸)  E  𝔅...(v) and so, every such decomposition 

of  is obtained from a Hahn decomposition of X as                                                                        

𝜈+(𝐸) = 𝜈(𝐸 ∩ 𝐴) and 𝜈−(𝐸) = −𝜈(𝐸 ∩ 𝐵).   
 

[OR So, it is enough to show that if (A, B) and (F, G) are Hahn decompositions then 

measures obtained as in (v) are the same as 𝜈+ and 𝜈−.                                                                                                                                                              

Now (A  F) = (A  F) + (A  F) … (vi)                                                                             

Note that A – F = A  G  A and hence is a positive set.                                                     

Also, A  G  G. So, A – F is also a negative set. Hence A – F is a null set. Similarly, 

F – A is a null set and so A  F is null set.                                                               Hence 

by (v), (A  F) = (A  F)...(vii).                                                                                                    

For each E  𝔅, as A  F is a positive set,                                                                               

{E  (A  F)}  (E  A)  {E  (A  F)}…(viii)  

{E  (A  F)}  (E  F)  {E  (A  F)}…(ix) 

But the first and last terms in each of these inequalities are the same.  

So, (E  F) = (E  A)  𝜈+ defined in (i) is unique and 𝜈− = 𝜈+ − 𝜈.                                 

Hence 𝜈− is also unique. Thus, the theorem is proved.] 

                                                                                                         

 

The Radon-Nikodym Theorem: 

Let (X, 𝔅, 𝜇) be a  - finite measure space. Let  be a measure defined on 𝔅 such that  

≪ . Then there is a non – negative measurable function f such that                         (E) 

= ∫
𝐸

𝑓 𝑑𝜇 for all E  𝔅. If g is also a non – negative measurable function with this 

property then, f = g a. e. []. 

Proof: First assume that (X, 𝔅, 𝜇) is finite. For each   Q (rationals),  –  is a 

signed measure. Let (A, B) be a Hahn decomposition of  –  for each   Q. If  

= 0 then,  being non – negative, set A0 = X, B0 = .                                                                                 

For each  Q, B \ B = B  B = B  A so that ( – )(B \ B)                                 

= ( – )(B  A)  0 and ( – )(B \ B) = ( – )(B  A)  0…(i). 

If  >  then, these imply (B  A)  0. But (B  A)  0.                                                                                   

Thus, the family {B} is such that (B \ B) = 0 if  > .                                                                

  a measurable function f  f   a. e. on B and f   a. e. on B ie. on A.                                             
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Since B0 = , which means f  0 on  and f  0 a. e. on A0 = X we may take f to be non 

– negative. 

Let E  𝔅. Define 𝐸𝑗 = 𝐸 ∩ (𝐵𝑗+1

𝑁

\𝐵 𝑗

𝑁

) where N is a fixed positive integer … (ii),  

𝐸∞ = 𝐸 \ ⋃ 𝐵 𝑗

𝑁

∞
𝑗=1 …(iii).                                                                                                                             

Then, clearly E = 𝐸∞ ∪ (⋃ 𝐸𝑗
∞
𝑗=0 ), and this union is disjoint modulo null set.                                                                

Thus, 𝜈(𝐸) = 𝜈(𝐸∞) + ∑ 𝜈(𝐸𝑗).∞
𝑗=0 ..(iv). 

Since 𝐸𝑗 ⊆ 𝐵𝑗+1

𝑁

\𝐵 𝑗

𝑁

= 𝐵𝑗+1

𝑁

∩ 𝐴 𝑗

𝑁

, we have 
𝑗

𝑁
  f(x)  

𝑗+1

𝑁
 on Ej.                                                                       

Hence on Integration, 
𝑗

𝑁
𝜇(𝐸𝑗)  ∫

𝐸𝑗

𝑓 𝑑𝜇  
𝑗+1

𝑁
 𝜇(𝐸𝑗)…(v) 

Since 𝐸𝑗 ⊆ 𝐴 𝑗

𝑁

 we have (𝜈 −
𝑗

𝑁
𝜇) 𝐸𝑗 ≥ 0 …(vi).                                                                         

Also, Ej ⊆ 𝐵𝑗+1

𝑁

  (𝜈 −
𝑗+1

𝑁
𝜇) 𝐸𝑗 ≤ 0…(vii). 

From (vi) and (vii) 
𝑗

𝑁
𝜇(𝐸𝑗)  𝜈(𝐸𝑗)  

𝑗+1

𝑁
 𝜇(𝐸𝑗)…(viii). 

From (v) and (viii) we get                                                                                                                      

𝜈(𝐸𝑗) −
1

𝑁
𝜇(𝐸𝑗) ≤

𝑗

𝑁
𝜇(𝐸𝑗)  ∫

𝐸𝑗

𝑓 𝑑𝜇  
𝑗+1

𝑁
 𝜇(𝐸𝑗)  𝜈(𝐸𝑗) +

1

𝑁
𝜇(𝐸𝑗). 

Ie. 𝜈(𝐸𝑗) −
1

𝑁
𝜇(𝐸𝑗)  ∫

𝐸𝑗

𝑓 𝑑𝜇   𝜈(𝐸𝑗) +
1

𝑁
𝜇(𝐸𝑗)… (ix).                                                                    

Now taking the sum from j = 0 to ,                                                                                                                 

∑ 𝜈(𝐸𝑗)∞
𝑗=0 −

1

𝑁
∑ 𝜇(𝐸𝑗)∞

𝑗=0   ∑ ∫
𝐸𝑗

𝑓 𝑑𝜇∞
𝑗=0    ∑ 𝜈(𝐸𝑗)∞

𝑗=0 +
1

𝑁
∑ 𝜇(𝐸𝑗)∞

𝑗=0  

Since ∑ 𝜇(𝐸𝑗)∞
𝑗=0 = 𝜇(⋃ 𝐸𝑗

∞
𝑗=0 ) and ∑ ∫

𝐸𝑗

𝑓 𝑑𝜇∞
𝑗=0 = ∫

⋃ 𝐸𝑗
∞
𝑗=0

𝑓 𝑑𝜇, we get 

∑ 𝜈(𝐸𝑗)∞
𝑗=0 −

1

𝑁
𝜇(⋃ 𝐸𝑗

∞
𝑗=0 )  ∫

⋃ 𝐸𝑗
∞
𝑗=0

𝑓 𝑑𝜇   ∑ 𝜈(𝐸𝑗)∞
𝑗=0 +

1

𝑁
𝜇(⋃ 𝐸𝑗

∞
𝑗=0 )…(x) 

On 𝐸∞, from the definition of f, f(x) =  a. e.                                                                If 

𝜇(𝐸∞) > 0, then 𝜈𝐸∞ =  as (𝜈 − 𝛼𝜇)𝐸∞ > 0    Q.                                                               

If 𝜇(𝐸∞) = 0, then since 𝜈 ≪ 𝜇, 𝜈𝐸∞ = 0.                                                                       If 

𝜇(𝐸∞) = 0, then ∫
𝐸∞

𝑓 𝑑𝜇 = 0.                                                                                                           

Hence in either case ν(𝐸∞) = ∫
𝐸∞

𝑓 𝑑𝜇 … (xi).                                                                          

On adding (x) and (xi) we get,                                                                                                                  

ν(𝐸∞) + ∑ 𝜈(𝐸𝑗)∞
𝑗=0 −

1

𝑁
𝜇(⋃ 𝐸𝑗

∞
𝑗=0 )  ∫

𝐸∞

𝑓 𝑑𝜇  ∫
⋃ 𝐸𝑗

∞
𝑗=0

𝑓 𝑑𝜇  ν(𝐸∞) + ∑ 𝜈(𝐸𝑗)∞
𝑗=0 +

1

𝑁
𝜇(⋃ 𝐸𝑗

∞
𝑗=0 )                                                                                                                                         

Hence 𝜈(𝐸) −
1

𝑁
𝜇(𝐸)  ∫

𝐸
𝑓 𝑑𝜇  𝜈(𝐸) +

1

𝑁
 𝜇(𝐸)  
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 |𝜈(𝐸) − ∫
𝐸

𝑓 𝑑𝜇 | ≤
1

𝑁
 𝜇(𝐸)  N.                                                                                                   

Since E is finite as N → , 𝜈(𝐸) = ∫
𝐸

𝑓 𝑑𝜇. 

Let  be  - finite. Then  measurable Xi, i = 1, 2, … X =  Xi, Xi <   i. Apply 

the above argument for each Xi to get the required function. 

Uniqueness: Let g be any non – negative measurable function such that                                  

𝜈(𝐸) = ∫
𝐸

𝑔 𝑑𝜇  E  𝔅. 

Define An = {x  X: f(x) – g(x)  
1

𝑛
}  𝔅 and Bn = {x  X: g(x) – f(x)  

1

𝑛
}  𝔅.  Since 

f(x) – g(x)   
1

𝑛
  x  An, ∫

𝐴𝑛

(𝑓 − 𝑔) 𝑑𝜇  
1

𝑛
 (An) by first mean value theorem.                                                                                                                                                 

 ∫
𝐴𝑛

𝑓 𝑑𝜇 − ∫
𝐴𝑛

𝑔 𝑑𝜇  
1

𝑛
 (An)                                                                                                     

 (An) – (An)  
1

𝑛
 (An)                                                                                                                                             

 (An)  0  (An) = 0. 

Let C = {x  X: f(x)  g(x)}  

          =  (An  Bn) 

C = {(An) + (Bn)} = (0 + 0) = 0. C = 0. Hence f = g a. e.  

 

Short Proof: First assume that (X, 𝔅, 𝜇) is finite. For each rational ,  –  is a 

signed measure. Let (A, B) be a Hahn decomposition of  –  for each   Q. and 

take A0 = X, B0 = .                                                                                                          

For each  Q, B \ B = B  A so that ( – )(B \ B)  0 and hence                             

( – )(B \ B)  0…(i). 

If  >  then, these imply (B  A) = 0.                                                                   

a measurable function f  f   a. e. on B and f   a. e. on B ie. on A.                                             

Since B0 = , we may take f to be non – negative. 

Let E  B. Define 𝐸𝑗 = 𝐸 ∩ (𝐵𝑗+1

𝑁

\𝐵 𝑗

𝑁

) where N is a fixed positive integer … (ii),  

𝐸∞ = 𝐸 \ ⋃ 𝐵 𝑗

𝑁

∞
𝑗=1 …(iii).                                                                                                                             

Then, clearly E = 𝐸∞ ∪ (⋃ 𝐸𝑗
∞
𝑗=0 ), and this union is disjoint modulo null set.                                                                            

Thus, 𝜈(𝐸) = 𝜈(𝐸∞) + ∑ 𝜈(𝐸𝑗).∞
𝑗=0 ..(iv). 

Since 𝐸𝑗 ⊆ 𝐵𝑗+1

𝑁

∩ 𝐴 𝑗

𝑁

, we have 
𝑗

𝑁
  f(x)  

𝑗+1

𝑁
 on Ej.                                                                       

Hence on Integration, 
𝑗

𝑁
𝜇(𝐸𝑗)  ∫

𝐸𝑗

𝑓 𝑑𝜇  
𝑗+1

𝑁
 𝜇(𝐸𝑗)…(v) 

Since  
𝑗

𝑁
𝜇(𝐸𝑗)  𝜈(𝐸𝑗)  

𝑗+1

𝑁
 𝜇(𝐸𝑗, we get  
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𝜈(𝐸𝑗) −
1

𝑁
𝜇(𝐸𝑗)  ∫

𝐸𝑗

𝑓 𝑑𝜇   𝜈(𝐸𝑗) +
1

𝑁
𝜇(𝐸𝑗).                                                                    

Now taking the sum from j = 0 to ,                                                                                                                 

∑ 𝜈(𝐸𝑗)∞
𝑗=0 −

1

𝑁
∑ 𝜇(𝐸𝑗)∞

𝑗=0   ∑ ∫
𝐸𝑗

𝑓 𝑑𝜇∞
𝑗=0    ∑ 𝜈(𝐸𝑗)∞

𝑗=0 +
1

𝑁
∑ 𝜇(𝐸𝑗)∞

𝑗=0  

∑ 𝜈(𝐸𝑗)∞
𝑗=0 −

1

𝑁
𝜇(⋃ 𝐸𝑗

∞
𝑗=0 )  ∫

⋃ 𝐸𝑗
∞
𝑗=0

𝑓 𝑑𝜇   ∑ 𝜈(𝐸𝑗)∞
𝑗=0 +

1

𝑁
𝜇(⋃ 𝐸𝑗

∞
𝑗=0 ) 

On 𝐸∞, we have, f(x) =  a. e.                                                                                                               

If 𝜇(𝐸∞) > 0, then 𝜈𝐸∞ =  as (𝜈 − 𝛼𝜇)𝐸∞ > 0    Q.                                                               

If 𝜇(𝐸∞) = 0, then since 𝜈 ≪ 𝜇, 𝜈𝐸∞ = 0.                                                                       If 

𝜇(𝐸∞) = 0, then ∫
𝐸∞

𝑓 𝑑𝜇 = 0.                                                                                                           

Hence in either case ν(𝐸∞) = ∫
𝐸∞

𝑓 𝑑𝜇 .                                                                          

On adding this equality and our previous inequalities we get,                                                                                         

𝜈(𝐸) −
1

𝑁
𝜇(𝐸)  ∫

𝐸
𝑓 𝑑𝜇  𝜈(𝐸) +

1

𝑁
 𝜇(𝐸)  

 |𝜈(𝐸) − ∫
𝐸

𝑓 𝑑𝜇 | ≤
1

𝑁
 𝜇(𝐸)  N.                                                                                                   

Since E is finite as N → , 𝜈(𝐸) = ∫
𝐸

𝑓 𝑑𝜇. 

Let  be  - finite. Then  measurable Xi, i = 1, 2, … X =  Xi, Xi <   i. Apply 

the above argument for each Xi to get the required function. 

Uniqueness: Let g be any measurable function such that 𝜈(𝐸) = ∫
𝐸

𝑔 𝑑𝜇  E  𝔅. 

Define An = {x  X: f(x) – g(x)  
1

𝑛
}  𝔅 and Bn = {x  X: g(x) – f(x)  

1

𝑛
}  𝔅.  Since 

f(x) – g(x)   
1

𝑛
  x  An, ∫

𝐴𝑛

(𝑓 − 𝑔) 𝑑𝜇  
1

𝑛
 (An) by first mean value theorem.                                                                                                                                                 

 ∫
𝐴𝑛

𝑓 𝑑𝜇 − ∫
𝐴𝑛

𝑔 𝑑𝜇  
1

𝑛
 (An)                                                                                                     

 (An) – (An)  
1

𝑛
 (An)                                                                                                                                             

 (An)  0  (An) = 0. 

Let C = {x  X: f(x)  g(x)}  

          =  (An  Bn) 

C = {(An) + (Bn)} = (0 + 0) = 0. C = 0. Hence f = g a. e.  

 

Note: The function f given by Radon–Nikodym Theorem is called the Radon–Nikodym 

derivative of v with respect to . It is sometimes denoted by [
𝑑𝜈

𝑑𝜇
]. 

 

Proposition (Lebesgue Decomposition): Let (X, 𝔅, ) be a -finite measure space and 

 a -finite measure defined on 𝔅. Then we can find a measure 0, singular with 

respect to , and a measure 1, absolutely continuous with respect to , such that  = 0 

+ 1. The measures 0 and 1 are unique. 
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Proof: Since  and  are  - finite measures, so is the measure  =  + .                                   

Let E  𝔅  E = 0.                                                                                                                              

Then E + E = 0 so that E = 0 and E = 0 since ,  are nonnegative.                                                    

  ≪  and  ≪ .                                                                                                                                     

By Radon – Nikodym theorem  non negative measurable functions f and g such that 

𝜈(𝐸) = ∫
𝐸

𝑔 𝑑𝜆 and 𝜇(𝐸) = ∫
𝐸

𝑓 𝑑𝜆.                                                                                     

Define A = {x  X: f(x) > 0} and B = {x  X: f(x) = 0}.                                                                   

Then clearly X = A  B and A  B = . 

Also B = ∫
𝐵

𝑓 𝑑𝜆 = 0. 

Define 0: 𝔅 → [0, )  {} by 0(E) = (E  B)  E  𝔅.                                                                

and 1: 𝔅 → [0, )  {} by 1(E ) = (E  A)  E  𝔅.   

Then clearly 0, and 1 are measures.                                                                              

Then 0(A) = (A  B) = () = 0.                                                                                              

Thus  disjoint measurable sets A and B with X = A  B   (B) = 0(A) = 0.                        

 0 ⊥ . 

Also  = 0 + 1. 

Let E  𝔅  E = 0.  0 = E = ∫
𝐸

𝑓 𝑑𝜆.  f = 0 a. e. on E w. r. t. . 

 {x  X: f(x) > 0} = 0.                                                                                                               

Then (E  A) = 0. 

Since  ≪  it follows that 1(E) = (E  A) = 0. 

Thus, (E) = 0  1(E) = 0.                                                                                                                   

 1 ≪ . 

Uniqueness: Suppose  = 0 + 1 and  = 0 + 1 where 0 ⊥ , 0 ⊥ , 1 ≪ , 1 ≪ 

.                                                                                                                                          

So,  A, B, A, B  X = A  B = A  B, A  B = A  B =  and 0(A) = (B) = 

0(A) = (B) = 0.  

Let E  𝔅.                                                                                                                                  

Then, E = (E  A  A)  (E  A  B)  (E  B  B)  (E  A  B). 

Clearly  is zero on the last three sets in this union and hence 1 and 1 are zero by 

absolute continuity.                                                                                                                         

Since 1 – 1 = 0 – 0 we have (1 – 1)(E ) = (1 – 1)(E  A  A)                                       

= (0 – 0)(E  A  A) = 0 as 0(A) = 0(A) = 0.                                                                          

So, 1(E) = 1(E) which implies 0(E) = 0(E). Hence the theorem. 

 



29 
 

 

Problem: Show that if  is a signed measure such that  is mutually singular w. r. t  

and  ≪  then  = 0. 

Solution: Since  ⊥ ,  a measurable set A such that A = (�̃�) = 0. 

Let E be any measurable set.                                                                                                     

Then E = (E  A)  (E  �̃�)                                                                                                             

 E = (E  A) + (E  �̃�) = (E  A) + 0 ⸪ (�̃�) = 0. 

 E = (E  A) … (i).                                                                                                                

Since E  A  A, (E  A)  (A) = 0                                                                                                                          

 (E  A) = 0. 

Since  ≪ , (E  A) = 0                                                                                                                       

 E = 0 from (i).                                                                                                                            

Thus, E = 0  E  𝔅. 

  = 0. 

 

 

The Lp  Spaces. 

 

Definition: Let p, 1  p <  be a  real number. We define                                                              

𝐿𝑝= 𝐿𝑝(𝑋, 𝜇)= {𝑓/ 𝑓: 𝑋 → ℝ 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 ∫
𝑋

|𝑓|𝑝𝑑𝜇 < ∞}.  

Definition: For a function f  𝐿𝑝(𝑋, 𝜇), 𝑑𝑒𝑓𝑖𝑛𝑒 ‖𝑓‖𝑝 = (∫
𝑋

|𝑓|𝑝𝑑𝜇)

1

𝑝
. 

Definition: Two measurable functions f, g are said to be equivalent if there are equal 

almost everywhere. Ie. f ~ g iff f = g a. e.  

 

Definition: A real number M is said to be an essential bound for the function f if 
|𝑓(𝑥)| ≤ 𝑀 𝑎. 𝑒. on X. A function f defined on X is essentially bounded if it is bounded 

except possibly on a set of measure zero. 

Essential supremum of f on X is defined as inf{M: m({xE: |𝑓(𝑥)| > 𝑀}) = 0}.                                                             

We denote the class of all measurable functions defined on X which are essentially 

bounded on X by 𝐿∞(𝑋, 𝜇).                                                                                     For f 

𝐿∞(𝑋, 𝜇) we define ‖𝑓‖∞= ess sup |𝑓|.  
 

THE MINKOWSKI AND HOLDER INEQUALITIES 

 

Lemma: Let ,  be non – negative real numbers and 0 <  < 1.  Then 𝛼𝜆𝛽1−𝜆 ≤ 𝜆𝛼 +
(1 − 𝜆)𝛽 with equality if  = .  

Proof: Define  as (t) = (1 – ) + t – t for all real numbers t.                                                    

Then (1) = 1 –  +  – 1 = 0.                               

Also (t) =  – t - 1 = (1 – t - 1) 

(t) = – ( – 1)t – 2.  
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And (t) = 0 iff t = 1 and (1) = –( – 1) > 0.                                                                                    

  has local minimum at t = 1.                                                                                                         

 t < 1   is decreasing. Ie. (t) > (1) ant t > 1   is increasing                                           

ie. (t) > (1).                                                                                                                                               

Thus t  1  (t) > (1)   (1 – ) + t – t > 0  t < (1 – ) + t                                            

 we may say that t  (1 – ) + t for all t and with equality if t = 1...(i) 

If   0 put t =  /  in (i).                                                                                                             

Then  (
𝛼

𝛽
)

𝜆
≤ 1 − 𝜆 + 𝜆 (

𝛼

𝛽
)                                                                                                     

 
𝛼𝜆

𝛽𝜆
≤ (1 − 𝜆) +

𝜆𝛼

𝛽
                                                                                                                       

 𝛼𝜆𝛽1−𝜆 ≤ 𝜆𝛼 + (1 − 𝜆)𝛽 with equality if  = . 

 

HOLDER’S INEQUALITY: 

If p and q are non – negative extended real numbers such that 
1

𝑝
+

1

𝑞
= 1 and                         

if f 𝐿𝑝, g 𝐿𝑞 , 𝑡ℎ𝑒𝑛 𝑓𝑔 ∈ 𝐿1and ∫|𝑓𝑔|  ≤ ‖𝑓‖𝑝 ‖𝑔‖𝑞  equality holds iff for some non 

– zero constants  and , we have 𝛼|𝑓|𝑝 = 𝛽|𝑔|𝑞 𝑎. 𝑒.  
Proof: If p = 1, q = , then the in equality holds. So, assume that 1 < p < . First 

assume that ‖𝑓‖𝑝= 1 = ‖𝑔‖𝑞 

Take 𝛼 =  |𝑓(𝑡)|𝑝, 𝛽 =  |𝑔(𝑡)|𝑞and 𝜆 =
1

𝑝
, 1 − 𝜆 =

1

𝑞
.                                                          

Then by Lemma we get |𝑓(𝑡)||𝑔(𝑡)|  ≤
1

𝑝
|𝑓(𝑡)|𝑝 +

1

𝑞
|𝑔(𝑡)|𝑞 and equality holds if  = 

 ie. |𝑓(𝑡)|𝑝 =  |𝑔(𝑡)|𝑞...(i)  

 ∫|𝑓𝑔|  ≤
1

𝑝
∫|𝑓(𝑡)|𝑝 +

1

𝑞
∫|𝑔(𝑡)|𝑞= 

1

𝑝
‖𝑓‖𝑝 +

1

𝑞
‖𝑔‖𝑞=

1

𝑝
+

1

𝑞
= 1  

Ie. ∫|𝑓𝑔|  ≤ 1 = ‖𝑓‖𝑝‖𝑔‖𝑞 

Let f 𝐿𝑝, g  𝐿𝑞. Now if ‖𝑓‖ = 0 or ‖𝑔‖ = 0 then the inequality is obvious. Assume 

that ‖𝑓‖ ≠ 0 and ‖𝑔‖ ≠ 0.                                                                      Then 
𝑓

‖𝑓‖
∈

𝐿𝑝,
𝑔

‖𝑔‖
∈ 𝐿𝑞 .                                                                                                                                  

Also ‖
𝑓

‖𝑓‖
‖ = 1 and ‖

𝑔

‖𝑔‖
‖ = 1.                                                                                                      

So by the above case ∫ |
𝑓

‖𝑓‖

𝑔

‖𝑔‖
| ≤ 1 and equality holds iff  |

𝑓

‖𝑓‖
|

𝑝
= |

𝑔

‖𝑔‖
|

𝑞
 iff  

|𝑓|𝑝

‖𝑓‖𝑝
𝑝 =

|𝑔|𝑞

‖𝑔‖𝑞
𝑞 iff ‖𝑔‖𝑞

𝑞|𝑓|𝑝 = ‖𝑓‖𝑝
𝑝|𝑔|𝑞 a. e. ... (ii). 

Now ∫ |
𝑓

‖𝑓‖

𝑔

‖𝑔‖
| ≤ 1  

1

‖𝑓‖‖𝑔‖
∫|𝑓𝑔|  ≤ 1 ∫|𝑓𝑔|  ≤ ‖𝑓‖𝑝‖𝑔‖𝑞                                                                              

Also equality holds iff ‖𝑔‖𝑞
𝑞|𝑓|𝑝 = ‖𝑓‖𝑝

𝑝|𝑔|𝑞 a. e. ie equality holds iff for some non – 

zero constants  = ‖𝑔‖𝑞
𝑞
 and  = ‖𝑓‖𝑝

𝑝
 , we have 𝛼|𝑓|𝑝 = 𝛽|𝑔|𝑞 𝑎. 𝑒.  

 

MINKOWSKI’S INEQUALITY: 

 If f, g ∈ 𝐿𝑝with 1  p  , then f + g ∈ 𝐿𝑝 and ‖𝑓 + 𝑔‖𝑝  ≤  ‖𝑓‖𝑝 + ‖𝑔‖𝑝 

Proof: Let f, g ∈ 𝐿𝑝with 1  p  .  Then f + g ∈ 𝐿𝑝 since Lp is linear. 
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Now ‖𝑓 + 𝑔‖1 = ∫|𝑓 + 𝑔|𝑑𝑥  
                         ≤ ∫(|𝑓| + |𝑔|)𝑑𝑥  

                         = ∫|𝑓| 𝑑𝑥 + ∫|𝑔|𝑑𝑥   

                         =  ‖𝑓‖1 + ‖𝑔‖1 

Also ‖𝑓 + 𝑔‖∞ = ess sup |(𝑓 + 𝑔)(𝑡)|  
                        ess sup |𝑓(𝑡)| +  ess sup |𝑔(𝑡)|  
                       = ‖𝑓‖∞ + ‖𝑔‖∞ 

So assume that 1 < p < . Let q be the real number such that 
1

𝑝
+

1

𝑞
= 1.                             

Now |𝑓 + 𝑔|𝑝 =  |𝑓 + 𝑔|𝑝−1 ∙ |𝑓 + 𝑔|   
                         |𝑓 + 𝑔|𝑝−1 ∙ (|𝑓| + |𝑔|) 

                        = |𝑓 + 𝑔|𝑝−1 ∙ |𝑓| + |𝑓 + 𝑔|𝑝−1 ∙ |𝑔| ... (i) 
Claim: |𝑓 + 𝑔|𝑝−1 ∈ 𝐿𝑞  

Now (|𝑓 + 𝑔|𝑝−1)𝑞 = |𝑓 + 𝑔|(𝑝−1)𝑞 = |𝑓 + 𝑔|𝑝                                                                         

Since f + g  Lp, we have ∫|𝑓 + 𝑔|𝑝 < ∞.                                                                                                     

Now ∫(|𝑓 + 𝑔|𝑝−1)𝑞=∫|𝑓 + 𝑔|𝑝 < ∞.                                                                                              

So we have |𝑓 + 𝑔|𝑝−1 ∈ 𝐿𝑞. Since f, g ∈ 𝐿𝑝 and |𝑓 + 𝑔|𝑝−1 ∈ 𝐿𝑞, we have by 

Holder’s inequality, ∫|𝑓||𝑓 + 𝑔|𝑝−1 ≤ ‖𝑓‖𝑝‖(𝑓 + 𝑔)𝑝−1‖𝑞. 

∫|𝑔||𝑓 + 𝑔|𝑝−1 ≤ ‖𝑔‖𝑝‖(𝑓 + 𝑔)𝑝−1‖𝑞 

But ‖(𝑓 + 𝑔)𝑝−1‖𝑞 = {∫(|𝑓 + 𝑔|𝑝−1)𝑞}
1

𝑞 = (∫|𝑓 + 𝑔|(𝑝−1)𝑞)
1

𝑞 = (∫|𝑓 + 𝑔|𝑝)
1

𝑞 = 

{(∫|𝑓 + 𝑔|𝑝)
1

𝑝}

𝑝

𝑞

 = ‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
 

 ∫|𝑓||𝑓 + 𝑔|𝑝−1 ≤ ‖𝑓‖𝑝‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
  and  

∫|𝑔||𝑓 + 𝑔|𝑝−1 ≤ ‖𝑔‖𝑝‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
...(ii). 

 From (i) and (ii), ∫|𝑓 + 𝑔|𝑝 ≤ ‖𝑓‖𝑝‖𝑓 + 𝑔‖𝑝

𝑝

𝑞 + ‖𝑔‖𝑝‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
                                                        

 ∫|𝑓 + 𝑔|𝑝 ≤ (‖𝑓‖𝑝 + ‖𝑔‖𝑝) ∙ ‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
                                                                             

 ‖𝑓 + 𝑔‖𝑝
𝑝

≤ (‖𝑓‖𝑝 + ‖𝑔‖𝑝) ∙ ‖𝑓 + 𝑔‖𝑝

𝑝

𝑞
                                                                      

 ‖𝑓 + 𝑔‖𝑝

𝑝−
𝑝

𝑞 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝 

 ‖𝑓 + 𝑔‖𝑝  ≤  ‖𝑓‖𝑝 + ‖𝑔‖𝑝 since  𝑝 −
𝑝

𝑞
 = 𝑝 (1 −

1

𝑞
) = 𝑝 (

1

𝑝
) = 1. 

 

Definition: A bounded linear functional on 𝐿𝑝 is a linear map from 𝐿𝑝 to R which is 

also continuous. (𝐿𝑝)* = {x*: x* is a bounded linear functional on 𝐿𝑝}.  

 

Lemma: Let f  𝐿𝑝 (), 1  p < . Then for any  > 0, there is a simple function  

which vanishes outside a set of finite measure such that ∫ |𝑓 − 𝜑|𝑝𝑑𝜇 <  or 

‖𝑓 − 𝜑‖𝑝< .  
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Proof: W. l. g. suppose X < .                                                                                              

If possible suppose   > 0 such that for any simple function,                                                                                         

  ‖𝑓 − 𝜑‖𝑝 ‖𝑓 − 𝜑‖𝑝
𝜇(𝑋)

𝜇(𝑋)
  {∫

𝑋
|𝑓 − 𝜑|𝑑𝜇}

1

𝜇(𝑋)
 … (i).                                                   

There exists a sequence of simple functions such that ∫ 𝑓 𝑑𝜇 = lim ∫ 𝜑𝑛 𝑑𝜇.             We 

can find k such that ∫|𝑓 − 𝜑𝑘| 𝑑𝜇 <  (X)…(ii) 

From (i) and (ii) we get  <  which is a contradiction. Hence ‖𝑓 − 𝜑‖𝑝< . 

 

Proposition: Let g  Lq, 
1

𝑝 
 + 

1

𝑞
= 1, Define F(f) = ∫

𝑋
𝑓𝑔 𝑑𝜇 for all f  𝐿𝑝. Then F  

(Lp)*.  

 

Proposition: Let (X, 𝔅, ) be a finite measure space and g be an integrable function 

such that for some constant M, |∫ 𝑔𝜑 𝑑𝜇|  ≤ 𝑀 for all simple functions ,  Then g  

𝐿𝑞. 

Proof: Since |𝑔|𝑞 is a non – negative measurable function,  a sequence of non – 

negative measurable simple functions {𝜓𝑛}  𝜓𝑛 |𝑔|𝑞 .                                                               

Then the function 𝜑𝑛 = {𝜓𝑛}
1

𝑝(sgn g)… (i) is a well defined simple function for each n. 

Also, ∫
𝑋

|𝜑𝑛(𝑥)|𝑝𝑑𝜇 = ∫ 𝜓𝑛(𝑥)𝑑𝜇.                                                             Thus, 

‖𝜑𝑛‖𝑝 = {∫ 𝜓𝑛𝑑𝜇}
1

𝑝.                                                                                            Since 

𝜑𝑛𝑔 ≥ |𝜑𝑛||𝜓𝑛|
1

𝑞 = |𝜓𝑛|
1

𝑝
+

1

𝑞 = 𝜓𝑛, we have                                                                                  

∫ 𝜓𝑛𝑑𝜇 ≤ ∫ 𝜑𝑛𝑔 𝑑𝜇  M‖𝜑𝑛‖𝑝= M{∫ 𝜓𝑛𝑑𝜇}
1

𝑝. 

Since 1 −
1

𝑝
=

1

𝑞
, {∫ 𝜓𝑛𝑑𝜇}

1

𝑝  M or ∫ 𝜓𝑛𝑑𝜇 ≤  𝑀𝑝 and by Monotone convergence 

theorem, ∫ |𝑔|𝑞𝑑𝜇 ≤  𝑀𝑝 ie. g  𝐿𝑞. 

 

Proposition: Let {En} be a sequence of disjoint measurable sets and for each n, let fn be 

a function in 𝐿𝑝, 1  p < , that fn = 0 on En.                                                                                                   

Set f =∑ 𝑓𝑛
∞
𝑛=1 . Then f  𝐿𝑝 if and only if ∑‖𝑓𝑛‖𝑝

𝑝
 < .                                                                           

In this case, f = ∑ 𝑓𝑛 𝑛 in 𝐿𝑝 that is ‖𝑓 − ∑ 𝑓𝑖
𝑛
𝑖=1 ‖𝑝 → 0, and ‖𝑓‖𝑝 = ∑ ‖𝑓𝑛‖𝑝∞

𝑛=1 . 

 

Riesz Representation Theorem: Let f be a bounded linear functional on 𝐿𝑝(𝜇) with 1 

 p <  and  a  - finite measure. Then there is a unique g in 𝐿𝑝, where 
1

𝑝 
 + 

1

𝑞
= 1, 

such that F(f) = ∫ 𝑓𝑔 𝑑𝜇. Also, ‖𝐹‖ = ‖𝑔‖𝑞. 

Proof: Step (i): Let  be finite measure.                                                                               

Since f is bounded and measurable f  𝐿𝑝.                                                                                            
For any E  𝔅, E  X, define (E) = F(E) where E is the characteristic function of E.  

Claim:  is a signed measure. 

Clearly () = F() = 0.  
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Let {En} be pairwise disjoint sequence of m’ble sets and E = ⋃ 𝐸𝑛
∞
𝑛=1                                                                                                                             

Then |𝜈(𝐸𝑛)| = |𝐹(𝜒𝐸𝑛
)| = sgn {𝐹(𝜒𝐸𝑛

)} 𝐹(𝜒𝐸𝑛
) 

∑ |𝜈(𝐸𝑛)|∞
𝑛=1  = ∑ 𝑠𝑔𝑛[{𝐹(𝜒𝐸𝑛

)} 𝐹(𝜒𝐸𝑛
)]∞

𝑛=1  = ∑ 𝐹{𝑠𝑔𝑛 𝐹(𝜒𝐸𝑛
)}∞

𝑛=1 𝜒𝐸𝑛
. 

Write fn = 𝑠𝑔𝑛 𝐹(𝜒𝐸𝑛
)𝜒𝐸𝑛

.                                                                                                      

Then fn = 0 outside En. Set f = ∑ 𝑓𝑛.                                                                                     

Then by proposition fn  𝐿𝑝 and f  𝐿𝑝, ‖𝑓‖𝑝 = ∑ ‖𝑓𝑛‖𝑝∞
𝑛=1  < .                                           

Thus, |𝐹(𝑓)| ≤ ‖𝐹‖‖𝑓‖𝑝 < .                                                                                                                              

So, ∑ |𝜈(𝐸𝑛)|∞
𝑛=1  < . 

Now ∑ 𝜈(𝐸𝑛)∞
𝑛=1  = ∑ 𝐹(𝜒𝐸𝑛

)∞
𝑛=1  = F∑ 𝜒𝐸𝑛

∞
𝑛=1 = 𝐹(𝜒∪𝐸𝑛

) = 𝐹(𝜒𝐸) = (E) = 

𝜈(⋃ 𝐸𝑛
∞
𝑛=1 )  

Thus,  is countably additive.                                                                                                                

Hence  is a signed measure.  

Claim:  ≪ .                                                                                                                                     

Let (E) = 0.                                                                                                                

Then 0 = (E) = ∫
𝐸

𝜒𝐸  𝑑𝜇.                                                                                                        

Hence 𝜒𝐸 = 0 on E.                                                                                                                       

Thus, F(𝜒𝐸) = 0 and hence (E ) = 0.  ≪ .                                                                      

 By Radon-Nikodym theorem,  a measurable function g such that for any 

E  𝔅,  ∫
𝐸

𝑔 𝑑𝜇 = (E) < .  g is integrable.  

For any f  𝐿𝑝, G(f) = ∫ 𝑓𝑔 𝑑𝜇. 
Claim:  G is a bounded linear functional on 𝐿𝑝. 

For any simple function , F() = 𝐹(∑ 𝑐𝑖𝜒𝐸𝑖

𝑘
𝑖=1 ) = ∑ 𝑐𝑖𝐹(𝜒𝐸𝑖

)𝑘
𝑖=1                                           

= ∑ 𝑐𝑖𝜈(𝐸𝑖)𝑘
𝑖=1  = ∑ 𝑐𝑖 ∫

𝐸𝑖

𝑔 𝑑𝜇𝑘
𝑖=1  = ∑ ∫

𝐸𝑖

𝑐𝑖𝑔 𝑑𝜇𝑘
𝑖=1  = ∫ 𝜑𝑔 𝑑𝜇 … (i). 

Now, |∫ 𝜑𝑔 𝑑𝜇| = |𝐹(𝜑)|  ‖𝐹‖‖𝜑‖𝑝 since F  (Lp)*. 

Hence by a Proposition, g  𝐿𝑞. 

Now |𝐺(𝑓)| = |∫ 𝜑𝑔 𝑑𝜇|  ‖𝐹‖𝑝‖𝐺‖𝑞 

Hence G (𝐿𝑝)∗.  

Next for any simple function   𝐿𝑝, G() = ∫ 𝜑𝑔 𝑑𝜇 = F() from (i) 

Hence F – G = 0 on the set of all simple functions.  F = G on 𝐿𝑝.                                       
 F(f) = G(f) = ∫ 𝑓𝑔 𝑑𝜇. 

Uniqueness of g:                                                                                                                    

Let g1, g2 be  g1  𝐿𝑞 , g2  𝐿𝑞 and F(f) = ∫ 𝑓𝑔1 𝑑𝜇 = ∫ 𝑓𝑔2 𝑑𝜇  f  𝐿𝑝. 

 ∫ 𝑓(𝑔1 − 𝑔2) 𝑑𝜇 = 0 ie. 𝑔1 − 𝑔2 corresponds to zero functional. Hence 

‖𝑔1 − 𝑔2‖ = 0 which shows that g1 = g2 a.e. 

Step (ii): Let  be  - finite, so that X = ⋃ 𝑋𝑛
∞
𝑛=1  , 𝜇(𝑋𝑛) <  for each n. 

 For each n  gn  𝐿𝑞(Xn)  Fn(f) = ∫
𝑋𝑛

𝑓𝑔𝑛 𝑑𝜇,  𝑛𝜖ℤ, 𝑓 ∈ 𝐿𝑝(𝑋𝑛).  

Take gn = 0 outside Xn as also f.                                                                                            

Since each Fn = F/XnL
p(Xn), clearly ‖𝐹𝑛‖𝑋𝑛

= ‖𝐹‖  n and hence                                   

‖𝑔𝑛‖𝑞 ≤ ‖𝐹‖  n. … (ii). Further assume 𝑔𝑛+1 = 𝑔𝑛 on Xn.                                                                                 
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Define g(x) = gn(x)  x  Xn.                                                                                                       

Take Xn to be increasing, so g is well defined and |𝑔𝑛| ↑  |𝑔|.                                                        
By Monotone convergence theorem, ∫ |𝑔|𝑞  𝑑𝜇 = lim ∫ |𝑔𝑛|𝑞  𝑑𝜇  ‖𝐹‖𝑞 by (ii) 

Hence g  𝐿𝑞(𝑋). We now obtain any f  𝐿𝑝(𝑋) as a limit of a sequence of function in 

𝐿𝑝(𝑋𝑛). Define 𝑓𝑛(𝑥) = {
𝑓(𝑥) 𝑖𝑓 𝑥 ∈  𝑋𝑛

0 𝑖𝑓 𝑥 ∉  𝑋𝑛
  

Then x  X  x  Xn for some n and f(x) = fk(x) for k  n. 

 fn → f pointwise. Also, lim
𝑛

∫
𝑋

|𝑓𝑛 − 𝑓|𝑝 𝑑𝜇 = ∫
𝑋

lim|𝑓𝑛 − 𝑓| 𝑑𝜇 = 0 

Hence fn → f in 𝐿𝑝(𝑋). For any n, |𝑓𝑛𝑔|  |𝑓𝑔| and |𝑓𝑔| is integrable.                           

 fng → fg.                                                                                                                                           

By Lebesgue convergence theorem, ∫ 𝑓𝑔 𝑑𝜇 = lim ∫ 𝑓𝑛𝑔𝑛 𝑑𝜇 = lim ∫ 𝑓𝑛𝑔 𝑑𝜇                

= lim F(fn) = F(f). Hence the theorem.                                                                                                                                                                                                                                                                         
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M 401: MEASURE THEORY: UNIT III 

K. C. TAMMI RAJU 

MEASURE AND OUTER MEASURE 

1. OUTER MEASURE AND MEASURABILITY 

 

Definition: By an outer measure 𝜇∗ we mean a nonnegative extended real valued set 

function defined on all subsets of a space X and having the following properties 

(i) 𝜇∗(𝜙) = 0                                                                                                                      

(ii) A  B  𝜇∗(A)  𝜇∗(B)                                                                                                       

(iii) E  ⋃ 𝐸𝑖
∞
𝑖=1   𝜇∗(𝐸) ≤ ∑ 𝜇∗(𝐸𝑖)∞

𝑖=1  

Here property (ii) is called the monotonicity of 𝜇∗ and the property (iii) is called the 

subadditivity of 𝜇∗. 

 

Result: Let 𝜇∗ be a nonnegative extended real valued set function defined on all subsets 

of a space X and having the following properties 

(i) 𝜇∗(𝜙) = 0                                                                                                                      

(ii) A  B  𝜇∗(A)  𝜇∗(B)                                                                                                       

(iii) E = ⋃ 𝐸𝑖
∞
𝑖=1 ; Ei are disjoint  𝜇∗(𝐸) ≤ ∑ 𝜇∗(𝐸𝑖)∞

𝑖=1 . Then 𝜇∗ is an outer measure. 

Proof: Let E  ⋃ 𝐸𝑖
∞
𝑖=1  where {Ei} is a sequence of subsets of X.                                            

Then we can find pairwise disjoint sequence {Ei} such that each Ei  Ei and ⋃ 𝐸𝑖
′∞

𝑖=1  = 

⋃ 𝐸𝑖
∞
𝑖=1 .  by (iii),  𝜇∗(𝐸) ≤  ∑ 𝜇∗(𝐸𝑖

′)∞
𝑖=1   ∑ 𝜇∗(𝐸𝑖)∞

𝑖=1 .                                       

Hence 𝜇∗ is an outer measure. 

 

ie. Property (iii) in the definition of an outer measure can be replaced by                                 

(iii) E = ⋃ 𝐸𝑖
∞
𝑖=1 ; Ei are disjoint  𝜇∗(𝐸) ≤ ∑ 𝜇∗(𝐸𝑖)∞

𝑖=1 . 

 

Definition: A set E is said to be measurable with respect to  𝜇∗ or * - measurable if for 

every set A we have 𝜇∗(𝐴) = 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ �̃�). 

 

Theorem: A set E is 𝜇∗ measurable if and only if 𝜇∗(𝐴) ≥ 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ �̃�)  for 

every set A.  

Proof: If E is 𝜇∗ measurable, the inequality holds trivially.  

Conversely suppose E is a set such that 𝜇∗(𝐴) ≥ 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ �̃�) …(i) for 

every set A.                                                                                                                              

By sub additivity of *, we have 𝜇∗(𝐴) ≤ 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ �̃�)…(ii), since          

𝐴 = (𝐴 ∩ 𝐸) ∪ (𝐴 ∩ �̃�).  

Hence from (i) and (ii) 𝜇∗(𝐴) = 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ �̃�) for every set A showing E is 

*- measurable. 

Remark: In view of above theorem, it is only necessary to show the inequality 

𝜇∗(𝐴) ≥ 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ �̃�) for every set A to prove the measurability of E. 

 

Theorem: The class 𝔅 of * - measurable sets is a  - algebra.  
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Proof : For any set A, we have 𝜇∗(𝐴 ∩ 𝜙) + 𝜇∗(𝐴 ∩ �̃�) = 𝜇∗(𝜙) + 𝜇∗(𝐴 ∩ 𝑋)                                    

= 0 + 𝜇∗(𝐴)  = 𝜇∗(𝐴) so that  is * - measurable…(i). 

Suppose E is * measurable. Then for any set A, 𝜇∗(𝐴) = 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ �̃�)  

for any set A, 𝜇∗(𝐴) = 𝜇∗ (𝐴 ∩ (�̃�)̃) + 𝜇∗(𝐴 ∩ �̃�) �̃� is * - measurable…(ii) 

Suppose E1, and E2, are *-measurable sets. Then for any set A, we get, by the 

measurability of E2 that 𝜇∗(𝐴) = 𝜇∗(𝐴 ∩ 𝐸2) + 𝜇∗(𝐴 ∩ 𝐸2̃)…(iii)                                                              

If we take 𝐴 ∩ 𝐸2̃ for A, then measurability of E1, gives                                                          

𝜇∗(𝐴 ∩ 𝐸2̃) = 𝜇∗(𝐴 ∩ 𝐸2̃ ∩ 𝐸1) + 𝜇∗(𝐴 ∩ 𝐸2̃ ∩ 𝐸1̃).                                                                                 

Substituting this value of 𝜇∗(𝐴 ∩ 𝐸2̃) in (iii),                                                                                        

𝜇∗(𝐴) = 𝜇∗(𝐴 ∩ 𝐸2) + 𝜇∗(𝐴 ∩ 𝐸2̃ ∩ 𝐸1) + 𝜇∗(𝐴 ∩ 𝐸2̃ ∩ 𝐸1̃)… (iv) 

Since 𝐴 ∩ (𝐸1 ∪ 𝐸2) = (𝐴 ∩ 𝐸2) ∪ (𝐴 ∩ 𝐸2̃ ∩ 𝐸1) is a disjoint union, 𝜇∗{𝐴 ∩ (𝐸1 ∪

𝐸2)}  𝜇∗(𝐴 ∩ 𝐸2) + 𝜇∗(𝐴 ∩ 𝐸2̃ ∩ 𝐸1)… (v).                                                                                

 From (iv) and (v) 𝜇∗(𝐴) ≥ 𝜇∗{𝐴 ∩ (𝐸1 ∪ 𝐸2)} + 𝜇∗(𝐴 ∩ 𝐸2̃ ∩ 𝐸1̃)                                                 

= 𝜇∗{𝐴 ∩ (𝐸1 ∪ 𝐸2)} + 𝜇∗(𝐴 ∩ 𝐸1 ∪ 𝐸2
̃ ). 

Thus, for any set A, 𝜇∗(𝐴) ≥ 𝜇∗{𝐴 ∩ (𝐸1 ∪ 𝐸2)} +  𝜇∗{𝐴 ∩ (𝐸1 ∪ 𝐸2
̃ )}. 

Therefore E1  E2 is * - measurable.  

Thus, E1  E2  𝔅  if  E1, and E2 𝔅 …(v). 

By induction this can be extended to any finite number of sets. 

From (1) and (2) we get that B is an algebra of sets. 

 

To prove 𝔅 is a  - algebra let {Ei} be a sequence of pairwise disjoint sets in 𝔅 and  E 

= ⋃ 𝐸𝑖
∞
𝑖=1 . Write 𝐺𝑛 = ⋃ 𝐸𝑖

𝑛
𝑖=1 .                                                                                                      

Then for any n, 𝐺𝑛 is *-measurable set.                                                                                           

Also 𝐺𝑛  E gives �̃�  𝐺�̃� so that 𝜇∗(𝐴) = 𝜇∗(𝐴 ∩ 𝐺𝑛) + 𝜇∗(𝐴 ∩ 𝐺�̃�)  𝜇∗(𝐴 ∩ 𝐺𝑛) +
𝜇∗(𝐴 ∩ �̃�).                                                                                                                            

Since 𝐺𝑛 ∩ 𝐸𝑛 = 𝐸𝑛 and 𝐺𝑛 ∩ 𝐸�̃�= 𝐺𝑛−1 we get, by the measurability of En that 

𝜇∗(𝐴 ∩ 𝐺𝑛)= 𝜇∗(𝐴 ∩ 𝐸𝑛) + 𝜇∗(𝐴 ∩ 𝐺𝑛−1).                                                                                        

Thus, by induction, 𝜇∗(𝐴 ∩ 𝐺𝑛) = ∑ 𝜇∗(𝐴 ∩ 𝐸𝑖)𝑛
𝑖=1 . 

 for every n, 𝜇∗(𝐴) ≥ 𝜇∗(𝐴 ∩ �̃�) + ∑ 𝜇∗(𝐴 ∩ 𝐸𝑖)𝑛
𝑖=1 .                                                                        

Since this is true for every n, we have 𝜇∗(𝐴) ≥ 𝜇∗(𝐴 ∩ �̃�) + ∑ 𝜇∗(𝐴 ∩ 𝐸𝑖)∞
𝑖=1                               

 𝜇∗(𝐴 ∩ �̃�) + 𝜇∗(𝐴 ∩ 𝐸) since 𝐴 ∩ 𝐸  ⋃ (𝐴 ∩ 𝐸𝑖).∞
𝑖=1                                                             

Thus, E is measurable.                                                                                                                    

 𝔅 is a  - algebra.  
 

Theorem: Suppose * is an outer measure and 𝔅 is the class of all *measurable sets. 

If �̅� is the restriction of * to 𝔅 (that is,  𝜇: 𝔅 → IR is such that 𝜇(𝐸) = *(E) for E  

𝔅, then 𝜇 is a complete measure on 𝔅. 

 

Proof: Let 𝜇 be the restriction of * to 𝔅                                                                                          

Clearly 𝜇 is nonnegative set function.                                                                                                   

Also,  𝜇(𝜙) =  𝜇∗(𝜙) = 0.                                                                                                                                 
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Let E1 and E2 be disjoint *-measurable sets. Then by the measurability of E2, 

�̅�(𝐸1 ∪ 𝐸2) = 𝜇∗(𝐸1 ∪ 𝐸2) = 𝜇∗[(𝐸1 ∪ 𝐸2)  ∩ 𝐸2] + 𝜇∗[(𝐸1 ∪ 𝐸2)  ∩ 𝐸2̃]                                    
= 𝜇∗(𝐸2)  + 𝜇∗(𝐸1)  = 𝜇(𝐸2)  + 𝜇(𝐸1). 
Thus, by induction, 𝜇 is finitely additive set function.  

Let {Ei} be a sequence of pairwise disjoint measurable sets and E = ⋃ 𝐸𝑖
∞
𝑖=1 .                        

Then, 𝜇(𝐸)  𝜇(⋃ 𝐸𝑖
𝑛
𝑖=1 ) =  ∑ 𝜇(𝐸𝑖)𝑛

𝑖=1  for all n. 

 𝜇(𝐸)  ∑ 𝜇(𝐸𝑖)∞
𝑖=1 . 

But 𝜇(𝐸)  ∑ 𝜇(𝐸𝑖)
∞
𝑖=1  by the subadditivity of *. Hence 𝜇 is countably additive and 

thus 𝜇 is a measure.  

Let E 𝔅 with 𝜇(𝐸) = 0 and A  E. Then 0  𝜇∗(𝐴) ≤  𝜇∗(𝐸) =  𝜇(𝐸) = 0.                       

 𝜇∗(𝐴) = 0.  𝜇∗(𝐴 ∩ 𝐸) = 0. So, 𝜇∗(𝐸)  𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ �̃�). Thus, A is * - 

measurable. Ie. A  𝔅.  Hence 𝜇 is complete. 

 

2 THE EXTENSION THEOREM:  

 

Definition: By a measure on an algebra we mean a nonnegative extended real valued 

set function  defined on an algebra 𝒜 of sets such that                                                                           

(i) () = 0                                                                                                                                                 

(ii) If {Ai} is a disjoint sequence of sets in 𝒜 whose union is also in 𝒜, then 

𝜇(⋃ 𝐴𝑖
∞
𝑖=1 ) = ∑ 𝜇(𝐴𝑖)∞

𝑖=1 . 

 

Example: The Lebesgue measure defined on the class of all intervals is a measure on 

the algebra. 

 

Definition: Suppose  is a measure on an algebra 𝒜.                                                                             

For any E, define 𝜇∗(E) = inf {∑ 𝜇(𝐴𝑖)∞
𝑖=1 : {Ai} is a sequence of sets in 𝒜 such that E 

 ⋃ 𝐴𝑖
∞
𝑖=1 }.  

 

Theorem: Suppose  is a measure on an algebra 𝒜 and 𝜇∗(E) = inf {∑ 𝜇(𝐴𝑖)∞
𝑖=1 : E  

⋃ 𝐴𝑖
∞
𝑖=1 }. Then (i) if A  𝒜 and {Ai} is any sequence of sets in 𝒜 such that A  

⋃ 𝐴𝑖
∞
𝑖=1  then (A)  ∑ 𝜇(𝐴𝑖)∞

𝑖=1 . (ii) A  𝒜  𝜇∗(𝐴) = 𝜇(𝐴). 
(iii) 𝜇∗ is an outer measure. (iv) Each A  𝒜 is 𝜇∗- measurable. 

Proof: (i) Let A  𝒜 and {𝐴𝑖} be any sequence of sets in 𝒜 such that A  ⋃ 𝐴𝑖
∞
𝑖=1   

Let 𝐵𝑖 = 𝐴 ∩ 𝐴𝑖 ∩ �̃�𝑖−1 ∩ … ∩ �̃�1. Then 𝐵𝑖  𝒜 and 𝐵𝑖 ⊆ 𝐴𝑖. Also A = ⋃ 𝐵𝑖
∞
𝑖=1 . 

By the countable additivity of , 𝜇𝐴 = ∑ 𝜇(𝐵𝑖)
∞
𝑖=1   ∑ 𝜇(𝐴𝑖)∞

𝑖=1  

Ie. (A)  ∑ 𝜇(𝐴𝑖)∞
𝑖=1 .  

(ii) Let A  𝒜. If {𝐴𝑖} is any sequence of sets in 𝒜  A  ⋃ 𝐴𝑖
∞
𝑖=1  then by (i), (A)  

∑ 𝜇(𝐴𝑖)∞
𝑖=1 .  (A) is a lower bound of {∑ 𝜇(𝐴𝑖)∞

𝑖=1 : A  ⋃ 𝐴𝑖
∞
𝑖=1 }. (A)  𝜇∗(A) 

Since A  𝒜, A is a cover for A, so (A)  𝜇∗(A). Hence (A) = 𝜇∗(A). 

(iii) Since  is nonnegative extended real valued set function so is 𝜇∗. 
Since   𝒜, by (ii)  𝜇∗() = () = 0. 

https://drive.google.com/u/1/settings/storage?hl=en-GB&utm_medium=web&utm_source=gmail&utm_campaign=storage_meter&utm_content=storage_high
https://drive.google.com/u/1/settings/storage?hl=en-GB&utm_medium=web&utm_source=gmail&utm_campaign=storage_meter&utm_content=storage_high
https://drive.google.com/u/1/settings/storage?hl=en-GB&utm_medium=web&utm_source=gmail&utm_campaign=storage_meter&utm_content=storage_high
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Let E  F. Then for every sequence {Ai} in 𝒜 with F  ⋃ 𝐴𝑖
∞
𝑖=1  we have E  ⋃ 𝐴𝑖

∞
𝑖=1 . 

Then {∑ 𝜇(𝐴𝑖)∞
𝑖=1 : E  ⋃ 𝐴𝑖

∞
𝑖=1 }  {∑ 𝜇(𝐴𝑖)∞

𝑖=1 : F  ⋃ 𝐴𝑖
∞
𝑖=1 } so that  

Inf {∑ 𝜇(𝐴𝑖)∞
𝑖=1 : E  ⋃ 𝐴𝑖

∞
𝑖=1 }  Inf {∑ 𝜇(𝐴𝑖)∞

𝑖=1 : F  ⋃ 𝐴𝑖
∞
𝑖=1 }. 

 E  F  𝜇∗(E)  𝜇∗(F). 

Let E  ⋃ 𝐸𝑖
∞
𝑖=1 . If 𝜇∗(𝐸𝑖) =  for at least one I, then we are through. 

 Assume 𝜇∗(𝐸𝑖) <  for each i.  

Let  > 0. Then  a sequence {𝐴𝑗
(𝑖)} of sets in 𝒜  𝐸𝑖 ⊆ ⋃ 𝐴𝑗

(𝑖)∞
𝑗=1  and ∑ 𝜇(𝐴𝑗

(𝑖))∞
𝑗=1  < 

𝜇∗(𝐸𝑖)+ 
𝜀

2𝑖
.  

Now E  ⋃ 𝐸𝑖
∞
𝑖=1   ⋃ ⋃ 𝐴𝑗

(𝑖)∞
𝑗=1

∞
𝑖=1  so that 𝜇∗(E) < ∑ ∑ 𝜇(𝐴𝑗

(𝑖))∞
𝑗=1

∞
𝑖=1  < 

∑ {𝜇∗(𝐸𝑖) + 
𝜀

2𝑖
. }∞

𝑖=1  = ∑ 𝜇∗(𝐸𝑖) +  ε.∞
𝑖=1                                                                                          

Since  is arbitrary we get 𝜇∗(E)   ∑ 𝜇∗(𝐸𝑖).∞
𝑖=1                                                                           

Hence 𝜇∗ is an outer measure called outer measure induced by . 

(iv) Let A 𝒜, E be an arbitrary set of finite measure and  > 0.                                     
Then  a sequence {𝐴𝑖} of sets in 𝒜  E ⊆ ⋃ 𝐴𝑖

∞
𝑖=1  and ∑ 𝜇(𝐴𝑖)∞

𝑖=1  < 𝜇∗(𝐸)+ . 

By the additivity of  on 𝒜, 𝜇(𝐴𝑖) = 𝜇(𝐴𝑖 ∩ 𝐴) + 𝜇(𝐴𝑖 ∩ �̃�). 

𝜇∗(𝐸) +  > ∑ {𝜇(𝐴𝑖 ∩ 𝐴) + 𝜇(𝐴𝑖 ∩ �̃�)}∞
𝑖=1  = ∑ 𝜇(𝐴𝑖 ∩ 𝐴)∞

𝑖=1  + ∑ 𝜇(𝐴𝑖 ∩ �̃�)∞
𝑖=1   

𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ �̃�) since 𝐸 ∩ 𝐴 ⊆ ⋃ (𝐴𝑖 ∩ 𝐴)∞
𝑖=1  and 𝐸 ∩ �̃� ⊆ ⋃ (𝐴𝑖 ∩ �̃�)∞

𝑖=1 . 

Since  is arbitrary, 𝜇∗(𝐸)  𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ �̃�) for every set E.                                    

Hence A is 𝜇∗-measurable. 

Notation: For a given Algebra 𝒜 of sets,  𝒜𝜎 denotes those sets that are countable 

unions of sets of 𝒜 and 𝒜𝜎𝛿 denotes those sets that are countable intersections of sets 

of 𝒜𝜎 . 
Theorem: Let  be a measure on an algebra 𝒜,  𝜇∗ be the outer measure induced by  

and E be any set. Then (i) for each  > 0, there is a set A  𝒜𝜎 with E  A and 

𝜇∗(𝐴) ≤ 𝜇∗(𝐸) + 𝜀. (ii) There is a B 𝒜𝜎𝛿 with E  B and 𝜇∗(𝐸) = 𝜇∗(𝐵). 

Proof: Let   > 0.  Then  a sequence {𝐴𝑖} of sets in 𝒜  E ⊆ ⋃ 𝐴𝑖
∞
𝑖=1  and ∑ 𝜇(𝐴𝑖)∞

𝑖=1  < 

𝜇∗(𝐸) + .                                                                                                                        

Writing A = ⋃ 𝐴𝑖
∞
𝑖=1 , we have A  𝒜𝜎, E  A and                                                                                 

𝜇∗(𝐴) = 𝜇∗(⋃ 𝐴𝑖
∞
𝑖=1 ) ∑ 𝜇∗(𝐴𝑖)∞

𝑖=1 = ∑ 𝜇(𝐴𝑖)∞
𝑖=1  < 𝜇∗(𝐸) + .                                                                                            

Thus, for each  > 0, there is a set A  𝒜𝜎 with E  A and 𝜇∗(𝐴) ≤ 𝜇∗(𝐸)  +  . 

(ii) By (i) for each n  1,  a set An  𝒜𝜎 with E  An and 𝜇∗(𝐴𝑛) ≤ 𝜇∗(𝐸)  +
1

𝑛
.  

Write B = ⋂ 𝐴𝑛
∞
𝑛=1  so that B  𝒜𝜎𝛿 and E  B.                                                                      

Also, since B  𝐴𝑛 for every n, 𝜇∗(𝐵) ≤  𝜇∗(𝐴𝑛) ≤ 𝜇∗(𝐸) +
1

𝑛
 and                                                         

hence 𝜇∗(𝐵) ≤  𝜇∗(𝐸) …(1) 

Since E  B, 𝜇∗(𝐸) ≤  𝜇∗(𝐵) …(2).                                                                                                        

From (1) and (2) 𝜇∗(𝐵) =  𝜇∗(𝐸). 
 

Note: If we apply this proposition in the case that E is a measurable set of finite 

measure, we see that E is difference of a set B  𝒜𝜎𝛿 and a set of measure zero.                      

This gives the structure of measurable sets of finite measure.                                                                  

https://drive.google.com/u/1/settings/storage?hl=en-GB&utm_medium=web&utm_source=gmail&utm_campaign=storage_meter&utm_content=storage_high
https://drive.google.com/u/1/settings/storage?hl=en-GB&utm_medium=web&utm_source=gmail&utm_campaign=storage_meter&utm_content=storage_high
https://drive.google.com/u/1/settings/storage?hl=en-GB&utm_medium=web&utm_source=gmail&utm_campaign=storage_meter&utm_content=storage_high
https://drive.google.com/u/1/settings/storage?hl=en-GB&utm_medium=web&utm_source=gmail&utm_campaign=storage_meter&utm_content=storage_high
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The next theorem extends this to the -finite case which can be considered as 

generalization of the first principle of Littlewood.  

 

Theorem: Let  be a -finite measure on an algebra 𝒜 and let * be the outer measure 

induced by . A set E is *-measurable if and only if E is the proper difference A – B 

of a set A  𝒜𝜎𝛿, and a set B with *(B) = 0. 

Proof : Suppose E is the proper difference A – B of a set A  𝒜𝜎𝛿, and a set B with 

*(B) = 0. Since the class of all *-measurable sets is a -algebra, we get A is 

measurable. Since �̅�  is complete, each set of *-measure zero must be measurable.  

B is measurable and hence E = A – B is * measurable.  

Conversely suppose E is measurable. Since  is  - finite,  a countable sequence of 

pairwise disjoint sets {Xi} in 𝒜 with (Xi) <  and X = ⋃ 𝑋𝑖
∞
𝑖=1 .                                         

Then E = X   E = ⋃ 𝑋𝑖
∞
𝑖=1   E = ⋃ (𝑋𝑖 ∩ 𝐸)∞

𝑖=1 =  ⋃ 𝐸𝑖
∞
𝑖=1  where Ei = Xi  E is a 

disjoint union of the measurable sets. Also, for each positive integer n, there exists a set 

𝐴𝑛𝑖 𝒜𝜎 such that Ei   𝐴𝑛𝑖 and �̅�(𝐴𝑛𝑖)  �̅�(𝐸𝑖) +
1

𝑛2𝑖
.                                                                                                                      

Setting 𝐴𝑛= ⋃ 𝐴𝑛 𝑖
∞
𝑖=1 , we find E  𝐴𝑛 and 𝐴𝑛 − 𝐸  ⋃ (𝐴𝑛 𝑖

∞
𝑖=1 − 𝐸𝑖).                                        

Hence �̅�(𝐴𝑛 − 𝐸)  ∑ �̅�(𝐴𝑛 𝑖 − 𝐸𝑖)∞
𝑖=1   ∑

1

𝑛2𝑖
∞
𝑖=1  = 

1

𝑛
.                                                                          

Since 𝐴𝑛𝒜𝜎 the set A = ⋂ 𝐴𝑛
∞
𝑛=1   𝒜𝜎𝛿 and for each n, A – E  𝐴𝑛 − 𝐸.                                                                        

Hence �̅� (A – E)  �̅� (𝐴𝑛 − 𝐸) ≤
1

𝑛
.                                                                                            

Since this holds for each positive integer n, we get �̅� (A – E) = 0.                                                        

Writing B = A – E we find E = A – B, where A  𝒜𝜎𝛿,, and *(B) = 0. 

 

Theorem (Caratheodory): Let  be a measure on an algebra 𝒜, and * the outer 

measure induced by . Then the restriction �̅� of * to the *-measurable sets is an 

extension of  to a -algebra containing 𝒜. If  is finite (or -finite) so is �̅�. If  is -

finite, then �̅� is the only measure on the smallest -algebra containing 𝒜 which is an 

extension of . 

 

Proof: The fact that �̅� is an extension of  from 𝒜 to be a measure on a -algebra 

containing 𝒜 follows directly from the facts A  𝒜  𝜇∗(𝐴) = 𝜇(𝐴), each A  𝒜 is 

𝜇∗- measurable and the class of 𝜇∗- measurable sets is a -algebra. Already verified if  

is finite (or -finite) so is �̅�. 

To show the unicity of �̅� when  is -finite, we let 𝔅 be the smallest -algebra 

containing 𝒜 and �̃� some measure on 𝔅 that agrees with  on 𝒜. 

Since each set in 𝒜𝜎, can be expressed as disjoint countable union of sets in 𝒜, the 

measure �̃� must agree with �̅� on 𝒜𝜎. Let B be any set in 𝔅 with finite outer measure. 

Then by Proposition, there is an A in 𝒜𝜎, such that B  A and  
𝜇∗(𝐴) ≤ 𝜇∗(𝐵) + 𝜀 

Since B  A, �̃�(𝐵) ≤ �̃�(𝐴) = 𝜇∗(𝐴) ≤ 𝜇∗(𝐵) + 𝜀. 

Since  is an arbitrary positive number, we have �̃�(𝐵) ≤ 𝜇∗(𝐵) for each B  𝔅. 

Since the class of sets measurable with respect to * is a -algebra containing 𝒜, each 
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B in 𝔅 must be measurable. If B is measurable and A is in 𝒜𝜎 with B  A and *A < 

*B + , then 𝜇∗(𝐴) = 𝜇∗(𝐵) + 𝜇∗(𝐴~𝐵), and so,                                               

�̃�(𝐴~𝐵) ≤ 𝜇∗(𝐴~𝐵)  , if 𝜇∗(𝐵) < .                                                                                          

Hence 𝜇∗(𝐵)  𝜇∗(𝐴) = �̃�(𝐴)= �̃�(𝐵) + �̃�(𝐴~𝐵) �̃�(𝐵) + 𝜀. 

Since  is arbitrary, 𝜇∗(𝐵)  �̃�(𝐵) and so, 𝜇∗(𝐵) = �̃�(𝐵). 

If  is -finite measure, let {Xi} be a countable disjoint collection of sets in 𝒜 with X = 

⋃ 𝑋𝑖
∞
𝑖=1  and (Xi) finite.                                                                                                                     

If B is any set in 𝔅, then B = ⋃ (𝑋𝑖 ∩ 𝐵) ∞
𝑖=1  and this is a countable disjoint union of 

sets in 𝔅, and so, we have �̃�(𝐵) = ∑ �̃�(𝑋𝑖 ∩ 𝐵)∞
𝑖=1  and �̅�(𝐵) = ∑ �̅�(𝑋𝑖 ∩ 𝐵)∞

𝑖=1 . 

Since 𝜇∗(𝑋𝑖 ∩ 𝐵) < , �̅�(𝑋𝑖 ∩ 𝐵) = �̃�(𝑋𝑖 ∩ 𝐵). 

 

Definition:  A collection 𝒞 of subsets of X is a semi-algebra of sets if the intersection 

of any two sets in 𝒞 is again in 𝒞 and the complement of any set in 𝒞 is a finite disjoint 

union of sets in 𝒞. 

Definition: If 𝒞 is any semialgebra of sets, then the collection 𝒜 consisting of the 

empty set and all finite disjoint unions of sets in 𝒞 is an algebra of sets which is called 

the algebra generated by 𝒞.  

If  is a set function defined on 𝒞, it is natural to attempt to define a finitely additive set 

function on 𝒜 by setting A = ∑ 𝜇(𝐸𝑖)𝑛
𝑖=1 , whenever A is the disjoint union of the set 

Ei in 𝒞. Since a set A in 𝒜 may possibly be represented in several ways as a disjoint 

union of sets in 𝒞, we must be certain that such a procedure leads to a unique value for 

A. The following proposition gives conditions under which this procedure can be 

carried out and will give a measure on the algebra 𝒜. 

 

Proposition: Let 𝒞 be a semialgebra of sets and  a nonnegative 

set function defined on 𝒞 with  = 0 (if   𝒞). Then  has a unique 

extension to a measure on the algebra 𝒜 generated by 𝒞 if the following conditions are 

satisfied:  

1. If a set C in 𝒞 is the union of a finite disjoint collection {Ci} of sets in, then C = 

∑ 𝜇(𝐶𝑖)𝑛
𝑖=1 .  

2. If a set C in 𝒞 is the union of a countable disjoint collection {Ci} of sets in 𝒞, then 

C  ∑ 𝜇(𝐶𝑖)∞
𝑖=1 . 

 

3. THE LEBESGUE-STIELTJES INTEGRAL  

 

Definition: Let X be the set of real numbers and 𝔅 the class of all Borel sets, A  

measure  defined on 𝔅 and finite for bounded sets is called a Baire measure (on the 

real line). To each finite Baire measure we associate a function F by setting F(x) = (– 

, x]. The function F is called the cumulative distribution function of  and is real-

valued and monotone increasing.  
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Lemma: If  is a finite Baire measure on the real line, then its cumulative distribution 

function F is a monotone increasing bounded function which is continuous on the right. 

Moreover, lim
𝑥→−∞

𝐹( x ) = 0. 

Proof: We have (a, b] = F(b) – F(a), 

Since (a, b] is the intersection of the sets ]a, b +  
1

𝑛
], by a Proposition                                        

(a, b] = lim
𝑛→∞

 ]a, b +  
1

𝑛
]  F(b) – F(a) = lim

𝑛→∞
{𝐹 ( b + 

1

𝑛
) − 𝐹(𝑎)} 

and so F(b) = lim
𝑛→∞

F (b + 
1

𝑛
) = F(b+). 

Thus a cumulative distribution function is continuous on the right. Similarly, 

{b} = lim
𝑛→∞

 ] b − 
1

𝑛
, 𝑏] = lim

𝑛→∞
{𝐹( b ) − 𝐹 (𝑏 −

1

𝑛
)} = F(b) – F(b-). 

Hence F is continuous at b if and only if the set {b} consisting of b alone has measure 

zero. Since  = ⋂ (−∞, 𝑛]∞
𝑛=1 , we have lim

𝑛→−∞
𝐹( n ) = 0, and hence lim

𝑥→−∞
𝐹( x ) = 0 

because of the monotonicity of F.  

 

 

Lemma: Let F be a monotone increasing function continuous on the right.                               

If (a, b]  ⋃ (𝑎𝑖 , 𝑏𝑖]∞
𝑖=1 , then F(b) – F(a)  ∑ {𝐹(𝑏𝑖) − 𝐹(𝑎𝑖)∞

𝑖=1 } 

 

 

Proposition: Let F be a monotone increasing function which is continuous on the right. 

Then there is a unique Baire measure  such that for all a and b we have 

(a, b] = F(b) – F(a). 

Proof: If we let 𝒞 be the semialgebra consisting of all intervals of the form (a, b] or (a, 

) and set (a, b] = F(b) – F(a), then . is easily seen to satisfy condition (1) of a 

Proposition, and since Lemma is precisely the second condition, we see that  admits a 

unique extension to a measure on the algebra generated by 𝔅. By Theorem 8 this  can 

be extended to a -algebra containing 𝒞. Since the class 𝔅 of Borel sets is the smallest 

-algebra containing 𝒞, we have an extension of to a Baire measure. The measure  is 

-finite, since X is the union of the intervals                      (n, n + 1] and each has finite 

measure. Thus, the extension of  to 𝔅 is unique. 

 

Corollary: Each bounded monotone function which is continuous on the right is the 

cumulative distribution function of a unique finite Baire measure provided F() = 0. 

 

Definition: If  is a nonnegative Borel measurable function and F is a monotone 
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increasing function which is continuous on the right, we define the Lebesgue-Stieltjes 

integral of  with respect to F to be ∫ 𝜑 𝑑𝐹 = ∫ 𝜑 𝑑𝜇  where  is the Baire measure 

having F as its cumulative distribution function. If  is both positive and negative, we 

say that it is integrable with respect to F if it is integrable with respect to . 

Definition: If F is any monotone increasing function, then there is a unique function F* 

which is monotone increasing, continuous on the right, and agrees with F wherever F is 

continuous on the right, and we define the Lebesgue-Stieltjes integral of  with respect 

to F by ∫ 𝜑 𝑑𝐹 = ∫ 𝜑 𝑑𝐹∗.                                                                                      If F 

is a monotone function, continuous on the right, then ∫ 𝜑
𝑏

𝑎
 𝑑𝐹 agrees with the 

Riemann-Stieltjes integral whenever the latter is defined. The Lebesgue-Stieltjes 

integral is only defined when F is monotone (or more generally of bounded variation), 

while the Riemann-Stieltjes integral can exist when F is not of bounded variation, say 

when F is continuous and  is of bounded variation. 

 

4. PRODUCT MEASURES 

Let (X, 𝔄, ) and (Y, 𝔅, ) be two complete measure spaces, and consider the direct 

product X  Y of X and Y. If A  X and B  Y, we call A  B a rectangle. If A  𝔄 

and B  𝔅 we call A  B a measurable rectangle.                                                              

The collection ℜ of measurable rectangles is a semi-algebra, since                              

(𝐴 × 𝐵) ∩ (𝐶 × 𝐷) = (𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷) and                                                                                    

~(𝐴 × 𝐵) = (�̅� × 𝐵) ∪ (𝐴 × �̅�) ∪ (�̅� × �̅�). 

If A  B is a measurable rectangle, we set 𝜆(𝐴 × 𝐵) = 𝜇𝐴 ∙ 𝜐𝐵 

14. Lemma: Let {(Ai  Bi)} be a countable disjoint collection of measurable rectangles 

whose union is a measurable rectangle A  B. Then 

(A  B) =  (Ai  Bi). 

Proof: Fix a point x  A. Then for each y  B, the point 〈𝑥, 𝑦〉 belongs to exactly one 

rectangle Ai  Bi. Thus B is the disjoint union of those Bi such that x is in the 

corresponding Ai,. Hence 

∑ 𝜐𝐵𝑖 ∙ 𝜒𝐴𝑖
(𝑥) = 𝜐𝐵 ∙ 𝜒𝐴(𝑥) 

since  is countably additive. Thus, by the corollary of the Monotone Convergence 

Theorem (11.14), we have 

∑ ∫ 𝜐𝐵𝑖 ∙ 𝜒𝐴𝑖
𝑑𝜇 = ∫ 𝜐(𝐵) ∙ 𝜒𝐴𝑑𝜇 

or  Bi Ai = B  A. 

 

The lemma implies that  satisfies the conditions of Proposition 9 and hence has a 

unique extension to a measure on the algebra ℜ consisting of all finite disjoint unions 

of sets in ℜ. Theorem 8 allows us to extend  to be a complete measure on a -algebra 
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𝒮 containing ℜ. This extended measure is called the product measure of  and  and is 

denoted by   . If  and  are finite (or -finite), so is   . If X and Y are the real 

line and  and  are both Lebesgue measure, then    is called two-dimensional 

Lebesgue measure for the plane.  

If E is any subset of X  Y and x a point of X, we define the x cross section Ex by 

Ex = {y: <x, y>  E}, and similarly for the y cross section for y in Y. The characteristic 

function of E, is related to that of E by 𝜒𝐸𝑥
(𝑦) = 𝜒𝐸(𝑥, 𝑦) 

We also have (�̅�)𝑥 = ~ (Ex) and ( E)x = (E)x for any collection {E}. 

 

15. Lemma: Let x be a point of X and E a set in ℜ𝜎𝛿. Then Ex is a measurable subset of 

Y. 

Proof: The lemma is trivially true if E is in the class ℜ of measurable rectangles. We 

next show it to be true for E in ℜ𝜎 Let E = ⋃ 𝐸𝑖
∞
𝑖=1  where each Ei is a measurable 

rectangle. Then 𝜒𝐸𝑥
(𝑦) = 𝜒𝐸(𝑥, 𝑦) = sup

𝑖
𝜒𝐸𝑖

(𝑥, 𝑦) = sup
𝑖

𝜒(𝐸𝑖
)𝑥

(𝑦). Since each Ei is a 

measurable rectangle, 𝜒(𝐸𝑖
)𝑥

(𝑦) is a measurable function of y, and so 𝜒𝐸𝑥
 must also be 

measurable, whence Ex is measurable. 

Suppose now that E = ⋂ 𝐸𝑖
∞
𝑖=1  with Ei ℜ𝜎. Then 𝜒𝐸𝑥

 = 𝜒𝐸(𝑥, 𝑦) =  inf
𝑖

𝜒𝐸𝑖
(𝑥, 𝑦)  

= inf
𝑖

𝜒(𝐸𝑖
)𝑥

(𝑦) and we see that 𝜒𝐸𝑥
 is measurable. Thus, Ex is measurable for any E in 

ℜ𝜎𝛿. 

16. Lemma: Let E be a set in ℜ𝜎𝛿 with    (E) < . Then the function g defined by 

g(x) = Ex is a measurable function of x and ∫ 𝑔 𝑑𝜇 =   (E) 

Proof: The lemma is trivially true if E is a measurable rectangle. We first note that any 

set in ℜ𝜎, is a disjoint union of measurable rectangles. Let {Ei} be a disjoint sequence 

of measurable rectangles, and let E =  Ei. Set 𝑔𝑖(𝑥) = 𝜐[(𝐸𝑖)𝑥] 

Then each gi is a nonnegative measurable function, and g = ∑ 𝑔𝑖 

thus, g is measurable, and by the corollary of the Monotone Convergence Theorem we 

have ∫ 𝑔 𝑑𝜇 = ∑ ∫ 𝑔𝑖𝑑𝜇 = ∑ 𝜇 × 𝜐(𝐸𝑖) 

Consequently, the lemma holds for E ℜ𝜎 . Let E be a set of finite measure in ℜ𝜎𝛿 

Then there is a sequence {Ei} of sets in ℜ𝜎such that Ei + 1  Ei and E =  Ei. It follows 

from Proposition 6 that we may take    (Ei) < . Let gi(x) = [(Ei)x]. 

Since  ∫ 𝑔1𝑑𝜇 =   (E1) < , we have g1(x) <  for almost all x. For an x with g1(x) 

< , we have 〈(𝐸𝑖)𝑥〉 a decreasing sequence of measurable sets of finite 

measure whose intersection is Ex. Thus, by Proposition 11.2 we have g(x) = (Ex) = lim 

[(Ei)x) = lim gi(x). 

Hence  gi → g a.e., and so g is measurable. Since 0  gi  g1, the Lebesgue 

Convergence Theorem implies that  ∫ 𝑔 𝑑𝜇 = lim ∫ 𝑔𝑖𝑑𝜇 = lim   (Ei). the last 
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equality following from Proposition 11.2.  

 

17. Lemma: Let E be a set for which   (E) = 0. Then for almost all x we have (Ex) 

= 0. 

Proof: By Proposition 6 there is a set F in ℜ𝜎𝛿 such that E  F and     (F) = 0. It 

follows from Lemma 16 that for almost all x we have (Fx) = 0. But Ex  Fx and so Ex 

= 0 for almost all x since  js complete.  

 

18. Proposition: Let E be a measurable subset of X  Y such that   (E) is finite. 

Then for almost all x the set Ex is a measurable subset of Y. The function g defined by 

g(x) = (Ex) is a measurable function defined for almost all x and ∫ 𝑔 𝑑𝜇 =   (E).  

Proof: By Proposition 6 there is a set F in ℜ𝜎𝛿, such that E  F and    (F) =    

(E). Let G = F ~ E. Since E and F are measurable, so is G, and   (F) =    (E ) +  

 (G). 

Since   (E ) is finite and equal to   (F), we have   (G) = 0. Thus by Lemma 

17 we have (Gx), = 0 for almost all x. Hence g(x) = Ex = Fx a.e.; so g is a 

measurable function by Lemma 16. Again by Lemma 16 ∫ 𝑔 𝑑𝜇 =   (F) =   (E). 

 

 

19. Theorem (Fubini): Let (X, 𝔄, ) and (Y, 𝔅, ) be two complete measure spaces 

and f an integrable function on X x Y. Then 

1). For almost all x the function  𝑓𝑥  defined by 𝑓𝑥(𝑦) = 𝑓(𝑥, 𝑦) is an integrable function 

on Y. 

2). For almost all y the function 𝑓𝑦 defined by 𝑓𝑦(𝑥) = 𝑓(𝑥, 𝑦) is an integrable 

function on X. 

3), ∫
𝑌
f(x,y) d𝜐(𝑦) is an integrable function on X, 

4). ∫
𝑋

f(x,y) d𝜇(𝑥) is an Integrable function on Y. 

5). ∫
𝑋[∫

𝑌
𝑓𝑑𝜐]𝑑𝜇 = ∫

𝑋×𝑌
𝑓𝑑(𝜇 × 𝜐) = ∫

𝑌[∫
𝑋

𝑓𝑑𝜇]𝑑𝜐 

Proof: Because of the symmetry between x and y it suffices to prove (1), (3), and the 

first half of (5). If the conclusion of the theorem holds for each of two functions, it also 

holds for their difference, and hence it is sufficient to consider the case when f is 

nonnegative. Proposition 18 asserts that the theorem is true if f is the characteristic 

function of a measurable set of finite measure, and hence the theorem must be true if f 

is a simple function which vanishes outside a set of finite measure. Proposition 11.7 

asserts that each nonnegative integrable function f is the limit of an increasing sequence 
{𝜑𝑛} of nonnegative simple functions, and, since each 𝜑𝑛 is integrable and simple, it 

must vanish outside a set of finite measure. Thus 𝑓𝑥 is the limit of the increasing 

sequence {(𝜑𝑛)𝑥} and is measurable. By the Monotone Convergence Theorem ∫
𝑌
f(x, 

y) d𝜐(𝑦) = lim ∫
𝑌

𝜑𝑛(x, y) d𝜐(𝑦) 

and so this integral is a measurable function of x.                                                                             
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Again, by the Monotone Convergence Theorem                                                                  

∫
𝑋[∫

𝑌
𝑓𝑑𝜐]𝑑𝜇 = lim ∫

𝑋[∫
𝑌

𝜑𝑛𝑑𝜐]𝑑𝜇  

                        = ∫
𝑋×𝑌

𝜑𝑛𝑑(𝜇 × 𝜐)  

                        = ∫
𝑋×𝑌

𝑓𝑑(𝜇 × 𝜐)  

           

20. Theorem (Tonelli): Let (X, 𝔄, ) and (Y, 𝔅, ) be two -finite measure spaces and 

f be a non- negative measurable function on X  Y. Then 

1). For almost all x the function  𝑓𝑥  defined by 𝑓𝑥(𝑦) = 𝑓(𝑥, 𝑦) is a measurable function 

on Y. 

2). For almost all y the function 𝑓𝑦 defined by 𝑓𝑦(𝑥) = 𝑓(𝑥, 𝑦) is a measurable 

function on X. 

3), ∫
𝑌
f(x, y) d𝜐(𝑦) is a measurable function on X, 

4). ∫
𝑋

f(x, y) d𝜇(𝑥) is a measurable function on Y. 

5). ∫
𝑋[∫

𝑌
𝑓𝑑𝜐]𝑑𝜇 = ∫

𝑋×𝑌
𝑓𝑑(𝜇 × 𝜐) = ∫

𝑌[∫
𝑋

𝑓𝑑𝜇]𝑑𝜐 

Proof: Because of the symmetry between x and y it suffices to prove (1), (3), and the 

first half of (5).  

Case (i): Suppose that f is a characteristic function of measurable set with finite 

measure.                                                                                                                                                               

Let f = 𝜒𝐸 where E is a measurable set.                                                                                  

Since f is integrable, ∫
𝑋×𝑌

𝑓 𝑑(𝜇 × 𝜐) < .                                                                                              

We have 𝑓𝑥 = 𝜒𝐸𝑥
. Clearly fx is measurable function on Y 

∫
𝑋×𝑌

𝑓𝑥 𝑑(𝜇 × 𝜐) = ∫
𝑋×𝑌

𝜒𝐸𝑥
𝑑(𝜇 × 𝜐) < . 

 fx is integrable  fx is measurable. 

Consider g(x) = ∫
𝑌
f d𝜐. 

But we know that g(x) = Ex is measurable with    E <  and                                                    

∫
𝑋

g(x) d𝜇 =   E <  we have g is integrable function. 

 ∫
𝑌
f d𝜐 is measurable function. 

Now ∫
𝑋

g(x) d𝜇 = ∫
𝑋[∫

𝑌
𝑓𝑑𝜐]𝑑𝜇  =   E. 

∫
𝑋×𝑌

𝑓 𝑑(𝜇 × 𝜐) = ∫
𝑋×𝑌

𝜒𝐸𝑑(𝜇 × 𝜐) =    (E) = ∫
𝑋

g(x) d𝜇 = ∫
𝑋[∫

𝑌
𝑓𝑑𝜐]𝑑𝜇   

Case (ii): Suppose that f is a simple function which vanishes outside a set of finite 

measure. Since a simple function is a linear combination of characteristic function by 

case (i) the theorem is true. 

Case (iii): Let f be an integrable function on X  Y.  

Choose an increasing sequence {𝜑𝑛} of nonnegative simple functions which converges 

to f. 

Since 𝜑𝑛is measurable and simple, it must vanish outside a set of finite measure.                         

and f = lim 𝜑𝑛.  

𝑓𝑥 = lim (𝜑𝑛)𝑥                                        

Since 𝑓𝑥is measurable and hence integrable. Then by monotone convergence theorem 

∫
𝑌

𝑓𝑥 d𝜐 = lim ∫ 𝜑𝑛(𝑥, 𝑦) 𝑑 𝜐 

By case (ii) the RHS of the above equation is measurable and hence  
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∫
𝑌

𝑓𝑥 d𝜐 is measurable.  

Again, by Monotone convergence theorem                                                                            

∫
𝑋[∫

𝑌
𝑓𝑑𝜐]𝑑𝜇 = lim ∫

𝑋[∫
𝑌

𝜑𝑛(𝑥, 𝑦) 𝑑𝜐]𝑑𝜇  = lim ∫
𝑋×𝑌

𝜑𝑛(𝑥, 𝑦) 𝑑(𝜇 × 𝜐)                                             

                                = ∫
𝑋×𝑌

𝑓𝑑(𝜇 × 𝜐)  
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M 401: MEASURE THEORY 

UNIT IV 

K. C. TAMMI RAJU 

 

6 INNER MEASURE 

 

Let  be a measure on an algebra 𝒜 and * the induced outer measure. Then *E may 

be thought of as the largest possible measure for E compatible with . We can also 

define an inner measure 𝜇∗ which assigns to a given set E the smallest measure 

compatible with : 

 

Definition: Let  be a measure on an algebra 𝒜 and * the induced outer measure. We 

define the inner measure 𝜇∗ induced by  by setting 

𝜇∗(𝐸) = sup {A – *(A ~ E): A  𝒜, *(A ~ E) < }. 

 

[Inner measure was important historically because the measurability of a set was 

originally characterized using both inner ang outer measure. In the historical context 

inner measure was first defined for bounded subsets of R. For such sets the definition 

above is equivalent to the historical one: 𝜇∗(𝐸) = l(I) – (I ~ E) where I is a finite 

interval containing E. A bounded set E was then defined to be measurable if 𝜇∗(𝐸) = 

*(E), and the measurability of unbounded sets was defined in terms of their 

intersections with finite intervals. Even in the case of a bounded set this procedure is 

more cumbersome than the elegant approach of Carathéodory, which we have followed 

in this chapter. Apart from this historical importance, inner measure is useful for the 

extension of  from 𝒜 to an algebra containing 𝒜 and a given set E (which need not be 

measurable) and for determining the freedom we have in extending  to a -algebra 

containing 𝒜.] 

 

Lemma: Prove that 𝜇∗(𝐸)  𝜇∗(𝐸). If E  𝒜,  then show that 𝜇∗(𝐸) = (E) = 𝜇∗(𝐸).  

Proof: Let A  𝒜 and *(A ~ E) < .  

Since 𝐴 = (𝐴 ∩ 𝐸) ∪ (𝐴 ∩ �̃�), by finite sub additivity of , we have  𝜇(𝐴) ≤  𝜇∗(𝐴 ∩

𝐸) +  𝜇∗(𝐴 ∩ �̃�). 

𝜇(𝐴) −  𝜇∗(𝐴 ∩ �̃�) ≤  𝜇∗(𝐴 ∩ 𝐸)  

                                     𝜇∗(𝐸) since 𝐴 ∩ 𝐸 ⊆ 𝐸. 
Ie. 𝜇(𝐴) −  𝜇∗(𝐴 ∩ �̃�) ≤ 𝜇∗(𝐸)  A  𝒜 and *(A ~ E) < . 𝜇∗(𝐸) is an upper 

bound of {𝜇(𝐴) −  𝜇∗(𝐴 ∩ �̃�): A  𝒜, *(A ~ E) <  

Consequently, by definition of 𝜇∗, 𝜇∗(𝐸)  𝜇∗(𝐸)…(i) 

Let E  𝒜. Then *(E) = (E) so that 𝜇∗(𝐸)  (E)…(ii) 

Now put A = E so that A  𝒜 and *(A ~ E) = 0 < .                                      𝜇∗(𝐸) 

= Sup{(E)}  (E)   

Ie. 𝜇∗(𝐸)  (E)…(iii) 

From (ii) and (iii) 𝜇∗(𝐸) = 𝜇∗(𝐸). 
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Lemma: If E  F then 𝜇∗(𝐸)  ≤ 𝜇∗(𝐹). 
Proof: Let E  F.                                                                                                                           

Let A  𝒜 and *(A ~ E) < .  

Then ~ F  ~ E and so, A ~ F  A ~ E.  𝜇∗(𝐴 ~ 𝐹) ≤ 𝜇∗(𝐴 ~ 𝐸) < . 

Also, *(A ~ F)  *(A ~ E)  (A) – *(A ~ F)  (A) – *(A ~ E). 

sup {A – *(A ~ E): A  𝒜, *(A ~ E) < } sup {A – *(A ~ F): A  𝒜, *(A 

~ F) < }. 

Ie  𝜇∗(𝐸)  ≤ 𝜇∗(𝐹).    
                                                           

             [One of the difficulties of using the definition of inner measure is that we must 

take supremum of (A) - *(A ~ E) overall A  𝒜  with *(A ~ E) < . The next 

lemma shows that this expression is monotone in A and enables us to calculate 𝜇∗(E) 

more easily.] 

 

Lemma: Let A and B be two sets in 𝒜 with *(A ~ E) <  and *(B ~ E) < .                       

If A  B, we have A – *(A ~ E)  B – *(B ~ E). If also E  A, we have equality, 

and hence 𝜇∗(𝐸 ) = (A) – *(A ~ E). 

Proof: Let A  B. Then B = A  (B ~ A), is a disjoint union.                                                                              

By additivity of , (B) = (A) + (B ~ A).                                                                                      

 (B ~ A) = (B) – (A) … (i)                                                                                                  

Observe that B ~ E  (B ~ A)  (A ~ E).                                                                                              

 By sub additivity of * we have *(B ~ E)  *(B ~ A) + *(A ~ E).                                

Since B ~ A  𝒜, *(B ~ A) = (B ~ A).                                                                                

*(B ~ E)  (B ~ A) + *(A ~ E).                                                                                                   

 *(B ~ E)  (B) – (A) + *(A ~ E) from (i).  –                                                                            

 (A) – *(A ~ E)  (B) – *(B ~ E) 

Let E  A. Then B ~ E = (B ~ A)  (A ~ E) is a disjoint union and so                            

proceeding as above we get *(B ~ E) = (B) – (A) + *(A ~ E)                                                                

ie. A – *(A ~ E) = B – *(B ~ E). 

Now taking supremum over all sets B  𝒜  with *(B ~ E) <  we have                         

A – *(A ~ E) = Sup {B – *(B ~ E): B  𝒜, *(B ~ E) < } = 𝜇∗(𝐸).     Hence 

𝜇∗(𝐸) = A – *(A ~ E) 

 

[This lemma and its corollary show that if  is a finite measure, then 𝜇∗(𝐸) = X – 

*(�̃�). In this case the development of the theory and properties of inner measure are 

relatively straightforward. The complexity of the treatment of inner measure in this 

section is caused by having the concept apply to measures that are not -finite. 
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Corollary: If A  𝒜, then A = 𝜇∗(𝐴 ∩ 𝐸) + *(𝐴 ∩ �̃�). 

Proof: Let  *(𝐴 ∩ �̃�) = .                                                                                                      

Then A =  and there is nothing to prove.                                                                                             

Let *(𝐴 ∩ �̃�) < . Set F = A  E.                                                                                                

Then F  E so that �̃� ⊆ �̃� and so, 𝐴 ∩  �̃� ⊆ 𝐴 ∩ �̃�  ie. 𝐴 ∩  �̃� ⊆ 𝐴 ~ 𝐹 …(i)               

Let x  A ~ F  x  A and x  F.                                                                                                       

 x  A and x  A  E                                                                                                                 

 x  A and x  E  x  A and x �̃�                                                                                              

 x  𝐴 ∩  �̃�,  ie A ~ F ⊆ 𝐴 ∩ �̃� …(ii)                                                                                                                     

 from (i) and (ii) A ~ F = A  �̃�                                                                                   

But by above lemma 𝜇∗(𝐹 ) = (A) – *(A ~ F) since F  A                                                                 

 𝜇∗(𝐹 ) = (A) – *(A  �̃�).                                                                                                  

 A = 𝜇∗(𝐴 ∩ 𝐸) + *(𝐴 ∩ �̃�). 

Lemma: Let B be a *-measurable set with *B < . Then  𝜇∗(𝐵) = *B. 

Proof: Let  > 0. Since *B < , there is a set A  𝒜 with *(B ~ A) < . [Let  be a 

finite measure on an algebra 𝒜 and * the induced outer measure. A set E is 

measurable iff for each  > 0 there is a set A in 𝒜𝛿, A  E  *(E ~ A) < ]                       

Since A is measurable, *B = *(B  A) + *(B  �̃�) = *(B  A) + *(B ~ A) and 

so *B < *(B  A) + . 

 Now *(A  B) > *B – …(i)                                                                                        

Since 𝜇∗(𝐵) = Sup {A – *(A ~ B): A  𝒜, *(A ~ B) < },                                                

𝜇∗(𝐵)  A – *(A ~ B) = *(A) – *(A  �̃�) = *(A  B) since B is measurable  

                                                                   > *B – . 

Ie. 𝜇∗(𝐵) > *B –    > 0.                                                                                                                    

 𝜇∗(𝐵)  *B.                                                                                                                                             

But 𝜇∗(𝐵)  *B.                                                                                                                                              

Hence 𝜇∗(𝐵) = *B. 

Proposition: Let E be a set with 𝜇∗(𝐸) < . Then there is a set H  𝒜𝛿𝜎 such that H  

E and �̅�(𝐻) = 𝜇∗(𝐸). 

Proof: Since 𝜇∗(𝐸) = Sup {A – *(A ~ E): A  𝒜, *(A ~ E) < }, for each n  a 

set An in 𝒜 with *(An ~ E) <  and An – *(An ~ E) > 𝜇∗(𝐸) - 
1

𝑛
. 

By a Proposition, [Let  be a measure on an algebra 𝒜,  𝜇∗ be the outer measure 

induced by  and E be any set. Then (i) for each  > 0, there is a set A  𝒜𝜎 with E  

A and 𝜇∗(𝐴) ≤ 𝜇∗(𝐸) + 𝜀. (ii) There is a B 𝒜𝜎𝛿 with E  B and 𝜇∗(𝐸) = 𝜇∗(𝐵).]  
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Gn  𝒜𝜎𝛿   Gn  An ~ E and �̅�(𝐺𝑛) = *(An ~ E).                                                     Let 

Hn = An ~ Gn. Then Hn  𝒜𝛿𝜎 and Hn  E.   [x  Hn  x  An ~ Gn  x  An, x  Gn 

 x  An and x  An  �̃�  x  An and x  E] 

Moreover, �̅�(𝐻𝑛) = 𝜇(𝐴𝑛) – �̅�(𝐺𝑛)  > 𝜇∗(𝐸) - 
1

𝑛
 .                                                                       

Let H =  Hn. Then H  E, H 𝒜𝛿𝜎 and �̅�(𝐻)  𝜇∗(𝐸)   

Hence �̅�(𝐻) = 𝜇∗(𝐸).                                                                                                               

[Moreover, since An ~ E  Gn, �̅�(An ~ E)  �̅�(Gn) … (i).                                                             

Again, since An = Hn  Gn, �̅�(𝐴𝑛) = �̅�(𝐻𝑛) + �̅�(𝐺𝑛). 

�̅�(𝐻𝑛) = �̅�(𝐴𝑛) – �̅�(𝐺𝑛)                                                                                                                   

       �̅�(𝐴𝑛) – �̅�(𝐴𝑛 − 𝐸)                                                                                                             

       𝜇(𝐴𝑛) – �̅�(𝐴𝑛 − 𝐸)                                                                                                       

      > 𝜇∗(𝐸) - 
1

𝑛
                                                                                                              

Since as n → , 1/n → 0 so that �̅�(𝐻𝑛)  𝜇∗(𝐸)   

Let H =  Hn. Then H  E, H 𝒜𝛿𝜎 and �̅�(𝐻𝑛)  𝜇∗(𝐸)                                                               

H  E  *(H)  *(E)                                                                                                                                

 �̅�(𝐻)  *(E ) = 𝜇∗(𝐸)  �̅�(𝐻)  𝜇∗(𝐸)                                                                                             

�̅�(𝐻) = 𝜇∗(𝐸)] 

 

Corollary: If 𝜇∗(𝐸) < , 𝜇∗(𝐸) = sup {�̅�(𝐵): B  E, B measurable, �̅�(𝐵) < }. 

 

Proposition: Suppose *E < . Then E is measurable if and only if  𝜇∗(𝐸) = *E. 

Proof: Suppose *E <  and E is measurable.                                                                                 

By the lemma [Let B be a *-measurable set with *B < . Then  𝜇∗(𝐵) = *B]  

we have 𝜇∗(𝐸) = *E.    

Conversely suppose 𝜇∗(𝐸) = *E < . Then by a Proposition [Let  be a measure on 

an algebra 𝒜,  𝜇∗ be the outer measure induced by  and E be any set. There is a B 

𝒜𝜎𝛿 with E  B and 𝜇∗(𝐸) = 𝜇∗(𝐵).]  measurable set G 𝒜𝜎𝛿 with E  G and 

*(E) = *(G) and by above proposition [Let E be a set with 𝜇∗(𝐸) < . Then there is a 

set H  𝒜𝛿𝜎 such that H  E and �̅�(𝐻) = 𝜇∗(𝐸)]  measurable set H  𝒜𝜎𝛿 with H  

E, 𝜇(𝐻) =  𝜇∗(𝐸).                                                                                                                  

 𝜇(𝐻) =  𝜇∗(𝐸) = 𝜇∗(E ) = 𝜇∗(G).                                                                                             

ie. 𝜇(𝐻) = 𝜇∗(G).                                                                                                                                  

 𝜇(𝐻)= 𝜇(𝐺)                                                                                                                                     

Thus, we have E differs from a measurable set by a set of measure zero and hence E is 

measurable. [Hint G – E  G – H. Put B = G – E. Then E = G – B where 𝜇(𝐵) ≤ 𝜇(G – 
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H) = 0]. 

 

Theorem: Let E and F be two disjoint sets. Then                                                                                   

𝜇∗(𝐸) + 𝜇∗(𝐹)   𝜇∗(𝐸 ∪ 𝐹)  𝜇∗(𝐸) + 𝜇∗(𝐹)  𝜇∗(𝐸 ∪ 𝐹)  𝜇∗(𝐸) + 𝜇∗(𝐹) 

Proof: Suppose 𝜇∗(𝐸) or 𝜇∗(𝐹) is infinite.                                                                                    

Then the first inequality follows from the monotonicity of 𝜇∗.                                               

Suppose 𝜇∗(𝐸) and 𝜇∗(𝐹) are both finite. By a proposition [Let E be a set with 𝜇∗(𝐸) < 

. Then there is a set H  𝒜𝛿𝜎 such that H  E and �̅�(𝐻) = 𝜇∗(𝐸)]                                                                                          

  G and H, measurable sets, with G  E and H  F such that �̅�(𝐺) = 𝜇∗(𝐸) and �̅�(𝐻) 

= 𝜇∗(𝐹).                                                                                                                                  

Then G  H is a measurable set of finite outer measure contained in E  F.                               

Thus, 𝜇∗(𝐸 ∪ 𝐹)  𝜇∗(𝐺 ∪ 𝐻) = �̅�(𝐺 ∪ 𝐻) = �̅�(𝐺) + �̅�(𝐻) = 𝜇∗(𝐸) + 𝜇∗(𝐹) proving 

the first inequality.                                                                                                                     

Suppose 𝜇∗(𝐹) = , Then the second inequality is trivial.                                                 

Suppose  𝜇∗(𝐹) < . Let A  𝒜 with 𝜇∗(𝐴 ~ (𝐸 ∪ 𝐹) < .                                                          

Since A ~ E  {A ~ (E  F)}  F we have 𝜇∗(A ~ E)  𝜇∗{A ~ (E  F)} + 𝜇∗(F).  

Thus, 𝜇∗(A ~ E) <  and                                                                                                                 

A - 𝜇∗{A ~ (E  F)}  A - 𝜇∗(A ~ E) + 𝜇∗F  𝜇∗(𝐸) + 𝜇∗(𝐹)                                                                                                                                              

Taking the supremum over A, we get 𝜇∗(𝐸 ∪ 𝐹)  𝜇∗(𝐸) + 𝜇∗(𝐹). 

To prove the 3rd inequality, we choose a measurable set G  E with �̅�(𝐺) = 𝜇∗(𝐸). 

Then the measurability of G implies that 𝜇∗(𝐸) + 𝜇∗(𝐹) = �̅�(𝐺) + 𝜇∗(𝐹) = 𝜇∗(𝐺 ∪ 𝐹) 

 𝜇∗(𝐸 ∪ 𝐹).   Thus, 𝜇∗(𝐸) + 𝜇∗(𝐹)  𝜇∗(𝐸 ∪ 𝐹).                                                                                                                                

By the sub additivity of outer measure 𝜇∗(𝐸 ∪ 𝐹)  𝜇∗(𝐸) + 𝜇∗(𝐹) 

Corollary: If {Ei} is any disjoint sequence of sets, then ∑ 𝜇∗𝐸𝑖
∞
𝑖=1   𝜇∗(⋃ 𝐸𝑖

∞
𝑖=1 ) 

Proof: Set E = ⋃ 𝐸𝑖
∞
𝑖=1  . Repeated application of the first inequality in a Theorem gives 

us ∑ 𝜇∗𝐸𝑖
𝑛
𝑖=1   𝜇∗(⋃ 𝐸𝑖

𝑛
𝑖=1 )  𝜇∗(𝐸). The corollary follows by letting n tend to .  

Lemma: Let {Ai} be a disjoint sequence of sets in 𝒜.                                                                                       

Then 𝜇∗(𝐸 ∩ ⋃ 𝐴𝑖
∞
𝑖=1 ) = ∑ 𝜇∗(𝐸 ∩ 𝐴𝑖)∞

𝑖=1  

Proof: Since we may replace E by 𝐸 ∩ ⋃ 𝐴𝑖
∞
𝑖=1  we may suppose E  ⋃ 𝐴𝑖

∞
𝑖=1  = C.  

Let B  𝒜 with *(B ~ E) < .                                                                                                 

Since C is *-measurable, B = *(B  C) + *(B �̃�) and                                                   

y*(B  �̃�) = *(B  C  �̃�) + *(B  �̃�  �̃�) = *(B  C  �̃�) + *(B  �̃�), since �̃� 

 �̃�.                                                                                                                              

Thus, *(B  �̃�)  *(B  �̃�) < , and so                                                                                               

B - *(B ~ E) = *(B  C) - *(B  �̃�  C) = ∑ 𝜇(𝐴𝑖 ∩ 𝐵)∞
𝑖=1  - *(B  �̃�  C). 

Hence B - *(B ~ E)  ∑ 𝜇∗(𝐴𝑖 ∩ 𝐸)∞
𝑖=1 .                                                                                     

Taking the supremum over B gives 𝜇∗𝐸 ≤ ∑ 𝜇∗(𝐴𝑖 ∩ 𝐸)∞
𝑖=1 .                                                             



54 
 

 

The opposite inequality follows from Corollary. 

 

Theorem: Let  be a measure on an algebra 𝒜 of subsets of X and E any subset of X. 

If 𝔅 is the algebra generated by 𝒜 and E and if �̃� is any extension of  to 𝔅, then 

𝜇∗(𝐸)  �̃�(𝐸)  𝜇∗(𝐸). 

Moreover, there are extensions 𝜇 and 𝜇 of  to 𝔅 (and hence also to the -algebra 

generated by 𝔅 such that 𝜇(𝐸) = 𝜇∗(𝐸) and 𝜇(𝐸) = 𝜇∗(𝐸). 

Proof: Let {Ai} be any disjoint sequence of sets from 𝒜 with E  ⋃ 𝐴𝑖
∞
𝑖=1 . then                  

E = ⋃ (𝐴𝑖 ∩ 𝐸)∞
𝑖=1 , and so �̃�(𝐸) = ∑ �̃�(𝐴𝑖 ∩ 𝐸)∞

𝑖=1   ∑ 𝜇(𝐴𝑖)∞
𝑖=1 .                                             

Thus, �̃�(𝐸)  𝜇∗(𝐸). 

If A is any set in 𝒜 with 𝜇∗(𝐴 ~ 𝐸) < , then �̃�(𝐴 ~ 𝐸) ≤ 𝜇∗(𝐴 ~ 𝐸), and                         

(A) – 𝜇∗(𝐴 ~ 𝐸)  (A) – �̃�(𝐴 ~ 𝐸) = �̃�(𝐸 ∩ 𝐴)  �̃�(𝐸).                                                       

Thus, 𝜇∗(𝐸)  �̃�(𝐸).                                                                                                                  

Hence 𝜇∗(𝐸)  �̃�(𝐸)  𝜇∗(𝐸). 

The sets B in 𝔅 are the sets of the form B = (A  E)  (A  �̃�) with A and A in 𝒜, 

since the collection of all sets of this form is an algebra contained in 𝔅 and containing 

𝒜 and E.                                                                                                                            

For each B  𝔅 define 𝜇 and 𝜇  by 𝜇(𝐵) =  𝜇∗(𝐵 ∩ 𝐸) + 𝜇∗(𝐵 ∩ �̃�) and                                     

𝜇(𝐵) =  𝜇∗(𝐵 ∩ 𝐸) + 𝜇∗(𝐵 ∩ �̃�).                                                                                                

Then 𝜇 and 𝜇 are monotone, nonnegative functions defined on 𝔅, and since for A  𝒜, 

we have A = 𝜇∗(𝐴 ∩ 𝐸) + *(𝐴 ∩ �̃�) it follows that 𝜇A =  𝜇A = A for A  𝒜. For 

any A we have 𝜇∗(𝐴 ∩ 𝐸) = ∑ 𝜇∗(𝐴 ∩ 𝐴𝑖)∞
𝑖=1 . By a lemma we have Then 

𝜇∗(𝐸 ∩ ⋃ 𝐴𝑖
∞
𝑖=1 ) = ∑ 𝜇∗(𝐸 ∩ 𝐴𝑖)∞

𝑖=1 . So,  𝜇 and 𝜇 are countably additive on 𝔅. Hence 

the theorem follows. 

7. Extension by Sets of Measure Zero  

                                                                                                                                                          

The results of Section 2 allow us to extend a measure  on an algebra 𝒜 to a -algebra 

containing 𝒜 and those of Section 6 provide for the extension from 𝒜 to a o-algebra 

containing 𝒜 and one additional set. It is sometimes useful to be able to extend to a -

algebra containing 𝒜 and some collection 𝔐 of subsets of X and to extend in such a 

way that each of the sets in 𝔐 has measure zero. A necessary condition for this to be 

possible is that whenever we have a set A  𝒜 such that A  M 𝔐 , then A = 0. 

This condition is not in general sufficient, since a countable union of sets in 𝔐 may 

contain an A with positive measure, but, if we assume that 𝔐 is closed under countable 

unions, then the condition is sufficient.  
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39. Proposition: Let  be a measure on a -algebra 𝒜 of subsets of X, and let 𝔐 be a 

collection of subsets of X which is closed under countable unions and which has the 

property that for each A  𝔐 with A  M  𝔐 we have A = 0. Then there is an 

extension �̅� of  to the smallest -algebra 𝔅 containing 𝒜 and 𝔐 such that �̅�M = 0 for 

each M  𝔐.                                                                                                        Proof: 

Since the collection of sets which are subsets of a set in 𝔐 satisfies the same hypothesis 

as 𝔐, we may assume that each subset of a set in 𝔐 is itself in 𝔐. With this 

assumption the collection 𝔅 = {B: B = A  M, A 𝒜, M  𝔐} is a -algebra 

containing 𝒜 and 𝔐, and since each -algebra containing 𝒜 and 𝔐 contains 𝔅, 𝔅 is 

the smallest -algebra containing 𝒜 and 𝔐. 

If B = A1  M1 = A2  M2, then A1  A2 = M1  M2, and so (A1  A2) = 0. Thus A1 

= A2, and, if we define �̅�B to be A1, then �̅� is well defined on 𝔅 and is an extension 

of . It remains only to show that �̅� is countably additive. 

Let B =  Bi, Bi  Bj = . If Bi = Ai  Mi, then Ai  Aj  𝔐. Setting 𝐴𝑛
′ = 𝐴𝑛 ∩ �̃�1 ∩

… ∩ �̃�𝑛−1 we have 𝐴𝑖
′ ∩ 𝐴𝑗

′ = 𝜙, and 𝐴𝑛 ∩ 𝐴𝑛
′  𝔐 Thus Bi = 𝐴𝑖

′∆𝑀𝑖
′ and B = A  M, 

where A = 𝐴𝑖
′; and M  𝑀𝑖

′;. Thus �̅�B = A = 𝐴𝑖
′; =  �̅�Bi.  

 

      We observe that the condition that A = 0 for each A  𝒜 with A  M simply 

states that 𝜇∗M = 0. Thus, the proposition states that we can extend the domain of  to 

include any collection 𝔐 of sets of inner measure zero provided that 𝔐 is closed under 

countable unions. Note that on the -algebra generated by 𝒜 and 𝔐 we have �̅�= 𝜇∗. 

Thus, this proposition gives a generalization of the process of completion which 

extends the domain of a measure by adding sets of outer measure zero. 
  

8. Caratheodory Outer measure. 

Suppose X is a set of points and  is a set of real – valued functions on X. Now we find 

a sufficient condition under which an outer measure * will have the property that 

every function in  is * measurable.  

Definition: Two sets are said to be separated by the function  if there are numbers a 

and b with a > b such that  is greater than a on one and less than b on the other. 

Definition: An outer measure * is called a Caratheodory outer measure with respect 

to  if it satisfies the following axiom: (iv) If A and B are two sets which are separated 

by some function in , then *(A B) = *(A) + *(B).S 

Proposition: If * is a Caratheodory outer measure with respect to , then every 

function in  is * measurable.  

Proof: Let * be a Caratheodory outer measure w.r.t . Given the real number a and 

the function   , we must show that the set E = {x: (x) > a} is * measurable or 

equivalently, that given any set A, *(A)  *(A E) + *(A  �̃�).                                                                                           
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Since this inequality is trivial if *(A) = , let *(A) < .                                                                  

We begin by setting B = E  A, C = �̃� A, and                                                                              

𝐵𝑛 = {𝑥: (𝑥 ∈ 𝐵 & (𝜑(𝑥) > 𝑎 +
1

𝑛
)}.                                                                                        

Defining 𝑅𝑛 = 𝐵𝑛~𝐵𝑛−1, we have 𝐵 = 𝐵𝑛 ∪ [⋃ 𝑅𝑘
∞
𝑘=𝑛+1 ].                                                      

Now on 𝐵𝑛−2 we have 𝜑 > 𝑎 +
1

𝑛−2
, while on 𝑅𝑛 we have 𝜑 ≤ 𝑎 +

1

𝑛−1
.                                      

Thus  separates 𝑅𝑛 and 𝐵𝑛−2 and hence separates 𝑅2𝑘 and ⋃ 𝑅2𝑗
𝑘−1
𝑗=1 , since the latter 

set is contained in 𝐵2𝑘−2.                                                                                                  

Consequently 𝜇∗[⋃ 𝑅2𝑗
𝑘
𝑗=1 ] = 𝜇∗𝑅2𝑘 + [⋃ 𝑅2𝑗

𝑘−1
𝑗=1 ] = ∑ 𝜇∗𝑅2𝑗

𝑘
𝑗=1  by induction. Since 

∑ 𝑅2𝑗
𝑘
𝑗=1   B  A we have ∑ 𝜇∗𝑅2𝑗

𝑘
𝑗=1 ≤ 𝜇∗𝐴, and so the series ∑ 𝜇∗𝑅2𝑗

∞
𝑗=1  converges.                                                                                                                                         

Similarly, the series ∑ 𝜇∗𝑅2𝑗+1
∞
𝑗=1  converges, and therefore also the series 

∑ 𝜇∗𝑅𝑘
∞
𝑘=1 .                                                                                                                                                                                                                                                                              

 given  > 0, we can choose n so large∑ 𝜇∗𝑅𝑘 < 𝜀.∞
𝑘=1                                                                   

Then by subadditivity of *, *B ≤ 𝜇∗𝐵𝑛 + ∑ 𝜇∗𝑅𝑘
∞
𝑘=𝑛+1  < 𝜇∗𝐵𝑛 + 𝜀.    S                              

Now 𝜇∗𝐴 ≥ 𝜇∗(𝐵𝑛 ∪ 𝐶) = 𝜇∗(𝐵𝑛) + 𝜇∗(𝐶) since  separates Bn and C. Consequently, 

𝜇∗𝐴 ≥ 𝜇∗(𝐵) + 𝜇∗(𝐶) − 𝜀.                                                                                               
Since  is arbitrary positive quantity, 𝜇∗𝐴 ≥ 𝜇∗(𝐵) + 𝜇∗(𝐶)                                                      

ie. 𝜇∗𝐴 ≥ 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ �̅�). 

 

9 Hausdorff Measures  

Definition: By a Borel measure on a metric space X we mean a measure that is defined 

on some -algebra containing the -algebra of Borel sets in X. For each positive real 

number  we will define a particular Borel measure 𝑚𝛼, called the Hausdorff measure 

on X of dimensions . These measures are particularly important for the Euclidean 

spaces Rn, but much of their theory goes through just as easily for an arbitrary metric 

space X. To define 𝑚𝛼, we take  > 0 and set                           𝜆𝛼
(𝜀)

= inf ∑ 𝑟𝑖
𝛼∞

𝑖=1 . where 

the <ri> are the radii of a sequence of balls, <Bi> that cover E and for which ri < . 

Observe that 𝜆𝛼
(𝜀)

 increases as  decreases.                                               Set 𝑚𝛼
∗ (𝐸) = 

sup ∑ 𝜆𝛼
𝜀∞

𝑖=1 (𝐸) as  → 0. Then we have 𝑚𝛼
∗ (𝐸) = lim

𝜀→0
∑ 𝜆𝛼

𝜀∞
𝑖=1 (𝐸).           It is readily 

verified that 𝑚𝛼
∗  is countably subadditive and thus an outer measure.                              

If E and F are two subsets of X with (E, F) > , then                                                                

𝜆𝛼
(𝜀)

(𝐸 ∪ 𝐹) = 𝜆𝛼
(𝜀)

(𝐸) + 𝜆𝛼
(𝜀)

(𝐹) as soon as  < :                                                                           

For if <Bi> is a sequence of balls of radii less than  covering E U F, no ball can meet 

both E and F. Taking limits as  → 0, we have 𝑚𝛼
∗ (𝐸 ∪ 𝐹)  𝑚𝛼

∗ (𝐸) + 𝑚𝛼
∗ (𝐹). Thus 

𝑚𝛼
∗  induces a Borel measure m, on X by Proposition 41.                                                                                                                                      

The measure m is called Hausdorff -dimensional measure.                                                          

It is customary to normalize m by dividing by the quantity 𝜋𝛼 =
2𝜋𝛼/2

𝛼Γ(
𝛼

2
)
 .                                                                   

https://drive.google.com/u/1/settings/storage?hl=en-GB&utm_medium=web&utm_source=gmail&utm_campaign=storage_meter&utm_content=storage_high
https://drive.google.com/u/1/settings/storage?hl=en-GB&utm_medium=web&utm_source=gmail&utm_campaign=storage_meter&utm_content=storage_high
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Thus 𝜋1 = 2,  𝜋2= ,  𝜋3= 4/3, and 𝜋𝑛 is the volume of the unit ball in Rn.                              

We refer to this measure as normalized Hausdorff measure.                                                                               

In Rn the normalized Hausdorff measure mn is equal to Lebesgue measure. 

 

 


