Fax: 08816-227318 off 08816-224072. 224119228342 Mobile: 9491334119

% DANTULURI NARAYANA RAJU COLLEGE

(Autonomous)
BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202,
(Accredited at ‘B level by NAAC)
(A ffiliated to Adikavi Nannaya University, Rajamahendravaram)

E - CONTENT

PAPER: M 401,

MEASURE THEORY

YEAR, SEMESTER - IV

UNIT -1

K, C. TAMMI RAJU, M. Sc.
HEAD OF THE DEPARTMENT
DEPARTMENT OF MATHEMATICS,
PG COURSES
DNR COLLEGE (&),

BHIMAVARAM - 534202




2

401, MEASURE THEORY
K. C. Tammi Raju
UNIT I: MEASURE SPACE

Definition: A collection C of subsets of an arbitrary space X is called an algebra of
sets if (i) A w B is in C whenever A and B are and (ii) A" is in C whenever A is.

Definition: A class of subsets of an arbitrary space X is said to be a ¢ - algebra, if X
and ¢ belong to the class and class is closed under the formation of countable unions
and of complements.

Example: The class of Lebesgue measurable sets is a ¢ - algebra of subsets of R.

Definition: A class of sets, R, is called a ring if wheneverE e R,F e RthenE UF
andE-F e R.

Example: The class of finite unions of intervals of the form [a, b) forms a ring.

Definition: A ring is called a o - ring if it is closed under the formation of countable
unions.

Result: Every algebra is ring and every o - algebra is a c - ring but not conversely.

Definition: A pair (X, B) where B is a ¢ - algebra of subsets of X, is called a
measurable space. The sets of B are called measurable sets.

Definition: A measure p on a measurable space (X, 8B) is a non — negative set function
defined for all sets of B satisfying u(¢p) =0and u(U2, E;) = Xizq u(E;)
for any sequence {E;} of disjoint measurable sets. i.e. u is countably additive.

Definition: A measurable space (X, B) together with a measure p defined as above on
B is called a measure space and it is denoted by a triple (X, B, u).

Observation: If (X, B, w) is a measure space then it is finitely additive i.e. E, ..., Eq
are sets in B such that E; N E; = ¢ for i = j, then u(Uj~, E;) = X, u(Ey).

Hint: Set Eqn+1 = Ens2 = ... = ¢. Then the family {E;} is a pair wise disjoint family of
subsets from B and p(E;) = 0 for i > n + 1 and the result follows from definition.

Example 1: (R, Mt, m) is a measure space where R is the set of real numbers 9t is
Lebesgue measurable sets of real numbers and m is Lebesgue measure.
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Example 2: (R, B, m) is a measure space where R is the set of real numbers 8B is the
class o - algebra of Borel subsets of R and m is Lebesgue measure.

Example 3: ([0, 1], 9, m) is a measure space where 9t is measurable subsets of
[0, 1] and m is Lebesgue measure.

Example 4: Let X be an uncountable set. B8 = {A < X: Ais countable or A’ is
countable}. Define pnon B by u(A) =0 if A € B is countable, u(A) =1if A € B and
A is countable. Show that (X, B, i) Is a measure space.

Solution: Given X is uncountable. .. ¢ = X" is countable so that u(X) =1, u(¢) =0.
Claim: A, B € 8B such that A’, B" are countable = AN B = ¢

Let A, B € Band A’, B’ be countable.

A U B can be expressed as a disjoint union of 3 sets as
AuB=(AnB)YUANB)U(A"nB)..(I)

Observe that A U B is uncountable, A n B" and A" m B are countable.

If A~ B =¢then RHS of (i) is countable and LHS is uncountable which is a
contradiction.

S AN B=#¢.

Hence it is enough if we verify countable additive property of u in the following two
cases. Let {Ai, 1 € Z'} consist of pair wise disjoint sets of B.

Case (i): A are all countable:

Then U;2, 4; is countable. Thus u(4;) =0 for each i and u(Uj2; 4;) =0

This proves u(U;Z; A;) = X2, (4.

Case (ii): Only one of 4;" say A, is countable and the remaining A4; are countable.
Then U2, 4; is uncountable. Thus u(A1) =1, u(Ai) =0 foreachi=2, 3,4, ..., and
(U2, A;) = 1. This proves u(U2; 4;) = 524 n(A))

. uis ameasure on (X, B) and hence (X, B, u) is a measure space.

Proposition: Let (X, B, u) be measure space. If A, B € B and A < B then p(A) <
w(B). i.e p is monotone.

Proof: Let A, B € Band A c B. Clearly B=A U (B ~ A) is a disjoint union.
~u(B)=pu(A)+ 1B ~ A) by finite additivity.

Hence u(A) < u(B) since u( B ~ A) > 0. .. is monotone.

Note: If Ac Bthen u (B) =u (A) + w(B ~ A).

Theorem: Let (X, B, u) be measure space. If A, B € B then u(A U B) < pu (A) + u(B).




Proof: Let A, B € B.

AU B can be expressed as a disjoint union of 3 sets as

AuB=(A~B)U(AnB)uU(B~A).

By finite additivity of p,

WAUB)=u(A~B)+ (AN B)+uB-~A).
<WA~B)+u(AnB)+uwB~A)+uBnA)since (BN A)>0.
=u(A) + u(B)sinceAnBcA AnBcB.

Proposition: Let (X, B, u) be a measure space. If Ei € B, u(E;) <o and E; 2 Eix

then (N2 ;) = lim u(E).

Proof: Let Ej € B, u(Ei) <« and E; o Ej..

Then clearly E; = Eis1 U (Ei ~ Ei+1) is a disjoint union.

~.u(E) = u (Ein) + W(Ei ~ Ei+1) by finite additivity.

H(Ei ~ Ei+1) =u (Ei) — N (Ei+1)...(i).

SetE=N2, E;

ThenclearlyEs=E U (E1 ~E2) W (E2 ~E3) U (Es~Es) L ...

= FE U U;2,(E;~E;41) is a countable union of disjoint measurable sets.

(B = p(E) + T2y w(E~Eiey) = p(E) + lim R (E) — p(Eir))

= w(E) + lim {pu(Ey) — p(Ez) + u(Ez) — plEs) + p(Es) — p(Es) + -+ p(Epy) — p(En)}

= pu(E) + lim {u(Ey) — p(En)} = p(E) + u(Ey) — lim u(Ey)

Hence u(Ni2, B = lim u(Ey).

Proposition: Let (X, B, ) be measure space. If Ei € B, then (U2, E;) < 272, u(E;).

Proof: Let E; € B.

Put Gy =E;, G;=Ex~E;, Gs=E3~(E1 VEY), ..., G, = E,~ UL E;, ...

Then {G,} is a disjoint sequence of sets in B, G, < E, foreachnand U2, G; =

U2, E;

oo w(Gh) < WEy) .. ().

And u(UiZ, Ey) = n(U;2, G;) = X2, u(G;) by additivity

< T2 uE) by (i).

Hence u(U;Z, E;) < X2, 1(Ey).

Exercise: Let (X, B, u) be measure space. If {A;, ie Z*'} is a sequence of sets in B,
then show that u(Uj2, 4;) < lim u(Ui, 4;)
n—>0oo
Solution: Let E, = UL, A;and E=U;2, A;. ThenE, e Band E, < Enss
Thenclearly E=E1 U (E2~E1)) U (Es~E)) U (Es~E3) U ...
= E; U{U2,(E;~E;_,)} is a countable union of disjoint measurable sets.
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< w(E) = p(Ey) + XiZp w(E; = Ei1)= p(Ey) + lim Yo%, p(E; — Eiq)

= p(Ey) + lim Yz, [u(E) — u(Ei-g)]

=pu(Ey) + 1111_1){310{#(5'2) — u(Ey) + u(Es) — pu(Ey) + - + p(Ey) — p(En_q)}
= u(Ey) + lim {u(Ey) — p(E1)} = p(Ey) + lim p(En) —p(Ey).

< u(E) = lim p(Ey)

Hence u(Ui2, 4;) < 111_{{)10 n(Ui=; A

Theorem: Let (X, B, u) be measure space and E;, E; € B. Then prove that
w(Er A E2) = 0 = n(Es) = n(E2).

Proof: Since E; A E; = (E1\ E) U (E2 \ Ey) is a disjoint union of measurable sets,
O0=wE1AE;) =u(E1\Ep) + u(Ex \ Ey).

But w(E1 \E2) >0 and p(E2 \ E1) > 0 since u is non — negative.

oo u(ElVEy)) =0and u(Ez\ E;) =0.

Since E; = (E1 \ E;) U (E1 m Ey) is a disjoint union of measurable sets,
W(E1) = B\ E2) + W(E1 M Ez) = 0 + n(Er N Ep) = p(E1 M E)

Since E; = (E» \ E1) U (E2 m Ey) is a disjoint union of measurable sets,
w(E2) = (B2 \ Ex) + W(E2 M E1) = 0+ n(Ez N E1) = p(E1 N E)

Thus w(E;) = W(E1 M E2) = u(Ey).

Definition: Let (X, B, w) be measure space. p is said to be finite if u(X) < oo. p is said
to be o - finite if there is a sequence {X,} in B such that X = U X, and u(Xp) < oo for
each n.

Definition: The measure space (X, B, u) is said to be complete if B contains all
subsets of sets of measure zero. le. Ae B, uy(A)=0andBc A=B < 8.

Example 1: If a coin is tossed either head or tail comes up when the coin falls.
Let us assume these are the only possibilities.

Let X = {H, T} where H stands for head and T for tail. Let B ={¢, {H}, {T}, X}.
Define p : B—[0, 1] by u(¢) =0, u({H}) = u{T}) =% and pn(X) = 1.

Then pis a finite measure on (X, B).

Example 2: Let two coins be tossed. Let X = {HH, HT, TH, TT} where H stands for
head and T for tail. Let B = ¢ (X). Define u : 8—[0, 1] by u(A) = probability of A
where A < X. Then p is a finite measure on (X, B).
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Example 3: Let X be an uncountable set. B = {A < X: A is countable or A’ is
countable}. Define pon B by u(A) =0 if A € B is countable, u(A) =1 if A € B and
A is countable. Then the measure p is finite since u(X) =1 < w.

Example 4: Let X = R, B be the o - algebra of Lebesgue measurable sets and m be the
Lebesgue measure on B. Let X, =[-n,n],n e Z*. Then m(X,) = 2n <« for all n and
R = U X,. Hence mis o - finite.

Proposition: Let (X, B, 1) be measure space. LetY c X, Y € B.
Define By ={A e B: Ac Y}and uy(A) = u(A).
Then (Y, By, Wy)is a measure space. py is called restriction of pto Y.

Hint: By is a ¢ - algebra of subsets of Y. uy(¢) = (o) = 0 and countable additivity of
uy is inherited from that of p.

Definition: Let (X, B, u) be measure space. A subset E of X is said to be of finite
measure if E € B and u(E) <. A subset E of X is said to be of o - finite measure if
E is the union of a countable collection of measurable sets of finite measure.

Result: Prove that any measurable set contained in a set of o - finite measure is itself a
o - finite measure.

Proof: Let A be a set of o - finite measure of a measure space (X, B, u) and E be a
measurable subset of A.

Then 3 a sequence {A,} of measurable sets with pu(A,) <o such that A = U2, 4,
NowE=EnNA=EnU;2;4, =U2,(ENA,) and

since E n An < An WE N An) < u(An) < o,

. Eis of o - finite measure.

Result: Prove that union of countable collection of sets of ¢ - finite measure is again of
o - finite measure.

Proof: Let {E,} be a sequence of sets of o - finite measure of a measure space

(X, B, w).

Then 3 a sequence {E,,, } of measurable sets > E,, = U2, E,,, and pu(E,,) < oo for each
n.

Now U2, E, = U2,(U{2, Ey,) and u(E,,) < .

Hence U;2, E,, is of & - finite measure.
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Proposition: If (X, B, u) is a measure space, then we can find a complete measure

space (X, By, 1y) such that (i) B < B, (i) E € B = w(E) = po(E).

(i) Ee By iff E=AuBwhereBe BandAcC,C e B, u(C)=0.

Proof: Let (X, B, n) be a measure space.

Now we have to construct a complete space (X, By, uo) satisfying (i), (ii) and (iii).

Define By ={AuUB:BeB,73CeB>AcC, uC)=0},

Claim: B, is a c - algebra.

Clearly ¢ € B,.

LetAuBeB, .BeBICecB>AcC, uC)=0.

Then(AUB)=AnB=AnB nX=4AnBn(C u ()
=(AnBnC)uAnBnC)=(AnBnC)u(BnC)eB, AcC.

Thus, AUB € B, = (AUB) € B,.

Let {Ai U Bi} be a countable collection of members of B,,.

Then U;2,(4; UB;) = (U2, 4) v (U2,:B;) € Bysince U2;B; € B, 3U2,C; €B

> U2 4; € Uz Gand p(U2, ) < X2, u(Gy) = 0.

. B, isac - algebra.

Define uy: By — R U {—o00,00} by uy(AUB) = u(B) VA uUB € B,.

Claim: p, is well defined

Let AUB=AUB; € B,

=B,B;eB,3C,CieB,AcC A1 cCiwithuC=pnCi=0.

NowB;cAiuBi=AuBcCuUB ie. BicCuB

oo u(By) £uC + pu B =uB. So uB; < uB. Similarly, uB < uB;, so that uB; = uB

S (AU B) = u(B) = uBy = (A, U By).

Also, po(AU B) = u(B) = 0 and po(¢p) = u(¢) =0

Let {A; U B;} be a sequence of pairwise disjoint sets in B,,.

Then UiZ,(4; U By) = (U2, 4;) v (U2, By).

Here UiZ, B; € B, U;Z1 A;c Uyzy G and p(U;24 G;) < X2, 1(G;) = 0.

- po(UiZ1(4; U BY) = u(Ui21 By) = X2, p(By) = X241 po(A; U By)

Hence y, is a measure on B,

If E € B, then, o (E) = po(¢p U E) = u(E)

Claim: (X, By, uo) is complete.

Let AUB e By, up(AUB)=0and A; UB1c AUB.

= BeB,3CeB,AcCwithuC=0.

S WCuUB)SuC+puB=puC+py(AUuB)=04+0=0..(1).
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Now A1 UB1=A1UB1Ud={(A1uB)N(AUB)} U
={(A1UB)N(CUB)}UudeBysincep e B,ICUB eB>(A1uBi))n(CUB)
c CuBand u(CuB) =0by (1).

Definition: Let (X, B, 1) be a measure space. A subset E of X is said to be locally
measurable if E N B € B for each B € 8 with p(B) < .

Proposition: The collection C of all locally measurable sets is ¢ - algebra containing B.
Proof: Let C be a collection of all locally measurable sets.

Claim: C is non-empty: Let B € B with u(B) <. Thenp "nB=¢ € B. ..¢p € C S0
that C is non — empty.

Claim: C is closed under countable unions:

Let {Ei} be a sequence of sets in C and B € B with u(B) < .

Now (U2, E;)) NB=U2,(E;NB) € Bsinceeach E; N Be Band B isac -
algebra. .. U;2, E; € C so that C is closed under countable unions.

Claim: C is closed under complements:

LetE € C. leENn B e Bforeach B € B with u(B) < .

Let B € B with u(B) < .

ThenE'NnB=(E'NnB)U¢ =(E'NB)U(B'NB)

=(E'"UB")NB=(EnNnB) NnB e Bsince B is closed under complements and
intersection. le. E € C = E’e C so that € is closed under complements.

Hence the collection C of all locally measurable sets is a ¢ - algebra

Clam: 8 c ¢

Let E € Band B € B with u(B) < oo.

Since Bisao -algebraE N B € B. le. E B € B for each B € B with p(B) < .
— E e C.Hence B c C.

Definition: The measure p is called saturated if every locally measurable set is
measurable (ie is in B).

Problem: Every o - finite measure is saturated.

Solution: Let (X, B, 1) be a measure space and the measure u be o - finite.

. 3 asequence {X,} of measurable sets in B such that X = U X, and p(X,) < « for
each n. Let E be locally measurable set in X.

Since X, € B and u(X,) < « for each n and E is locally measurable, X, N A € B for
each n.

NowE=XnE=(UX,) nE=uU (Xy,nE) € Bsince B is c - algebra.

Thus, E is measurable. Hence every o - finite measure is saturated.
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Proposition: Let (X, B) be a measurable space. 1, v be two measures on (X, B).
Let A = pu + v. Then, (X, B, 1) is a measure space.

Proposition: Let (X, B) be a measurable space; i, v be two measures on (X, B)
such that p > v. Then there is a measure on (X, 8B) such that A + v = . In addition
if vis o - finite then A is unique.

MEASURABLE FUNCTIONS ON ABSTRACT SPACES

Definition: Let (X, B) be a measurable space. Let f be an extended real-valued function
defined on X. Then f is said to be measurable (w.r.t B) if ¥ o, {X: f(x) >a} € B.

Proposition: Let f be an extended real-valued function defined on X. Then the
following statements are equivalent.

1)  {x:f(x) > a} e Bforeach a.

@)  {x: f(x) > a} € B for each a.

(i)  {x: f(xX) < a} € B for each a.

(iv) {x:f(x) <a} e B foreach a.
Proof: Claim: (i) = (ii). Assume (i). Let o be a real number.

Now {x: f(x) 2 o} = N3y {x: f() > @ — 2} e Bsince {x: f(x) >~} € B va -

% and B is a o — algebra.

A X)) >0} € BY o

So, (i) = (ii).

Claim: (ii) = (iii).

Suppose {x: f(x) > o} € B for each a.

Let o be a real number. Then {x: f(x) <o} ={x: f(x) = a} € B asitis o - algebra.
X f(X)<a} e BY o

So, (ii) = (iii).

Claim: (iii) = (iv). Assume (iii).

Let o be a real number. Then {x: f(x) < o} = N3 {x: f(X) <a + 1} ¢ B.
o AX f(X) < o} € B for each a.

So, (iii) = (iv).

Claim: (iv) = (i), assume (iv). Let o be a real number.

Then {x: f(x) > a} = {x: f(x) < a} € B since B is a ¢ - algebra.

~AX f(X) > a} € B for each . So, (iv) = (i).

Hence the proposition is proved.
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Theorem: If ¢ is a real number and f, g are measurable functions then f + ¢, cf,

f+ g, g—fand fg are also measurable, on an abstract measurable space.

Proof: Let ¢ be a real number and f, g be measurable functions. Let o be a real number.
{x: (f+c)(X) > a} ={x: f(x) + ¢ > a}={x: f(X) > a — c} which is a measurable set
since f is measurable. ... f + ¢ is measurable.

If ¢ =0, cf is measurable, as the set {x: cf(x) > a} = ¢ or X according as o > 0 or

a <0, and ¢ and X both belong to B as B is a c-algebra.

If ¢ >0, {x: cf(x) > a} = {x: f(X) > ¢} and since {x: f(x) > cta} e B it follows that
{x:f(x)>a} € BY a.

Also, if ¢ <0, then {x: cf(x) > o} = {x: f(x) < c'a} and since {x: f(x) <cla} € B it
follows that {x: cf(x) > o} B V a. So, cf is measurable.

f(x) + g(x) > o iff 3 a rational r; such that o — g(x) < ri < f(x) where <r>,1=1,2, 3, ...
Is an enumeration of the set of rationals.

SAXX) +9(x) > o} = U2y [{x: f(x) > i} n{x:g(x) > a =7}l
Since{x:f(x)>nr}eBVrnand{x:glx) >a—1r}eBVYa-r,

[{x: f(x) >nr}n{x:g(x) > a—r}] € Band hance {x: f(X) + g(X) > a}e BY a
since Q is countable.

Hence f + g is measurable. Now f —g =f + (- g).

Since f and — g are measurable, so, f + (— g) is measurable.

Hence f — g is measurable.

Finally, fg =~ {(f + 9)? — (f = 9)%}

So, it is sufficient to show that f2 is measurable whenever f is.
If a <0, {X:f?(x) >a}=X e B.

If oo >0, {X:f2(x) > a} ={x: f(x) >Va}u {x: f(x) <-a}.
Since f is measurable so {x: f(x) > va} and {x: f(x) <-va} € 8.
Hence their union belongs to B. Thus, {x:f%(x) > a} € B Va.
. f2 is measurable.

It follows that (f + g)? and (f — g)? are measurable.
So, fg is measurable.

Theorem: If {f,} is a sequence of measurable functions then sup f,, inf f,, lim f,, and

n—->0oo

Iim f,, are also measurable.

n—->0oo

Proof: Let fi, o, ..., f, be measurable.

Claim: Sup {fi, f, ... f,} is measurable.

Note that Sup {f, fo, ..., fi}(X) = Sup {f1(X), f2(x), ..., fa(X)}.
Let o be a real number.
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Now {x € X: Sup {f, fo, ..., fi}(X) > o} = NL {x € X: fi(x) > a} € B.

- Sup {fy, fo, ..., £} is measurable.

Thus, if 1, fo, ..., f;, are measurable then Sup {fi, o, ..., f,} and similarly inf {f;, f,, ...
fn} is measurable.

Since {f} is a sequence of measurable functions on B, so, for all o and all n,
{x: fo(x) > o} € B.

SAXosup £, >0} = Nozqi{x: f,(x) > a} € Bas Bis o - algebra.

So, Supnfn is measurable.

Since igffn = —sup (- f,) and since (—f,) is measurable by above argument
sup (- f,) is and hence — sup (- f,) is measurable. le igffn IS measurable.

(iii) - {f.} is a sequence of measurable functions, as above, g, (x) = sup f; is

izn

measurable for each n.

.As above inf g,, is measurable. Since lim f,, = inf{sup fi} , im f;, is measurable.
n n—-oo n 7 n—->00

zn

-+ {fn} is a sequence of measurable functions, as above, h, (x) = inf f; is measurable
izn

for each n.

-.As above inf h,, is measurable. Since lim f,= su {inffi}, it follows that lim f,,is
n zn S

n—oo n n—oo

measurable.

Definition: A real valued function defined on X and which assumes at most a finite
number of values is called a simple function.

¢: X =R is a simple function iff o(x) = XiL; ¢;xg,(x), X € X where Ey, E, ..., Enare
pairwise disjoint subsets of X > X =E; UE; U ... UE,and ¢y, Cy, ..., ¢y are distinct
numbers. {E1, Eo, ..., En} is called a finite partition of X. yg, is the characteristic
function of E;. Clearly o(x) =ciforx € Ej,i=1,2, ...,n.

Proposition: A simple function ¢ = }I_; ¢; x, is measurable iff each E; is measurable.
Proof: If the simple function ¢ has another representation as ¢ = X7 d;xr, then, on
Ei n Fj, @ must assume the values c;, dj which is not possible unless c; = d;, E;j =F;.
Hence the representation is unique upto the addition of empty set.

@ is measurable implies {x € X: ¢(x) > a} = {x € X: XL, c;xg,(x) >0} € B.

Let o <min {cy, Cz, ..., cn}, Then {x € X: ¥IL; ¢;xp,(x) >a} =X € B,

Let o > max{cy, Cz, ..., cn}. Then {x € X: ¥iL; ¢ xp,(x) >a}=¢ € B.

Let min {cy, C2, ..., cn} <a<max {ci, C, ..., Cn}.
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Then {x € X: XI*, ¢;xg.(x) > o} = W E; where ¥ indicates the union over all j (from 1
=1 i j '] j

to n) 5 ¢ > a.. Such j’s are finite in number and hence, W E; € B, for any oo we must
j

have E; € B. Hence the simple function ¢ is measurable iff each E; is measurable.

Proposition: If f is measurable and p is complete, then f = g almost everywhere implies
g is measurable.

Proof: Let E = {x € X: f(x) = g(x)}. By hypothesis u(E) = 0.

Forany a eR, {x € X: g(X) > a} ={x € X: f(xX) > a} U N where

N ={x € X: g(x) >a and f(x) = g(x)}. Hence N c E. Since, f is measurable {x e X:

f(x) > a} € B. Since, p is complete N € B and hence {x € X: g(x) > a}< B. Hence g
Is measurable.

INTEGRATION.

Definition:

*If E is a measurable set, ¢ a nonnegative simple function and p any measure, define
g @dp = Y-, CGiu(E; 0 E) where ¢ (x) = ¥z Cixg, (%).

Proposition: If a and b are positive numbers and ¢ and y are nonnegative simple
functions, then J(ag + by) = afo + by
Proof:

If a simple function ¢ takes the values ¢y, Cz, ..., cn then @ (x) = Y7L, Cixa, Where A; =

{x:o(X)=ci}.
Then the integral of ¢ with respect to p is given by f pdu = Y-, C;u(4).
E

Definition: Let f be a nonnegative extended real-valued measurable function on the
measure space (X, B, u). Then the integral of f is given by
Jfdp = sup {Jodu: @ < f} where o is a simple function.

Definition: Let (X, B, n) be a measure space. Let E € B, and let f be a measurable
function f: E — (0, «], then the integral of f over E is

| @du=]fyedp.
E

Fatou’s lemma: Let {f,} be a sequence of nonnegative measurable function which
converges almost everywhere on a set E to a function fthen [ £ < lim [ f,
E

n—-oo E
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Proof: Without loss of generality, we may assume that f,(x) — f(x) for each x € E.
From the definition of | f, it suffices to show that ¢ is any nonnegative simple function

with @ <fthen [ ¢ < lim [ f,
E n—oo g

If | ¢ = oo, then there is a measurable set A ¢ E with pA = oo such that
f>r>0o0nA.
Set An={x e E: fx(X) >r V k>n}.
Then {An} is an increasing sequence of measurable sets whose union contains A, since
¢ <lim f,.
Thus, lim p A, = .
Since [ £, >r p(An) we have lim [ f,=0=] o.
E - F E

If [ < oo, then the set A = {x €E: ¢(x) > 0} is a measurable set of finite measure.

Let M be maximum of o, € be a given positive integer, and

set An={x e E: fkx(X) > (1 —¢) o(X) V k>n}.

Then {An} is an increasing sequence of measurable sets whose union contains A, and
so, {A ~ A,} is a decreasing sequence of sets whose intersection is empty.

By a proposition, lim u(A ~ A,) =0, and so, we can findann > (A~ Ay <e Vk>n.
Then for k > n we have

[fi>[fi>U-af¢ >0-afo— [ o= ¢-¢|[ p+M]
E Ag Ay E A E

~Ag E

Hence lim [ f, 2f<p—e[f<p+M].
E E E

Since g is arbitrary, lim [ f, > [ ¢
E E

Monotone Convergence Theorem: Let {f,} be a sequence of nonnegative measurable
function which converges almost everywhere to a function f and suppose that f, < f for

alln. Then [ f =lim [ f,
E n—->0oo E
Proof: Since f, < f, we have | f, <[ f.
Hence lim [ f, < [ f
n—-oo
By Fatou’s lemma, [ f < lim [ f;

n—oo

From (i) and (i) we get [ f < li_mffns@ffnsff

n—oo

hﬂffn:r{l_)_rzloffn:#_)rgffn

n—-oco
Thus, lim ffn = ff
n—oo
Hence the theorem.
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Proposition: Suppose a and b are non negative numbers and f and g are nonnegative
measurable functions, then (i) J(af + bg) = aJf + bg (ii) | f > 0 with equality only if f= 0
a.e.
Proof: (i) Let {¢n} and {wn} be increasing sequences of simple functions which
converge to f and g respectively.
Then {ae, + byn} is an increasing sequence of simple functions which converge to
af + bg.
By the Monotone Convergence Theorem, [ (af + bg) = lim | (apn + byy)
= lim @Jon + b Jyn)
—alf+blg.
(i) Obviously | f> 0.
IF/£=0,let Ay= {x: f(x) >~ }.

Then f > %XAn and so, u (An) = I)(An = 0. Since the set where f > 0 is the union of the

sets A, it has measure zero.
Hencef=0a.e.

Corollary: Let {f,} be a sequence of nonnegative measurable functions. Then

J X fudu =Yy | fdp.

Proof: Let s, = );~ fi SO that rlll_rEO Sp = Domet [+ (1)
Now s, is a sequence of measurable functions such that s, < s,+1 and (i) holds.
.. By monotone convergence theorem,
J Ziei fadp = J lim s, = lim [ s,
= rlll_r){)lo Dk=1 f fr

=¥ _. | f proving corollary.
Definition: A nonnegative function f is said to be integrable over a measurable set E w.

r. t any measure p if it is measurable and [ f du < oo.
E

Any function f can be writtenas f= f* — f~ where f “and f ~ are positive and negative
parts of fand that |f| = f* + f~.

Definition: An arbitrary function f is said to be integrable if both f “and f ~ are
integrable. In this case we define [ fdu= [ ffdu— [ f~du
E E E

Proposition: Let (X, B, w) be a measure space. If f and g are integrable functions over
Eec®B then(i) [ (af +bg)dy =af fdu+b [ gdu

E E E
(ii) If |h| < |f| and h is measurable then h is integrable.




(i) IFf>ga e, then [ fdu>[ gdu
E E
Proof: (i)
(ii) Given |h| < |f| we have |h| = h* + h™.
Then h* < |h| so that [ A*dp < [ |f] du since f is integrable function, so |f] is
integrable and [ |f| du < o hence h* is integrable.
E

Similarly, we can prove that h™ is integrable.
Hence h = h* — h™ is integrable.
(i)f>ga.e.=>f-g>0a.e.

Hence J(f—g) dpu > 0.

= [fdp—Jgdu>0proving £ fdy2£ gdu.

Lebesgue Convergence Theorem: Let (X, B, u) be a measure space. Let g be
integrable function over E € B and suppose {f,} be a sequence of measurable functions
such thaton E, |f,,(x)| < g(x), and such that almost everywhere on E, f,, (x)— f(x).

Then [ fdu =lim | fdu.

E n—o g
Proof: Since, for each X, |f,,(x)| < g(x) and lim f, =fa. e. we have |f| < g a. e.
hence f, and f are integrable. Also, since —g < f,, <g, {g + f.} is a sequence of
nonnegative measurable functions.
Now by Fatou’s lemma, [ (g + f)du < lim [ (g + f,)du.

n—oo

So, | gdu+lim [ fodu>[ gdu+| fdu.
E n—o g E E

Since g is integrable | g du is finite.
E

oJ fdp <dim [ frdu ... (i)
E n—oco g

Again, *since f,, < |f,| <0, {g—f.} is a sequence of nonnegative measurable
functions.
Now by Fatou’s lemma, [ (g — f)du < lim [ (g — f,)du.

n—oo
So, | gdu—1lim [ fodu>[ gdu - fdu lim [ f, <[f
E n—-o g E E n—oo

Since g is integrable | g du is finite.
E
slim [ f, < [ f... ().
From (i) and (ii)weget [ f < lim [ f,<lim [f, <[ f

n—oo

ll_m_ffnzﬁffn:#_{gffn

n—oo

Thus, lim [ f, = [ f




Hence the theorem.

Theorem: Let f be an integrable function on the measure space (X, 8B, w). Then given ¢
> 0, there is a & > 0, such that for each measurable set E with p(E) <9, |f f| <e.
E

Proof: The theorem is trivial if f is bounded function.
For any n, let f, (x) = f(x) if f(x) < n and f,(X) = n otherwise.
Then each f, is bounded and f,(x) — f(x) for each x.

By the monotone convergence theorem there is an integer N > | [ (f — fy)| < g
E
Choose & > —.
2N
T @) <5, | F|=|1 ¢ = fu+ )
<|fo=po| +|f A
E E
<|f o=l + Fimml
E E
<ZiNZ
2 2N

<iifog
2 2

le. |f f‘ < . Hence the theorem.
E

Theorem: Let (X, B, w) be a measure space and g be a nonnegative measurable
function on X. Set v (E) = J g du. Then v is a measure on B.
E

Proof: By the definition of v, obviously, v is non-negative, v(¢) = 0.
Let {E.} be a sequence of pairwise disjoint sets.

vUneiED) = [ gdu=[ gxye g du=] Yne1 9. Xe,du
X X

UR=1En

= Z?lozlf XE,9 Ai = 220:1]:! g du = Y31 v(ER).
X n

Lemma: Suppose that to each o in a dense set D of real numbers there is assigned a set
B € B such that B, < Bg for o < 3. Then there is a unique measurable extended real-
valued function f on X such that f < o on B, and f > o on X ~ B..

Proof: For each x € X, define f(x) = inf {a.eD: x € Bo} where, as usual, inf ¢ = o,

If X € Bq, then f(X) < a. If X ¢ Bq, then x ¢ Bg for each B < o, and so f(x) > a.

To show that f is measurable, we take A € R and choose a sequence {a.}, from D with
an <A and A = lim o, Then {x: f(x) <A} = Uy, B,,. For if f(x) <2, then f(x) < a, for
somen,andsox € B, . If x € B, forany n, then f(x) < o, <A.

Thus, the sets {x: f(x) < A} are all measurable, and so f is measurable.
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To prove the unicity of f, let g be any extended real-valued function with g < o on By,
and g > o on B,,.

Then x € Bo implies g(x) <o, and so {a € D: X € Bo} < {a € D: o > g{x)}.

Since g(x) < o implies that x € B, we have {a. € D: o > g(X)} < {a € D: x € Bo}.
Because of the density of D we have g(x) = inf {o. € D: o > g{x)}

=inf{a € D: a >g(X)} = inf {& € D: x € B} = f(X).

Proposition: Suppose that for each o in a dense set D of real numbers there is assigned
a set B, € B such that u(B« ~ Bg) = 0 for a < . Then there is a measurable function f

suchthatf <o a.e.on B, and f> o a. e. on X ~ B,. If g is any other function with this
property, theng="fa. e.

Proof: Let C be a countable dense subset of D, and set N = U (Ba ~ Bg) for oo and 3 in
C with a < .

Then N is the countable union of sets of measure zero and so is itself a set of measure
Zero.

Let B'« = Bo U N.

For o and 8 in C with o < 3 we have B'« ~ B'g = (Ba~ Bg) ~ N = ¢.

Thus B’ < B’g. By Lemma there is a measurable function f such that f <y on B’, and f
>vyon X~ B,

Let a € D and choose a sequence {yn} from C with o <y, and a = lim y,.

Then B,~B’, < By~B, .

Thus, P = ‘,{(Ba~B'yn) Is a countable union of null sets and so a n null set.
LetA=nB', .

Thenf<infy, =aonA,and A~B.cP.

Thus f < a almost everywhere on B..

A similar argument shows that f > o almost everywhere on B,

Let g be an extended real-valued function with g <y a.e.on B,and g >y on Ey for each
y € C.Theng<yon B, and g >yon B’, except for x in a null set Q,.

Thus Q = U Q, is a null set and we must have f=gon X ~ Q.

GENERAL CONVERGENCE THEOREMS

Proposition: Let (X, B) be a measurable space, {u,,} be a sequence of measures that
converge setwise to a measure p, and {f,,} a sequence of non-negative measurable
functions that converge pointwise to the function f. Then [ f du < lim [ f,, du,
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M 401, MEASURE THEORY
K. C. TAMMI RAJU
UNIT I
SIGNED MEASURE

Definition: By a signed measure on the measurable space (X, B) we mean an extended
real-valued set function v defined for the sets of B and satisfying the following
conditions:

(i) v assumes at most one of the values + oo, — 0.

(i) v(¢) =0

(i) v(UZ, E) = X2, v(E)), for any sequence {E;}of disjoint measurable sets,
the equality taken to mean that the series on the right converges absolutely if
v(U;2, E;) is finite and that it properly diverges otherwise.

Note: Thus, a measure is a special case of a signed measure, but a signed measure is
not in general a measure.

Definition: A set A is a positive set with respect to a signed measure v if A is
measurable and for every measurable subset E of A we have vE > 0.
le. A € B is positive w.r.t. signed measure vifE € B,ECc A= vE>0.

Result; (i) ¢ set is a positive set.
(i) If we take the restriction of v to a positive set we obtain a measure.

Definition: A set B is called a negative set if it is measurable and every measurable
subset of it has nonpositive v measure.

Definition: A set that is both positive and negative with respect to v is called a null set.

Note: A measurable set is a null set if and only if every measurable subset of it has v
measure zero.

Note the distinction between a null set and a set of measure zero. While every null set
must have measurable subsets of measure zero, a set of measure zero may well be a
union of two sets whose measures are not zero but are negatives of each other.
Similarly, a positive set is not to be confused with a set that merely has positive
measure. Similar statements hold, of course, for negative sets.
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Lemma: (i) Every measurable subset of a positive set is itself positive.

(i1) The union of a countable collection of positive sets is positive.

Proof: (i) Let (X, B) be a measurable space and v be a signed measure.

Let A be a positive set of v. Let B — A and B be measurable.

E < B and E be measurable. Then vE > 0 since E — B < A and A is positive.
.. B is a positive set. Hence every measurable subset of a positive set is itself
positive.

(i1) Let {An} be a sequence of positive setsand A = Up-, 4,,.

Let E be any measurable subset of A.

SetEn=ENA,NA,_ 1 NA, ,N..NA4

Then E, is a measurable subset of A, and so vE, > 0.

Since the E, are disjoint and E = U E,, we have vVE = )", VE,,> 0.

Thus, A is a positive set.

Lemma: Let (X, B) be a measurable space and v be signed measure on B. Let E be a
measurable set such that 0 < vE < co. Then there is a positive set A contained in E with
vA > 0.

Proof: Case (i): Let E itself be a positive set, in which case the lemma is trivial. Case
(i1): Suppose E contains measurable sets of negative measure. Let n; be the smallest

positive integer such that there is a measurable set E; — E with vE; < — i,

ny
Proceeding inductively, if E ~ UXZL1 E, | is not already a positive set, let ny, be the

smallest positive integer for which there is a measurable set E such that

Ex < E ~ UKZ] Ey, and vE( < ——.

k
Ifweset A=E~ U= E, then E =AU [Up-; E,]-
Since this is a disjoint union, we have vE = vA + .2, VE,, with the series on the right
absolutely convergent, as vE is finite.

1
Thus, ). — converges, and we have ny — oo.
k

Since vEx <0 and vE > 0, we must have vA > 0.

To show that A is a positive set, let € > 0 be given.

Since nx — oo, we may choose k so large that (n, — 1)71 <e.

Since A c E~UX_, E,,, A can contain no measurable sets with measure less than
— (ng = 1)1, which is greater than — e.

Thus, A contains no measurable sets of measure less than — «.

Since ¢ is an arbitrarily positive number, it follows that A can contain no sets of
negative measure and so must be a positive set.

Proposition (Hahn Decomposition Theorem): Let v be a Signed measure on the
measurable space (X, B). Then there is a positive set A and a negative set B such that X
=AuBandAnB=¢.

Proof: Let (X, B) be a measurable space and v be signed measure on (X, 8B). Without
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loss of generality, we may assume that + oo IS not assumed by v.

EeB=vVvE=*w.

Let A = Sup {VE: E € B, E is positive}. Since ¢ is positive set, vo = 0 so that L > 0.
Foreachn, A —% Is not an upper bound of {VE: E € B, E is positive}.

.3 apositive set E, > VE, > A — %

A= <VE, <
n

= lim (1 —=) < lim vE, < lim A.= 4 < lim vE,< L.
n—oo

n—->oo n—>oo n—-oo
.3 a sequence of positive sets {En} > 1111_)r£10 vE, = A.
SetA=Up-1 E,.
Then A is a positive set since each Ej is a positive set.
.. by definition of A, VA <A... (i).
Since A ~ E, c A for any n, and A is positive v(A ~ E;) > 0.
SinceA=E,U(A~E,), VA=vE,+Vv(A~E;) >VvE,Vn.
SoVA> AL (D).
From (i) and (ii)) VA = A < oo ... (iil).
LetB=X-A.ThenX=AuBand AnB=.
Claim: B is a negative set.
If B contains a measurable subset D of positive measure then we have 0 < vD < . So,
D contains a positive set E > vE > 0.
Then E and A are disjoint and E U A is a positive set.
But then v(E U A) = vE + vA > A which is a contradiction.
Hence B is a negative set. Hence the theorem.

Result: Hahn decomposition is not unique.

Proof: Let v be a Signed measure on the measurable space (X, B).

Then by Hahn decomposition there is a positive set A and a negative set B such that X
=AuBandAnB=¢.

LetE(#¢)c A Ee Bwithv(E)=0.Let A =A-EandB'=BUE.

Claim: A’, B is also a Hahn Decomposition for X.

AUB =(ANnEYUBUE)={AUBUE}n(EUBUE)
={(AUB)UE}n{(E UE)UB}=XNnX=X.

ANB =(ANEYNn(BUE)={(AnE)nB}uU {(AnE)NE}
={(ANB)NE}YU{AN(ENE)}=0uU ¢ =4¢.

A is positive: ForFc A’ > Fc A—E = F c A= v(F) >0 since A is positive.
B’ is negative: ForFc B '=FcBUE=F=FNn(BUE)=(FnB)U (FnE)
= v(F) =v(F n B) + v(F n E).

Butv(FNE)>0sinceFNEcEcAand v(FNE)<0since v(FNE)<v(E)=0
lev(FNE)=0.

~v(F)=v(FnB)<v(B)<O0.

Hence A', B’ is also Hahn Decomposition for X.
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Lemma: Any two Hahn decompositions differ by a null set.

Proof: Let (A, B) and (F, G) be two Hahn decompositions of v.

Then, A and F are positive sets of v, B and G are negative sets of v.
ANnB=¢,AUB=XFnG=¢, FUG=X.

We can easily derive that v(AAF) =0 =v(BAG), AAF=(ANnF) U (A" nF).
By additivity of v, 0 = v(AAF) =v(A N F') + v(A' " F).

Since, A and F are positive sets, v(A N F')=0=v(A" " F). Thus, v(A N F') =0, v(A’
NF)=0,v(BNnF)=0,v(B"'nF)=0.
Now,A=(ANnF)UANF)=vA=v(ANnF)
F=(AnFUANF)=vF=v(ANnF)

Hence vA = vF. Similarly, vB = vG. Hence the lemma.

Definition: Let (X, B) be a fixed measurable space. If uand v are two measures
defined on (X, B) we say that u and v are mutually singular, denoted by u L v if there
are disjoint measurable sets A and B with X = A U B such that u(B) =v(A) =0. A
measure v is said to be absolutely continuous with respect to the measure p (written as
v < ) if vA =0 for each set A for which pA = 0.

Jordan Decomposition theorem: Let v be a signed measure on the measurable space
(X, B). Then there are two mutually singular measures v* and v~ on (X, B) such that
v = vt — v~. Moreover, there is only one such pair of mutually singular measures.

Proof: Let (A, B) be a Hahn decomposition of X w.r.t v.

Definevtandv- on B by v (E) =v(EnA)andv (E) =—v(ENB) ...(i)forE e
B.

Since A is a positive set v(E N A) = 0 and for similar reasons

v(ENB)<0VEeS®

So, vt(E)=20,v (E)>0. vi(d) =v(d nA)=0,v (¢ = v(¢p " B) =0.

Let {E;} be a sequence of pairwise disjoint measurable subsets of X.

Thenv* (U2, E) = v{(U2, ED) N A} =v{UZ(E; N A} =372, v(E; N A) =

iz v (EY).

Similarly, v= (U2, E;) = X2, v (E).

Thus, v* and v~ are measures on (X, B).

Also,vF(B) =v(BnA) =v(¢p)=0andv~(4) = —v(An B) = —v(¢) = 0. Hence
vilv™.

Further forE € B, E = (E n A) U (E n B) so that vE = v(E n A) + v(E n B) which
givesv(E) =v*(E) —v (E)ie.v=vt —v~,

Claim: Decomposition is unique.

Let v = v, — v, be any other decomposition of v into mutually singular measures.
Then we have disjoint measurable subsets A and B such that X = A U B where
B=A"and v;(B) = v,(4) =0.

LetD e B,andD c A. ThenBNnDcBnA=¢sothatv,(BND) =v,(p) =0 But
DnBcDcA .0=v,(DNB)<v,(D) <v,(A) =0.

= v,(D)=0... (ii)
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Then v(D) = v4(D) — v,(D) =v4(D)...(iii). Thus, vD>0 V D cC A.

. Ais positive set w.r.t v.

Similarly, B is a negative set.

Now foreachE € 8, ENA c Asov,(EnA) =v(EnA) from (iii)... (iv)
Now v, (E) =v,{(E — B)U(E —A) =v,(E—-B) +v,(E —A) =v,(EnB’) since
v, (ENnB) <v4(B) =0.

Thus, vi(E) =vi(ENA)=v(ENA)VE e 3B.

le.vi(E)=v(ENA) =vT(E) &

similarly v,(E) =—v(E N B)=v~(E) V E € 8B...(v) and so, every such decomposition
of v is obtained from a Hahn decomposition of X as
vi(E)=v(EnA)andv~(E) = —v(E N B).

[OR So, it is enough to show that if (A, B) and (F, G) are Hahn decompositions then
measures obtained as in (v) are the same as v and v~

Now v(AUF)=v(ANnF)+v(AAF) ... (vi)

Note that A —F = A n G < A and hence is a positive set.

Also, AN G c G. So, A — F is also a negative set. Hence A — F is a null set. Similarly,
F—Aisanull setand so A A F is null set. Hence
by (v), v(A U F) = v(A N F)...(vii).

For each E € B, as A U F is a positive set,

VIEN(ANPF)}<VvENA)SV{EN (AUF)}...(viii)

VIEN(ANF)}<VENF) <V{En (AUF)}...(1x)

But the first and last terms in each of these inequalities are the same.

So, V(ENF) =v(E n A) = v* defined in (i) is uniqgue and v~— = v+ — v,

Hence v~ is also unique. Thus, the theorem is proved.]

The Radon-Nikodym Theorem:

Let (X, B, u) be a o - finite measure space. Let v be a measure defined on B such that v
& u. Then there is a non — negative measurable function f such that v(E)
= g f du forall E € B. If g is also a non — negative measurable function with this

property then, f=g a. e. [u].

Proof: First assume that (X, B, i) is finite. For each a. € Q (rationals), v—ap is a
signed measure. Let (A, B.) be a Hahn decomposition of v — au foreach o € Q. If a
= 0 then, v being non — negative, set Ao = X, By = ¢.

For each a.e Q, Bu\ Bg = Bo. m Bg' = B m Ap so that (v — ap)(Bo \ Bp)
=(v—ap)(BenAg)<0and (v-PBu)(Ba\Bp) = (v—-Bu)(Bo N Ap) >0...(1).

If B > o then, these imply p(Bo m Ag) < 0. But u(Bo m Ag) > 0.

Thus, the family {B.} is such that u(B. \ Bg) =0 if > a.

. 3 ameasurable function f>f<a a.e.on B, and f> o a. e. on Bg' ie. on Ag.
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Since By = ¢, which means f<0on ¢ and f>0 a. e. on Ag = X we may take f to be non
— negative.

LetE € B. Define E; = E N (B,-+_1\Bi) where N is a fixed positive integer ... (ii),
Ee, = E\UjZ B, ...(iii). o

Then, clearly E =A}IEOO U (UjZ0 E;), and this union is disjoint modulo null set.
Thus, v(E) = v(Ee) + X572 o V(E;)...(iv).

Since E; € Bj+1\B; = Bj+1 N Aj, we have < f(x) <—

N N N N
Hence on Integration, E“(Ef) <[ fdu S% u(Ej)...(v)
Ej
Since E; < A£ we have (v — #u) E; = 0...(vi).

+1
ZLonE;.

Also, Ej € Bjes = (v — L2 i) B < 0...(vil).
N

From (vi) and (vii) £ u(E;) <v(E) <22 p(E))...(viii).
From (v) and (viii) We get
v(E) —~u(Ej) <2 u(E)) < f fdp <= u(E) <v(E) + 2 u(Ep.

le. v(E;) — W(E]) sb[ fdu s v(E;) + NM(E])... (ix).
j
Now taking the sum from j = 0 to oo,

220 V(E) =~ B0 u(E) < X5 offdu<2 2o V(E) + S50 u(E))
Since Y72, u(E) = u(U52 oE)andZ, offdu—U fE f du, we get

Xizov(E)) — ”(UJ 2o Ej) < oo fdu< X3 OV(E)+ u(UZo Ej)--(x)

] 0 J
On E,, from the definition of f, f(x) =« a. e.

U(Ew) > 0,thenvE, =was (v —au)E, >0V a € Q.
If u(E) = 0, thensince v < u, vE,, =0.

1(Es) = 0, then ffdu 0.
Hence in either case V(E,) = f fdu ... (xi).
On adding (x) and (xi) we get,
V(Eo) + Z520v(E) — 2 u(USo By) < Jrauo [ fdusvEa)+Siov(E)+
%ﬂ(Uﬁo E;)
Hence v(E) — ~u(E) < [ f du <v(E) +~ u(E)
E




= v(E)—£ fdu|<—uE) VN
Since uE is finite as N — oo, v(E) = [ f du.
E

Let u be o - finite. Then 3 measurable Xi,i=1,2, ...5 X =uU X;, uXj <o V¥ i. Apply
the above argument for each X; to get the required function.
Uniqueness: Let g be any non — negative measurable function such that
v(E)=[ gduVEe$3.
E

Define A, = {x € X: f(xX) — g(x) > %} e Band B, = {x € X: g(x) —f(x) > %} e B. Since
f(xX) — g(x) > %v XeAn [ (f—g)du= % u(An) by first mean value theorem.
An

= [ fdu= [ gdu=suA)

= V(A) - V(A 2 2 (A
= WAy <0 = p(Ay) =0.
Let C={x e X: f(x) #g(X)}
=u (Ah U By)
S uC =Z{u(An) + u(Bn)}=20+0)=0. ..uC=0.Hencef=ga.e.

Short Proof: First assume that (X, B, i) is finite. For each rational o, v — ap is a
signed measure. Let (A, Bo) be a Hahn decomposition of v — au for each a € Q. and
take Ap = X, Bo = ¢.

For each e Q, B\ Bg = Bo ™ Ag so that (v — ap)(Ba \ Bg) <0 and hence
(v—=PBw)(Ba\Bp)>0...(1).

If B > o then, these imply w(Bo. M Ag) = 0.

a measurable functionf>f<a a.e.on B, and f> o a. e. on Bp' ie. on Ag.

Since By = ¢, we may take f to be non — negative.

LetE € B. Define E; = E N (Bj-k_l\Bi) where N is a fixed positive integer ... (ii),
N N
E, = E\UjZ Bj...(iii).
N
Then, clearly E = E, U (U, E;), and this union is disjoint modulo null set.
Thus, v(E) = v(Ex) + X720 V(E))-..(iv).

. j j+1
Since E; € Bj+1 N A, we have L <f(x) < 222 on E;.
N N N N

Hence on Integration, %y(Ej) < Ef fdu S”Tl u(Ej)...(v)

j+1

J
—— U(E;, we get

Since +u(E;) <v(E) <
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v(E}) —%u(Ej)gb[ f du < v(E;) +~u(E).

j
Now taking the sum from j = 0 to oo,

220 V(E) =~ 250 u(E) < X% f fdu< B20v(E) + X0 n(E)
=Y 20 v(E) ——u(URo B) < f fdp< 220v(E) + (U0 Er)

]0]

On E,, we have, f(X) =« a. e.
If u(Ew) > 0,thenvE, =was(v—au)E, >0V a e Q.
If u(E) = 0, thensince v < u, vE,, =0.
u(Es) = 0,then [ fdu=0.
E

Hence in either case v(E,) = [ fdu .
E

On adding this equality and ourooprevious inequalities we get,
V(E) = GR(E) < [ f du<v(E) + 3 u(E)

- v(E)—£ fdu|<—uE) VN
Since pE is finite as N — oo, v(E) = [ f du.
E
Let u be o - finite. Then 3 measurable X;,i=1,2, ...5 X =U Xj, uXij <o V i. Apply

the above argument for each X; to get the required function.
Uniqueness: Let g be any measurable function such that v(E) = [ g du V E € 8.
E

Define A, = {x e X: f(xX) —g(x) > l} B and Bn={x € X: g(x) — f(x) >1} e B. Since
f(x) —g(x) > = v X € An, f (f—g)du>= M(An) by first mean value theorem.

:>ffdu fgdu> M(An)

TL

= v(An) - V(An) 2= H(An)
= uA)<0= ].,l(An) 0.
Let C={x € X: f(X) #g(X)}
=vu (AU By)
S uC=Z{u(An) + uBn)}=2(0+0)=0. ...uC=0.Hencef=ga.e.

Note: The function f given by Radon—-Nikodym Theorem is called the Radon—Nikodym
derivative of v with respect to p. It is sometimes denoted by [2—;].

Proposition (Lebesqgue Decomposition): Let (X, B, u) be a o-finite measure space and
v a o-finite measure defined on B. Then we can find a measure vy, singular with
respect to u, and a measure vy, absolutely continuous with respect to u, such that v = v
+ v1. The measures vo and v; are unique.
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Proof: Since pand v are o - finite measures, so is the measure A = u + v.

LetE € B>AE =0.

Then pE + vE =0 so that uE = 0 and vE =0 since p, v are nonnegative.

LvKiand p KA.

By Radon — Nikodym theorem 3 non negative measurable functions f and g such that

v(E)= [ gdrand u(E) = [ f da.
E E

Define A = {x € X: f(x) >0} and B = {x € X: f(x) = 0}.
Then clearly X=AuBand AN B =¢.
AlsouB = fdA1=0.

B

Define vo: B — [0, ) U {} by vo(E) =v(EB) VE € B.
and vi: B — [0, ©) U {oo} by i(E) =v(ENA) VE € B.
Then clearly vy, and v; are measures.
Then vo(A) = v(A N B) = v(¢) = 0.
Thus 3 disjoint measurable sets A and Bwith X =AU B> u(B) = vo(A) = 0.
.V 1 L.
Also v =vy + vi.
LetE e B5uE=0. .. 0=pE=J fdl.=f=0a.e.onEw.r.t. A
E

S Mx e Xif(x) >0} =0.

Then AM(E N A) =0.

Since v «< A it follows that vi(E) = v(E n A) = 0.

Thus, u(E) =0 = vi(E) = 0.

Sovi K< WL

Uniqueness: Suppose v=vo+ viandv=v'o+viwhere vo L u, vio L i, vi K W, v'1 <
L.

So,3A,B,A,B > X=AuB=A"UB ,AnB=A"nB' =¢and vo(A) = u(B) =
Vvio(A") = u(B") =0.

LetE € B.

Then,E=(ENANA)Y)UENA' NB)UENBNB)U(ENANB).

Clearly p is zero on the last three sets in this union and hence vi1 and v'; are zero by
absolute continuity.

Since v'i—vi=vo—Vvowe have (vV'i—vi)(E)=(V1-vi)(ENANA')
=(vo—Vo)(ENANA)=0as vo(A) = Vv's(A’) =0.

So, vi1(E) = v'1(E) which implies vo(E) = v'o(E). Hence the theorem.
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Problem: Show that if y is a signed measure such that y is mutually singular w. r. t n
and y < ptheny=0.

Solution: Since y L, 3 a measurable set A such that pA = y(4) = 0.
Let E be any measurable set.

ThenE=(E N A)U (EN A)
=vE=Y(ENA)+yY(ENA)=y(ENA)+0-yA)=0.
=Y1E=v(ENnA)...Q30).

SinceENAcCA W(ENA)<uA)=0

= uwENA)=0.

Sincey K, (ENA)=0

= vE =0 from (i).

Thus,yYE=0V E € 8.

=y =0.

The LP Spaces.

Definition: Letp, 1 <p < bea real number. We define
LP=LP(X, )= {f/ f:X - Ris measurable and [ |f|Pdu < 00}.
X

1

Definition: For a function f € LP(X, ), define |Ifll, = ( J flpdy>p.

Definition: Two measurable functions f, g are said to be equivalent if there are equal
almost everywhere. le. f~g ifff=ga. e.

Definition: A real number M is said to be an essential bound for the function f if
|f(x)] < M a.e.on X. A function f defined on X is essentially bounded if it is bounded
except possibly on a set of measure zero.

Essential supremum of f on X is defined as inf{M: m({x<E: |f(x)| > M}) = 0}.

We denote the class of all measurable functions defined on X which are essentially
bounded on X by L* (X, w). For f
eL® (X, u) we define ||f|| .= ess sup |f].

THE MINKOWSKI AND HOLDER INEQUALITIES

Lemma: Let a, B be non — negative real numbers and 0 < A < 1. Then a?f1™* < Aa +
(1 — A)pB with equality if o = .

Proof: Define ¢ as ¢(t) = (1 — 1) + At —t* for all real numbers t.

Then ¢(1)=1—%+A—1=0.

Also ¢'(t) =1 -t 1=2(1-t+1)

(1) = — A(h — 1)t-2
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And ¢'(t) =0ifft=1and ¢"(1) =-A(A - 1) > 0.
. ¢ has local minimum att=1.
s 1<1= ¢isdecreasing. le. ¢(t) > ¢(1) antt > 1 = ¢ is increasing
ie. ¢(t) > o(2).
Thustz1l1=0¢(t)>¢(1) => (L-A)+Aat-t">0=>t"<(1-2)+ At
. we may say that t* < (1 — &) + At for all t and with equality if t = 1...(i)
IfB=0putt=a/pin(i).
a A a
Therl (E) <1 —/1+/1(E)
:%sa—@+%
= a’p1* < da + (1 — 1) with equality if o = p.

HOLDER’S INEQUALITY:

If p and g are non — negative extended real numbers such that % + 5 =1and

iff el?,gel?,thenfg € L'and [|fgl <IIfll, llgll, equality holds iff for some non
— zero constants a and 3, we have a|f|? = B|g|? a.e.

Proof: If p =1, q = o, then the in equality holds. So, assume that 1 < p < oo. First
assume that || f{l,=1=|lgllq

Take a = |f(O)|P, L = |g®)|?and 1 ==,1 -1 =
Then by Lemma we get |f(t)||g(t)| <= |f(t)|p + - |g(t)|q and equality holds if a. =
B ie. If(t)lp1= Ig(t)l"---(ll) ) ) o

= [Ifgl < JIFOF +2 [lg®F=IfIP + - llgl'=, +-=1

le. [Ifgl <1=1Ifll,llgllq

Letf eLP,g € L?. Now if ||f]| = 0 or ||g|| = O then the inequality is obvious. Assume
that ||f|| + 0and ||g|l # 0. Then L €

£
LP, ﬂ € L4,

Also |57 = Land Jg5] =2

1

So by the above case [ |”f” T < 1 and equality holds iff |”f”|

b= g1 = g1 o . . i)

Now |”§—””‘;%” <1 ”f””g”f fal <1=[1fgl <IIfll,lgll,

Also equality holds iff ||g|| |f1P = ||f||£|g|q a. e. ie equality holds iff for some non —
zero constants o = ||gllg and B = [If ]I}, , we have a|f [P = Blg|9 a.e.

|||gll|

MINKOWSKI’S INEQUALITY:
Iff,g € LPwith1<p<oo,thenf+ge LPand|[f + gll, < lIfll, + llgll,
Proof: Let f,g € LPwith 1 <p <. Thenf+ g € LP since Lp is linear.




Now |If + gll, = [If + gldx
< [(fl+lghdx
= [Ifldx + [lgldx
= fll, + llgll1

Also |If + gllw = esssup [(f + ) (O]
<esssup |f(t)| + esssup |g(t)]

= flleo + llglloo
So assume that 1 < p < 0. Let g be the real number such that % +$ = 1.

Now |f + gIP = |f + glP~* - If + ¢
<If+glP7t-Af1+1gD
=|f +glP - IfI+ If + gl - gl .. (i)
Claim: |f + g|P~1 € L9
Now (If + glP~)7 = |f + g|P~ D9 = |f + g|P
Since f+ g € LP, we have [|f + g|P < .

Now [(If + glP™)I=[|f + g|P < oo.
So we have |f + g|P~! € L. Since f,g € LP and |f + g|P~* € L9, we have by

Holder’s inequality, [1£]1f + gIP~* < £, I(f + g)P ..
_ﬁmv+gwﬂsumbe+m%ﬂm

BmHU+ngm=LMV+9P”Vﬁ=(ﬂf+m@*WP=UV+gPﬁ=

(17 -+ gP) = 1F + i
JIPUF+ 9Pt < IFIL I + gl anc

[lgllf +glP~* < llgll,llf + gll?,---(ii)-

From ) and i), {17 + g1” < IFILIF + gl + gl If + o1l
= 1+ < (Ul + gl I + gl

= 1If +glI2 < dIfll, + lgl,) - I + gl

p

p—_
= |If +gll, * < IIfll, +llgll,
D
1

= If +gll, < Ifll, + llgll since p=2=p(1-2) =p(5) =1

Definition: A bounded linear functional on LP is a linear map from L? to R which is
also continuous. (LP)* = {x*: x* is a bounded linear functional on L”}.

Lemma: Let f € LP (u), 1 < p <. Then for any € > 0, there is a simple function ¢
which vanishes outside a set of finite measure such that [ |f — ¢|Pdu <€ or

If = ellp<e.




Proof: W. |. g. suppose puX < co.
If possible suppose 3 € > 0 such that for any simple function,

e < I1f = ollp=I1f = olly 52 < {[ 1f — pldn) L . O

There exists a sequence of simple functions such that [ f du = lim [ ¢, du.
can find @k such that [|f — @] du < & u(X)...(ii)
From (i) and (ii) we get € < € which is a contradiction. Hence |[f — ¢||,<&.

Proposition: Letg e L9, p1+ % =1, Define F(f) = [ fgduforallfe LP. ThenF ¢
X

(LP)*.

Proposition: Let (X, B, 1) be a finite measure space and g be an integrable function
such that for some constant M, |f go du| < M for all simple functions ¢, Theng e
L1,
Proof: Since |g|? is a non — negative measurable function, 3 a sequence of non —
negative measurable simple functions {y,,} > ¥, T |g|9.

1

Then the function ¢,, = {1,,}?(sgn g)... (i) is a well defined simple function for each n.
Also, [ 16, (0P = [ () dp Thus,

loall, ={J llfndu}p Since
Png 2 |¢n|I¢n|q = hbnlp 7 = 1, we have )

J Yndu < [ @ng du<Mllg,ll,= M{[ ¢rdul?.

Since 1 —% = 5, {/ z,l)ndu}% <Mor [,du < MP and by Monotone convergence
theorem, [ |g|9du < MP ie.g e L9.

Proposition: Let {E.} be a sequence of disjoint measurable sets and for each n, let f, be
a functionin LP, 1 <p < oo, that f, =0 on E’,.
Setf=),_, f,. Thenf e LP if and only if lefnllp < o0,

In this case, f =}, f, in LP thatis ||f — X7, fill, = 0,and [[£]|P = X521 I/ 1P

Riesz Representation Theorem: Let f be a bounded linear functional on LP (1) with 1
<p <woand pa o - finite measure. Then there is a unique g in LP, where pi + é =1,

such that F(f) = [ fg du. Also, ||F|| = lgll4-

Proof: Step (i): Let u be finite measure.

Since f is bounded and measurable f € LP.

Forany E € B, E ¢ X, define v(E) = F(xg) where ye is the characteristic function of E.
Claim: v is a signed measure.

Clearly v(¢) = F(yy) = 0.
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Let {E,} be pairwise disjoint sequence of m’ble sets and E = Uj-; E,
Then [v(En)| = |F(xg,)| = son {F (xz,)} F(xz,)
S xn=1VERD| = Xn=q Sgn[{F()(En)} F(XEn)] = Yn=1 F{Sgn F(XEn)}XEn-
Write f, = sgn F(XEn)XEn'
Then f, = 0 outside E,. Setf =} f,,.
Then by proposition f, € LP and f € LP, ||f||P = Xn=1|I/n]IP < .
Thus, IF(HI < IFIIFIl, < .
S0, YXn=1|V(Ey)| < oo.
Now Y7l v(Ep) = Xn=1 F(XEn) =FXn=1 XE,= F(XuEn) =F(xg) =Vv(E) =
V(U?{Ll En)
Thus, v is countably additive.
Hence v is a signed measure.
Claim: v < p.
Let uw(E) = 0.
Then0=w(E) = [ xz du.
E

Hence yz =0on E.
Thus, F(xyz) =0and hence v(E) =0. ..v < p.
. By Radon-Nikodym theorem, 3 a measurable function g such that for any
Ee®B, [ gdu=v(E)<o. .. gisintegrable.
E

Forany f € LP, G(f) = [ fg du.

Claim: G is a bounded linear functional on LP.

For any simple function o, F(¢) = F(Zl 1 CiXEg,) = 2ieq 6iF (Xg,)
=Y cv(E) = XL 1leng X 1f cigdu=J pgdu... Q3.

Now, || pg du|= IF(<p)I < IFllllell, since F (LP)*.
Hence by a Proposition, g € L9.
Now |G()] = [ @g du| < IFII,lIGI,
Hence G e(LP)".
Next for any simple function ¢ € L?, G(¢) = | ¢g du = F(p) from (i)
Hence F — G = 0 on the set of all simple functions. .. F =G on LP.
L F®=6(M=/ fgdu
Uniqueness of g:
Letgr, gobesgie L, goeldandF(f)= [ fg,du=[ fg,duv e LP.
= [ f(g9, — g,) du=0ie. g, — g, corresponds to zero functional. Hence
lg1 — g2 1| = 0 which shows that g; = g a.e.
Step (ii): Let p be o - finite, so that X = Uy~ X, , u(X,,) < oo for each n.
. Foreachn 3 g, € LI(Xy) > Fo(f) = [ fg, du, neZ, f € LP(X,).
Xn

Take g, = 0 outside X, as also f.
Since each Fn = F/XiLP(Xy), clearly [[F,[|x, = |[F]| ¥ nand hence

lgnlly < IF]l ¥ n. ... (ii). Further assume g1 = g, 0N X.




Define g(x) = gn(X) ¥V X € X,.

Take X, to be increasing, so g is well defined and |g,| T |gl.

By Monotone convergence theorem, [ |g|? du = lim [ |g,,|9 du < ||F||9 by (i)

Hence g € L9(X). We now obtain any f € LP(X) as a limit of a sequence of function in

: fx)if x € X,
p =
LP(X,,). Define f,,(x) { 0ifx & X,
Then x € X = x € X, for some n and f(x) = fi(x) for k > n.
- f, — f pointwise. Also, lim [ |f,, — fI? du = [ lim|f,, — fl du =0
n x X

Hence f, > fin LP(X). Forany n, |f,g| < |fgl and |fg| is integrable.

- g > fg.

By Lebesgue convergence theorem, [ fg du =lim [ f, g, du =1lim [ f, g du
= lim F(f,) = F(f). Hence the theorem.
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M 401: MEASURE THEORY: UNIT 111
K. C. TAMMI RAJU
MEASURE AND OUTER MEASURE
1. OUTER MEASURE AND MEASURABILITY

Definition: By an outer measure u* we mean a nonnegative extended real valued set
function defined on all subsets of a space X and having the following properties
Hu(@)=0
(i) AcB = u"(A)<pu*(B)
(i) EC UR, E; = ' (E) < T2, 1 ()
Here property (ii) is called the monotonicity of u* and the property (iii) is called the
subadditivity of u*.

Result: Let u* be a nonnegative extended real valued set function defined on all subsets
of a space X and having the following properties

() u(¢)=0

(i) AcB=u*(A) <u*(B)

(i) E = U2, E;; Ejare disjoint = p*(E) < )72, u*(E;). Then p* is an outer measure.
Proof: Let E c Uj2, E; where {Ei} is a sequence of subsets of X.

Then we can find pairwise disjoint sequence {E;’} such that each Ey < Eiand U2, E;" =

UiZ, E;. - by (i), p*(E) < X2, 07 (E) < T2 1" (Ey).
Hence u* is an outer measure.

ie. Property (iii) in the definition of an outer measure can be replaced by
(iiiy E = U2, E;; Ei are disjoint = u*(E) < Y2, u*(E).

Definition: A set E is said to be measurable with respect to u* or u* - measurable if for
every set A we have u*(A) = w*(ANE) + u*(An E).

Theorem: A set E is u* measurable if and only if u*(4) > u*(ANE) + u*(An E) for
every set A.

Proof: If E is u* measurable, the inequality holds trivially.

Conversely suppose E is a set such that u*(4) = p*(ANE) + u*(An E) ...(J) for
every set A.

By sub additivity of u*, we have u*(4) < u*(ANE) + u*(A n E)...(ii), since
A=(ANE)UAnE.

Hence from (i) and (i) u*(4) = u*(A N E) + u* (A n E) for every set A showing E is
u*- measurable.

Remark: In view of above theorem, it is only necessary to show the inequality

u(4) = pu*(ANE)+ u (AnE) for every set A to prove the measurability of E.

Theorem: The class B of u* - measurable sets is a ¢ - algebra.
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Proof : For any set A, we have u* (AN @) + w* (AN @) = u*(¢p) + (AN X)
=0+ u"(4A) = u*(A) sothat ¢ is u* - measurable...(i).

Suppose E is u* measurable. Then for any set A, u*(4A) = w”*(ANE) + w(AnE) =
for any set A, u*(4) = u* (A N (E)) + u (A n E)= E is u* - measurable...(ii)
Suppose E;, and E,, are u*-measurable sets. Then for any set A, we get, by the
measurability of E; that u*(4) = u*(A N E,) + u* (A n E,)...(iii)

If we take A N E, for A, then measurability of E;, gives
w(AnE)=p(AnNE;NE)+pu (ANE;NEY).

Substituting this value of u*(A4 n E5) in (iii),

pA) =uAnNE)+ w(AnE;NE)+u (ANE; NEY)... (iv)

Since AN (Ey U Ey) = (AN Ey) U (AN E; N E,) is adisjoint union, u*{A N (E; U
EN}<u(ANE) +p (AnE;NEy)... (V).

. From (iv) and (v) u*(A) = p* {An (E; UE))}+ w(ANnE, N E;)
=p{AN(EyVE)D} + W (ANE VEy). -

Thus, for any set A, u*(A) = u{An (E; VE,))} + u{An (E; UE,)}

Therefore E; U E; is u* - measurable.

ThUS, EiUE, e B if El, and E, B (V)

By induction this can be extended to any finite number of sets.

From (1) and (2) we get that B is an algebra of sets.

To prove B is a c - algebra let {E;} be a sequence of pairwise disjoint sets in B and E
= U2, E;. Write G, = UL, E;.

Then for any n, G,, is p*-measurable set.

Also G, c Egives E c G, sothat u*(A) = " (AN G,) + u (AnG,) >u (AN G, +
w(AnE).

Since G, N E,, = E, and G,, N E,,= G,,_, we get, by the measurability of E, that

M*(A n Gn): #*(A N En) + M*(A n Gn—l)'

Thus, by induction, u*(A N G,) = Y=, " (AN E;).

- foreveryn, u (A) = w(ANE)+ X, w(ANE).

Since this is true for every n, we have u*(4) = (AN E) + X2 u (AN Ey)

> (ANE)+u (AnE)sinceANE c U2, (ANE).

Thus, E is measurable.

-. B isao - algebra.

Theorem: Suppose p* is an outer measure and B is the class of all u*measurable sets.
If iz is the restriction of u* to B (that is, u: B — IR is such that u(E) = u*(E) for E €
B, then u is a complete measure on B.

Proof: Let u be the restriction of u* to B
Clearly u is nonnegative set function.

Also, (¢) = p*(¢) = 0.
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Let E; and E; be disjoint u*-measurable sets. Then by the measurability of E,

A(E; UE;) = u*(Ey UEy) = ' [(Ey UE) N Byl + ' [(Ey UE,) N Ey]

=uw'(Ey) +u (Ey) =u(Ey) +u(Ey).

Thus, by induction, u is finitely additive set function.

Let {Ei} be a sequence of pairwise disjoint measurable sets and E = U;2, E;.

Then, u(E) 2 u(UiZ E;) = Xi, w(E;) for all n.

~ H(E) 2 X2 H(E.

But u(E) < Y72, u(E;) by the subadditivity of u*. Hence u is countably additive and
thus u is a measure.

LetE eBwithu(E)=0and AcE. Then0<u*(4A) < u*(E) = u(E) =0.

= (A)=0. . p(ANE)=0.S0,u*(E) > p*(ENnA) +u*(E nA). Thus, Alis p* -
measurable. le. A € B. Hence u is complete.

2 THE EXTENSION THEOREM:

Definition: By a measure on an algebra we mean a nonnegative extended real valued
set function u defined on an algebra A of sets such that

() u(9)=0

(i) If {Ai} is a disjoint sequence of sets in A whose union is also in A, then

n(UiZ1 4) = X721 u(4y).

Example: The Lebesgue measure defined on the class of all intervals is a measure on
the algebra.

Definition: Suppose u is a measure on an algebra A.
For any E, define u*(E) = inf {372, u(4;): {Ai} is a sequence of sets in A such that E
c UiZ1 4:}

Theorem: Suppose p is a measure on an algebra A and p*(E) = inf {>.72, u(4;): Ec
Uiz, 4;}. Then (i) if A € A and {Ai} is any sequence of sets in A such that A <
Ui A; then p(A) <32, u(4y). (i) A € A = p*(4) = u(A).

(iii) u* is an outer measure. (iv) Each A € A is u*- measurable.

Proof: (i) Let A € A and {A;} be any sequence of sets in A such that A — Uj2, 4;
LetB; =ANnA;NnA;_;n..nA;.Then B; € A and B; € A;. Also A= U2, B;.

. By the countable additivity of p, uA = ».;2, u(B;) <272, u(4;)

le. u(A) < T2 u(Ay).

(i) Let A e A. If {A;} is any sequence of sets in A 5> A < Uj2; 4; then by (i), u(A) <
3224 1(Ap). = p(A) is a lower bound of {35, u(4): A< U2, A} - u(A) < 1 (A)
Since A € A, Alisacover for A, so u(A) > u*(A). Hence u(A) = u*(A).

(iii) Since p is nonnegative extended real valued set function so is u*.

Since ¢ € A, by (ii) ©"(9) = p(9) = 0.
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Let E < F. Then for every sequence {Ai} in A with F < U2, A; we have E c U2, 4;.
Then {352, 1(4): E < U2, A} o {352, 1(4): F < UZ,; A} so that

Inf {52, u(A): EC U2, A} <Inf{Z%2, n(A): F < U, A},

L EcF=u(E) <u*(F).

Let E c U2, E;. If u*(E;) = oo for at least one I, then we are through.

. Assume u*(E;) < oo for each i.

Let e > 0. Then 3 a sequence {4} of sets in A 5 E; € U2, 4% and ¥, u(4;,) <

W (E)+ i
Now E < U2, B = U2, U5Zy A;Y so that p(E) < Xi2, 572, u(4;V) <

e EY + S )= E) + e

Since ¢ is arbitrary we get u*(E) < ».72, 1" (E)).

Hence u* is an outer measure called outer measure induced by p.

(iv) Let Ae A, E be an arbitrary set of finite measure and € > 0.

Then 3 a sequence {A;} of setsin A >E S Uj2; 4; and };2, u(4;) < u*(E)+e.

By the additivity of pon A, u(4;) = u(4; N A) + u(4; n 4).

Su(E) te> 2521{#{141' NA) + u(A; N A)} =X, u(4; n A) + Xz u(4i 0 /T~) 2
pWENA)+u(EnA)sinceENACUZ (A, nA)andENA S U2, (4;NnA).
Since ¢ is arbitrary, u*(E) > u*(E n A) + u*(E n A) for every set E.

Hence A is u*-measurable.

Notation: For a given Algebra A of sets, A, denotes those sets that are countable
unions of sets of A and A, s denotes those sets that are countable intersections of sets
of A,.

Theorem: Let u be a measure on an algebra A, p* be the outer measure induced by p
and E be any set. Then (i) for each ¢ > 0, there is a set A € A, with E < A and

u*(A) < u*(E)+e.(ii) ThereisaB €A, 5 WithE < B and u*(E) = u*(B).

Proof: Let £ > 0. Then 3 a sequence {4;} of setsin A >E € U2, 4; and Y72, u(4;) <
w(E) +e.

Writing A = Uj2, 4;, we have A € A,, E < A and

pr(A) = (U2 4) <22 1w (4y) = 22 n(4y) <p*(E) +e.

Thus, for each € >0, there isaset A € A, WithEc Aand u*(4) < u*(E) + =.

(i) By (i) foreachn> 1,3 aset Ay e A, With E c Apand u*(4,) < u*(E) + %
Write B=N,-, A4, sothat B € A,s and E < B.

Also, since B c 4,, forevery n, u*(B) < u*(4,) < u*(E) + % and

hence u*(B) < u*(E) ...(1)

Since Ec B, u*(E) < u*(B) ...(2).

From (1) and (2) u*(B) = u*(E).

Note: If we apply this proposition in the case that E is a measurable set of finite
measure, we see that E is difference of a set B € A, and a set of measure zero.
This gives the structure of measurable sets of finite measure.
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The next theorem extends this to the o-finite case which can be considered as
generalization of the first principle of Littlewood.

Theorem: Let u be a o-finite measure on an algebra A and let u* be the outer measure
induced by p. A set E is u*-measurable if and only if E is the proper difference A — B
of aset A € A,s, and a set B with u*(B) = 0.

Proof : Suppose E is the proper difference A — B of aset A € A5, and a set B with
u*(B) = 0. Since the class of all u*-measurable sets is a c-algebra, we get A is
measurable. Since i is complete, each set of u*-measure zero must be measurable. ..
B is measurable and hence E = A — B is u* measurable.

Conversely suppose E is measurable. Since u is ¢ - finite, 3 a countable sequence of
pairwise disjoint sets {X} in A with u(X;) <o and X = Uj2, X;.

ThenE=XnN E=UZ2; X;nE=U2,(X;NE)= U2, E;whereEi=X;nEisa
disjoint union of the measurable sets. Also, for each positive integer n, there exists a set
Ani€ Ag such that B = Ay and fi(An) < A(E) + —;

Setting A,= U2, A, ;. wefindEc A, and A, — E c U;2,(4,; — E)).

Hence @(Ay — E) < T2 A(An; — E) < T2y — =
Since A, €A, theset A=Ny-1 4, € Azs and foreachn, A—Ec A4, — E.
Hence g (A—-E)<i (4, —E) < %

Since this holds for each positive integer n, we get i (A —E) = 0.

Writing B = A — E we find E = A — B, where A € Ags,, and u*(B) = 0.

Theorem (Caratheodory): Let u be a measure on an algebra A, and u* the outer
measure induced by p. Then the restriction & of pu* to the u*-measurable sets is an
extension of u to a c-algebra containing A. If w is finite (or o-finite) so is ji. If wis o-
finite, then j is the only measure on the smallest -algebra containing A4 which is an
extension of p.

Proof: The fact that j is an extension of u from A to be a measure on a c-algebra
containing A follows directly from the facts A € A = u*(A) = u(A4),each A € A is
u*- measurable and the class of u*- measurable sets is a c-algebra. Already verified if pu
is finite (or o-finite) so is f.

To show the unicity of i when p is o-finite, we let B be the smallest c-algebra
containing A and fi some measure on B that agrees with p on A.

Since each set in A, can be expressed as disjoint countable union of sets in A, the
measure fi must agree with i on A,. Let B be any set in B with finite outer measure.
Then by Proposition, there is an A in A, such that B < A and

wA) su(B)+e

SinceBc A, i(B) <ji(A) =uw(A) <u(B) +e.

Since ¢ is an arbitrary positive number, we have ji(B) < u*(B) for each B € B.

Since the class of sets measurable with respect to u* is a s-algebra containing A, each
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B in B must be measurable. If B is measurable and A is in A, with B ¢ A and p*A <
u*B + ¢, then u*(4) = u*(B) + u*(A~B), and so,

fi(A~B) < u*(A~B) <g, if u*(B) < .

Hence u*(B) < u*(A4) = a(A)= a(B) + i(A~B) <fi(B) + ¢.

Since ¢ is arbitrary, u*(B) < fi(B) and so, u*(B) = ji(B).

If uis o-finite measure, let {X;} be a countable disjoint collection of sets in A with X =
U7z, X; and p(X;) finite.

If B is any set in B, then B = U;2,(X; N B) and this is a countable disjoint union of
sets in B, and so, we have fi(B) = .2, i(X; n B) and g(B) = X.;2, i(X; N B).

Since u*(X; N B) <o, g(X; N B) = ji(X; N B).

Definition: A collection C of subsets of X is a semi-algebra of sets if the intersection
of any two sets in C is again in C and the complement of any set in C is a finite disjoint
union of sets in C.

Definition: If C is any semialgebra of sets, then the collection A consisting of the
empty set and all finite disjoint unions of sets in C is an algebra of sets which is called
the algebra generated by C.

If wis a set function defined on C, it is natural to attempt to define a finitely additive set
function on A by setting pA = Y1-; u(E;), whenever A is the disjoint union of the set

Ei in C. Since a set A in A may possibly be represented in several ways as a disjoint
union of sets in C, we must be certain that such a procedure leads to a unique value for
uA. The following proposition gives conditions under which this procedure can be
carried out and will give a measure on the algebra A.

Proposition: Let C be a semialgebra of sets and u a nonnegative

set function defined on C with ud =0 (if ¢ € C). Then u has a unique

extension to a measure on the algebra A generated by C if the following conditions are

satisfied:

1. Ifaset Cin € is the union of a finite disjoint collection {C;} of sets in, then uC =
i=1 1(Cy).

2. Ifaset Cin C is the union of a countable disjoint collection {Ci} of sets in C, then

pC < X2 u(Cy).

3. THE LEBESGUE-STIELTJES INTEGRAL

Definition: Let X be the set of real numbers and B the class of all Borel sets, A
measure u defined on B and finite for bounded sets is called a Baire measure (on the
real line). To each finite Baire measure we associate a function F by setting F(x) = u(-
o, X]. The function F is called the cumulative distribution function of p and is real-
valued and monotone increasing.




Lemma: If u is a finite Baire measure on the real line, then its cumulative distribution
function F is a monotone increasing bounded function which is continuous on the right.
Moreover, lim F(x)=0.

X—>—00
Proof: We have n(a, b] = F(b) — F(a),
Since (a, b] is the intersection of the sets ]a, b + %] by a Proposition

u(a b] = lim nlab + 2| = Fb) - F@ = lim {F(b+2)- F(a)}
and so F(b) = lim F (b + =) = F(b+).

n—->oo

Thus a cumulative distribution function is continuous on the right. Similarly,
o 1 s 1\) _
u{b} = lim u|b—2,b]=lim {F(b) = F (b —2)} = F(b) - F(b-).

n—oo

Hence F is continuous at b if and only if the set {b} consisting of b alone has measure
zero. Since ¢ = Ny=,(—o,n], we have lim F(n)=0,and hence lim F(x)=0
n——oo X—>—00

because of the monotonicity of F.

Lemma: Let F be a monotone increasing function continuous on the right.
If (8, b] = UiZ1(a;, bi], then F(b) — F(a) < Xi24,{F (b;) — F(a;)}

Proposition: Let F be a monotone increasing function which is continuous on the right.
Then there is a unique Baire measure u such that for all a and b we have
n(a, b] = F(b) - F(a).

Proof: If we let € be the semialgebra consisting of all intervals of the form (a, b] or (a,
o) and set p(a, b] = F(b) — F(a), then . is easily seen to satisfy condition (1) of a
Proposition, and since Lemma is precisely the second condition, we see that u admits a
unique extension to a measure on the algebra generated by 8. By Theorem 8 this p can
be extended to a o-algebra containing C. Since the class B of Borel sets is the smallest
c-algebra containing C, we have an extension of to a Baire measure. The measure p is
o-finite, since X is the union of the intervals (n, n + 1] and each has finite
measure. Thus, the extension of p to B is unique.

Corollary: Each bounded monotone function which is continuous on the right is the
cumulative distribution function of a unique finite Baire measure provided F(o) = 0.

Definition: If ¢ is a nonnegative Borel measurable function and F is a monotone
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increasing function which is continuous on the right, we define the Lebesgue-Stieltjes
integral of ¢ with respect to Fto be [ @ dF = [ ¢ du where p is the Baire measure
having F as its cumulative distribution function. If ¢ is both positive and negative, we
say that it is integrable with respect to F if it is integrable with respect to p.

Definition: If F is any monotone increasing function, then there is a unique function F*
which is monotone increasing, continuous on the right, and agrees with F wherever F is
continuous on the right, and we define the Lebesgue-Stieltjes integral of ¢ with respect
toFby [@dF = [ @ dF*. If F
Is @ monotone function, continuous on the right, then ff @ dF agrees with the

Riemann-Stieltjes integral whenever the latter is defined. The Lebesgue-Stieltjes
integral is only defined when F is monotone (or more generally of bounded variation),
while the Riemann-Stieltjes integral can exist when F is not of bounded variation, say
when F is continuous and ¢ is of bounded variation.

4. PRODUCT MEASURES

Let (X, 2, w) and (Y, B, v) be two complete measure spaces, and consider the direct
product X x Yof Xand Y. IfAc Xand Bc Y, we call A x B arectangle. IfA € U
and B € B we call A x B a measurable rectangle.

The collection R of measurable rectangles is a semi-algebra, since
(AXB)N(CxD)=(ANnC)x (BnNnD)and
~(AxB)=(AXB)U(AXB)U (A X B).

If A x B is a measurable rectangle, we set A(A X B) = uA - vB

14. Lemma: Let {(A; x Bj)} be a countable disjoint collection of measurable rectangles
whose union is a measurable rectangle A x B. Then

AA x B) = Z M(Ai x B)).

Proof: Fix a point x € A. Then for each y € B, the point (x, y) belongs to exactly one
rectangle Ai x Bi. Thus B is the disjoint union of those Bi such that x is in the
corresponding Ai,. Hence

D B x4, () = VB 14(®)
since v IS countably additive. Thus, by the corollary of the Monotone Convergence
Theorem (11.14), we have

vaBi " Xadu =fv(B) Xadp

or XvBi-uAi=vB - pA.e

The lemma implies that A satisfies the conditions of Proposition 9 and hence has a
unique extension to a measure on the algebra R’ consisting of all finite disjoint unions
of sets in R. Theorem 8 allows us to extend A to be a complete measure on a c-algebra
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§ containing R. This extended measure is called the product measure of pwand v and is
denoted by p x v. If pand v are finite (or o-finite), so is u x v. If X and Y are the real
line and p and v are both Lebesgue measure, then p x v is called two-dimensional
Lebesgue measure for the plane.

If E is any subset of X x Y and x a point of X, we define the x cross section Ex by

Ex = {y: <X, y> € E}, and similarly for the y cross section for y in Y. The characteristic
function of E, is related to that of E by x5 (y) = xg(x,y)

We also have (E), = ~ (Ex) and (U Eq)x = U(Eq)x for any collection {E.}.

15. Lemma: Let x be a point of X and E a setin R 5. Then Ex is a measurable subset of
Y.

Proof: The lemma is trivially true if E is in the class R of measurable rectangles. We
next show it to be true for E in R, Let E = U;2, E; where each E; is a measurable

rectangle. Then yg (v) = xg(x,y) = sup xg,(x,y) = sup x, ), (). Since each E; is a
i i &

measurable rectangle, x. ) () is a measurable function of y, and so y;_must also be

measurable, whence Ey is measurable.
Suppose now that E = N;2; E; With Ei eR,. Then yg = xe(x,¥) = infxg, (x,y)
L

=infy. () and we see that yy_is measurable. Thus, Ex is measurable for any E in
l L

Rys-¢

16. Lemma: Let E be a set in R,5 with pu x v (E) < o0. Then the function g defined by
g(x) = vEx is a measurable function of x and [ g du = p x v(E)

Proof: The lemma is trivially true if E is a measurable rectangle. We first note that any
set in R, is a disjoint union of measurable rectangles. Let {E} be a disjoint sequence
of measurable rectangles, and let E = U E;. Set g;(x) = v[(E;)«]

Then each g is a nonnegative measurable function, and g = ). g;

thus, g is measurable, and by the corollary of the Monotone Convergence Theorem we
have [ gdu =X [ gidu=Xuxv(E)

Consequently, the lemma holds for E €R, . Let E be a set of finite measure in R, s
Then there is a sequence {E;} of sets in R, such that E;+1 < Ej and E = n E;. It follows
from Proposition 6 that we may take p x v (Ei) < . Let gi(x) = v[(Ei)x].

Since [ gidu = p x v(EL) < o0, we have gi(x) < oo for almost all x. For an x with g1(x)
< oo, we have ((E;),) a decreasing sequence of measurable sets of finite

measure whose intersection is Ex. Thus, by Proposition 11.2 we have g(x) = v(Ex) = lim
V[(Ei)x) = lim gi(x).

Hence gi — g a.e., and so g is measurable. Since 0 < g; < gi, the Lebesgue
Convergence Theorem implies that [ g du =1lim [ g;du = lim p x v(E;). the last
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equality following from Proposition 11.2. e

17. Lemma: Let E be a set for which u x v(E) = 0. Then for almost all x we have v(Ey)
=0.

Proof: By Proposition 6 there isa set F in R s suchthat Ec Fand puxv (F) =0. It
follows from Lemma 16 that for almost all x we have v(Fx) = 0. But Ex < Fx and so vEx
= 0 for almost all x since v js complete. ¢

18. Proposition: Let E be a measurable subset of X x Y such that pu x v(E) is finite.
Then for almost all x the set Ex is a measurable subset of Y. The function g defined by
g(x) = v(Ex) is a measurable function defined for almost all x and [ g du = p x v(E). "
Proof: By Proposition 6 there isa set Fin R s, suchthat EcFand uxv (F)=uxv
(E). Let G =F ~ E. Since E and F are measurable, soisG,and ux v(F) =uxv (E) + u
x v(G).

Since p x v(E ) is finite and equal to p x v(F), we have u x v(G) = 0. Thus by Lemma
17 we have v(Gy), = 0 for almost all x. Hence g(x) = vEx = vFxa.e.;so gis a
measurable function by Lemma 16. Again by Lemma 16 [ g du = p x v(F) = u x v(E).
.

19. Theorem (Fubini): Let (X, 2, u) and (Y, B, v) be two complete measure spaces
and f an integrable function on X x Y. Then

1). For almost all x the function f, defined by £, (y) = f(x, y) is an integrable function
onY.

2). For almost all y the function f¥ defined by f¥(x) = f(x,y) is an integrable
function on X.

3), fyf(x,y) dv(y) is an integrable function on X,

4). fo(x,y) du(x) is an Integrable function on Y.
5). [ylfyfav]du = [ fduxv)=[,[f fduldv

Proof: Because of the symmetry between x and y it suffices to prove (1), (3), and the
first half of (5). If the conclusion of the theorem holds for each of two functions, it also
holds for their difference, and hence it is sufficient to consider the case when f is
nonnegative. Proposition 18 asserts that the theorem is true if f is the characteristic
function of a measurable set of finite measure, and hence the theorem must be true if f
is a simple function which vanishes outside a set of finite measure. Proposition 11.7
asserts that each nonnegative integrable function f is the limit of an increasing sequence
{¢,,} of nonnegative simple functions, and, since each ¢,, is integrable and simple, it
must vanish outside a set of finite measure. Thus f, is the limit of the increasing
sequence {(¢,),} and is measurable. By the Monotone Convergence Theorem fo(x,

y) dv(y) =lim [, @n(x, y) dv(y)
and so this integral is a measurable function of x.
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Again, by the Monotone Convergence Theorem
ISy fav]du=1lim [, [[,@,dv]du

=[xy Pnd (i X v)

= [y fd( X ) ¢

20. Theorem (Tonelli): Let (X, &, ) and (Y, B, v) be two o-finite measure spaces and
f be a non- negative measurable function on X x Y. Then

1). For almost all x the function f, defined by £, (vy) = f(x, y) is a measurable function
onYy.

2). For almost all y the function f¥ defined by f¥(x) = f(x, y) is a measurable
function on X.

3), fyf(x, y) du(y) is a measurable function on X,

4). fo(x, y) du(x) is a measurable functionon Y.
5). [y [fyfdv]dpn = [y fd@uxv) = [, [ fdu]dv

Proof: Because of the symmetry between x and vy it suffices to prove (1), (3), and the
first half of (5).

Case (i): Suppose that f is a characteristic function of measurable set with finite
measure.

Let f = y; where E is a measurable set.

Since f is integrable, [, f d(u x v) <.

We have f, = xg, . Clearly fy is measurable function on Y

J g fe A x 0) = [y xg, d (1 X v) < 0.

.. fx is integrable = fy is measurable.

Consider g(x) = [, f dv.

But we know that g(x) = vEx is measurable with u x v E < o0 and
J ,9(x) du = p x VE < oo we have g is integrable function.

fo dv is measurable function.

Now [,g(x) du = [, [/, fdv]du =u x vE.

sy f duxv) = [, xgd(uxv) =pxv(E)=[,90)du=[,[f, fdv]du

Case (ii): Suppose that f is a simple function which vanishes outside a set of finite
measure. Since a simple function is a linear combination of characteristic function by
case (i) the theorem is true.

Case (ii1): Let f be an integrable functionon X x Y.

Choose an increasing sequence {¢,,} of nonnegative simple functions which converges
to f.

Since ¢,,is measurable and simple, it must vanish outside a set of finite measure.

and f=1lim ¢,,.

S = 1M (@)

Since f,is measurable and hence integrable. Then by monotone convergence theorem
[ fedv=lim [ @, (x,y)dv

By case (ii) the RHS of the above equation is measurable and hence




[, f dv is measurable.
Again, by Monotone convergence theorem

fx[fyfdv]d.u = Ilm fx[fy(pn(ny) dU]d‘Ll = Ilm fXxy(pn(x’y) d(‘Ll X U)
=[xy fdnxv) ¢
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M 401: MEASURE THEORY
UNIT IV
K. C. TAMMI RAJU

6 INNER MEASURE

Let u be a measure on an algebra A and u* the induced outer measure. Then u*E may
be thought of as the largest possible measure for E compatible with p.. We can also
define an inner measure u, which assigns to a given set E the smallest measure
compatible with p:

Definition: Let u be a measure on an algebra A4 and u* the induced outer measure. We
define the inner measure u, induced by u by setting
p:(E) = sup {pA - p*(A~E): A e A, p*(A~E) <oo}.

[Inner measure was important historically because the measurability of a set was
originally characterized using both inner ang outer measure. In the historical context
inner measure was first defined for bounded subsets of R. For such sets the definition
above is equivalent to the historical one: u,(E) = I(l) — u(l ~ E) where I is a finite
interval containing E. A bounded set E was then defined to be measurable if u,(E) =
u*(E), and the measurability of unbounded sets was defined in terms of their
intersections with finite intervals. Even in the case of a bounded set this procedure is
more cumbersome than the elegant approach of Carathéodory, which we have followed
in this chapter. Apart from this historical importance, inner measure is useful for the
extension of u from A to an algebra containing A and a given set E (which need not be
measurable) and for determining the freedom we have in extending p to a c-algebra
containing A.]

Lemma: Prove that u,(E) < u*(E). If E € A, then show that u,(E) = u(E) = u*(E).
Proof: Let A € A and u*(A ~ E) < 0.
Since 4 = (AN E) U (A n E), by finite sub additivity of p, we have u(4) < p*(AN
E)+ pw(AnE).
(A — w(ANE)< u(ANE)
<u*(E)sinceANECE.
le. u(A) — w(ANE)<u*(E)V A e Aand u*(A~E) <oo. ..u*(E) is an upper
bound of {u(A) — w(ANE):Ae A p*(A~E)<wx
Consequently, by definition of w,, u.(E) < u*(E)...(1)
Let E € A. Then p*(E) = pu(E) so that u,(E) < w(E)...(11)
Now put A=Esothat A € A and p*(A~E) =0 <.
= Sup{u(E)} = u(E)
le. w,(E) = w(E)...(iii)
From (ii) and (iii) u, (E) = u*(E).




Lemma: If E < F then u, (E) < u.(F).

Proof: LetE c F.

Let A e Aand p*(A~E) <.

Then~Fc~Eandso,A~FcA~E . py"(A~F)<pu" (A~E) <,

Also, p*(A ~ F) < (A ~ E) = n(A) — w*(A ~ F) 2 u(A) — p*(A ~ E).
SSUp{UA—p*(A~E)Aec A u*(A~E)<owo}<sup {pA—pu*(A~F): A e A, u*(A
~F) < oo},

le u.(E) < p.(F).

[One of the difficulties of using the definition of inner measure is that we must
take supremum of p(A) - u*(A ~ E) overall A € A with p*(A ~ E) < . The next
lemma shows that this expression is monotone in A and enables us to calculate u, (E)
more easily.]

Lemma: Let A and B be two sets in A with u*(A ~E) <o and u*(B ~ E) < .

If A < B, wehave pA — u*(A ~E) <uB — u*(B ~E). Ifalso E — A, we have equality,
and hence u,(E ) = u(A) — u*(A ~ E).

Proof: Let Ac B. Then B =A U (B ~ A), is adisjoint union.

. By additivity of u, w(B) = u(A) + u(B ~ A).

= (B ~A)=u(B)-nA) ... 3)

ObservethatB~E < (B ~A) U (A ~E).

.. By sub additivity of u* we have u*(B ~ E) < u*(B ~ A) + u*(A ~ E).
SinceB~Ae A, u*(B~A)=uwB~A).

S u*(B~E)<uB~A)+ u*(A~E).

= u*(B ~ E) < u(B) — u(A) + u*(A ~ E) from (i). —

= W(A) - p*(A~E) < u(B) —u*(B ~ E)

LetEc A. ThenB~E = (B~ A)u (A~E) is adisjoint union and so

proceeding as above we get u*(B ~ E) = w(B) — u(A) + u*(A ~ E)

ie. yA— pu*(A~E)=uB - pu*(B ~E).

Now taking supremum over all sets B € A with u*(B ~ E) < o we have

LA —p*(A~E)=Sup {uB-u*(B~E):Be A, u*(B~E)<w}=u,(E). Hence
#.(E) = pA - p*(A ~ E)

[This lemma and its corollary show that if u is a finite measure, then p,(E) = uX —
u*(E). In this case the development of the theory and properties of inner measure are
relatively straightforward. The complexity of the treatment of inner measure in this
section is caused by having the concept apply to measures that are not c-finite.




Corollary: If A € A, then pA =, (ANE) + p*(AnE).
Proof: Let p*(ANE) =0,

Then pA = oo and there is nothing to prove.
Letu*(ANE) <o SetF=ANE.
ThenFcEsothat E € Fandso, AN ECANF ie. AnECA~F..>i)
Letxe A~F=xeAandx ¢ F.
=>XeAandxe¢ AnE
=>XxeAandx¢E=xecAandx eF

=>XxecANnE ieA~FCAn E .. (i

s from(@i)and (i) A~F=ANE

But by above lemma w, (F ) = u(A) — u*(A ~ F) since Fc A
= . (F) = p(A) - u*(ANE).

S pA=u(ANE)+pu*(AnE).

Lemma: Let B be a u*-measurable set with u*B <. Then u,(B) = u*B.

Proof: Let £ > 0. Since u*B < «o, there isaset A € A with u*(B~A) <e.[Letubea

finite measure on an algebra A and p* the induced outer measure. A set E is

measurable iff for each e >0 thereisaset Ain As, ACE>u*(E~A)<g]

Since A is measurable, p*B = p*(B N A) + u*(B N A) = p*(B N A) + u*(B ~ A) and

sou*B<pu*(BNnA) +e.

- Now u*(A N B) > u*B —¢...(i)

Since u,(B) = Sup {pA —u*(A~B): A € A, u*(A ~ B) < w0},

w.(B) > pA — p*(A ~ B) = p*(A) — u*(A N B) = u*(A n B) since B is measurable
>u*B —e.

le. u,(B) >u*B—-eVe>0.

= u,(B) > u*B.

But u,(B) < u*B.

Hence u,.(B) = u*B.

Proposition: Let E be a set with u,(E) <. Then there isaset H € As, such that H <
E and a(H) = p.(E).

Proof: Since u,(E) = Sup {uA—-p*(A~E): A e A, u*(A~E) <}, foreachn3a
set Ay in A With p*(A,~ E) < oo and puAq — p*(Aq ~ ) > . (E) - -

By a Proposition, [Let pu be a measure on an algebra A, u* be the outer measure
induced by p and E be any set. Then (i) for each € > 0, there isa set A € A, with E ¢
Aand u*(A) < u*(E) + &.(ii) ThereisaB €A, 5 WithE c B and u*(E) = u*(B).] 3
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Gn ECAO-SB Gn;)An~Eand ﬁ(Gn)zu*(An~E). Let
Hn:An~Gn.TheanECIq,é‘o-andHngE. [XEHn:XEAn"'Gn:XEAn,Xan
=XeAjandx ¢ AynE =x e Ajand x € E]

Moreover, i(Hy) = u(4Ay) — i(G,) > u.(E) - % :
LetH=UH, ThenH cE,H eAs, and g(H) > u,(E)

Hence ia(H) = u.(E).
[Moreover, since A, ~ E c Gy, (A, ~ E) < ia(Gy) ... (1).
Again, since A, = H, U Gy, i1(4,) = i(Hy,) + i(G,).

S B(Hy) = f(Ay) — a(Gr)
2 IZ(An) - /I(An - E)
> u(Ay,) — (A, — E)
> u, (E) %
Since asn — oo, 1/n — 0 so that g(H,) > u.(F)

LetH=uUH, ThenH c E, H €A, and ia(H,) > u.(E)
Hc E = p*(H) < p*(E)

= f(H) <p*(E) = u(E) = a(H) < p.(E)

-~ A(H) = w.(E)]

Corollary: If u,(E) <o, u,(E) =sup {iz(B): B c E, B measurable, ji(B) < w«}.

Proposition: Suppose u*E < oo. Then E is measurable if and only if u,(E) = u*E.
Proof: Suppose u*E < « and E is measurable.

By the lemma [Let B be a u*-measurable set with u*B <. Then u,(B) = u*B]

we have u, (E) = u*E.

Conversely suppose u, (E) = u*E < o0. Then by a Proposition [Let pe be a measure on
an algebra A, u* be the outer measure induced by p and E be any set. There is a B
eAgzs With E < B and u*(E) = u*(B).] 3 measurable set G €A 5 with E < G and
u*(E) = u*(G) and by above proposition [Let E be a set with u, (E) < c. Then there is a
setH € Ags, suchthat H c E and g(H) = u.(E)] 3 measurable set H € A5 with H ¢
E, u(H) = p.(E).

Sou(H) = p(E) = p (E) = u(G).

ie. u(H) = u(G).

= u(H)=p(G)

Thus, we have E differs from a measurable set by a set of measure zero and hence E is
measurable. [HiIntG-Ec G—-H.PutB=G-E. Then E=G - B where u(B) < u(G -




H) = 0].

Theorem: Let E and F be two disjoint sets. Then

p(E) + o (F) < w(EVF) <p (E) + w(F)<p (EUF) <p™(E) + u*(F)

Proof: Suppose u,(E) or u,(F) is infinite.

Then the first inequality follows from the monotonicity of ..

Suppose u, (E) and u,(F) are both finite. By a proposition [Let E be a set with ., (E) <
. Then there isa set H € As, such that H c E and g(H) = u,(E)]

3 G and H, measurable sets, with G < E and H < F such that 4(G) = u.(E) and ji(H)
= u.(F).

Then G U H is a measurable set of finite outer measure contained in E U F.

Thus, u,(EVU F) 2 p(G U H) = a(G U H) = a(G) + g(H) = p.(E) + p.(F) proving
the first inequality.

Suppose u*(F) = oo, Then the second inequality is trivial.

Suppose u*(F) <. LetA e Awithu* (A~ (EUF) <oo.
SinceA~Ec{A~(EuUR}uUFwehave u"(A~E)<u*{A~(EUFR)}+u(F).
Thus, u*(A~E) <wand

A - p{A~(EU R} <pA - (A~E) + w'F < p.(E) + p*(F)

Taking the supremum over A, we get u,(E U F) <u,(E) + u*(F).

To prove the 3rd inequality, we choose a measurable set G — E with i(G) = u,(E).
Then the measurability of G implies that u,(E) + u*(F) = i(G) + u*(F) =u*(G U F)
<u(EVUF). Thus, u,(E)+ u*(F)<u*(EUF).

By the sub additivity of outer measure u*(E U F) < u*(E) + u*(F)

Corollary: If {E} is any disjoint sequence of sets, then .72, u.E; < u, (U2, E;)
Proof: Set E = U2, E; . Repeated application of the first inequality in a Theorem gives
us Y, uE; <u. (Ui, E;) < . (E). The corollary follows by letting n tend to oo.
Lemma: Let {Ai} be a disjoint sequence of sets in A.

Then . (E N U2, 4p) = X2, 1. (E N Ay)

Proof: Since we may replace E by E n U;2, A; we may suppose E — U2, 4; =C.

Let B € A with u*(B ~ E) < o0.

Since C is p*-measurable, uB = p*(B n C) + u*(Bn €) and
V*BNE)=p*BNCnE)Y+ W *BNEnNC)=p*BNCNE)+pu*BnC),since C
cE.

Thus, p*(B N €) < p*(B N E) < o0, and so
uB-u*(B~E)=p*BNC)-u*BNENC)=X2u(4; NB) -u*(BNENC).
Hence uB - u*(B ~E) < ).72, 1. (4; N E).

Taking the supremum over B gives . E < Y72, . (4; N E).
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The opposite inequality follows from Corollary.

Theorem: Let p be a measure on an algebra A of subsets of X and E any subset of X.
If B is the algebra generated by A and E and if ji is any extension of p to B, then
u.(E) < @(E) < p*(E).

Moreover, there are extensions u and u of p to B (and hence also to the c-algebra

generated by B such that p(E) = u*(E) and u(E) = p.(E).

Proof: Let {Ai} be any disjoint sequence of sets from A with E < U;2, A;. then
E=UR,(A; N E), and so g(E) = X2, A(4; N E) < X2 u(A).

Thus, f(E) < u*(E).

If A'is any setin A with u*(A ~ E) < oo, then i(A~E) < u*(A~ E), and

W(A) - (A~ E) < p(A) - i(A ~ E) = i(E n A) < i(E).

Thus, u.(E) < i(E).

Hence u,(E) < fi(E) < u*(E).

The sets B in B are the sets of the form B = (A "N E) U (A’ n E) with Aand A’ in A,
since the collection of all sets of this form is an algebra contained in 8B and containing
A and E.

For each B € B define i and u by #(B) = w'(BNE) + (B N E) and

uB) = w.(BNE)+u*(BNE).
Then u and u are monotone, nonnegative functions defined on 3B, and since for A € A,
we have pA =, (A N E) + p*(A n E) it follows that ZA = uA = pA for A € A. For

any Awe have p*(ANE) =2, 1" (AN 4;). By alemma we have Then
u(ENUZ, A = X2, 1. (E N A;p). So, pand p are countably additive on 8. Hence

the theorem follows. ¢

7. Extension by Sets of Measure Zero

The results of Section 2 allow us to extend a measure p on an algebra A to a c-algebra
containing A and those of Section 6 provide for the extension from A to a o-algebra
containing A and one additional set. It is sometimes useful to be able to extend to a o-
algebra containing A and some collection 9t of subsets of X and to extend in such a
way that each of the sets in 90t has measure zero. A necessary condition for this to be
possible is that whenever we have a set A € A such that A < Me 9t , then uA = 0.
This condition is not in general sufficient, since a countable union of sets in 9t may
contain an A with positive measure, but, if we assume that 9t is closed under countable
unions, then the condition is sufficient.
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39. Proposition: Let pu be a measure on a c-algebra A of subsets of X, and let 9t be a
collection of subsets of X which is closed under countable unions and which has the
property that for each A € 9t with A = M € It we have uA = 0. Then there is an
extension j of p to the smallest c-algebra B containing A and Mt such that gM = 0 for
each M € M. Proof:
Since the collection of sets which are subsets of a set in 9t satisfies the same hypothesis
as M, we may assume that each subset of a set in 9t is itself in M. With this
assumption the collection B={B:B=AAM, A €A, M € M} isac-algebra
containing A and 9t, and since each o-algebra containing A and 9t contains B, B is
the smallest s-algebra containing A and k.

If B=A1AM;=A;AMy then A; A A; =M1 A My, and so u(A1 A Az) = 0. Thus pAg
= Ay, and, if we define B to be pAg, then i is well defined on B and is an extension
of u. It remains only to show that j is countably additive.

LetB=u Bj, Bin sz(I). If B; = Ai A M;, then AiAAj e . SettingA;l =An ﬂfil n
..NA,_; we have A; N A} = ¢, and A, N Ay e M Thus Bi = A]AM; and B=A A M,
where A = UA;; and M < UM/;. Thus B = pA = ZuA;; = X aB;. ¢

We observe that the condition that uA = 0 for each A € A with A < M simply
states that u,M = 0. Thus, the proposition states that we can extend the domain of p to
include any collection 90t of sets of inner measure zero provided that 9t is closed under
countable unions. Note that on the c-algebra generated by A and 9t we have = p..
Thus, this proposition gives a generalization of the process of completion which
extends the domain of a measure by adding sets of outer measure zero.

8. Caratheodory Outer measure.

Suppose X is a set of points and I" is a set of real — valued functions on X. Now we find
a sufficient condition under which an outer measure u* will have the property that
every function in T is u* measurable.

Definition: Two sets are said to be separated by the function ¢ if there are numbers a
and b with a > b such that ¢ is greater than a on one and less than b on the other.

Definition: An outer measure u* is called a Caratheodory outer measure with respect
to I if it satisfies the following axiom: (iv) If A and B are two sets which are separated
by some function in T, then p*(A UB) = u*(A) + u*(B).S

Proposition: If u* is a Caratheodory outer measure with respect to I', then every
function in I" is u* measurable.

Proof: Let u* be a Caratheodory outer measure w.r.t I'. Given the real number a and
the function ¢ € I', we must show that the set E = {x: ¢(x) > a} is u* measurable or
equivalently, that given any set A, p*(A) > u*(A NE) + u*(A N E).
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Since this inequality is trivial if u*(A) = oo, let u*(A) < 0.

We begin by settingB=E A, C=En A, and

B, = {x: (x €EB &((p(x) >a +%)}

Defining R,, = B,,~B,,_1, we have B = B, U [U}-,+1 Rkl

Now on B,,_, we have ¢ > a + n—iz while on R,, we have ¢ < a +

1
E.
Thus ¢ separates R,, and B,,_, and hence separates R, and U?:_f R,;, since the latter
set is contained in B, _,.
Consequently u*[U%_, Ryj] = u*Ryx + [USZ1 Ry;] = X¥_, w R, by induction. Since
Yi 1R,y =B Awehave X5 ; u*R,; < pu*A, and so the series 352, u*R,; converges.
Similarly, the series .72, "R, 41 converges, and therefore also the series
D=1 L Ry
— given ¢ > 0, we can choose n so large).;-; "Ry < €.
Then by subadditivity of u*, p*B < u*B, + Y pens1 W R <p'B, +€. S
Now u*A = u* (B, U C) = u*(B,) + u*(C) since ¢ separates B, and C. Consequently,
wWA=>u(B)+u(C)—e.
Since ¢ is arbitrary positive quantity, u*A = u*(B) + u*(C)
ie. WA= (ANE)+u (ANE)e.

9 Hausdorff Measures

Definition: By a Borel measure on a metric space X we mean a measure that is defined
on some c-algebra containing the c-algebra of Borel sets in X. For each positive real
number o we will define a particular Borel measure m,, called the Hausdorff measure
on X of dimensions a. These measures are particularly important for the Euclidean
spaces R", but much of their theory goes through just as easily for an arbitrary metric
space X. To define m,, we take ¢ > 0 and set Agf)z inf »;2, . where
the <r;> are the radii of a sequence of balls, <B;> that cover E and for which r; < ¢.

Observe that Aff) increases as € decreases. Setmy,(E) =
sup Y21 A5 (E) as € > 0. Then we have my(E) = lirrg Yic AL (E). It is readily
E—

verified that m}, is countably subadditive and thus an outer measure.

If E and F are two subsets of X with p(E, F) > 5, then

ADE VR =29E) + 22 (F) assoon as € < &

For if <B;> is a sequence of balls of radii less than € covering E U F, no ball can meet
both E and F. Taking limits as € — 0, we have m},(E U F) > m(E) + m(F). Thus
m;, induces a Borel measure m,, on X by Proposition 41.

The measure m,, is called Hausdorff a-dimensional measure.

21

It is customary to normalize ma by dividing by the quantity , = .
ar(%
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Thus m; =2, m,=n, m3=4n/3, and «,, is the volume of the unit ball in R".
We refer to this measure as normalized Hausdorff measure.
In R" the normalized Hausdorff measure m, is equal to Lebesgue measure.




